
Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Partitioned solution of an unsteady adjoint for
strongly coupled fluid-structure interactions
and application to parameter identification of a
one-dimensional problem

Joris Degroote · Majid Hojjat · Electra
Stavropoulou · Roland Wüchner ·
Kai-Uwe Bletzinger

Received: date / Accepted: date

J. Degroote
Ghent University
Department of Flow, Heat and Combustion Mechanics
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
Tel: +32 9 264 95 22
Fax: +32 9 264 35 86
E-mail: Joris.Degroote@UGent.be

M. Hojjat
Technische Universität München
Chair of Structural Analysis
Arcisstrasse 21, 80333 Munich, Germany
Tel: +49 89 289 22152
Fax: +49 89 289 22421
E-mail: hojjat@tum.de

E. Stavropoulou
Technische Universität München
Chair of Structural Analysis
Arcisstrasse 21, 80333 Munich, Germany
Tel: +49 89 289 22152
Fax: +49 89 289 22421
E-mail: stavropoulou@tum.de

R. Wüchner
Technische Universität München
Chair of Structural Analysis
Arcisstrasse 21, 80333 Munich, Germany
Tel: +49 89 289 22423
Fax: +49 89 289 22421
E-mail: wuechner@tum.de

K.-U. Bletzinger
Technische Universität München
Chair of Structural Analysis
Arcisstrasse 21, 80333 Munich, Germany
Tel: +49 89 289 22422
Fax: +49 89 289 22421
E-mail: kub@tum.de

2 J. Degroote, M. Hojjat, E. Stavropoulou et al.

Abstract Unsteady fluid-structure interaction (FSI) simulations are gener-
ally time-consuming. Gradient-based methods are preferred to minimise the
computational cost of parameter identification studies (and more in general
optimisation) with a high number of parameters. However, calculating the cost
function’s gradient using finite differences becomes prohibitively expensive for
a high number of parameters. Therefore, the adjoint equations of the unsteady
FSI problem are solved to obtain this gradient at a cost almost independent
of the number of parameters.

Here, both the forward and the adjoint problems are solved in a parti-
tioned way, which means that the flow equations and the structural equations
are solved separately. The application of interest is the identification of the
arterial wall’s stiffness by comparing the motion of the arterial wall with a
reference, possibly obtained from non-invasive imaging. Due to the strong in-
teraction between the fluid and the structure, quasi-Newton coupling iterations
are applied to stabilise the partitioned solution of both the forward and the
adjoint problem.

Keywords Adjoint · Coupled · Partitioned · Fluid-structure interaction ·
Quasi-Newton

1 Introduction

In this work, the stiffness parameters of an elastic tube through which an
incompressible fluid flows are identified. The tube model is a one-dimensional
generalised string model and the stiffness of each tube segment is determined
by a separate parameter, corresponding with a spatially distributed parameter.
This tube is a simplified fluid-structure interaction model for the blood flow in
a large artery [1]. Previous research has demonstrated that this model results in
a finite wave propagation speed due to the fluid-structure interaction, despite
the incompressible fluid [2]. Nevertheless, this model is not suitable to calculate
wall shear stress due to the abscence of viscosity.

The goal is to adjust the stiffness parameters of this model so that the
displacement of the tube wall as a function of time matches the displacement
data from a non-invasive measurement. This stiffness is considered as an indi-
cator for arterial diseases, but it cannot be measured directly in a non-invasive
way. Hence, parameter identification using computer simulations is relevant.

A typical simulation of this or any other model yields an amount of data
for a given value of the model parameters. Such a simulation solves a so-called
forward (or direct) problem. The corresponding inverse problem is to find pa-
rameter values such that the data resulting from a forward simulation with
these parameter values agrees as closely as possible with some measurement
(or target) [3]. Parameter identification techniques to solve these inverse prob-
lems can generally be reformulated as a minimisation problem. In that case,
a cost function is defined as the difference between the simulation data and
the measurement. The parameter values which minimise this cost function are

Unsteady adjoint for partitioned solution of strongly coupled FSI 3

then determined using an optimisation algorithm or filtering [4]. The optimisa-
tion approach is selected here, so that the developed techniques are applicable
not only to parameter identification, but also to other optimisation problems
in general.

Optimisation algorithms can be classified into methods that only evaluate
the cost function value and those which also use the gradient (first derivatives
of the cost function with respect to the parameters) or even the Hessian (sec-
ond derivatives of the cost function with respect to the parameters). Methods
that only evaluate the cost function include genetic algorithms [5], swarm intel-
ligence [6], simulated annealing [7] and surrogate-based methods with adaptive
sampling [8], among others. These methods can find the global optimum of
non-differentiable functions but the number of cost function evaluations gen-
erally increases drastically as the number of parameters increases. As a result,
the computational cost becomes prohibitive, especially when simulation of the
forward problem is time-consuming [9].

By contrast, gradient-based optimisation algorithms can solve optimisa-
tion problems with a high number of parameters using a relatively limited
number of cost function evaluations. Steepest descent, conjugate gradient and
quasi-Newton methods belong to this class. However, these algorithms tend
to converge to local optima. Moreover, obtaining the gradient is in most cases
not trivial. Because the number of parameters is high in the application of
interest, gradient-based optimisation is applied in this work [9]. Both the gra-
dient and the exact Hessian of the cost function are used by another class of
optimisation algorithms, including Newton’s method.

Several possibilities exist for the gradient calculation. It can be calculated
using finite differences, the direct method and the adjoint method [10,11].
These techniques will be described in detail later in this work. The adjoint
method is chosen because its computational cost does not significantly depend
on the number of parameters, which is advantageous for a high number of
parameters. The difference between the discrete and continuous adjoint for-
mulation is that the discretisation occurs respectively before and after the
derivation of the adjoint equations. Here, the discrete adjoint formulation is
selected to obtain the exact gradient of the discrete equations.

The fluid-structure interaction in the model can be dealt with in two ways.
In the monolithic approach, the flow equations and structural equations are
solved simultaneously [12–14]. Conversely, the flow equations and structural
equations are solved separately in the partitioned approach. To obtain software
modularity, the partitioned approach is selected for this research. In weakly
(or explicitly, staggered) coupled partitioned simulations, the flow equations
and the structural equations are solved once (or a limited, fixed number of
times) per time step [15,16]. As a result, the equilibrium of force and velocity
on the fluid-structure interface is not guaranteed. In strongly (or implicitly)
coupled partitioned simulations, coupling iterations are performed between the
flow equations and the structural equations in each time step. Consequently,
the equilibrium conditions on the interface are satisfied (up to an error pro-
portional to the convergence tolerance of the coupling iterations). The weakly

4 J. Degroote, M. Hojjat, E. Stavropoulou et al.

coupled methods are suitable for compressible aeroelastic simulations, while
strong coupling should be used for simulations with incompressible fluids [17].

Several strongly coupled partitioned techniques treat the flow solver and
the structural solver as black boxes, i.e. programmes which calculate an out-
put for a given input, but whose internal algorithms can neither be accessed
nor modified. These methods include Gauss-Seidel iterations, Gauss-Seidel it-
erations with Aitken relaxation [18–20], interface GMRES [21] and interface
quasi-Newton (IQN-ILS) iterations [22,23]. However, Gauss-Seidel iterations
are often unstable if the ratio of the fluid density to the structure density is
high, among other reasons [24,25]. In comparisons consisting of several test
cases, IQN-ILS requires fewer coupling iterations per time step than Aitken
relaxation or Interface GMRES [22], and the computational cost ratio of a
partitioned simulation with IQN-ILS to a monolithic simulation ranges from
0.56 to 3.16 [26]. Therefore, IQN-ILS is selected as coupling algorithm.

In this work, the adjoint equations for an unsteady fluid-structure inter-
action problem are derived for a spatially distributed parameter. Both the
forward and the adjoint equations are solved in a partitioned way using the
IQN-ILS coupling algorithm. A gradient for a spatially distributed parameter
calculated using adjoint equations has already been combined with optimi-
sation of fluid-structure interaction by several authors. For example, it has
been applied for the aerostructural shape optimisation of an aeroplane [27,
28] and its wings [29–32]. However, these are steady problems which can be
solved using Gauss-Seidel iterations, while Gauss-Seidel iterations are unsta-
ble for the unsteady model at hand. In [33,34], the adjoint of the steady Euler
equations is calculated and the resulting gradient is inserted in an unsteady
linear aeroelastic model with four equations to derive a controller for flutter
reduction.

Unsteady adjoint solvers have been developed for the optimisation of fluids
and structures alone. For example, an adjoint solver of the unsteady Euler
equations has been used for the optimisation of blast mitigation devices [9].
Also adjoint solvers of the unsteady Navier-Stokes equations exist [35], even
for moving and deforming grids [36]. Checkpointing is often applied to reduce
the memory requirements of unsteady adjoint simulations [37–39], but this is
not necessary in this case.

In the biomedical field, a number of authors previously applied parameter
identification to determine the stiffness of an artery. In [40], three parameters
are identified using continuous adjoint equations, while in [41] one stiffness
parameter is calculated using discrete adjoint equations so that a monolithic
one-dimensional model corresponds with a three-dimensional model. In [4],
five stiffness parameters of a three-dimensional model are identified using a
reduced-order unscented Kalman filter (UKF). This approach requires as many
simulations as there are parameters plus one, which run simultaneously.

