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Abstract

We introduce a new and easy-to-calculate measure for the expected degree of
herd behavior or co-movement between stock prices. This forward looking measure
is model-independent and based on observed option data. It is baptized the Herd
Behavior Index (HIX).
The degree of co-movement in a stock market can be determined by comparing

the observed market situation with the extreme (theoretical) situation under which
the whole system is driven by a single factor. The HIX is then de�ned as the ratio
of an option-based estimate of the risk-neutral variance of the market index and an
option-based estimate of the corresponding variance in case of the extreme single
factor market situation.
The HIX can be determined for any market index provided an appropriate series

of vanilla options is traded on this index as well as on its components. As an
illustration, we determine historical values of the 30-days HIX for the Dow Jones
Industrial Average, covering the period January 2003 to October 2009.
Keywords: Comonotonicity, herd behavior, systemic risk, correlation, VIX

volatility index.

1 Introduction

"Men, it has been well said, think in herds, it will be seen that they go mad in herds, while
they only recover their senses slowly, and one by one." Charles Mackay (1841).

Systemic risk in �nancial markets has become a major focus of �nancial players, reg-
ulators, policy makers and market supervisors. It captures the danger of a collapse of the
�nancial system and the devastating consequences for �nancial markets and society as a
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whole. An objective estimation of the degree of systemic risk is of utmost importance as
it may give the di¤erent stakeholders insight and an opportunity to take the necessary
actions. The degree of co-movement (or herd behavior) of asset prices in �nancial markets
is one of the indicators for systemic risk potential. In this paper, we propose a new mea-
sure for the implied degree of co-movement of asset prices which can be determined from
available option data. Although hereafter we will restrict to stock markets, the proposed
methodology can be applied to any market index provided an appropriate series of vanilla
options is traded on this index as well as on its components.

The volatility of a stock market index is determined by the volatilities of the in-
dex components as well as by the dependence structure among them. Higher individual
volatilities and/or stronger positive interdependences will increase the index volatility. A
stronger positive dependence structure is a sign of less diversi�cation and a higher degree
of herd behavior. Bubbles and crashes may be explained in terms of herd behavior. The
tulip mania in the Netherlands in the 17th century, the internet bubble around 1995-2000
and the US housing bubble which peaked in 2006 are textbook examples of bubbles driven
by greed and by strong herd behavior. All these bubbles lead to major crashes in the rel-
evant markets. Crashes in �nancial markets typically occur when individuals are driven
by panic and join the crowd in a rush to get out of the market, leading to dramatic price
movements (�re-sales). The late-2000�s �nancial crisis following the US housing bubble is
an example of this phenomenon.

Although herd behavior is often irrational, having information about its magnitude
is signi�cant in that it gives insight into the degree of diversi�cation that is obtained by
investing in the market index. Similar to volatility, the degree of herd behavior may be
changing over time in a random manner, which makes it a hard task to estimate it from
past data. Derivative instruments take a forward looking view and their prices contain
information on the market participants�perception on the future evolution of the market.
A standard approach is to determine the volatility of a stock or a stock index that is
implied by today�s market prices of traded options. In a somewhat similar way, we will
de�ne and investigate a new barometer for the expected degree of herd behavior as implied
in today�s option quotes on individual stocks in combination with option prices on the
corresponding index.

The de�nition of the Herd Behavior Index (HIX) is based on the idea that the mar-
ket�s perception on the degree of co-movement of future stock prices should be measured
by comparing the actual dependence structure between the future stock prices with the
comonotonic dependence structure, under which the whole system is driven by a single fac-
tor. To be more precise, the HIX is de�ned as the ratio of an option-based estimate of the
risk-neutral variance of the market index and an option-based estimate of the correspond-
ing variance in this (theoretical) extreme market situation. The HIX can be interpreted as
a scaled variance index, with a time-dependent scaling factor. The observed index option
prices are used to describe the real market situation, while the theory of comonotonicity
allows us to describe the extreme situation via the observed stock option quotes.

The HIX is intrinsically related to dispersion or herd behavior trading and hedging.
Intuitively stated, when the herd behavior index is large, there is not much diversi�cation
possible and index options are relatively expensive compared to the individual stock op-
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tions. Therefore, a high value of the HIX suggests to buy individual options and sell index
options. The position can then be pro�tably closed when the market relaxes and the HIX
decreases. On the other hand, when the HIX is low but an investor is worried about the
impact of potential herd behavior, he could enter in the opposite trade to hedge against
co-movement exposure. One of the advantages of using the concept of comonotonicity to
measure the degree of herd behavior is that it allows to specify the optimal portfolio of
individual options one should buy in case of a high value of the HIX.

This paper is organized as follows. In Section 2, we describe the �nancial market
which is assumed throughout this paper. Essential results concerning the theory of
comonotonicity that are used in this paper are recapitulated in Section 3. Using the
concept of comonotonicity, the theoretical case of a market with perfect herd behavior is
described in that section. In Section 4, we de�ne the HIX and compare it with other pos-
sible indices for measuring herd behavior in stock markets. In particular, it will be shown
that the HIX outperforms correlation as a measure for co-movement. We also describe the
CIX as a closely related measure for co-movement of stock prices. In Section 5, numerical
issues concerning the practical calculation of the HIX are considered. In Section 6 we em-
pirically investigate herd behavior by calculating historical HIX-values for the Dow Jones
Industrial Average over the period January 2006 - October 20091. Section 7 concludes
the paper.

2 The �nancial market

2.1 Stocks, the market index and options

We assume a �nancial market2 where n di¤erent (dividend or non-dividend paying) stocks,
labeled from 1 to n, are traded. Current time is 0, while the time span under consideration
is T years. The price at time t, 0 � t � T , of stock i is denoted by Xi (t). Hereafter,
we will always silently assume that Xi (t) � 0 for all i and that its �rst and second
order moments are �nite. The standard deviation of Xi (t) is denoted by �Xi(t). Pearson�s
correlation coe¢ cient between Xi(t) and Xj(t) is denoted by corr[Xi(t); Xj(t)].

The market index is composed of a linear combination of the n underlying stocks.
Denoting the price of the index at time t by S (t), 0 � t � T , we have that

S (t) = w1X1 (t) + w2X2 (t) + : : :+ wnXn (t) ; (1)

where wi; i = 1; 2; : : : ; n; are positive weights that are �xed up front. The standard
deviation of S (t) is denoted by �S(t).

We assume that market participants have access to a number of European options with
maturity T . More precisely, they can trade in European calls and puts on the index and on

1More recent daily quotes for the HIX and the CIX for the Dow Jones can be found on
www.kuleuven.be/insurance.

2We use the common approach to describe the �nancial market via a �ltered probability space�

;F ; (Ft)0�t�T ;P

�
.
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the individual stocks. The pay-o¤at time T of a European call on the index, with maturity
T and strike K, is given by (S (T )�K)+, whereas the pay-o¤ of the corresponding index
put option is given by (K � S (T ))+. The time-0 prices of these index options are denoted
by C [K;T ] and P [K;T ], respectively. Similar pay-o¤s and notations hold for calls and
puts on the constituent stocks. In particular, the time-0 prices of calls and puts on stock
i are denoted by Ci [K;T ] and Pi [K;T ], respectively.

It is assumed that the �nancial market is arbitrage-free and that there exists a pricing
measure Q; equivalent to the physical probability measure P, such that the current price
of any pay-o¤at time T can be represented as the expectation of the discounted pay-o¤. In
this price-recipe, the discounting factor is e�rT , where r is the continuously compounded
time-0 risk-free interest rate to expiration T , whereas expectations are taken with respect
to Q. For simplicity in notation and terminology, we assume deterministic interest rates.
Notice however that all results hereafter remain to hold in case interest rates are stochastic,
provided the discounting factor e�rT is interpreted as the time-0 price of a T -year zero
coupon bond and the pricing measure Q is interpreted as a �T -year forward measure�
instead of a �risk-neutral measure�.

The no-arbitrage condition gives rise to the following expressions for the option prices:

Ci [K;T ] = e
�rTE[(Xi(T )�K)+];

Pi [K;T ] = e
�rTE[(K �Xi(T ))+]; (2)

and

C [K;T ] = e�rTE[(S(T )�K)+];
P [K;T ] = e�rTE[(K � S(T ))+]: (3)

In formulae (2) and (3), as well as in the remainder of this text, expectations (dis-
tributions) of functions of (X1 (T ) ; : : : ; Xn (T )) have to be understood as expectations
(distributions) under the Q-measure. We will often call them risk-neutral expectations
(distributions). Furthermore, the notations FXi(T ) and FS(T ) will be used for the time-0
cumulative distribution functions (cdf�s) of Xi (T ) and S (T ) under Q.

