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During the course of the three past decades, aquaculture of penaeid shrimp 

(commonly called “scampi” in Belgium) has expanded dramatically in many 

(sub)tropical countries around the world. Since 2010, production volume has passed 3 

million metric tons with a value of more than 12 billion dollars. However, the 

intensification of the industry has come with a toll, and infectious diseases have 

severely affected the development and sustainability of the sector. One of the most 

prevalent and lethal infectious agents has been the white spot syndrome virus 

(WSSV). Since its discovery in the early 90’s, it is said to be responsible for more 

shrimp crops lost before harvest than any other disease agent in shrimp aquaculture. 

Typically, shrimp suddenly start to show disease symptoms, including white spots 

under their skin, and within a few days all shrimp in the pond die. Disease outbreaks 

with WSSV often occur in waves, when a vast number of shrimp farms are hit by the 

virus over wide geographical areas during the course of a few weeks. Up to date, 

despite many attempts by governmental research institutes and commercial 

companies, no effective control measures have been developed to control this virus in 

farms. One of the key problems behind the lack of preventive or curative treatments, 

is the still fragmentary knowledge on the factors determining the susceptibility of the 

host to infection and disease. Both the pathogenesis of WSSV and the anti-viral 

defense system of decapod Crustacea are only rudimentarily understood. Very little is 

understood about how WSSV manages to enter a host, and how WSSV appears to 

cause less infection and disease in some hosts. It was against this background that the 

two parts of the research project in this thesis were conceived. 

 

Firstly, we investigated the factors involved in the process of WSSV to gain entry into 

shrimp from the environment. Results obtained with experimental inoculations of 

WSSV into the rearing water of shrimp are highly variable. Some published studies 

show a high percentage of infected shrimp after exposure to waterborne WSSV, 

others show that shrimp do not become infected, even when exposed to high virus 

doses as determined by intramuscular titrations. Overall, these contradictory results 

show that certain crucial variables are not clear and that the factors, which are 

responsible for the efficient entry of WSSV into its host, need to be determined. 

We do know the cell types in which WSSV is able to replicate, and we know that all 

these cells are shielded from viruses in the outside world by the exoskeleton or cuticle 

of the shrimp. The chance of the virus gaining entry will thus depend on the 
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possibility to pass the external barriers of the shrimp. As the cuticle is a dynamic 

structure, changing both in composition and thickness during the moult cycle, we 

hypothesised that the barrier function of the cuticle would vary in time.  

The first aim of this thesis was thus to compare the susceptibility of shrimp to 

waterborne WSSV and to identify the stages of the moult cycle in which shrimp are 

more susceptible or resistant to infection. We also went on to test whether wounds 

artificially induced in the cuticle could serve as entry points for the virus. 

 

Secondly, we wanted to identify a host which was less susceptible to infection and 

disease caused by WSSV than penaeid shrimp. For this, we looked at the freshwater 

prawn M. rosenbergii (usually referred to as "reuze zoetwatergarnaal" in Belgium). 

Several published studies have indicated that this species has a significantly lower 

susceptibility to WSSV infection and disease than penaeid shrimp. If M. rosenbergii 

would indeed possess an anti-viral defense against WSSV, this would present a very 

interesting lead for research on control strategies. Unfortunately, unstandardised 

methodologies were used in the studies on WSSV in M. rosenbergii, and the 

published results were conflicting, with the prawns being totally refractory to 

infection or suffering severe infection and mortality due to WSSV. 

The second aim of this thesis was thus to irrevocably establish how susceptible M. 

rosenbergii is to WSSV infection and disease by means of standardised methodology. 

For this, we used the methods which were previously set up for penaeid shrimp in our 

laboratory. M. rosenbergii were inoculated via intramuscular route and the obtained 

quantitative data on the pathogenesis, infectivity and pathogenicity of the virus in 

infected M. rosenbergii were compared with data previously obtained in penaeid 

shrimp. 