The main novelty of this work is thus the partitioned solution of the adjoint
equations for an unsteady fluid-structure interaction problem with a spatially
distributed parameter. Both the forward and adjoint equations are solved us-
ing quasi-Newton coupling since Gauss-Seidel iterations are unstable, as will

Unsteady adjoint for partitioned solution of strongly coupled FSI 5

be demonstrated by the numerical results. The quasi-Newton coupling algo-
rithm for FSI problems has already been published before [22]. Within this
contribution, this algorithm is derived again to obtain a consistent notation
for physical state analysis and coupled adjoint computation. Furthermore, it is
demonstrated how its advantageous properties can be exploited for the calcu-
lation of unsteady coupled sensitivities. Insights from the field of partitioned
simulations are thereby transferred to the fields of sensitivity analysis and ad-
joint equations. The model itself is intentionally kept simple and should be
considered as a demonstration example.

The remainder of this article is organised as follows. The equations and
solution procedure are described in Section 2 for the forward problem and in
Section 3 for the adjoint problem. Section 4 explains the optimisation proce-
dure, followed by the details of the implementation in Section 5. Finally, the
results and conclusions are presented in Section 6 and Section 7, respectively.

2 Model

2.1 Continuous equations

The model for the parameter identification of the blood flow in an artery is the
unsteady flow of an incompressible, inviscid fluid in a straight, flexible tube,
as depicted in Figure 1. The model is one-dimensional in an axisymmetric
(r, φ, z) coordinate system. The non-overlapping domains of the fluid and the
structure are indicated as Ωf and Ωs, respectively. The common boundary of
these domains is the fluid-structure interface Γ , defined as

Γ = ∂Ωf ∩ ∂Ωs, (1)

with ∂Ω indicating the boundary of domain Ω.
The governing equations for the flow are the conservation of mass and

momentum, formulated as

∂a

∂t
+

∂au

∂z
= 0 (2a)

∂au

∂t
+

∂au2

∂z
+

1
ρf

(
∂ap

∂z
− p

∂a

∂z

)
= 0, (2b)

with a the cross-sectional area of the tube, t the time, u the axial velocity and
p the pressure.

For the structure, a so-called generalised string model is applied. This
model is derived from the linear elasticity theory for a cylindrical tube with
small thickness under the assumption of membrane deformations [1,42]. It
disregards the axial and circumferential displacement of the tube wall. The
governing equation for the structure is given by

6 J. Degroote, M. Hojjat, E. Stavropoulou et al.

ρsh
∂2r

∂t2
− κGh

∂2r

∂z2
+

Eh

1 − ν2

r − ro

r2
o

− γ
∂3r

∂2z∂t
= p, (3)

with r the inner radius (a = πr2), ρs the structural density and h the thickness
of the tube wall. The other coefficients are the shear modulus G, the Young
modulus E and the Poisson coefficient ν. The viscoelastic term is further
omitted (γ = 0), which is a common simplification [42]. The Timoshenko shear
correction factor κ is calculated from the Poisson coefficient [43], although it
is now understood that this correction factor alone cannot always account
precisely for dynamic analyses of beams with arbitrary and inhomogeneous
cross sections [44].

κ =
2(1 + ν)
4 + 3ν

(4)

2.2 Discrete equations

The tube with length ` is discretised in space using me segments with length
∆z. The pressure and velocity are stored in the cell centres. All terms in the
flow equations are discretised using a central scheme, except for first-order
upwind discretisation of the convective term in the momentum equation. The
time discretisation is first-order backward Euler with time step size ∆t. The
discrete flow equations for each segment m ∈ {1, . . . , me} are given by

∆z

∆t

(
am − an−1

m

)
+ um+1/2am+1/2 − um−1/2am−1/2

− α

ρf
(pm+1 − 2pm + pm−1) = 0 (5a)

∆z

∆t

(
umam − un−1

m an−1
m

)
+ umum+1/2am+1/2 − um−1um−1/2am−1/2

+
1

2ρf

[
am+1/2 (pm+1 − pm) + am−1/2 (pm − pm−1)

]
= 0 (5b)

for um > 0. The superscript n − 1 indicates the previous time level (t =
(n − 1)∆t), while the superscript n for the current time level (t = n∆t) is
omitted. The velocities at the cell faces are calculated as

um−1/2 =
um−1 + um

2
and um+1 =

um + um+1

2
(6)

and analogously for the cross-sectional area at the cell faces.
The damping term in Equation 5a prevents spurious pressure oscillations

due to the central discretisation of the pressure in the momentum equation
combined with collocated pressure and velocity. Its coefficient is given by

Unsteady adjoint for partitioned solution of strongly coupled FSI 7

α =
ao

vo + ∆z/∆t
. (7)

This stabilisation term does not affect the accuracy of the scheme because the
other terms are also first-order accurate. In [45], the suppression of pressure
wiggles by this term is investigated with Fourier analysis and its implementa-
tion with higher-order accuracy on non-Cartesian grids using a finite volume
discretisation is described.

To obtain structural equations with only first derivatives in time, the ra-
dial velocity of the tube wall is introduced (v = ∂r/∂t). Although relatively
uncommon, backward Euler time discretisation is applied for the structure as
well, to avoid difficulties due to different time discretisation of the flow equa-
tions and the structural equations [46]. Moreover, the spatial discretisation is
performed using a finite difference scheme instead of the typical finite elements
[47]. The discrete structural equations are

vm =
rm − rn−1

m

∆t
(8a)

ρsh
vm − vn−1

m

∆t
− κGh

rm+1 − 2rm + rm−1

∆z2
+

Emh

1 − ν2

rm − ro

r2
o

= pm. (8b)

The elasticity modulus Em of each segment is determined by the corresponding
parameter sm which varies from -1 to 1.

Em = Eo

(
1 +

1
2
sm

)
(9)

This definition of the elasticity modulus ensures that it can vary over a re-
alistic range. The goal during the optimisation is to identify the value of the
parameters sm (m ∈ {1, . . . ,me}) which appear in this equation.

The discretisation schemes in both time and space are only first-order accu-
rate. However, the presented algorithms are not limited to first-order schemes.
Nevertheless, their behaviour and properties could change dramatically when
going to higher-order schemes. The successful implementation with higher-
order accurate schemes has yet to be performed and this would be a consider-
able task which might not be straightforward.

2.3 Linearised equations

The above equations are subsequently linearised with respect to the reference
values ro, po, uo and vo. From this point on, r, p, u and v denote perturbations
with respect to these reference values. Moreover, po, uo and vo are set to
zero to simplify the resulting equations. It has been demonstrated in previous
research [48] that this particular choice of the reference values results in a
model with the same numerical behaviour as the model with all nonlinear

8 J. Degroote, M. Hojjat, E. Stavropoulou et al.

terms. Also physical properties such as wave propagation are preserved by
this linearisation and reference.

The linearised flow equations are

∆z

∆t

2
ro

(
rm − rn−1

m

)
+

1
2

(um+1 − um−1) −
∆t

∆z

1
ρf

(pm+1 − 2pm + pm−1) = 0

(10a)
∆z

∆t

(
um − un−1

m

)
+

1
2ρf

(pm+1 − pm−1) = 0. (10b)

For the structure, the linearised equations are

vm =
rm − rn−1

m

∆t
(11a)

ρsh
vm − vn−1

m

∆t
− κGh

rm+1 − 2rm + rm−1

∆z2
+

Emh

1 − ν2

rm

r2
o

= pm. (11b)

2.4 Boundary conditions

As the segments of the tube are indicated with subscripts 1 to me, the inlet
(left-hand side) is indicated with a subscript 0 and the outlet (right-hand side)
with a subscript me + 1.

The blood flow rate at a point can be measured as a function of time
using non-invasive techniques. So, the flow rate at the inlet is prescribed as a
function of the time t with a period corresponding to one heart beat tb.

u0(t) = 0.23 + 0.21 sin
(

2π
t

tb

)
+ 0.11 cos

(
4π

(
t

tb
− 0.2

))
+ 0.07 cos

(
6π

(
t

tb
− 0.2

))
(12)

This results in a mean flow rate of approximately 6.5·10−6m3/s and an evo-
lution of the inlet velocity as a function of time closely resembling the figures
in [49]. The pressure at the inlet is calculated using extrapolation

p0 = 2p1 − p2. (13)

At the outlet of the tube, the velocity is obtained from an extrapolation

ume+1 = 2ume − ume−1, (14)

and a Windkessel model relates this velocity with the outlet pressure [49]. This
Windkessel model (see Figure 1) represents the remainder of the circulation,
downstream from the artery

Unsteady adjoint for partitioned solution of strongly coupled FSI 9

rdqme+1 − rdc
d
dt

(pme+1 − rpqme+1) = pme+1 − rpqme+1, (15)

with qme+1 = πr2
oume+1. The subscripts p and d denote values close to (prox-

imal) and further away (distal) from the artery, respectively. The capacitor
c represents the compliance of the arterial system, while the resistors rp and
rd model the viscous resistance. The value of c is modified by the parameter
sme+1 which also varies from -1 to 1.

c = co

(
1 +

1
2
sme+1

)−1

(16)

This definition of c is constructed analogously to Equation 9. The parameter
sme+1 will be identified, together with the parameters sm (m ∈ {1, . . . , me})
in Equation 9.