In order to avoid unnecessary overloading of the notations, hereafter we will omit the
�xed time index T when no confusion is possible. For example, we will write Xi; Ci [K]
and FXi (x) for Xi (T ) ; Ci [K;T ] and FXi(T ) (x), respectively.

2.2 Risk-neutral stock price distributions

In practice, only a �nite number of strikes are traded for each stock as well as for the
index. Therefore, we assume that for stock i; i = 1; 2; : : : ; n, at current time 0, European
call and put options with strikes 0 = Ki;0 < Ki;1 < : : : < Ki;mi

< F�1Xi (1) and maturity
T are available in the market. The prices of these options are denoted by Ci [Ki;j] and
Pi [Ki;j] ; i = 1; 2; : : : ; n; j = 0; 1; : : : ;mi. Furthermore, we assume that F�1Xi (1) is known
and �nite. We will denote this �maximal value�of Xi by Ki;mi+1. In reality, stock and call
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options may have an unbounded upward potential. However, for numerical reasons, we
will enforce a �nite upper bound which can be chosen arbitrarily large. The main results
that we will derive hereafter will not depend on the choice of the Ki;mi+1, provided they
are chosen su¢ ciently large. For an optimal choice of the Ki;mi+1, we refer to Chen et al.
(2008).

If option prices Ci [K] were available for any strike K, we could in principle deduct
the implied risk-neutral distribution FXi of the price of stock i at time T . However, as
we assumed that there are only a �nite number of traded strikes on the individual stocks,
this distribution FXi is not completely speci�ed. Following Hobson et al. (2005) and Chen
et al. (2008), we solve this problem by replacing each FXi by the discrete cdf FXi, which
is de�ned by

FXi (x) =

8<:
0; if x < 0;

1 + erT
Ci[Ki;j+1]�Ci[Ki;j ]

Ki;j+1�Ki;j
; if Ki;j � x < Ki;j+1; j = 0; 1; : : : ;mi;

1; if x � Ki;j+1:

(4)

The cdf FXi is an empirical version of FXi which arises from approximating the partially
known convex call option curve Ci [K] by the piecewise linear convex function connecting
the observed points (Ki;j; Ci [Ki;j]) ; j = 0; 1; : : : ;mi + 1. Denoting this piecewise linear
function by Ci[K], we �nd FXi from the following relation:

FXi(x) = 1 + e
rT C

0
i[x+]: (5)

Obviously, any Ci[K] is an upper bound for the corresponding call option price Ci[K]
determined by (2). Moreover, for the traded strikes Ki;j both values are identical.

The empirical distributions FXi ; i = 1; 2; : : : ; n; can also be expressed in terms of
traded put options prices. Indeed, taking into account the put-call parity

Ci [K] + e
�rTK = Pi [K] + e

�rTE [Xi] ; K � 0; (6)

we can transform (4) into

FXi (x) =

8<:
0; if x < 0;

erT
Pi[Ki;j+1]�Pi[Ki;j ]

Ki;j+1�Ki;j
; if Ki;j � x < Ki;j+1; j = 0; 1; : : : ;mi;

1; if x � Ki;j+1:

(7)

Notice that this expression for FXi also follows from approximating the partially known
convex option curve Pi [K] by the fully known piecewise linear function connecting the ob-
served points (Ki;j; Pi [Ki;j]) ; j = 0; 1; : : : ;mi+1. Denoting this piecewise linear function
by P i[K], we �nd FXi from

FXi(x) = e
rT P

0
i[x+]: (8)

We end this subsection by remarking that replacing the partially known pricing dis-
tributions FXi by the fully speci�ed empirical pricing distributions FXi can be considered
as a prudent strategy in the sense that FXi exceeds FXi in convex order. This means in
particular that Ci[K] � Ci[K] and P i[K] � Pi[K] holds for any stock i and any strike K.
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2.3 Forward contracts and the variance of the index

Let S be the value of the stock market index at time T , while f is a function on the
non-negative real numbers with an absolutely continuous derivative f 0. Then f(S) can
be expressed as

f(S) = f (a) + f 0 (a) ((S � a)+ � (a� S)+)

+

Z a

0

f 00 (K) (K � S)+ dK +

Z 1

a

f 00 (K) (S �K)+ dK; (9)

where a is an arbitrary chosen positive real number; see Carr and Madan (2001). From
(9) it follows that the pay-o¤ f(S) at time T can be replicated via a static position in
pure discount bonds and European options on the index. Indeed, the �rst term in the
right hand side of this expression is the pay-o¤ at time T of a static position in f (a)
pure discount bonds, each paying an amount of 1 at time T . The other terms are the
pay-o¤s of static positions in European calls and puts on the index with maturity T . As
an example, consider the �rst integral term which corresponds with a static position in
f 00 (K) dK puts for all strikes K less than a.

Consider now the swap contract of which one leg pays the buyer (i.e. the long party)
the pay-o¤ f(S) at time T . In exchange, the other leg pays the seller a �xed amount P
at time T , which was agreed upon at the deal�s inception and set such that the price of
the contract is 0 at time 0, i.e.

0 = e�rTE [f(S)� P ] : (10)

This swap contract amounts to a T - year forward contract on a function f of the
index. Taking expections in (9), leads to the following expression for the time-0 forward
price P = E [f(S)] of this contract:

P = E [f(S)] = f (a) + erTf 0 (a) (C [a]� P [a])

+ erT
�Z a

0

f 00 (K)P [K] dK +

Z 1

a

f 00 (K)C [K] dK

�
: (11)

For more details on the interpretation of (9), we refer to Carr and Madan (2001) and the
references therein.

Let us �rst consider the special case where f(x) = x and a = K. In this case (9)
reduces to

S = K + (S �K)+ � (K � S)+; (12)

while (11) leads to
P = E [S] = K + erT (C [K]� P [K]) ; (13)

and the risk-neutral expectation E [S] is the time-0 forward price of the index value at
time T . The latter expression can be transformed in the well-known put-call parity for
the index:

C [K] + e�rTK = P [K] + e�rTE [S] ; K � 0: (14)
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Next, we consider the case where the function f is given by

f(S) = (S � E [S])2 : (15)

Applying relations (9) and (11) to the function f(S) de�ned in (15) and choosing a = E [S]
leads to

(S � E [S])2 = 2
 Z E[S]

0

(K � S)+ dK +

Z 1

E[S]
(S �K)+ dK

!
(16)

and

Var[S] = 2erT
 Z E[S]

0

P [K] dK +

Z +1

E[S]
C [K] dK

!
: (17)

Hence, the risk-neutral variance of the index price at time T can be interpreted as the
time-0 forward price of the contract with pay-o¤ (S � E [S])2 at time T . Furthermore,
the pay-o¤ of this contract can be replicated by a static portfolio consisting of calls and
puts on the index.

Notice that a similar interpretation can be found for the variance of the index return�
S�S(0)
S(0)

�
by choosing a = E [S] and

f(S) =

�
S � S(0)
S(0)

� E
�
S � S(0)
S(0)

��2
=

�
S � E [S]
S(0)

�2
: (18)

In this case, expressions (9) and (11) translate into�
S � E [S]
S(0)

�2
=

2

S2(0)

 Z E[S]

0

(K � S)+ dK +

Z 1

E[S]
(S �K)+ dK

!
(19)

and

Var
�
S � E [S]
S(0)

�
=
2erT

S2(0)

 Z E[S]

0

P [K] dK +

Z +1

E[S]
C [K] dK

!
: (20)

For notational convenience, hereafter we will continue with the contract with pay-o¤ (15).