CHAPTER 2 
 

 
Literature review 
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2.1. Penaeid shrimp and palaemonid prawns 
 

2.1.1 Taxonomy 

 

Shrimp of the Penaeidae family and prawns of the Palaemonidae family both resort 

under the order of Decapoda. In this thesis, the species of interest were: Penaeus 

vannamei and P. monodon, and Macrobrachium rosenbergii. All three belong to the 

largest phylum in the Animal Kingdom, the Arthropoda, whose members are 

characterised by a chitinous exoskeleton that is periodically moulted, a segmented 

body and jointed, paired appendages. There are thousands of terrestrial species in this 

phylum, and a large, predominately aquatic subphylum, the Crustacea. The penaeid 

shrimp and the palaemonid prawns are both in the Order of Decapoda (with 10 

walking legs) and are among the more highly evolved crustaceans of the Class 

Malacostraca (Bailey-Brock and Moss, 1992). 

 

Phylum               Arthropoda 

Subphylum                Crustacea 

Class              Malacostraca 

Subclass           Eumalacostraca 

Superorder                 Eucarida 

Order                 Decapoda 

Suborder    Dendrobranchiata    Natantia 

Superfamily        Penaeoidea 

Family         Penaeidae             Palaemonidae 

Genus           Penaeus          Macrobrachium 

Species   P. vannamei and P. monodon                    M. rosenbergii 

 

 

Considerable confusion exists in international literature on the use of the terms 

“shrimp” or “prawn” for naming Decapoda of the families Palaemonidae or 

Penaeidae, respectively. In the anglo-saxon world, “prawn” is the preferred name for 

penaeids, whereas in the rest of the world it refers to freshwater palaemonids. In the 

current thesis, “shrimp” will be used to denominate penaeids and “prawn” for 

palaemonids.  
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Another controversy exists about the genus names of penaeid shrimp. Pérez-Farfante 

and Kensley (1997) proposed to elevate the subgenus names in the family of 

Penaeidae to the genus level. Instead of classifying all penaeid shrimp in 1 genus 

Penaeus, the species would resort under the genera: Farfantepenaeus, 

Fenneropenaeus, Litopenaeus (including L. vannamei), Marsupenaeus, Melicertus 

and Penaeus (including P. monodon). This change was followed by a part of the 

authors publishing on penaeid shrimp, but not by another part, resulting in a confusing 

situation in which both systems existed in literature. Flegel (2007a) pointed out that 

no one is obliged by the rules of zoological nomenclature to accept the revisions in 

penaeid shrimp binomials proposed by Pérez Farfante and Kensley (1997). He 

suggested that the scientific community would accept the sub-genus names by 

including them in brackets between the genus name Penaeus and the relevant species 

names, as is recommended by the rules of zoological nomenclature [e.g., Penaeus 

(Litopenaeus) vannamei]. This idea was also supported by the editors of Aquaculture 

journal (Alderman et al., 2007) and was supported by genetic analyses by Ma et al. 

(2011). In the present thesis, the suggestions of Flegel (2007a) will be followed. 

 

All freshwater prawns cultured for consumption belong to the genus Macrobrachium, 

the largest genus of the family Palaemonidae. About 200 species have been 

described, of which 49 species are commercially exploited, mainly M. nipponense 

which is smaller than M. rosenbergii (Holthuis, 1980). As the genus name indicates, 

all members develop typical, over-sized chelipeds. 

 

2.1.2. Penaeid shrimp 
 

2.1.2.1. Morphology and physiology 

 

As in all Malacostraca, the body of penaeid shrimp is composed of 19 segments 

(Figure 1). Five make up the head, 8 are located in the thorax and 6 in the abdomen. 