For the structure, a zero-curvature boundary condition

∂r

∂z
= 0 (17)

is applied at both the inlet and the outlet.

2.5 Matrix notation

Equations 10 and Equations 11 for time step n can be written in the following
block-matrix format Mf

0 0
Cf 0

0 Cs

0 0 M s

xn
fΩ

xn
fΓ

xn
sΓ

xn
sΩ

 =

bn
f

bn
s

 +

 Nf
0 0

Df 0
0 Ds

0 0 N s

xn−1
fΩ

xn−1
fΓ

xn−1
sΓ

xn−1
sΩ

 . (18)

In this equation, Mf and M s are the system matrices of the flow solver and
the structural solver, respectively. The interaction between the fluid and the
structure is captured by the off-diagonal blocks Cf and Cs. The matrix Cf

describes how the residual of the flow equations changes due to a displacement
of the fluid-structure interface, whereas the matrix Cs converts the pressure on
the interface into a contribution (nodal forces) to the residual of the structural
equations. The state vector x is divided into a fluid part and a structure
part, indicated with the subscripts f and s, respectively. Both xf and xs

are subdivided once more using the subscripts Γ and Ω. The subscript Γ
refers to variables on the fluid-structure interface, while the subscript Ω refers
to variables that only appear in either the flow equations or the structural
equations. The right-hand side consists of time-dependent vectors bf and bs

which do not depend on the state x, and a contribution which depends on the
state in the previous time step xn−1.

The dimensions of xfΩ , xfΓ , xsΓ and xsΩ are respectively given by mfΩ×
1, mfΓ×1, msΓ ×1 and msΩ×1. The dimensions of the matrices in Equation 18

10 J. Degroote, M. Hojjat, E. Stavropoulou et al.

follow from the dimension of these vectors. For this specific case, the state
vectors are given by

xfΩ =
[
u0 p0 ume+1 pme+1 u1 u2 · · · ume

]T (19a)

xfΓ =
[
p1 p2 · · · pme

]T (19b)

xsΓ =
[
r1 r2 · · · rme

]T (19c)

xsΩ =
[
v1 v2 · · · vme

]T
, (19d)

with the superscript T indicating a transpose. The inlet and outlet model
for the flow as described in Section 2.4 are included in mfΩ . The dimensions
mentioned above can thus be written as a function of the number of tube
segments me.

mfΩ = 6 + me (20a)
mfΓ = msΓ = msΩ = me (20b)

Equation 18 can be abbreviated as

Axn = bn + Bxn−1, (21)

with

A =

 Mf
0 0

Cf 0
0 Cs

0 0 M s

 and B =

 Nf
0 0

Df 0
0 Ds

0 0 N s

 . (22)

The initial state x0 is set to zero. For the specific case that is analysed in
this work, the block Ds in this general equation is filled with zeros. Due to
the linearisation, the matrices A and B are independent of x and therefore
they remain constant during the simulation. The residual of the governing
equations for time step n is then given by

rn(xn, xn−1) = 0, (23)

with

rn(xn,xn−1) = Axn − bn − Bxn−1. (24)

Unsteady adjoint for partitioned solution of strongly coupled FSI 11

2.6 Coupling iterations

Equation 18 is solved in a partitioned way, which signifies that the flow equa-
tions and the structural equations are solved separately. Consequently, cou-
pling iterations need to be performed between the flow equations and the
structural equations to obtain the solution of the coupled problem. At conver-
gence of the coupling iterations, the solution is identical to what a monolithic
solver would calculate (up to an error proportional to the convergence toler-
ance of the coupling iterations). In every coupling iteration in time step n,
the flow equations and the structural equations are solved with given values of
xsΓ and xfΓ , respectively. In the following sections, the superscript k indicates
coupling iteration k in time step n.

At the beginning of coupling iteration k, the coupling algorithm calculates
xk

sΓ , as will be explained below. The flow equations are then given by

[
Mf

] [
xk

fΩ

xk
fΓ

]
=

[
bf

]
+

[
Nf

] [
xn−1

fΩ

xn−1
fΓ

]
+

[
0

Dfxn−1
sΓ

]
−

[
0

Cfxk
sΓ

]
. (25)

Once xk
fΩ and xk

fΓ have been calculated, xk
fΓ is given to the structural solver.

This calculation is further referred to as xk
fΓ = F(xk

sΓ).
The structural solver subsequently solves the structural equations

[
M s

] [
x̃k

sΓ

xk
sΩ

]
=

[
bs

]
+

[
N s

] [
xn−1

sΓ

xn−1
sΩ

]
+

[
Dsx

n−1
fΓ

0

]
−

[
Csx

k
fΓ

0

]
(26)

for x̃k
sΓ and xk

sΩ . The tilde is used to distinguish between the motion of the
fluid-structure interface calculated by the coupling algorithm at the beginning
of the coupling iteration and that calculated by the structural solver at the
end. This calculation is further referred to as x̃k

sΓ = S(xk
fΓ).

The flow equations (Equation 25) are solved for given values of the motion
of the fluid-structure interface, while the structural equations (Equation 26)
are solved for given values of the pressure on this interface. Normally, this is
called a Dirichlet-Neumann decomposition, but this name is not applicable
here due to the formulation of the structural equations.

The most trivial coupling algorithm is Gauss-Seidel iteration, which means
that the motion of the fluid-structure interface calculated by the structural
solver at the end of the previous coupling iteration is applied by the flow
solver at the beginning of the next coupling iteration.

xk
sΓ = x̃k−1

sΓ (27)

12 J. Degroote, M. Hojjat, E. Stavropoulou et al.

However, it is well-understood that this coupling algorithm is unstable for
fluid-structure interaction problems with an incompressible fluid and compa-
rable density of the fluid and the structure [24,48,25].

Therefore, the interface quasi-Newton coupling algorithm with an approxi-
mation for the inverse of the Jacobian from a least-squares model (IQN-ILS) is
applied [22]. This coupling algorithm treats both the flow solver and the struc-
tural solver as black boxes. Using the interface displacement applied in the flow
solver (xk

sΓ) and calculated by the structural solver (x̃k
sΓ) in all coupling iter-

ations, the coupling algorithm constructs an approximation (indicated with a
hat) for the inverse of the Jacobian of the interface residual

rk
sΓ = x̃k

sΓ − xk
sΓ (28)

with respect to the interface displacement xk
sΓ . This results in the following

update at the beginning of each coupling iteration

xk
sΓ = xk−1

sΓ + ∆xk
sΓ (29a)

∆xk
sΓ =

̂(
∂rsΓ

∂xsΓ

)−1

∆rk
sΓ , (29b)

with ∆xk
sΓ = xk

sΓ − xk−1
sΓ and ∆rk

sΓ = rk
sΓ − rk−1

sΓ = −rk−1
sΓ because the goal

is to find xk
sΓ so that rk

sΓ = 0.
An approximation for the inverse of the Jacobian will lead to convergence

of the coupling iterations if it contains the wave numbers in the interface
displacement that are unstable during Gauss-Seidel iterations. For the flow
in a one-dimensional flexible tube, it has been shown analytically that only a
fraction of these wave numbers are unstable [25]. Other problems have shown
similar behaviour. Therefore, the IQN-ILS algorithm constructs a low-rank
approximation for the inverse of this Jacobian matrix using least-squares. As
only a fraction of the wave numbers are unstable, a full-rank matrix is not
required. For the wave numbers that are not included in this least-squares
approximation, IQN-ILS iterations correspond with Gauss-Seidel iterations.
In every coupling iteration, a rank-one update is applied to the approximation
for the inverse of the Jacobian so that this approximation improves. It has
been demonstrated that this least-squares approach is faster for interaction
problems than other rank-one update methods such as Broyden’s method [50].

Because only the product of the approximation for the inverse of the Ja-
cobian with a vector is required, this matrix does not have to be constructed
explicitly. In a matrix-free implementation of IQN-ILS, the computational cost
and the memory requirements of the coupling algorithm scale linearly with the
number of degrees of freedom in the interface displacement (msΓ). In the fol-
lowing paragraphs, the different steps are explained in detail.

At the beginning of the first coupling iteration (k = 1), the result of the
previous time steps is extrapolated. The order of the extrapolation depends
on how many time steps have been performed.