In case the index option prices are known for all strikes, expression (17) can be used
to determine the risk neutral variance of the index in a model-free way, i.e. based on
observed option prices without making any model assumption. However, from here on
we make the more realistic assumption that only a �nite number of strikes are traded
in the market. Let us denote the �rst traded put option strike price below E [S] by K0.
The traded index put option strikes below E [S] are denoted by K�i; i = 0; 1; : : : ; l with
K�l < K�l+1 < : : : < K�1 < K0 � E[S], whereas the traded index call option strikes
above E [S] are denoted by Ki; i = 1; : : : ; h with E[S] < K1 < � � � < Kh�1 < Kh. Inspired
by the methodology that is used for calculating the VIX volatility index (see Chicago
Board Options Exchange (2009)), we propose the following approximation, notation s2 [T ],
for the risk-neutral variance of the index price:

Var [S] � s2 [T ] = 2erT
hX

i=�l

�Ki Q [Ki]� (E [S]�K0)
2 : (21)
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In this approximation, the �Ki are related to the resolution of the strike grid. In particu-
lar, we have that �Ki =

Ki+1�Ki�1
2

for i = �l+1; : : : ; h�1. For the lowest strike K�l how-
ever, �K�l = K�l+1�K�l, whereas for the highest strike Kh, we take �Kh = Kh�Kh�1.
Furthermore, Q [Ki] is de�ned as

Q [Ki] =

8<:
P [Ki] ; if Ki < K0;

C[Ki]+P [Ki]
2

; if Ki = K0;
C [Ki] ; if Ki > K0:

(22)

The extra term (E [S]�K0)
2 in (22) is a contribution due to the discretization around

E [S]. A justi�cation for the approximation used in formula (21) can be found in Appendix.
Notice that approximation (21) for the variance of the index involves all available index
call option prices at strikes larger than or equal to K0 and all index put options at strikes
lower than or equal to K0. Also note that except for the strike K0, we did not assume
here that traded strikes for puts and call index options are equal.

3 Perfect herd behavior

3.1 De�nition

A subset A of Rn is said to be comonotonic if any pair of elements x and y of A are
ordered componentwise, i.e. either xi � yi for i = 1; 2; : : : ; n, or xi � yi for i = 1; 2; : : : ; n
must hold. Intuitively, a comonotonic set is a �thin� set of which all elements can be
ordered from small to large. The random vector X = (X1; : : : ; Xn) of the stock prices at
time T is said to be comonotonic if it has a comonotonic support, which means that
there exists a comonotonic set A such that P [A] = 1. Obviously, comonotonicity of
(X1; : : : ; Xn) corresponds to an extremal positive dependence structure, where the increase
of the outcome of the price of a particular stock i at time T , goes hand in hand with
an increase of the outcomes of all the other stock prices. This explains why the term
comonotonic (common monotonic) is used.

Notice that we de�ned comonotonicity ofX in the P-world. Here, the P-measure has to
be interpreted as the real world probability measure, whereas the Q-measure corresponds
to a pricing measure. As comonotonicity is de�ned in terms of the support of X and
moreover, P and Q are equivalent measures, we have that comonotonicity in the P-world is
equivalent with comonotonicity in the Q-world. For an extensive overview of the theory of
comonotonicity, we refer to Dhaene et al. (2002b). Financial and actuarial applications are
described in Dhaene et al. (2002a). An updated overview of applications of comonotonicity
can be found in Deelstra et al. (2010).

Perfect herd behavior over a T -year time horizon corresponds with a comonotonic
dependence structure for the price vector X, meaning that from today�s point of view
all stock prices at time T are driven by a single source of randomness: if one stock price
will turn out to be large at time T , all other stock prices will be large too. In practice,
stock markets will never be comonotonic. Nevertheless, in this section we pay attention

8



to the comonotonic case, as we will need this extreme situation in the next section when
de�ning a measure for the �implied degree of herd behavior� in the stock market. in
the next section. We will propose to measure the degree of herd behavior by comparing
an appropriate linear combination of observed index option prices with the same linear
combination in the corresponding comonotonic market situation.

Several characterizations exist for the notion of comonotonicity. In particular, one has
that the vector X of the stock prices at time T with marginal distributions denoted by
FXi, i = 1; 2; : : : ; n, is comonotonic if and only if

(X1; : : : ; Xn)
d
=
�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
; (23)

where U is a uniform (0; 1) r.v. and � d
= � is used to denote �equality in distribution�.

Furthermore, F�1Xi is the usual inverse of the cdf FXi. Characterization (23) clearly shows
that comonotonic risks are driven by a single risk factor and exhibit extremal herd be-
havior. The weighted sum of the components of the comonotonic vector de�ned in (23) is
denoted by Sc:

Sc =
nX
i=1

wiF
�1
Xi
(U) . (24)

As mentioned in the previous section, the pricing distributions FXi are in general
unknown. Therefore, hereafter we will often use the empirical distributions FXi de�ned
in (4) or (7) instead. In this case, the inverses F

�1
Xi
are given by

F
�1
Xi
(p) = Ki;j if FXi(Ki;j�1) < p � FXi(Ki;j); j = 0; 1; : : : ;mi+1; p 2 (0; 1) ; (25)

with Ki;�1 = �1, by convention. Furthermore, we introduce the comonotonic sum based
on the empirical marginal distributions:

S
c
=

nX
i=1

wiF
�1
Xi
(U) : (26)

In the notation S
c
, the superscript �c�means that the terms in the sum are comonotonic,

whereas the bar indicates that the empirical distributions FXi are used. Similar notational
conventions are made for other symbols that we will introduce hereafter. Taking into
account that the cdf�s FXi are fully known, we �nd that also the cdf of S

c
is completely

speci�ed at current time 0.

We will call S
c
the comonotonic index price at time T . Obviously, S

c
is a synthetically

created r.v., the outcome of which will not be observed. The cdf of S
c
will turn out to

be useful because it can be interpreted as the �extreme cdf�of the value of the index at
time T . Indeed, it is the cdf that coincides with the risk neutral cdf of S, provided the
risk neutral distributions of the stock prices Xi coincide with the empirical distributions
FXi and moreover, the stock prices (X1; : : : ; Xn) are comonotonic.

Introducing the following notation:

F
�1+
Xi

(0) = min
j

�
Ki;j j FXi(Ki;j) > 0

	
; (27)
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Linders and Dhaene (2012) propose the following algorithm for determining FSc(K):

1. Using (4) or (7), determine all elements of the following set:

A =
�
FXi (Ki;j) j i = 1; : : : ; n and j = 0; 1; : : : ;mi

	
n f0g : (28)

2. With the help of (25), calculate
Pn

i=1wiF
�1
Xi
(p) for all p 2 A.

3. For any K 2
�Pn

i=1wiF
�1+
Xi

(0) ;
Pn

i=1wiKi;mi+1

�
, calculate FSc (K) from

FSc(K) = max

(
p 2 A j

nX
i=1

wiF
�1
Xi
(p) � K

)
: (29)

4. For other values of K, FSc (K) is given by

FSc(K) =

8><>:
0 : K <

Pn
i=1wiF

�1+
Xi

(0) ;

mini FXi

�
F
�1+
Xi

(0)
�
: K =

Pn
i=1wiF

�1+
Xi

(0) ;

1 : K >
Pn

i=1wiKi;mi+1:

(30)

A question that may arise here is whether it is always possible or not to construct
an arti�cial comonotonic market with pricing distribution of (X1; : : : ; Xn) given by the

distribution of
�
F
�1
X1
(U) ; : : : ; F

�1
Xn (U)

�
. In order to answer this question, one has to inves-

tigate whether such an arti�cial market is still arbitrage-free. This question is considered
in Hobson et al. (2005) and Dhaene and Kukush (2010).

3.2 Characterizations of perfect herd behavior

We introduce the following notations related to the comonotonic index price Sc:

Cc [K] = e�rTE
�
(Sc �K)+

�
;

P c [K] = e�rTE
�
(K � Sc)+

�
: (31)

Notice that Cc [K] and P c [K] cannot be interpreted as the prices of options that are
available in the market; they should only be considered as functions of K.

The following theorem states a number of equivalent characterizations for non-negative
r.v.�s (stock prices) to be comonotonic.

Theorem 1 Consider the vector X = (X1; : : : ; Xn) of non-negative r.v.�s with �xed cdf�s
FXi ; i = 1; 2; : : : ; n. The following statements are then equivalent:
(1)

(X1; : : : ; Xn) is comonotonic.