The head and thorax are fused into the cephalothorax, also known as pereon. Each 

segment of the cephalothorax bears a pair of bi- or triramous appendages, composed 

of an exo-, endo- and epipodite. The first 2 appendages of the head have a sensory 

function (antennae and antennulae), the following 6 are used in feeding (a set of 

mandibles and 5 pairs of maxillae). The last 5 limbs of the cephalothorax are the 
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walking legs (pereiopods), of which the first 3 are equipped with chelae for grabbing 

food. The exoskeleton of the cephalothorax (carapace) covers the gills with a 

protective gill chamber (branchiostegite) and forms a dorsal keel-shaped rostrum 

between the eyes. The abdomen (pleon) has six segments, mainly composed of 

muscle, and bears paired swimming legs (pleopods) on the first 5. The final segment 

is the tail fan, composed of 2 pairs of uropods and the telson, which the shrimp uses to 

quickly jump backwards in case of danger (Ruppert and Barnes, 1994; Budd, 2002). 

 
Figure 1. External morphology of a penaeid shrimp (Corteel, 2005). 
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2.1.2.1.1. Integument and moult 

 

This section has been published as: Corteel M and Nauwynck HJ (2010) Chapter 

4, The integument of shrimp: cuticle and its moult cycle. In: Alday-Sanz V (Ed) 

“The shrimp book”, Nottingham University Press, United Kingdom. 

	
  

INTRODUCTION 

Because the integument of penaeid shrimp plays a central role in the research of this 

thesis, it will be discussed here in detail.  

As all arthropods, shrimp possess an extremely efficient integument which serves a 

dual function as skin barrier and skeleton. This exoskeleton, which is formed by the 

epidermal cells of the integument, is usually called cuticle or cuticula. It is primordial 

to take into account that the integument of shrimp is a dynamic organ. Especially in 

growing animals, the integument is constantly involved in a cyclic process of 

moulting. To allow growth and regeneration, a new cuticle is deposited under the old 

one. Immediately after the old cuticle is shed, the new skin is stretched while it is still 

soft and the animal expands. Because of this, much of a shrimp’s physiology is 

orchestrated in the tempo of the moult cycle, with periods of accumulation of reserves 

alternating with periods of rapid growth.  

Much of the knowledge on decapod crustacean cuticle has been gathered through 

investigations in Astacidea and Brachyura. Extensive research on penaeid shrimp is 

lacking, and for instance no detailed data are available on the morphology and 

composition of shrimp cuticle. Hence, much of the information below applies to all 

Crustacea. Specific reference to penaeid shrimp will be given where possible. 

 

a) Integument morphology 

The exoskeleton of Crustacea is a complex biocomposite. It is composed of the 

polysaccharide chitin, proteins, minerals and some lipids. For an extensive review on 

the morphology and biochemistry of crustacean integument, see Compère et al. 

(2004). Recently, the organisation of arthropod cuticle was reviewed by Fabritius et 

al. (2008), using Homarus americanus as example (see also Raabe et al., 2006, 2007).  

The bio-polymer chitin provides the supportive framework of the structure (Neville, 

1975; Stevenson, 1985). Much like the iron bars in reinforced concrete used for the 

building of human constructions, the chitin supplies the cuticle with resistance against 
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tension. The elementary molecules of chitin are the monosaccharides N-acetyl-D-

glucosamine and D-glucosamine. These building blocks are polymerised by β-1,4 

bindings into long, linear chains. In arthropods, chitin is arranged in an anti-parallel 

manner: the α-crystalline form of chitin. Eighteen to 25 chitin polymer chains (19 

according to Atkins in Neville, 1984) organise together in a crystalline core with a 

diameter of 2 to 5 nm. This chitin crystalline core constitutes a central axis, around 

which a sheath of protein subunits is deposited. Together, the chitin-protein complex 

forms a so-called microfibre of 7.25 nm wide and 0.3 µm long (Blackwell et al., 

1982). Considering the size of this smallest organisational unit of chitin and protein, 

the name nanofibril, as used by Raabe et al., is more suitable.  