Unsteady adjoint for partitioned solution of strongly coupled FSI 13

xk
sΓ = En(xn−1

sΓ , xn−2
sΓ ,xn−3

sΓ) =

n = 1 : xn−1

sΓ

n = 2 : 2xn−1
sΓ − xn−2

sΓ

n > 2 : 5
2xn−1

sΓ − 2xn−2
sΓ + 1

2xn−3
sΓ

(30)

At the beginning of the second coupling iteration (k = 2), the change in x
is relaxed with a fixed factor ω. Without reuse of information from previous
time steps, no quasi-Newton step can be done in the second coupling iteration
because the IQN-ILS coupling algorithm requires the information from at least
two coupling iterations.

xk
sΓ = xk−1

sΓ + ωrk−1
sΓ = (1 − ω)xk−1

sΓ + ωx̃k−1
sΓ (31)

This relaxation step is skipped if columns from previous time steps are reused
in the least-squares model. The only requirement for the relaxation parameter
ω is that it avoids excessive divergence in the second coupling iteration, which
could cause errors in the solvers, for example due to a corrupted mesh. Previous
research has shown that the IQN-ILS method is robust with respect to this
parameter and that it does not influence the long-term convergence [51]. A
typical value is ω = 10−2.

At the beginning of all subsequent coupling iterations (k > 2), the IQN-
ILS algorithm calculates the value of xk

sΓ based on the information from the
k−1 previous coupling iterations. The differences between consecutive coupling
iterations (i ∈ {1, . . . , k − 2})

∆ri
sΓ = ri+1

sΓ − ri
sΓ (32a)

∆x̃i
sΓ = x̃i+1

sΓ − x̃i
sΓ . (32b)

are calculated and stored as columns of the matrices V k and W k, giving

V k =
[
∆rk−2

sΓ . . . ∆r2
sΓ ∆r1

sΓ

]
(33a)

W k =
[
∆x̃k−2

sΓ . . . ∆x̃2
sΓ ∆x̃1

sΓ

]
. (33b)

Both matrices have as dimension msΓ × k − 2, unless the columns from a
number of time steps are reused to accelerate the convergence.

The change of the residual ∆rk
sΓ = −rk−1

sΓ that is required to go from the
last residual rk−1

sΓ to 0 is decomposed as a linear combination of the known
changes of the residual

∆rk
sΓ = V kck, (34)

with ck ∈ Rk−2×1 the vector of decomposition coefficients. As there are usually
more than k−2 degrees of freedom in the interface displacement (msΓ > k−2),
this system is overdetermined. It can be solved for ck using least-squares, for
example using the QR-decomposition of V k,

V k = QkRk, (35)

14 J. Degroote, M. Hojjat, E. Stavropoulou et al.

with Qk ∈ RmsΓ ×k−2 an orthogonal matrix and Rk ∈ Rk−2×k−2 an upper tri-
angular matrix. The decomposition coefficients are then obtained using back-
substitution in the upper triangular system

Rkck =
(
Qk

)T

∆rk
sΓ . (36)

Because column i of V k corresponds with column i of W k, it is assumed that
a linear combination of the columns of V k corresponds with the same linear
combination of the columns of W k. As a result, the ∆x̃k

sΓ that corresponds
with ∆rk

sΓ is given by

∆x̃k
sΓ = W kck. (37)

The calculation of ∆x̃k
sΓ for a given ∆rk

sΓ (as carried out in Equation 36
and Equation 37) is further abbreviated as ∆x̃k

sΓ = Mk(∆rk
sΓ). Using the

definition of the interface residual (Equation 28), the sought-after ∆xk
sΓ is

finally given by

∆xk
sΓ = ∆x̃k

sΓ − ∆rk
sΓ = Mk(−rk−1

sΓ) + rk−1
sΓ (38)

Coupling iterations are performed until ||rk
sΓ ||2 < εc||r1

sΓ ||2, in which εc de-
notes the relative convergence criterion of the coupling iterations. The com-
plete procedure for the forward simulation is described in Algorithm 1.

Algorithm 1 The IQN-ILS coupling algorithm for the forward simulation.
1: for n = 1, . . . , ne do
2: for k = 1, . . . , ke do
3: if k = 1 then
4: xk

sΓ = En(xn−1
sΓ , xn−2

sΓ , xn−3
sΓ) Equation 30

5: else if k = 2 and no reuse then
6: xk

sΓ = xk−1
sΓ + ωrk−1

sΓ Equation 31
7: else
8: ∆xk

sΓ = Mk(−rk−1
sΓ) + rk−1

sΓ Equation 38

9: xk
sΓ = xk−1

sΓ + ∆xk
sΓ

10: end if
11: xk

fΓ = F(xk
sΓ) Equation 25

12: x̃k
sΓ = S(xk

fΓ) Equation 26

13: rk
sΓ = x̃k

sΓ − xk
sΓ Equation 28

14: if k > 2 and ||rk
sΓ ||2 < εc||r1

sΓ ||2 then
15: k = ke + 1
16: end if
17: end for
18: end for

Unsteady adjoint for partitioned solution of strongly coupled FSI 15

3 Sensitivity analysis

3.1 Cost function

The cost function j is defined using a normalised difference between a mea-
surement and a simulation of the model described above. In this work, this
measurement, which would normally be obtained from a non-invasive medi-
cal imaging technique, is mimicked by a simulation with the same model. It
is then assumed that the parameter values in this “measurement simulation”
have been forgotten and their values are calculated using the parameter iden-
tification. This makes it possible to simplify the implementation and to verify
the procedure by comparing the parameter values obtained from the parame-
ter identification with those used during the “measurement simulation”. This
also means that the cost function will be zero when the correct parameters
have been found.

The dimensionless least-squares cost function does not contain regularisa-
tion terms. It is given by

j(s, x) =

(
x̄sΓ − x̄ref

sΓ

)T (
x̄sΓ − x̄ref

sΓ

)
mene

(
max x̄ref

sΓ − min x̄ref
sΓ

)2 , (39)

with the superscript ref referring to the measurement (or reference). The
vector s contains the me + 1 parameters which are defined in Equation 9 and
Equation 16. The vector x is the combination of the state vectors of all time
steps

x =

x1

x2

...
xne

 . (40)

The vector x̄sΓ is identical to x, but all entries which do not correspond to
xn

sΓ have been set to zero, giving

x̄sΓ =

x̄1

sΓ

x̄2
sΓ
...

x̄ne

sΓ

 , with x̄n
sΓ =

0
0

xn
sΓ

0

 .

} mfΩ × 1
} mfΓ × 1
} msΓ × 1
} msΩ × 1

(41)

So, the cost function is a sum over all time steps and all tube segments of the
squared difference between the radius in the simulation and in the measure-
ment.

16 J. Degroote, M. Hojjat, E. Stavropoulou et al.

3.2 Minimisation problem

With the definition of the cost function in Equation 39, the parameter identi-
fication can be reformulated as a minimisation problem

min
s,x

j(s,x) (42)

subject to the governing equations as constraints

r(s, x) = 0. (43)

The parameter vector s and the state vector x are defined in Equations 9, 16
and 40. The cost function of the parameter identification is the only objective
function of the minimisation. Here, r is the combination of the residual of the
governing equations in all time steps

r =

r1

r2

...
rne

 =

r1(x1,x0)
r2(x2,x1)

...
rne(xne , xne−1)

 . (44)

3.3 Adjoint equations

As the state vector depends on the parameters, the gradient of the cost function
j(s, x) = j(s, x(s)) requires application of the chain rule. The total derivatives
of j with respect to the parameters are

dj

ds
=

∂j

∂s
+

∂j

∂x

dx

ds
. (45)

The partial derivatives in this equation can be calculated quickly and easily
from Equation 39, as the state x remains constant for ∂j/∂s and the param-
eters s remain constant for ∂j/∂x. By contrast, the total derivative dx/ds
requires the solution of the unsteady fluid-structure interaction problem and
it is thus time-consuming to calculate.

As the governing equations of the fluid-structure interaction problem al-
ways need to be satisfied, r should always be equal to 0. Consequently, also
the total derivative dr/ds should be equal to 0. By applying the chain rule,
this total derivative is given by

dr

ds
=

∂r

∂s
+

∂r

∂x

dx

ds
= 0. (46)

Rewriting the previous equation as

∂r

∂x

dx

ds
= −∂r

∂s
(47)

Unsteady adjoint for partitioned solution of strongly coupled FSI 17

results in a system that can be solved for the total derivative dx/ds. The
result is subsequently substituted in Equation 45, yielding

dj

ds
=

∂j

∂s
− ︸ ︷︷ ︸

−aT

∂j

∂x

−dx/ds︷ ︸︸ ︷(
∂r

∂x

)−1
∂r

∂s
. (48)

In this equation, the matrix inversion is a symbolic notation for the solution
of a large system, which combines all equations of all time steps of the un-
steady fluid-structure interaction problem. Obviously, this matrix is neither
constructed explicitly nor inverted or factorised due to excessive memory re-
quirements. As explained above, the time steps are calculated consecutively
with a partitioned solution technique.

Depending on how the factors are grouped in the last term of Equation 48,
two methods can be distinguished. The direct method solves Equation 47 for
dx/ds and substitutes the result in Equation 48. In this method, the product
between the last two factors in the last term of Equation 48(

∂r

∂x

)−1
∂r

∂s
(49)

is thus calculated first. Afterwards, ∂j/∂x is multiplied with the result. Since
the right-hand side of Equation 47 consists of as many columns as there are
parameters, this approach corresponds with the solution of a linear system
for every parameter. If a factorisation of the matrix ∂r/∂x can be stored, the
computational cost can be acceptable as only a back substitution needs to be
performed for every column of the right-hand side. However, in the case of
unsteady fluid-structure interaction, this matrix is too large to be factorised
and stored. As a result, the computational cost of solving Equation 47 is similar
to the cost of solving the governing equations, multiplied by the number of
parameters. Hence, the direct approach is only suitable for a small number of
parameters. The advantage of this method is that dx/ds does not have to be
recalculated if several objective functions need to be minimised.