(2)

S
d
= Sc.
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(3)
Var [S] = Var [Sc] :

(4)
C [K] = Cc [K] , for all K � 0:

(5)
P [K] = P c [K] , for all K � 0:

Proof. The proof of (1) ) (2) ) (3) is trivial.
In order to prove (3) ) (1), notice that the equivalence of the variances of S and S

c
can

be expressed as

nX
i;j=1

corr [Xi; Xj]�Xi�Xj =
nX

i;j=1

corr
h
F�1Xi (U) ; F

�1
Xj
(U)
i
�Xi�Xj :

Taking into account that

corr [Xi; Xj] � corr
h
F�1Xi (U) ; F

�1
Xj
(U)
i
; i; j = 1; : : : ; n;

see equation (72) in Dhaene et al. (2002b), we conclude from the previous equality that

corr [Xi; Xj] = corr
h
F�1Xi (U) ; F

�1
Xj
(U)
i
; i; j = 1; : : : ; n:

This condition is equivalent to (1); see Theorem 8 in Dhaene et al. (2002b).
In order to prove the remaining part of the theorem, notice that

S
d
= Sc () E

�
(S �K)+

�
= E

�
(Sc �K)+

�
, for all K � 0

() E
�
(K � S)+

�
= E

�
(K � Sc)+

�
, for all K � 0:

The equivalences (1), (4), (5) are immediate consequences of these well-known equiv-
alence relations.

The bivariate special case of (1)-(3) in Theorem 1 can be found in Dhaene et al.
(2002b). A proof of the equivalence between (2) and (3) can also be found in Cheung
and Vandu¤el (2011). Moreover, the equivalence of (1) and (2) in Theorem 1 is a special
case of a more general result presented in Cheung (2010), who shows that this equivalence
remains to hold without assuming the existence of the second order moments.

3.3 The variance of the comonotonic index

As mentioned above, in practice, the option curves fCi [K] j K � 0g and fPi [K] j K � 0g
are in general not fully known. This observation implies that it is impossible to de-
rive the distribution of Sc, as well as its related option curves fCc [K] j K � 0g and

11



fP c [K] j K � 0g which were de�ned in (31). Therefore we introduce the quantities Cc [K]
and P

c
[K] related to the comonotonic index S

c
:

C
c
[K] = e�rTE[(Sc �K)+];

P
c
[K] = e�rTE[(K � Sc)+]: (32)

Somewhat loosely speaking, we will call C
c
[K] and P

c
[K] comonotonic index call and put

option prices. Notice that options with pay-o¤s (S
c�K)+ and (K�S

c
)+ are not traded,

but as the distribution of S
c
is known, we are able to determine the values of C

c
[K] and

P
c
[K]. Hereafter, we explain how to determine these values.

Starting from expressions (4) for the empirical distributions FXi, Hobson et al. (2005)
and Chen et al. (2008) prove that the comonotonic index call option price C

c
[K] can be

expressed as follows:

C
c
[K] =

X
i2NK

wiCi [Ki;ji ] +
X
i2NK

wi (�KCi [Ki;ji ] + (1� �K)Ci [Ki;ji+1]) ; (33)

which holds for any K 2
�Pn

i=1wiF
�1+
Xi

(0) ;
Pn

i=1wiKi;mi+1

�
. In this expression, each ji,

i = 1; 2; : : : ; n, depends onK and is de�ned as the unique integer in the set f0; 1; : : : ;mi + 1g
that satis�es

FXi (Ki;ji�1) < FSc (K) � FXi (Ki;ji) : (34)

Notice that FSc (K) can be determined using the algorithm presented in Subsection 3.1.
Furthermore, the set NK is de�ned by

NK =
�
i 2 f1; 2; : : : ; ng j FXi (Ki;ji�1) < FSc (K) < FXi (Ki;ji)

	
; (35)

while its complement NK is given by

NK =
�
i 2 f1; 2; : : : ; ng j FSc (K) = FXi (Ki;ji)

	
: (36)

Finally, the coe¢ cient �K in (33) is given by

�K = 1�
K �

Pn
i=1wiKi;jiP

i2NK
wi (Ki;ji+1 �Ki;ji)

: (37)

One can prove that NK is always a non-empty set, so that �K is always well-de�ned.
From (33) we see that the comonotonic index call options can be considered as syntheti-
cally created options, using an appropriately chosen linear combination of traded options
on the individual components of the index, with appropriately chosen strikes.

Starting from expression (7) for the cdf�s FXi, Linders and Dhaene (2012) show that
the comonotonic index put option price P

c
[K] is given by

P
c
[K] =

X
i2NK

wiPi [Ki;ji ] +
X
i2NK

wi (�KPi [Ki;ji ] + (1� �K)Pi [Ki;ji+1]) ; (38)
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which holds for any K 2
�Pn

i=1wiF
�1+
Xi

(0) ;
Pn

i=1wiKi;mi+1

�
. In this expression for

P
c
[K] the indices ji are de�ned by (34), the sets NK and NK by (35) and (36), while the

coe¢ cient �K is given by (37). Notice that (38) can also be determined from the put-call
parity applied to comonotonic index options and to stock options, respectively.

Similar to (9) we �nd the following expression for f
�
S
c�
for any function f de�ned

on the non-negative real numbers with an absolutely continuous derivative f 0:

f
�
S
c�
= f (a) + f 0 (a)

��
S
c � a

�
+
�
�
a� Sc

�
+

�
+

Z a

0

f 00 (K)
�
K � Sc

�
+
dK +

Z 1

a

f 00 (K)
�
S
c �K

�
+
dK: (39)

Choosing the function f de�ned in (15), setting a = E [S] and taking into account that
E
�
S
c�
= E [S], we �nd that Var

�
S
c�
can be expressed as follows in terms of comonotonic

index option prices:

Var
�
S
c�
= 2erT

 Z E[S]

0

P
c
[K] dK +

Z +1

E[S]
C
c
[K] dK

!
: (40)

Inspired by approximation (21) for the variance of the index price S, which is a linear
combination of observed index option prices, we propose to approximate the variance of
the comonotonic index price S

c
by the following linear combination of comonotonic index

option prices:

Var
�
S
c� � (sc)2 [T ] � 2erT hX

i=�l

�Ki Q
c
[Ki]� (E [S]�K0)

2 ; (41)

where the Ki are the traded index strikes, the �Ki are de�ned as before and the Q
c
[Ki]

are given by

Q
c
[Ki] =

8<:
P
c
[Ki] ; if Ki < K0;

C
c
[Ki]+P

c
[Ki]

2
; if Ki = K0;

C
c
[Ki] ; if Ki > K0:

(42)

Taking into account the expressions (33) and (38), we can conclude that the comonotonic
index option prices C

c
[Ki] and P

c
[Ki], and hence also the approximation (41) for Var

�
S
c�
,

can be determined in a rather straightforward way from observed stock option price data.

4 Measuring the degree of herd behavior in stock
markets

4.1 The implied herd behavior index

For any of the traded strikes K, the index call option prices C [K] can be observed in
the market. From (33), it follows that for each of these strikes, we can also determine the

13



corresponding comonotonic index call option prices C
c
[K] from the prices of the traded

European stock options. In Chen et al. (2008) it is proven that the following inequalities
hold:

C [K] � Cc [K] � Cc [K] : (43)

Moreover, they prove that, given the observed call option prices of the di¤erent stocks
in the market, C

c
[K] is the price of the cheapest super-replicating strategy for the index

option C [K] in a broad class of admissible investment strategies. Similar results hold for
the put option case, which is considered in Linders and Dhaene (2012). In particular, they
prove that

P [K] � P c [K] � P c [K] : (44)

In practice, stock prices will typically not behave comonotonic so that the upper
bounds C

c
[K] and P

c
[K] in (43) and (44) will not be reached. Laurence (2008) introduced

the term �comonotonicity gap�to indicate the di¤erence between the comonotonic index
option price C

c
[K], resp. P

c
[K], and the observed market price C [K], resp. P [K], for

an appropriate choice of the traded strike K. Obviously, the comonotonicity gap will vary
over time.

In order to be able to investigate the �variation in degree of herd behavior�, hereafter
we will introduce the �Herd Behavior Index�, which gives an indication of the degree
of future co-movement of stock prices as implied by today�s option prices. A consistent
daily (or more frequent) recording of this index will reveal information about the market
perception on the degree of future herd behavior and more important, about the evolution
of this perception over time.

Taking into account Theorem 1, one could de�ne the Herd Behavior Index as the pro-
portion Var[S]

Var[Sc] . This index uses Var[S] to represent the real market situation and compares
it with Var[Sc], which corresponds with the extreme case of comonotonicity or perfect herd
behavior. This proportion takes values in the interval [0; 1]. It equals 1 if, and only if, the
market is comonotonic. In general, neither Var[S] nor Var[Sc] are observable. Therefore,
we propose to replace Var[S] by its approximation (21), which is a linear combination of
observed index option prices. It seems then natural to replace Var[Sc] by approximation
(41) for Var

�
S
c�
, which is the corresponding linear combination of the comonotonic index

option prices. These considerations lead to the following de�nition of the Herd Behavior
Index.

De�nition 1 Consider the random vectorX representing the stock pricesXi; i = 1; 2; : : : ; n
at time T . The T -year implied Herd Behavior Index, notation HIX[T ], is de�ned as

HIX [T ] =
s2 [T ]

(sc)2 [T ]
=
2erT

Ph
i=�l�Ki Q [Ki]� (E [S]�K0)

2

2erT
Ph

i=�l�Ki Q
c
[Ki]� (E [S]�K0)

2
: (45)

HIX[T ] is a T -year forward looking measure for the degree of herd behavior, which
is calculated by comparing a weighted sum of traded index option prices by the corre-
sponding weighted sum of comonotonic index option prices. In order to calculate HIX[T ],
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we need the values of Q [Ki] and Q
c
[Ki] ; i = �l; : : : ; h as input. The Q [Ki] follow im-

mediately from the observed index option prices; see (22). The Q
c
[Ki] follow from the

observed stock option prices; see (33), (38) and (42). As no distributional assumptions
have to be made, HIX[T ] is a model-free measure for the degree of herd behavior in the
market. In general, it may happen that there are no options available that expire exactly
at time T . In this case, HIX[T ] is calculated by means of an appropriate linear inter- or
extrapolation; see Section 5.

The Herd Behavior Index can be considered as a generalization of the comonotonicity
ratio C [K] =C

c
[K], which is considered in Laurence (2008). Whereas the comonotonicity

ratio compares a single traded index option with its comonotonic counterpart, in the
calculation of the HIX all traded strikes are involved, leading to a more robust measure
for the degree of herd behavior.

4.2 Herd behavior and correlation

Market practitioners are well aware of the risk related to a market with strong positive
dependences between the stock prices X1; X2; : : : ; Xn. The most straightforward way to
capture this risk is via the pairwise correlations between the stock prices. In this section,
we will show that this approach may fail to capture the degree of herd behavior and could
even give misleading signals, especially in highly volatile markets.

The variance of the market index price S can be written as

�2S =
nX
i=1

w2i �
2
Xi
+
X
i6=j

wiwj�Xi�Xjcorr [Xi; Xj] : (46)

It is very tempting to try to express herd behavior in terms of the n (n� 1) correlations
between the di¤erent stock prices. Such an approach however only re�ects the market�s
perception of the future correlations, not the future degree of herd behavior. High cor-
relations are indeed a sign for a high degree of herd behavior in the market, but low
correlations do not necessarily imply a low degree of dependence. Hence, correlations
could give misleading signals. An explanation of this �aw is that one often considers the
maximal variance of the random index price S to arise when all correlations corr[Xi; Xj]
are equal to 1, which is however not true in general. Given the distributions FXi of
the marginals, the maximal attainable values for the correlations corr[Xi; Xj] are given

by corr
h
F�1Xi (U) ; F

�1
Xj
(U)
i
, and the maximal variance of the comonotonic index price is

equal to �2Sc, which is given by

�2Sc =
nX
i=1

w2i �
2
Xi
+
X
i6=j

wiwj�Xi�Xjcorr
h
F�1Xi (U) ; F

�1
Xj
(U)
i
: (47)

Although correlations fully determine the dependence structure for multivariate el-
liptical distributions, they fail to do so outside this class of distributions. The non-
equivalence of comonotonicity and correlation 1 for a random couple can easily be il-
lustrated by the couple (X;X2) where X is a standard normal random variable. This
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couple is comonotonic, while corr[X;X2] = 0. Embrechts et al. (1999) illustrate this
failure by considering two lognormal random variables. In this case, the set of attainable
correlations is a strict subset of [�1;+1], which becomes smaller when one of the volatil-
ities increases, while the other remains constant. Inspired by this example, hereafter we
demonstrate that, given a very strong positive dependence structure between two future
stock prices, their correlation can nevertheless be very low, which could be wrongly in-
terpreted as a signal for a low degree of herd behavior. The HIX, however, is capable of
detecting this strong dependence and correctly re�ects the high degree of herd behavior.

Consider two stocks with price processes fXi (t) j 0 � t � Tg ; i = 1; 2. Suppose that
their risk neutral dynamics are described by the following stochastic di¤erential equations:(

dX1(t)
X(t)

= rdt+ �1dB1 (t)
dX2(t)
X2(t)

= rdt+ �2dB2 (t)
;

where f(B1(t); B2(t)) j t � 0g is a 2 - dimensional correlated Brownian motion. The sto-
chastic processes fBi(t) j t � 0g are standard Brownian motions, while the dependence
structure (under both the physical measure and the risk-neutral measure) of f(B1(t); B2(t)) j t � 0g
is captured by the instantaneous correlation �. The r.v.�s X1 = X1 (T ) and X2 = X2 (T )
are both lognormal distributed with expected values and variances given by

E [Xi] = e
rT and �2Xi = Xi (0)

2 e2rT
�
e�

2
i T � 1

�
; i = 1; 2:

The correlation between X1 and X2 is equal to

corr [X1; X2] =
e��1�2T � 1p

e�
2
1T � 1

p
e�

2
2T � 1

:

As the distribution of (X1; X2) is completely speci�ed, the HIX can be determined by

HIX [T ] =
Var [S]
Var [Sc]

=
�2X1 + �

2
X2
+ 2corr [X1; X2]�X1�X2

�2X1 + �
2
X2
+ 2corr

�
F�1X1 (U) ; F

�1
X2
(U)
�
�X1�X2

;

where corr
�
F�1X1 (U) ; F

�1
X2
(U)
�
is the maximal correlation between X1 and X2:

corr
�
F�1X1 (U) ; F

�1
X2
(U)
�
=

e�1�2T � 1p
e�

2
1T � 1

p
e�

2
2T � 1

:

In the remainder of this example, we choose the following numerical values for the para-
meters involved: r = 0:03, T = 1; �1 = 0:2 and � = 0:95. The choice of the instantaneous
correlation implies that corr[B1 (t) ; B2 (t)] = 0:95, and hence also that

corr [lnX1(t); lnX2 (t)] = 0:95; 0 � t � T:

Taking into account that for a bivariate normal random pair, comonotonicity is equivalent
with a correlation of 1, we �nd that (lnX1 (t) ; lnX2 (t)), and thus also (X1 (t) ; X2 (t)), is
close to being comonotonic. This means that at any time t, the stock prices X1 (t) and
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Figure 1: Corr[X1 (1) ; X2 (1)] and HIX[1] for di¤erent values of �2.

X2 (t) are strongly positive dependent.
Figure 1 shows the herd behavior index HIX[1] and correlation corr[X1 (1) ; X2 (1)] for
di¤erent values of �2. When the volatility �2 increases, both the HIX and the correlation
are changing, but this behavior is much more pronounced for the correlation. In fact,
HIX[1] tends to 1 whereas corr[X1 (1) ; X2 (1)] goes to 0.
Intuitively, we may explain this limiting behavior as follows: in case X2 has a much larger
variance than X1, we have that X1 almost behaves as a constant value, compared to X2.
But the correlation between a random variable and a constant is 0, while at the same
time, they are comonotonic.
We can conclude that in markets with some highly volatile stocks, correlation may fail to
capture the underlying dependence in the right way. This dysfunctioning of correlation is
caused by the non-linear relationship between the random variables and becomes clearer
when �2 becomes relatively large. It is exactly in very distressed markets with very high
volatilities for some stocks that we might need an accurate estimate of the degree of
implied herd behavior. At such a crucial moment, correlations may give a completely
wrong indication, whereas the HIX is capable of providing us with the correct information.

4.3 Measuring implied herd behavior via the VIX methodology

The key quantities in the de�nition of the HIX are the approximations for the variances
of the index price and the comonotonic index price. In this subsection, we explain how
the approach for calculating the HIX from observed options prices can also be used for
determining a herd behavior index based on the VIX methodology. For completeness, we
�rst shortly describe this VIX methodology and the related variance swap contracts. For
a more detailed discussion on the VIX methodology, the reader is referred to Carr and
Wu (2006) and Chicago Board Options Exchange (2009).
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In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE Volatil-
ity Index (ticker symbol VIX), which since then has become the industry benchmark for
market volatility. In 2003, CBOE launched a renewed version of the VIX Index. This
new VIX is calculated based on S&P 500 index option prices. VIX can be interpreted as
a quote on the expected market volatility over the next 30 calendar days. To be more
precise, VIX squared is an approximation of the 30-day variance swap rate on the S&P
500 Index.