By contrast, the adjoint method first calculates the product of the first two
factors in the last term of Equation 48.

∂j

∂x

(
∂r

∂x

)−1

= −aT (50)

The vector a is the so-called adjoint (or dual) state, which is the solution of
the adjoint equation (

∂r

∂x

)T

a = −
(

∂j

∂x

)T

. (51)

The sought-after gradient dj/ds is finally calculated as

dj

ds
=

∂j

∂s
+ aT ∂r

∂s
. (52)

18 J. Degroote, M. Hojjat, E. Stavropoulou et al.

The computational cost of solving Equation 51 is independent of the number
of parameters, so the adjoint method is suitable for a large number of param-
eters. However, there are as many right-hand sides as objective functions. As
for the direct method, the matrix in Equation 51 is too large to be factorised
and stored in the case of unsteady fluid-structure interaction. So, the adjoint
equations need to be solved for every objective function. Alternatively, the ad-
joint method can be derived by introducing Lagrange multipliers, for example
as in [52].

From the explanation above, it is clear that the choice between the direct
and the adjoint method depends on the number of parameters and objective
functions. The direct method requires the solution of a problem comparable
to the governing equations for every parameter, while its cost is almost in-
dependent of the number of objective functions. The opposite is true for the
adjoint method. If central (respectively forward) finite differences are used
for the calculation of the gradient, the governing equations need to be solved
twice (respectively once) for every parameter and for every objective function.
In this specific case, there is only one objective function and there are many
parameters, so the adjoint method is selected.

In this case, the cost function (Equation 39) does not explicitly depend on
the parameters s, so

∂j

∂s
= 0. (53)

Conversely, the residual r (Equation 24) depends on the parameters s, giving

∂r

∂s
=

∂A
∂s x1 −

(
∂b
∂s

)1 − ∂B
∂s x0

∂A
∂s x2 −

(
∂b
∂s

)2 − ∂B
∂s x1

...
∂A
∂s xne −

(
∂b
∂s

)ne − ∂B
∂s xne−1

 . (54)

The only non-zero contributions to ∂r/∂s are due to the terms that contain
the elasticity modulus Em (Equation 9) and the compliance of the proximal
arteries c (Equation 16).

∂Em

∂sm
=

Eo

2
(55a)

∂c

∂sme+1
=

−co(
1 + 1

2sme+1

)2

1
2

(55b)

In the adjoint equation (Equation 51), both (∂j/∂x)T and (∂r/∂x)T are
required. The former is calculated analytically, giving

(
∂j

∂x

)T

=
2

(
x̄sΓ − x̄ref

sΓ

)
mene

(
max x̄ref

sΓ − min x̄ref
sΓ

)2 . (56)

Unsteady adjoint for partitioned solution of strongly coupled FSI 19

The calculation of ∂r/∂x and its transpose are more involved. This matrix is
not constructed or stored, but the solution to Equation 51 is calculated using
time steps. Using Equation 24, ∂r/∂x is given by

∂r

∂x
=

∂r1

∂x1
∂r1

∂x2 . . . ∂r1

∂xne

∂r2

∂x1
∂r2

∂x2
∂r2

∂xne

...
. . .

∂rne

∂x1
∂rne

∂x2
∂rne

∂xne

 (57a)

=

A 0 0 . . . 0 0
−B A 0 0 0
0 −B A 0 0
...

. . .
0 0 0 A 0
0 0 0 −B A

(57b)

Because ∂r/∂x is lower bidiagonal, the forward simulation consists of forward
time steps. By contrast, its transpose is upper bidiagonal, which is the reason
for the backward time steps in the adjoint simulation.

(
∂r

∂x

)T

=

AT −BT 0 . . . 0 0
0 AT −BT 0 0
0 0 AT 0 0
...

. . .
0 0 0 AT −BT

0 0 0 0 AT

(58)

3.4 Matrix notation

Considering Equation 58, the block-matrix format of a time step for the solu-
tion of the adjoint equation (Equation 51) is similar to Equation 18.

 MT
f

0 0
CT

s 0
0 CT

f

0 0
MT

s

an
fΩ

an
fΓ

an
sΓ

an
sΩ

 = −

(

∂j
∂xn

f

)T

(
∂j

∂xn
s

)T

+

 NT
f

0 0
DT

s 0
0 DT

f

0 0
NT

s

an+1
fΩ

an+1
fΓ

an+1
sΓ

an+1
sΩ

 (59)

20 J. Degroote, M. Hojjat, E. Stavropoulou et al.

This equation is written in a general form. The structure is self-adjoint which
allows for a simplification (MT

s = M s), but this is not used here to keep the
formulation general. In abbreviated form, the previous equation yields

ATan = −
(

∂j

∂xn

)T

+ BTan+1, (60)

which is similar to Equation 21, except for the backward time steps (n ∈
{ne, . . . , 1}). The initial adjoint state ane+1 is again set to zero.

3.5 Coupling iterations

Equation 59 is solved in a partitioned way as well, by performing coupling
iterations between the adjoint flow equations and the adjoint structural equa-
tions until the solution of the coupled adjoint problem has been found. The
superscript k again indicates coupling iteration k in time step n.

The adjoint flow equations in coupling iteration k are given by

[
MT

f

] [
ak

fΩ

ak
fΓ

]
= −

[(
∂j

∂xn
f

)T
]

+
[

NT
f

] [
an+1

fΩ

an+1
fΓ

]
+

[
0

DT
s an+1

sΓ

]
−

[
0

CT
s ak

sΓ

]
, (61)

which are solved for ak
fΩ and ak

fΓ . This equation contains Cs and Ds, which
belong to the structural solver. The exchange of matrices between the flow
solver and the structural solver is highly unwanted in the partitioned approach.
Therefore, CT

s ak
sΓ and DT

s an+1
sΓ are given to the flow solver, instead of ak

sΓ and
an+1

sΓ . While CT
s ak

sΓ is provided to the flow solver in every coupling iteration,
DT

s an+1
sΓ is only exchanged once at the beginning of every time step. In the

special case that Cs and Ds are identical, giving DT
s an+1

sΓ to the flow solver
is not required because the flow solver can store the information from tn+1.

The structural solver subsequently solves the adjoint structural equations

[
MT

s

] [
ãk

sΓ

ak
sΩ

]
= −

[(
∂j

∂xn
s

)T
]

+
[

NT
s

] [
an+1

sΓ

an+1
sΩ

]
+

[
DT

f an+1
fΓ

0

]
−

[
CT

f ak
fΓ

0

]
(62)

for ãk
sΓ and ak

sΩ . The tilde is used to distinguish between the adjoint state
calculated by the coupling algorithm at the beginning of the coupling iteration
and that calculated by the structural solver at the end. This equation contains
Cf and Df , which belong to the flow solver. To avoid the exchange of matrices,
CT

f ak
fΓ and DT

f an+1
fΓ are provided to the structural solver. While the former is

Unsteady adjoint for partitioned solution of strongly coupled FSI 21

given in every coupling iteration, the latter is only given once at the beginning
of the time step.

In conclusion, the flow solver calculates ak
f for a given CT

s ak
sΓ and gives

CT
f ak

fΓ to the structural solver, whereas the structural solver calculates ak
s for

a given CT
f ak

fΓ and returns CT
s ãk

sΓ . These calculations are further referred to
as CT

f ak
fΓ = FT(CT

s ak
sΓ) and CT

s ãk
sΓ = ST(CT

f ak
fΓ).

The adjoint flow equations (Equation 61) and structural equations (Equa-
tion 62) are coupled using the IQN-ILS algorithm, similarly to the forward
equations. The partitioned adjoint simulation is described in Algorithm 2.
The differences with the partitioned forward simulation are as follows. First,
the vectors DT

f an+1
fΓ and DT

s an+1
sΓ are exchanged between the flow solver and

the structural solver at the beginning of every time step (lines 2-3). Then, the
extrapolation (E) is adapted in a straightforward way to the backward time
steps (line 6). Moreover, the interface residual is defined as

rk
sΓ = CT

s ãk
sΓ − CT

s ak
sΓ (63)

in the adjoint simulation. Finally, x̃i
sΓ is replaced by CT

s ãi
sΓ in the least-

squares model (M on line 10).

Algorithm 2 The IQN-ILS coupling algorithm for the adjoint simulation.
1: for n = ne, . . . , 1 do
2: send DT

f an+1
fΓ from flow solver to structural solver

3: send DT
s an+1

sΓ from structural solver to flow solver
4: for k = 1, . . . , ke do
5: if k = 1 then
6: CT

s ak
sΓ = En(CT

s an+1
sΓ , CT

s an+2
sΓ , CT

s an+3
sΓ) Equation 30

7: else if k = 2 and no reuse then
8: CT

s ak
sΓ = CT

s ak−1
sΓ + ωrk−1

sΓ Equation 31
9: else

10: ∆CT
s ak

sΓ = Mk(−rk−1
sΓ) + rk−1

sΓ Equation 38

11: CT
s ak

sΓ = CT
s ak−1

sΓ + ∆CT
s ak

sΓ
12: end if
13: CT

f ak
fΓ = FT(CT

s ak
sΓ) Equation 61

14: CT
s ãk

sΓ = ST(CT
f ak

fΓ) Equation 62

15: rk
sΓ = CT

s ãk
sΓ − CT

s ak
sΓ Equation 63

16: if k > 2 and ||rk
sΓ ||2 < εc||r1

sΓ ||2 then
17: k = ke + 1
18: end if
19: end for
20: end for

4 Optimisation

For the minimisation of the cost function j (Equation 42), unconstrained quasi-
Newton optimisation with line search is applied. Only a brief overview of the

22 J. Degroote, M. Hojjat, E. Stavropoulou et al.

optimisation strategy is provided, as it is described in detail in [53]. In theory,
the parameters should be constrained so that the physical parameters remain
positive. However, it has been observed that this requirement is fulfilled during
unconstrained optimisation, so no constraints have been imposed.

In the quasi-Newton optimisation, the parameters s are calculated as

s` = s`−1 + α`−1d`−1, (64)

with the search direction d defined as

d`−1 = −H`−1

(
dj

ds

)T

`−1

. (65)

In these equations, the subscript ` denotes the optimisation iteration, α the
step length and H the approximation for the inverse of the cost function’s
Hessian. The optimisation halts when the first-order optimality criterion

|| (dj/ds)` ||∞ < εo(1 + || (dj/ds)1 ||∞) (66)

is satisfied, with εo the relative convergence tolerance of the optimisation it-
erations. Alternatively, the optimisation stops when the step size is too small.

||(s` − s`−1)/(1 + |s`|)||∞ < εs (67)

The goal of the one-dimensional line search is to find the step length (α > 0)
which minimises the function

φ(α`=1) = j(s`−1 + α`−1d`−1), (68)

with as few evaluations as possible of the cost function and its gradient. As
finding the true minimum would be too time-consuming, this is reduced to
finding a step length which satisfies the strong Wolfe conditions

φ(α`−1) ≤ φ(0) + c1α`−1φ
′(0) (69a)

|φ(α`−1)′| ≤ c2|φ(0)′|, (69b)

with 0 < c1 < c2 < 1 and φ′ the derivative of φ with respect to α. The
first condition enforces a reduction of the cost function, the second one that
the step length lies in at least a broad neighbourhood of a local minimiser or
stationary point of φ. In the bracketing phase of the line search, an interval
of acceptable step lengths is determined. This is followed by a selection phase
which locates the final step length using gradual reduction of this interval’s
size and cubic interpolation based on φ and φ′ at the two last values of α.

The approximation for the inverse of the cost function’s Hessian is updated
after every optimisation iteration using the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm. This update is based on the new value
of the parameters and the cost function’s gradient. A parameter determines
for how many optimisation iterations these two vectors are stored. As the in-
verse of the Hessian (instead of the Hessian itself) is approximated, no matrix

Unsteady adjoint for partitioned solution of strongly coupled FSI 23

factorisation is needed. Moreover, the approximation for the inverse of the
Hessian is not stored explicitly, but the two-loop recursion algorithm is ap-
plied to compute its product with the cost function’s gradient (Equation 65).
As a result, the memory requirement of the optimisation is linear (and not
quadratic) in the number of optimisation parameters.

The overview of the complete parameter identification computation is shown
in Algorithm 3. This overview facilitates the understanding of the implemen-
tation, as described in the following section.

Algorithm 3 The overview of the complete parameter identification compu-
tation.
1: for ` = 1, . . . , `e do
2: if ` = 1 then
3: s` = so

4: else
5: calculate search direction d`−1 Equation 65
6: calculate step length α`−1 Equation 68
7: s` = s`−1 + α`−1d`−1 Equation 64
8: end if
9: calculate cost function j(s`) Algorithm 1

10: calculate cost function’s gradient (dj/ds)` Algorithm 2
11: if converged then Equations 66 and 67
12: ` = `e + 1
13: end if
14: end for

5 Implementation

In the forward simulation, the flow solver has to calculate the flow field for
a given displacement of a boundary and return the stress on that boundary.
The structural solver has to do the opposite. These functions are available in
most research and commercial codes without significant modifications. Conse-
quently, it can be stated that the partitioned forward simulation uses the flow
solver and the structural solver as black boxes.

In the adjoint simulation, the exchange of operators between the solvers
is avoided by communicating CT

f,sΓ ak
f,sΓ and DT

f,sΓ an+1
f,sΓ instead of ak

f,sΓ

and an+1
f,sΓ . At present, however, no unsteady adjoint solvers suitable for fluid-

structure interaction are publicly available. Moreover, the authors are not
aware of solvers which are capable of exchanging CT

f,sΓ ak
f,sΓ and DT

f,sΓ an+1
f,sΓ .

Also the implementation of ∂r/∂s is problem dependent and would be difficult
to perform with black-box solvers. So, the adjoint simulation is partitioned but
does not use the solvers as black boxes.

The MATLAB source code has been written in a modular, object-oriented
way. The flow solver and the structural solver are both objects which shield
their internal data. They provide the required values on the fluid-structure

24 J. Degroote, M. Hojjat, E. Stavropoulou et al.

interface using functions. Also the extrapolation, the convergence check, the
least-squares model and the cost function are objects. As a result, the lay-
out and formatting of the main calculation routine are almost identical to
Algorithm 1 and Algorithm 2.

This programming approach allows for relatively easy testing of the sep-
arate modules. It also ensures that this framework can be used for future
applications. For a different problem, the flow solver, structural solver and
cost function objects will have to be replaced by other objects with the same
functionality. In the presented implementation, the discretisation schemes in
both time and space are only first-order accurate but the presented algorithms
are not limited to first-order schemes. In future work, these schemes should be
replaced by higher-order schemes.

The complete code that has been used to perform the simulations is avail-
able under the Non-Profit Open Software License version 3.0 (NPOSL-3.0).
This open-source approach enables verification of all presented results and full
transparency of this research. All figures and tables in the results section can
be generated by executing the ‘Run’ command.

6 Results

For the results, the tube is discretised in me = 100 segments. The parameters
of the fluid-structure interaction model and the Windkessel model are listed in
Table 1 and Table 2, respectively. These parameters are considered as realistic
for a simple carotid artery model [49].

Figure 2 depicts the radius at the middle of the tube during one period
for the minimal (s = −1), nominal (s = 0) and maximal (s = 1) values of all
parameters. The differences in the other variables and at other locations are of
the same order of magnitude. The cost function’s gradient for s = 0 is shown
in Figure 3, with the reference in Equation 39 calculated using a sinusoidal
variation of the tube’s stiffness. This gradient for s = 0 is typically used at
the beginning of the parameter identification.

6.1 Verification

The adjoint calculation of the cost function’s gradient is verified by comparing
it to central finite differences(

dj

dsm

)fd

=
j(s + ∆sm) − j(s − ∆sm)

2∆sm
, (70)

with sm and ∆sm respectively the value and the perturbation of element m in
vector s. This comparison is performed for different values of m and s, with
∆sm = 10−3 and 10−4.

Table 3 lists the values from this comparison between the adjoint calcula-
tion and the finite difference calculation with ∆sm = 10−4. All parameters in

Unsteady adjoint for partitioned solution of strongly coupled FSI 25

the reference calculation (required for the cost function calculation in Equa-
tion 39) have been set to 1. For the forward and the adjoint calculation, the
elements of the vector s have consecutively been set to -1, 0 and 1. Elements
m ∈ {1, 10, 101} of the gradient are analysed. The difference between both
gradients is at least 5 orders of magnitude smaller than the absolute value of
the gradient.

6.2 Identification

The parameters are identified for two different cases, called smooth and step-
wise. In the smooth case, the reference is calculated using a sinusoidal variation
of the stiffness along the tube, given by

sm = 0.3 + 0.5 sin(πm/me) (71)

for m = 1, . . . ,me, and sme+1 = 0.7. In the stepwise case, the first 20 pa-
rameter values are -0.2, the next 60 are -0.6, followed by 20 times -0.3 and
finally 0.1 for the parameter of the Windkessel model. In both cases, the iden-
tification starts for all parameters equal to zero. The tolerances εo and εs are
both set to 10−6. The number of vector pairs for the L-BFGS is limited to
15. The parameters c1 and c2 in the Wolfe conditions are set to 10−4 and 0.9,
respectively [53].

Figure 4 displays the convergence of the optimisation iterations for both
cases. It can easily be observed that the cost function decreases in each opti-
misation iteration. The convergence criterion for the first-order optimality is
reached after 25 iterations (30 evaluations of the cost function and gradient)
for the smooth case and after 36 iterations (42 evaluations of the cost function
and gradient) for the stepwise case. During the first and second optimisation
iteration, the step length deviates from 1 and the corresponding line search
requires more than one evaluation of the cost function and gradient per opti-
misation iteration. The maximal differences in parameter value are 1.0 % and
1.2%, respectively. Consequently, it can be concluded that both smooth and
stepwise stiffness patterns can be identified.