Consider a variance swap contract on the S&P 500, that is initiated today at time 0
and expires at time T , that is in 365� T days. At maturity, one leg of the swap pays the
buyer the (annualized) realized variance RV[T ] of the logprice changes of the index:

RV [T ] =
1

T

365�TX
j=1

�
lnS

�
j

365

�
� lnS

�
j � 1
365

��2
: (48)

The other leg pays the seller the �xed amount SR[T ] at time T , which is the swap rate
that is agreed upon at the deal�s inception (time 0), and which is determined such that
the risk-neutral price of the pay-o¤ (RV [T ]� SR [T ]) at time T is zero at inception, hence

SR [T ] = E [RV [T ]] : (49)

The buyer of the variance swap is long volatility. A variance swap contract allows one
to speculate on the future realized variance or hedge against risks associated with the
magnitude of movement of the index; see e.g. Schoutens (2005).

Under a fairly general setting for the Q-dynamics of the assets involved, and also as-
suming a continuously (instead of daily) sampled variance over the lifetime of the contract,
Carr and Wu (2006) prove that the realized variance is given by

RV [T ] =
2

T

�
S

E [S]
� 1� ln

�
S

E [S]

��
+ A [T ] +B [T ] ; (50)

where A [T ] is the pay-o¤ at time T of a dynamic trading strategy in futures for which
E [A [T ]] = 0, while B [T ] is a higher order term induced by the jumps in the index

price dynamics. Applying (9) with f(S) = ln
�

S
E[S]

�
and a = E [S], and substituting this

expression for f(S) in (50) leads to

RV [T ] =
2

T

 Z E[S]

0

(K � S)+
K2

dK +

Z +1

E[S]

(S �K)+
K2

dK

!
+ A [T ] +B [T ] : (51)

This expression shows that, up to the futures component A [T ] and the higher order jump
component B [T ], the realized variance can be replicated by the pay-o¤of a static position
in a continuum of European options on the index. Taking expectations with respect to
Q, we obtain

SR [T ] =
2

T
erT

 Z E[S]

0

P [K]

K2
dK +

Z +1

E[S]

C [K]

K2
dK

!
+ E [B [T ]] ; (52)
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which shows that the swap rate is equal to the sum of a weighted average of index option
prices across all strikes and a higher order term. Ignoring the higher order term and
further approximating the remaining integrals in a similar way as the one that led to
the approximation (21) for Var[S]; we �nd the following approximate expression for the
variance swap rate SR[T ] in terms of observed option prices:

SR [T ] � �2 [T ] � 2

T
erT

hX
i=�l

�Ki

K2
i

Q [Ki]�
1

T

�
E [S]
K0

� 1
�2
; (53)

where �Ki and Q [Ki] are de�ned as before.

The approximation �2 [T ] for SR[T ] is crucial in the VIX calculation. Choosing a 30
day time period, hence T = 30=365, interpreting all notations above in terms of the S&P
500 index and assuming that there are options available that expire in exactly 30 days,
the VIX is de�ned as

VIX = 100� �
�
30

365

�
: (54)

Notice however that most of the time there are no options available that expire exactly
in 30 calendar days. The T = 30 calendar days VIX is then calculated by using the
appropriate linear inter- or extrapolation on adjacent maturities; see Section 5. The VIX
index is considered by the market as an indicator for market stress. Based on the VIX
methodology, CBOE also calculates volatility indices for other markets, including the
CBOE DJ Volatility Index (ticker symbol VXD).

We de�ne the comonotonic swap rate and the comonotonic version of the approxima-
tion �2 [T ] by replacing the index option prices P [K] and C [K] in (52) by the correspond-
ing comonotonic index option prices P

c
[K] and C

c
[K]. This leads to the expressions

SR
c
[T ] =

2

T
erT

 Z E[S]

0

P
c
[K]

K2
dK +

Z +1

E[S]

P
c
[K]

K2
dK

!
+ E

�
B
c
[T ]
�

(55)

and

SR
c
[T ] � (�c)2 [T ] � 2erT

T

hX
i=�l

�Ki

K2
i

Q
c
[Ki]�

1

T

�
E [S]
K0

� 1
�2
; (56)

respectively. In case there are options available that expire in exactly 30 days, we de�ne
the comonotonic VIX by

VIXc = 100� �c
�
30

365

�
: (57)

In the general case where there are no such options available, the comonotonic VIX is
de�ned by the appropriate linear inter- or extrapolation; see Section 5.

Inspired by the methodology described in Section 4.1, Dhaene et al. (2011a) intro-
duce the T -year implied Comonotonicity Index (CIX). We slightly adapt their de�nition
and de�ne the CIX as the ratio of the (approximated) swap rate to the (approximated)
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comonotonic swap rate:

CIX [T ] =
�2 [T ]

(�c)2 [T ]
=

2erT
Ph

i=�l
�Ki

K2
i
Q [Ki]�

�
E[S]
K0
� 1
�2

2erT
Ph

i=�l
�Ki

K2
i
erTQ

c
[Ki]�

�
E[S]
K0
� 1
�2 ; (58)

provided options that expire at time T are traded in the market. The CIX is an alternative
measure for herd behavior in stock markets. When T = 30=365, it can be interpreted as
the ratio of VIX squared (which is based on observed index option prices Q [Ki]) to the
comonotonic VIX squared (which is based on comonotonic index option prices Q

c
[Ki]).

5 Practical considerations

In this section, we consider several numerical issues related to the calculation of the value
of the T -year HIX for a particular stock market. Let us �rst assume that stock options
as well as index options with maturity T years (e.g. T = 30

365
) are traded.

In practice, we will not observe the theoretical index call option price C [K] for each
traded strike K. Instead, we will observe a bid price Cbid [K] and a larger ask price
Cask [K]. In order to cope with this bid/ask spread, we propose to use midquote prices as
an approximation for the theoretical option prices:

C [K] � Cbid [K] + Cask [K]

2
: (59)

Similar conventions are made for put options on the index as well as for call and put
options on the individual stocks. Hereafter, we will always refer to midquote prices when
considering option prices.

The HIX formula (45) contains the forward index price E [S]. In line with the VIX
methodology, we propose to calculate E [S] based on the put-call parity (14) for the pair
of index put and call options with prices that are closest to each other. Hence,

E [S] = erT (C [K�
i ]� P [K�

i ]) +K
�
i ; (60)

where
K�
i = arg min

K2fK�l;:::;Khg
jC [K]� P [K]j : (61)

We have assumed that for each stock i, the maximal value Ki;mi+1 of Xi is �nite.
We propose to choose these Ki;mi+1 su¢ ciently large such that they ful�ll the optimality
conditions as explained in Chen et al. (2008).

The observed prices Ci [Ki;j] or Pi [Ki;j] of the options written on the individual stocks
are used to construct the empirical distribution function FXi, by �rst introducing the
piecewise linear functions Ci[K] or P i[K] and then applying (5) or (8). This leads to the
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expressions (4) or (7) for FXi. In this procedure, it is implicitly assumed that the option
prices Ci [0] ; Pi [0] ; Ci [Ki;mi+1] and Pi [Ki;mi+1] are given. Obviously, we have that

Ci [Ki;mi+1] = Pi [0] = 0: (62)

Furthermore, the theoretical option prices Ci [0] and Pi [Ki;mi+1] are given by

Ci [0] = e
�rT E [Xi] (63)

and
Pi [Ki;mi+1] = e

�rT (Ki;mi+1 � E [Xi]) : (64)

Inspired by the above-mentioned approach to determine E [S], we propose to calculate
E [Xi] as follows:

E [Xi] = e
rT (Ci [K

�
i ]� Pi [K�

i ]) +K
�
i ; (65)

with
K�
i = arg min

K2fKi;1;:::Ki;mig
jCi [K]� P [K]j : (66)

Plugging these values of the E [Xi] in (63) and (64) leads to the quotes for the call options
with strike 0 and put options with strike Ki;mi+1.

The empirical distributions FXi may be determined from the call option prices via (4)
or from the put option prices via (7). Although in theory both expressions for FXi are
equal, in practice they may di¤er. For keeping consistency in our calculations hereafter, we
will always use the call option data f(Ki;j; C [Ki;j]) j j = 0; 1; : : : ;mi + 1g to determine the
empirical distribution functions FXi. Furthermore, in order to make the HIX su¢ ciently
stable, we only use stock options which have a bid price which is strictly larger than zero
and a volume which is strictly larger than 20 for determining the risk-neutral distributions
FXi.