6.3 Stability

The stability of quasi-Newton and Gauss-Seidel coupling iterations is analysed
by means of the number of coupling iterations per time step. The average num-
ber of coupling iterations over 100 time steps is listed in Table 4 for different
values of ρf and ∆t. First, the reference for the cost function is calculated
with a sinusoidal variation of the tube’s stiffness and all subsequent calcula-
tions are then performed with s = 0. The quasi-Newton iterations are applied
with and without reuse of the columns from 3 time steps in the least-squares
model to accelerate the convergence. The quasi-Newton iterations converge
in all forward and adjoint calculations. By contrast, Gauss-Seidel iterations

26 J. Degroote, M. Hojjat, E. Stavropoulou et al.

only converge for a (too) large time step. A simulation is considered as uncon-
verged if the convergence criterion is not satisfied after 25 coupling iterations
in a certain time step.

In the forward simulations, the number of coupling iterations increases if
the time step decreases and if the fluid density increases. This observation is
consistent with prior stability analyses [24,48,25]. Here, it is demonstrated that
the adjoint simulation behaves in the same way. It needs a little more coupling
iterations per time step than the forward simulation, but the difference is
smaller than one iteration per time step on average. Reusing columns strongly
reduces the number of coupling iterations per time step. For both the forward
and the adjoint equations, Gauss-Seidel iterations are unstable in most cases.

Figure 5 shows the evolution of the coupling residual ||rk
sΓ ||2 during the

first 20 coupling iterations of the forward and adjoint simulations with ρf =
1060 kg/m3 and ∆s = 0.01 s. The Gauss-Seidel iterations diverge with a con-
stant slope in the forward simulation. As this forward simulation does not
finish successfully, the corresponding adjoint simulation cannot be started.
Conversely, the first time step of the forward simulation converges after 6
quasi-Newton iterations. In this first time step, there is as expected no dif-
ference between with and without reuse of columns from previous time steps.
The coupling residual jumps up in iteration 7, which is the beginning of the
second time step. From that coupling iteration on, the convergence is faster
with reuse than without.

Figure 6 depicts the columns of the matrix V k for k = 5 in the first time
step of a typical forward and adjoint simulation. It can be observed that the
wave number of all columns is low for the forward simulation, as explained in
[48,25,54]. Moreover, the columns in the adjoint simulation also have a rela-
tively low wave number. This suggests that the stability of the coupling itera-
tions is similar for the forward and the adjoint simulation. Consequently, the
coupling techniques which have been developed for the partitioned simulation
of fluid-structure interaction problems can also be applied to the partitioned
simulation of the corresponding adjoint problems.

7 Conclusions

In this work, the stiffness of each segment of a tube and of the Windkessel
model at the tube’s outlet are identified using gradient-based optimisation.
The cost function is calculated with an unsteady fluid-structure interaction
simulation; the gradient is obtained from an unsteady adjoint simulation. Both
the forward and the adjoint simulation are partitioned with a quasi-Newton
coupling algorithm (IQN-ILS). The stability of the coupling iterations is simi-
lar in the forward and the adjoint problem. Since the identification is performed
using optimisation, the presented algorithms are applicable to the optimisation
of unsteady fluid-structure interaction in general.

The forward calculation only requires functionality of the flow solver and
structural solver that is readily available in solvers suitable for fluid-structure

Unsteady adjoint for partitioned solution of strongly coupled FSI 27

interaction, without any modification of the codes. Consequently, the forward
calculation uses both solvers as black boxes. For the unsteady adjoint calcu-
lation, however, no suitable open-source or commercial solvers are publicly
available. Currently, only steady adjoint solvers are publicly available. In this
study, only variables on the fluid-structure interface are exchanged in the ad-
joint simulation and it is shown which functions in the adjoint flow solver and
structural solver are required. Nevertheless, calculating the derivatives of the
governing equations with respect to the parameters will always be difficult to
implement in a black-box solver, except when using finite differences.

Finally, quasi-Newton algorithms are used for the optimisation iterations
and the coupling iterations in the forward and adjoint calculations. Both al-
gorithms approximate the inverse of a matrix to avoid the solution of a dense
linear system and update this approximation in every iteration. Moreover, the
product of these matrices with a vector is calculated without explicitly con-
structing them. Obviously, this is not strictly necessary for this demonstration
example. However, together with the modular approach, it will allow to use
the developed framework for future broader applications.

Acknowledgements Joris Degroote gratefully acknowledges funding by a post-doctoral
fellowship of the Research Foundation - Flanders (FWO).

References

1. A. Quarteroni, M. Tuveri, A. Veneziani, Computing and Visualization in Science 2(4),
163 (2000)

2. L. Formaggia, D. Lamponi, A. Quarteroni, Journal of Engineering Mathematics 47(3–
4), 251 (2003)

3. M. Bonnet, A. Constantinescu, Inverse Problems 21(2), R1 (2005)
4. C. Bertoglio, P. Moireau, J.F. Gerbeau, RR INRIA 7657, 1 (2011)
5. D. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning (Ad-

dison Wesley, 1989)
6. R. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence (Morgan Kaufmann, 2001)
7. S. Kirkpatrick, C. Gelatt, M. Vecchi, Science 220(4598), 671 (1983)
8. D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, K. Crombecq, Journal of Machine

Learning Research 11, 2051 (2010)
9. A. Stück, F. Camelli, R. Löhner, International Journal for Numerical Methods in Fluids

64(4), 443 (2010)
10. R. Balasubramanian, J. Newman, International Journal for Numerical Methods in En-

gineering 66(2), 297 (2006)
11. D. Papadimitriou, K. Giannakoglou, International Journal for Numerical Methods in

Fluids 56(10), 1929 (2008)
12. M. Heil, Computer Methods in Applied Mechanics and Engineering 193(1–2), 1 (2004)
13. B. Hübner, E. Walhorn, D. Dinkler, Computer Methods in Applied Mechanics and

Engineering 193(23–26), 2087 (2004)
14. M. Gee, U. Küttler, W. Wall, International Journal for Numerical Methods in Engi-

neering 85(8), 987 (2011)
15. C. Felippa, K. Park, C. Farhat, Computer Methods in Applied Mechanics and Engi-

neering 190(24–25), 3247 (2001)
16. C. Farhat, K. van der Zee, P. Geuzaine, Computer Methods in Applied Mechanics and

Engineering 195(17–18), 1973 (2006)
17. E. van Brummelen, Journal of Applied Mechanics 76(2), 021206 (2009)

28 J. Degroote, M. Hojjat, E. Stavropoulou et al.

18. D. Mok, W. Wall, E. Ramm, in Computational Fluid and Solid Mechanics, ed. by K.J.
Bathe (Elsevier, 2001), pp. 1325–1328

19. R. Wüchner, A. Kupzok, K.U. Bletzinger, International Journal for Numerical Methods
in Fluids 54(6–8), 945 (2007)

20. U. Küttler, W. Wall, Computational Mechanics 43(1), 61 (2008)
21. C. Michler, E. van Brummelen, R. de Borst, International Journal for Numerical Meth-

ods in Fluids 47(10-11), 1189 (2005)
22. J. Degroote, K.J. Bathe, J. Vierendeels, Computers & Structures 87(11–12), 793 (2009)
23. M. Hojjat, E. Stavropoulou, T. Gallinger, U. Israel, R. Wüchner, K.U. Bletzinger, in

Fluid-Structure Interaction II: Modelling, Simulation, Optimization, ed. by H.J. Bun-
gartz, M. Mehl, M. Schäfer, Lecture Notes in Computational Science and Engineering
(Springer, Berlin Heidelberg, 2010), pp. 351–381

24. P. Causin, J.F. Gerbeau, F. Nobile, Computer Methods in Applied Mechanics and
Engineering 194(42–44), 4506 (2005)

25. J. Degroote, S. Annerel, J. Vierendeels, Computers & Structures 88(5–6), 263 (2010)
26. J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, J. Vierendeels, Computers &

Structures 88(7–8), 446 (2010)
27. J. Martins, J. Alonso, J. Reuther, Journal of Aircraft 41(3), 523 (2004)
28. J. Martins, J. Alonso, J. Reuther, Optimization and Engineering 6(1), 33 (2005)
29. K. Maute, M. Nikbay, C. Farhat, American Institute of Aeronautics and Astronautics

Journal 39(11), 2051 (2001)
30. K. Maute, M. Nikbay, C. Farhat, International Journal for Numerical Methods in En-

gineering 56(6), 911 (2003)
31. A. Fazzolari, N. Gauger, J. Brezillon, Journal of Computational and Applied Mathe-

matics 203(2), 548 (2007)
32. N. Gauger, A. Fazzolari, MegaDesign and MegaOpt - German Initiatives for Aerody-

namic Simulation and Optimization in Aircraft Design, Results of the closing sympo-
sium of the MegaDesign and MegaOpt projects, Braunschweig, Germany, 23 - 24 May,
2007 (Springer-Verlag, Berlin Heidelberg, 2009), Notes on Numerical Fluid Mechanics
and Multidisciplinary Design, vol. 107, chap. Adjoint Methods for Coupled CFD-CSM
Optimization, pp. 237–246