It may happen that for one or more of the underlying stocks i, there are no traded
strikesKi;1; : : : Ki;mi

. This situation may occur if the market is illiquid or because there are
no options issued on that particular stock. In this case, the HIX can still be determined
according to the methodology presented above. For more details, we refer to Linders and
Dhaene (2012).

In practice, it may happen that the set of traded strikes are partially di¤erent for
the call and put stock options. In this case, one might restrict to the set of strikes for
which both calls and puts are traded, or one might arti�cially create the missing options
with the help of the put-call parity (6). In the calculations hereafter, we will take the
�rst approach and only consider strikes for which both the call and the put prices are
available.

Due to price irregularities, it may happen that the piecewise linear function Ci[K] (or
P i[K]) is not convex, leading to a function FXi that is not increasing and hence, not a
proper cumulative distribution function. In order to circumvent this problem, we propose
to work with the function eFXi instead of FXi, which is de�ned as follows:eFXi (Ki;j) = min

n
FXi (Ki;j) ; eFXi (Ki;j+1)

o
; j = 0; 1; : : : ;mi; (67)
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with initial value eFXi (Ki;mi+1) = 1: (68)

Until here, we assumed that all options on the index as well as on the individual
stocks are of the European type. In the next section, we will apply our methodology
to the Dow Jones Industrial Average (DJ) index. In this case, the index options are of
European type, whereas the individual stock options are of American type, where the
holder has the right to exercise the option at any time up to and including the maturity
date. In general, the price of an American option is an upper bound for the corresponding
European option. Therefore, we will continue to use the methodology described above, but
we replace the (non-observed) European option prices Ci [Ki;j] and Pi [Ki;j] that appear
in the expressions (33) and (38) for C

c
[K] and P

c
[K] by the corresponding (observed)

American option prices. As the option prices Ci [Ki;j] and Pi [Ki;j] only appear in the
denominator of the HIX and the CIX, this approximation will lead to somewhat smaller
values for the respective indices.

Suppose now that we want to calculate the T -year HIX on a regular basis. As an
example, hereafter we set T equal to 30 calendar days, hence T = 30

365
, and we consider a

market where for each month only a single expiration date is available (e.g. the closing
of the third Friday of the month). When calculating the HIX on a particular moment, in
general no options will be available that expire in exactly 30 calendar days. Let us denote
the �rst available maturity date by T1 and the next one by T2. Options which mature
at time T1 are called near-term options, the ones which mature at time T2 are called
next-term options. Inspired by the methodology used for calculating the VIX, the Herd
Behavior Index with maturity T is now calculated as a weighted average of the near-term
and the next-term Herd Behavior Index:

HIX [T ] = HIX [T1]�
�
T2 � T
T2 � T1

�
+HIX [T2]�

�
T � T1
T2 � T1

�
: (69)

We have that T1 � T � T2 and formula (69) for HIX[T ] is an interpolation of HIX[T1] and
HIX[T2]. Notice that the risk-free interest rate used for calculating HIX[Ti] is set equal to
the risk free interest rate to expiration Ti; i = 1; 2. This implies that di¤erent risk-free
interest rates may be used for near- and next-term options. In order to avoid possible price
irregularities near to expiration, we �roll�the HIX to the second and the third contract
months in case the near-term options have less than a week to expiration. After such a
roll, we encounter a situation where T < T1 < T2; with T1 and T2 now standing for the
second and third expiration dates, respectively. In this case, formula (69) for HIX[T ] is
an extrapolation of HIX[T1] and HIX[T2].

It may happen that the near- and the next-term maturities Ti;1 and Ti;2 of options
on stock i di¤er from the near- and the next-term maturities T1 and T2 of the stock
index. In the numerical illustration in the next section, this situation happens rarely and
the di¤erences jTk � Ti;kj, k = 1; 2; are small, i.e. typically only a few days. Therefore,
when this situation occurs, we will approximate the (non-observed) required option prices
Ci [Ki;j; Tk] by the observed quotes Ci [Ki;j; Ti;k].

In the next section, we will also calculate historical values of the CIX, which was
de�ned in (58), according to the same methodology as the one presented above for the
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HIX. In particular, we will calculate the CIX with maturity T as a weighted average of
the near-term and the next-term indices:

CIX [T ] = CIX [T1]�
�
T2 � T
T2 � T1

�
+ CIX [T2]�

�
T � T1
T2 � T1

�
: (70)

Notice that this way of determining the CIX is somewhat di¤erent from the one proposed
in Dhaene et al. (2011), where the linear inter- or extrapolation is not performed at the
level of the CIX, but at the level of the numerator and the denominator in (58) separately.
Based on the VIX inter- or extrapolation formula

VIX = 100

s
365

30

�
T1 �2 [T1]�

�
T2 � 30=365
T2 � T1

�
+ T2 �2 [T2]�

�
30=365� T1
T2 � T1

��
; (71)

these authors introduce the following comonotonic upper bound for the VIX:

VIXc = 100

s
365

30

�
T1 (�

c)2 [T1]�
�
T2 � 30=365
T2 � T1

�
+ T2 (�

c)2 [T2]�
�
30=365� T1
T2 � T1

��
;

(72)
and propose to measure the herd behavior index by the ratio VIX

VIXc . This ratio has a
somewhat more attractive look compared to the CIX de�ned above, but the way how it
is constructed out of near and next term options by a linear inter- or extrapolation in
the nominator and the denominator separately is less appropriate than the linear inter-
or extrapolation used in (70).

6 Numerical illustration: the HIX for the Dow Jones

The Dow Jones. The Dow Jones Industrial Average, established 1896, is a price-
weighted index composed of the 30 largest, most liquid NYSE and NASDAQ listed stocks.
Options with the DJ index as underlying are called DJX options. These (European-type)
options were introduced in 1997. DJX options are based on 1/100th of the current value of
the DJ. Therefore, hereafter S(t) has to be interpreted as 1/100th of the value of the DJ
at time t. There are also (American-type) options traded on each individual component
of the Dow Jones. Roughly speaking, for each stock there are around 10 traded strikes.

Herd behavior over time. In this section, we investigate the degree of herd behavior
of the 30 stocks in the DJ by introducing the DJ-HIX. In particular, we set T equal to 30
calendar days. We calculate the historical DJ-HIX values on a daily basis for the period
January 2006 - October 2009. For each trading day, we use the closing bid and ask prices
of the options involved.
The �rst graph of Figure 2 shows the historical DJ index price levels from January 2006
until October 2009. Taking into account (45) and (69), we determine the degree of herd
behavior for any day in the observation period by calculating the daily DJ-HIX for T = 30
days. These values are presented in the second graph of Figure 2. A smoothed version of
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Figure 2: Daily values of DJ, DJ-HIX(30 days) and DJ-HIX (30 days, smoothed).

these DJ-HIX values, based on the average quote over the last 7 trading days, is shown
in the third graph.
From Figure 2, we conclude that the DJ-HIX �uctuates substantially over time. Loosely
speaking, between January 2006 and January 2007 the degree of herd behavior is rela-
tively low, during January 2007-October 2008 it is at an intermediate level, while in the
remaining part of the observation period (October 2008-October 2009), it is at a relatively
high level. The DJ-HIX frequently spikes upward. From early 2007 until mid 2008 a few
relatively high peaks are observed, which could be interpreted as signs of stress before
the worldwide �nancial crisis towards the end of 2008. Around the middle of 2008, the
market seems to calm down, but in October 2008 the DJ-HIX increases drastically and
reaches its highest level of around 0.75 on October, 24. In 2009, the DJ-HIX relaxes, but
only at a very slow rate and hence, remains relatively high during the whole year.

Herd behavior as a component of stock market fear. An increased DJ-HIX is a
sign that option traders in the market believe in a stronger co-movement of the di¤erent
stock prices over the next 30 days. The degree of implied herd behavior may reach a high
level due to panic and a strong belief that stock prices will go down all together, inducing
that also the market index will decrease rapidly. In principle, the HIX may also reach
high levels due to positive �nancial information and a believe that in the near future all
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Figure 3: Daily values of DJIA, DJ-HIX (30 days) and DJ-Volatility Index (30 days).

stock prices will move up together. From the observed data we �nd that the HIX shows a
tendency to increase when the market index decreases. In this respect, the HIX may be
viewed as a fear or stress indicator.
In Figure 3, we compare the (smoothed) DJ-HIX and the DJ Volatility Index (VXD).
The latter index is a volatility barometer for the DJ, calculated according to the VIX
methodology. Both the HIX and the VIX may explain part of the total market stress or
market fear; see Dhaene et al. (2011a). The HIX measures the expected co-movement
of the components of the index, whereas the VIX-based Volatility Index measures the
expected volatility of the index. Notice that an increased index volatility may be caused
by increased volatilities of the components and/or by an increased degree of herd behavior.
In Figure 3 we observe a tendency of the HIX to increase when the market volatility
increases. The peaks in the graphs of the DJ-HIX and the DJ Volatility Index are re�ecting
periods of increased market stress. Notice that the DJ-HIX is a relative and bounded
measure with maximal value equal to 1 in case of perfect co-movement, whereas the
DJ Volatility Index is an absolute measure without upper bound. This latter observation
explains why it may be more di¢ cult to detect peaks in the DJ Volatility Index, especially
in periods where this implied volatility is at a relatively low level.
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Figure 4: DJ-HIX (30 days, solid line) and DJ-CIX (30 days, dotted line).

The HIX versus the CIX. The HIX quanti�es the degree of herd behavior in stock
markets by comparing the real market situation with a synthetic one where there is
perfect herd behavior. The HIX uses estimate (21) of the variance of the index price S
and estimate (41) of the variance of the comonotonic index price S

c
to represent these two

situations. In Section 4.3, we presented the CIX as an alternative for the HIX. Loosely
speaking, the CIX considers the VIX-squared to describe the real market situation, and
compares it with the comonotonic VIX-squared. Both the (smoothed) DJ-HIX and the
(smoothed) DJ-CIX for T = 30 days are shown in Figure 4. We observe that both
measures lead to an almost identical picture. An explanation for this observation follows
from a Taylor expansion of the realized variance around E [S]. Indeed, from (50) we �nd
that

RV [T ] =
1

T

�
S � E [S]
E [S]

�2
+ : : : (73)

The variance swap rate is then given by

SR [T ] =
1

T

Var [S]
E2 [S]

+ : : : (74)

The HIX is based on the ratio of Var[S] to Var
�
S
c�
, whereas the CIX is based on the ratio

of the swap rate SR[T ] to the comonotonic version of the swap rate. Taking into account
(74), we �nd that HIX[T ] and CIX[T ] are equal, provided the higher order terms can be
ignored.
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7 Concluding remarks

After having experienced the late-2000s �nancial crisis and the related near-meltdown of
the �nancial system, systemic risk has attracted the attention of stakeholders including
regulators, policy makers, market supervisors and speculators. A high level of systemic
risk re�ects the �low probability, high impact event�of a market which is to a large extent
driven by a single factor. Taking into account that �the boat loses stability and may
even capsize if all its passengers together run from one side to the other over and over
again�, a single factor situation may lead to a collapse of the entire system. Therefore, the
estimation of the level of systemic risk is of utmost importance. It gives market players
an insight and an opportunity to take the necessary precautionary actions.

In this paper we made a modest contribution to this complicated matter by proposing
a measure for the degree of co-movement or herd behavior present in equity markets. This
measure compares the currently observed market situation with the comonotonic situation
under which the whole system is driven by a single factor. More precisely, it compares an
estimate of the variance of the market index with an estimate of the corresponding worst-
case or comonotonic variance. In line with the VIX methodology, the estimate for the
variance of the market index is based on the full spectrum of current option information
on the index. Although the worst-case market situation is not observed, the comonotonic
variance can easily be determined from the option prices on the constituents of the market
index.

The ratio of (an approximation of) the market-based variance and its comonotonic
counterpart was baptized the Herd Behavior Index (HIX). This index is a model-independent,
market implied and forward looking indicator for co-movement behavior. The HIX attains
values between 0 and 1. Today�s value of the HIX expresses the market�s perception of
future herd behavior as implied by today�s option prices. A higher level points to a higher
degree of herd behavior, a lower value indicates lower degrees of co-movement. The HIX is
easy to calculate and can be determined for any market index or basket with underlying
traded vanilla options on the index as well as on its constituents. We also introduced
the CIX, which was de�ned as the ratio of (an approximation of) the variance swap rate
and its comonotonic counterpart, and which is by de�nition more closely linked to the
VIX-methodology.

We illustrated the HIX and the CIX by determining their historical values for the
Dow Jones Industrial Average. We explained why corresponding values of both indices
are almost identical in practice. Furthermore, we observed that, similar to volatility indices
and correlation indices, the herd behavior indices exhibit a tendency to increase when the
stock prices are decreasing.

Measuring the degree of co-movement with the HIX/CIX has several advantages com-
pared to implied correlation. The HIX/CIX is able to capture all kinds of dependences
between stock prices, whereas the implied correlation is a weighted average of pairwise
correlations amongst the asset returns and hence, only focuses on linear dependences.
Furthermore, making abstraction of the approximations involved in its calculation, the
HIX reaches its maximal value of 1 if and only if the underlying random variables are
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comonotonic. On the other hand, there is no direct link between the degree of herd be-
havior and the value of the implied correlation. Finally, the HIX and the CIX are model-
independent, respectively �almost�model-independent�estimates for future co-movement,
whereas the implied correlation is not, due to the involved Black & Scholes implied volatil-
ities.

The HIX/CIX is a measure that could be used as a tool for quantifying future expected
degrees of herd behavior. In line with the ideas proposed in Laurence and Wang (2008) or
Laurence (2008) for a single index option and its comonotonic counterpart, market partic-
ipants could monetize the gap between the numerator and denominator of the HIX/CIX
by taking the appropriate position in options on the index and its constituent stocks.

The study of applications of the HIX/CIX to �nancial economics problems is an inter-
esting topic of future research. Possible research topics include investigating the relation-
ship between the HIX/CIX and the VIX-based Volatility Index, the relationship between
the HIX/CIX and implied correlation. Also the performance of the HIX/CIX as a forecast
for the future realized degree of herd behavior between assets in the underlying index has
to be investigated. A somewhat linked paper in this respect is Harmon et al. (2011). A re-
lated question is whether options on the HIX/CIX would allow to hedge against exposure
to herd behavior. Other empirical issues to be investigated include mean-reverting be-
havior of the HIX/CIX, clustering behavior (are large values likely to be followed by large
values?) and asymmetry behavior (have negative returns a larger impact than positive
returns of the same size?), amongst others.
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8 Appendix

8.1 Proof of formula (21)

Approximation (21) follows by rewriting (17) as

e�rT

2
Var[S] =

Z K0

�1
P [K] dK +

Z +1

K0

C [K] dK +

Z E[S]

K0

(P [K]� C [K]) dK;

see Figure 5. We split the �rst integral in two parts,Z K0

�1
P [K]dK =

Z K�l

�1
P [K]dK +

Z K0

K�l

P [K]dK; (75)

and approximate the second term in the right hand side of (75) by the composite trape-
zoidal rule:Z K0

K�l

P [K]dK �
0X

i=�l+1

(Ki �Ki�1)
P [Ki�1] + P [Ki]

2

=
K�l+1 �K�l

2
P [K�l] +

�1X
i=�l+1

Ki+1 �Ki�1

2
P [Ki] +

K0 �K�1

2
P [K0]

Assuming that P [K] reaches 0 in K�l� (K�l+1�K�l) we can approximate the �rst term
in the right hand side of (75) byZ K�l

�1
P [K]dK � K�l+1 �K�l

2
P [K�l]

and thusZ K0

�1
P [K]dK � (K�l+1�K�l)P [K�l]+

�1X
i=�l+1

Ki+1 �Ki�1

2
P [Ki]+

K0 �K�1

2
P [K0] =: I1:

Analogously we �ndZ +1

K0

C[K]dK � K1 �K0

2
C[K0] +

h�1X
i=1

Ki+1 �Ki�1

2
C[Ki] + (Kh �Kh�1)C[Kh] =: I2;

where we assumed that C[K] reaches 0 in Kh + (Kh �Kh�1).
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Figure 5: Exact and approximate value of e
�rT

2
Var[S].

Taking into account the put-call parity (14), we �nd that the third integral in the
expression for e

�rT

2
Var[S] is given by

I3 = �
e�rT

2
(E [S]�K0)

2 :

Adding I1; I2 and I3 and assuming that K1 �K0 = K0 �K�1 leads to the approximate
expression (21) for e

�rT

2
Var[S].
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