33. K. Palaniappan, P. Sahu, J. Alonso, A. Jameson, in 44th AIAA Aerospace Sciences
Meeting and Exhibit (Reno, NV, USA, 2006), pp. 1–11. AIAA 2006-844

34. K. Palaniappan, P. Sahu, J. Alonso, A. Jameson, in 47th AIAA Aerospace Sciences
Meeting (Orlando, FL, USA, 2009), pp. 1–20. AIAA 2009-148

35. M. Rumpfkeil, D. Zingg, Optimization and Engineering 11(1), 5 (2010)
36. E. Nielsen, B. Diskin, N. Yamaleev, in 19th AIAA Computational Fluid Dynamics Con-

ference (San Antonio, TX, USA, 2009), pp. 1–22. AIAA 2009-3802
37. A. Griewank, A. Walther, ACM Transactions on Mathematical Software 26(1), 19

(2000)
38. J. Sternberg, A. Griewank, Automatic Differentiation: Applications, Theory, and Im-

plementations (Springer-Verlag, Berlin Heidelberg, 2006), Lecture Notes in Computa-
tional Science and Engineering, vol. 50, chap. Reduction of Storage Requirement by
Checkpointing for Time-Dependent Optimal Control Problems in ODEs, pp. 99–110

39. Q. Wang, P. Moin, G. Iaccarino, SIAM Journal on Scientific Computing 31(4), 2549
(2009)

40. P.Y. Lagrée, The European Physical Journal - Applied Physics 9(2), 153 (2000)
41. V. Martin, F. Clément, A. Decoene, J.F. Gerbeau, ESAIM: Proceedings 14, 174 (2005)
42. J.F. Gerbeau, M. Vidrascu, ESAIM: Mathematical Modelling and Numerical Analysis

37(4), 631 (2003)
43. G. Cowper, Journal of Applied Mechanics 33(2), 335 (1966)
44. G. Kennedy, J. Hansen, J. Martins, International Journal of Solids and Structures

48(16–17), 2373 (2011)
45. J. Vierendeels, K. Riemslagh, E. Dick, Journal of Computational Physics 154(2), 310

(1999)
46. J. Vierendeels, K. Dumont, E. Dick, P. Verdonck, AIAA Journal 43(12), 2549 (2005)
47. F. Li, Z. Sun, Journal of Computational and Applied Mathematics 200(2), 606 (2007)
48. J. Degroote, P. Bruggeman, R. Haelterman, J. Vierendeels, Computers & Structures

86(23–24), 2224 (2008)

Unsteady adjoint for partitioned solution of strongly coupled FSI 29

49. I. Vignon-Clementel, C. Figueroa, K. Jansen, C. Taylor, Computer Methods in Biome-
chanics and Biomedical Engineering 13(5), 625 (2010)

50. R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, SIAM Journal on Numerical
Analysis 47(3), 2347 (2009)

51. R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, SIAM Journal on Numerical
Analysis 47(6), 4660 (2010)

52. A. Stück, F. Camelli, R. Löhner, in 48th AIAA Aerospace Sciences Meeting (Orlando,
FL, USA, 2010), pp. 1–30. AIAA 2010-1430

53. J. Nocedal, S. Wright, Numerical Optimization. Springer Series in Operations Research
(Springer, 1999)

54. E. van Brummelen, International Journal for Numerical Methods in Fluids 65(1–3), 3
(2011)

30 J. Degroote, M. Hojjat, E. Stavropoulou et al.

Figures

Fig. 1: The model for blood flow in an artery with details of the cross-section
and a control volume used in the discretisation of the governing equations.
Also the prescribed velocity at the inlet and the Windkessel model at the
outlet are depicted.

Unsteady adjoint for partitioned solution of strongly coupled FSI 31

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−4

Time [s]

R
ad

iu
s

[m
]

Minimal
Nominal
Maximal

Fig. 2: The radius linearised with respect to ro at the middle of the tube
(z = `/2) as a function of time for minimal (s = −1), nominal (s = 0) and
maximal values (s = 1) of all parameters.

32 J. Degroote, M. Hojjat, E. Stavropoulou et al.

0 20 40 60 80 100
−20

−15

−10

−5

0

5
x 10

−4

m [−]

dj
/d

s
[−

]

Fig. 3: The cost function’s gradient with respect to the stiffness of the tube
segments for s = 0 if the reference is calculated with a sinusoidal variation of
the stiffness.

Unsteady adjoint for partitioned solution of strongly coupled FSI 33

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration [−]

C
os

t f
un

ct
io

n
[−

]

Smooth
Stepwise

Fig. 4: The convergence of the optimisation iterations for the smooth and
stepwise case of the parameter identification.

34 J. Degroote, M. Hojjat, E. Stavropoulou et al.

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

10
5

10
10

Coupling iteration [−]

C
ou

pl
in

g
re

si
du

al
 [m

]

QN
QN(3)
GS

(a)

0 5 10 15 20
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

Coupling iteration [−]

C
ou

pl
in

g
re

si
du

al
 [m

]

QN
QN(3)

(b)

Fig. 5: The convergence of the first 20 coupling iterations in the (a) for-
ward and (b) adjoint simulation with ρf = 1060 kg/m3 and ∆s = 0.01 s.
The Gauss-Seidel iterations do not converge in the forward calculation, so the
corresponding adjoint calculation cannot be performed. The quasi-Newton it-
erations converge quickly and jump up at the beginning of each new time
step.

Unsteady adjoint for partitioned solution of strongly coupled FSI 35

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

row [−]

V
ro

w
,c

ol
 [−

]

col=1
col=2
col=3
col=4

(a)

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

row [−]

V
ro

w
,c

ol
 [−

]

col=1
col=2
col=3
col=4

(b)

Fig. 6: The normalised columns of the matrix V 5 in the first time step of
a typical (a) forward and (b) adjoint simulation. The normalisation of each
column is performed by dividing it by its maximal absolute value.

36 J. Degroote, M. Hojjat, E. Stavropoulou et al.

Tables

Table 1: The parameters of the fluid-structure interaction model [49].

ρf 1060 kg/m3 ρs 1000 kg/m3

ro 3·10−3 m Eo 4·105 Pa
h 3·10−4 m G 4·105 Pa
` 0.126m ν 0.5

Unsteady adjoint for partitioned solution of strongly coupled FSI 37

Table 2: The parameters of the Windkessel model [49].

co 6.35·10−10 m3/Pa 0.0846ml/mmHg
rp 2.834·108 Pa·s/m3 2.126mmHg·s/ml
rd 1.768·109 Pa·s/m3 13.263 mmHg·s/ml
tb 1 s

38 J. Degroote, M. Hojjat, E. Stavropoulou et al.

Table 3: The verification of the gradient calculation by means of a comparison
with finite differences using step size ∆sm = 10−4.

m s dj/dsm (dj/dsm)fd |dj/dsm − (dj/dsm)fd|
1 -1 -9.4184248e-03 -9.4184185e-03 6.3051349e-09
1 0 -1.2726096e-03 -1.2726133e-03 3.6851994e-09
1 1 0.0000000e+00 -1.0685503e-12 1.0685503e-12

10 -1 -1.0022075e-02 -1.0022066e-02 9.3869615e-09
10 0 -1.3523483e-03 -1.3523465e-03 1.8668861e-09
10 1 0.0000000e+00 -4.2920656e-13 4.2920656e-13

101 -1 4.8240110e-01 4.8240119e-01 8.5818958e-08
101 0 7.0555794e-02 7.0555806e-02 1.1679346e-08
101 1 0.0000000e+00 -4.8473439e-11 4.8473439e-11

Unsteady adjoint for partitioned solution of strongly coupled FSI 39

Table 4: The average number of coupling iterations per time step in the for-
ward (adjoint) simulation as a function of the time step ∆t and the fluid den-
sity ρf . The top, middle and bottom of the table respectively list the number
of quasi-Newton iterations without reuse (QN), quasi-Newton iterations with
reuse of columns from 3 time steps (QN(3)) and Gauss-Seidel (GS) iterations.

ρf ↓ ∆t → 10−1 10−2 10−3

QN
106 3.50 (4.01) 4.09 (5.02) 7.10 (7.81)
1060 3.99 (4.00) 5.27 (6.00) 10.62 (11.17)
10600 4.21 (5.00) 7.16 (7.25) 16.44 (17.42)
ρf ↓ ∆t → 10−1 10−2 10−3

QN(3)
106 3.00 (3.05) 3.02 (3.07) 3.17 (3.28)
1060 3.01 (3.01) 3.03 (3.06) 3.77 (4.30)
10600 3.01 (3.02) 3.13 (3.22) 6.46 (6.48)
ρf ↓ ∆t → 10−1 10−2 10−3

GS
106 11.00 (10.97) — (—) — (—)
1060 11.00 (11.00) — (—) — (—)
10600 14.40 (14.22) — (—) — (—)