Proteins are deposited around the chitin strands and between the nanofibrils as the 

concrete around reinforcing bars in reinforced concrete. They render the composite 

impermeable and resistant against mechanical compression. The protein component 

and associated water molecules are determining for the mechanical properties of the 

cuticle (Skinner et al., 1992; Andersen, 1999). Two categories of protein occur: those 

covalently bound to chitin or another component of the cuticle, and those non-

covalently bound. Covalent bindings between proteins and between proteins and 

chitin solidify and stiffen the cuticle. This process is catalysed by phenoloxidase 

enzymes which convert phenol molecules into reactive quinones (Neville, 1975; Roer 

and Dillaman, 1993). The resulting bridges between the molecules give rise to the 

characteristic ‘tanning’ or sclerotising of the cuticle, rendering the proteins insoluble 

in water. Non-covalently bound proteins are ‘free’ proteins, only bound to other 

cuticular compounds by electrostatic and hydrogen bonds. As a result, these proteins 

can be extracted from the cuticle quite easily and are soluble in water-based buffers. 

In Crustacea, the external layers become sclerotised in the hours after moulting, 

during which the initially soft and pliant cuticle becomes tough and rigid (see below).  

Inorganic minerals comprise 30-50% of the dry weight of shrimp cuticle (Welinder, 

1974). This makes shrimp cuticle weakly mineralised compared to that of for instance 

the well-studied brachyurans. The mineral salts in cuticle are calcium-magnesium and 

strontium carbonates, which are deposited as crystalline calcite. Obviously, the 

mineralisation of the cuticle increases its hardness. 

Transmission electron microscopy (TEM) revealed that the chitin-protein microfibres 

(also called nanofibrils) are combined by the dozens into macrofibres with a diameter 

up to 100 nm (Neville, 1975; Giraud-Guille, 1984). Depending on the location and 
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function of the cuticle, the macrofibres are arranged differently, thereby responsible to 

a large extent for the final mechanical properties of the cuticle. The macrofibres in 

most of the cuticle are organised in horizontal planes running parallel with the surface 

of the cuticle. In each plane, macrofibres are deposited with the long axis parallel to 

each other in horizontal sheets. Their direction changes from sheet to sheet by a few 

degrees. The overall structure of cuticle is thereby a helicoidal, twisted plywood-like 

construction with stacks of horizontal planes of macrofibres. Visually, this becomes 

evident as lamellae in vertical crosssections of the cuticle and as a parabolic pattern in 

oblique sections. Every lamella comprises the distance between two sheets of 

macrofibres orientated in the same direction. Between these two outer sheets of which 

the macrofibers are orientated in the same direction, the direction of other sheets 

gradually rotates 180°. 

By light microscopic observation, four layers can be seen in fully formed, inter-moult 

cuticle of shrimp (Bell and Lightner, 1988; Roer and Dillaman, 1984; Promwikorn et 

al., 2007). From out- to inside, these are: epi-, exo-, and endocuticule and the 

membranous layer (Figure 2).  

 
Figure 2. Light microscopic photograph of 15 g P. vannamei cuticle and 

underlying epithelium of the uropod (HE staining; scale bar = 10 µm) 

(ep: epicuticle; ex: exocuticle; en: endocuticle; ml: membranous layer; epi: epidermal 

cells ; ct: connective tissue). 
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Lamellae of macrofibres are present and clearly visible in the exo- and endocuticle. 

The epicuticle is different from the other layers in composition and structure. It is 

very thin and contains lipids, proteins (as well as lipo- and glycoproteins) and 

minerals, but no chitin. The epicuticle is the first barrier against the outside world, and 

mainly regulates permeability. The exocuticle is present before the moult and 

becomes tanned and mineralised shortly after. This layer is the primary support of the 

exoskeleton. The endocuticle is clearly distinct from the exocuticle and contains much 

calcium. It supplements the exocuticle’s supportive function. In shrimp, the 

organisation of the exocuticle appears more fibrillar than the endocuticle. The 

situation in crab and lobster, where the stacking height of the lamellae in the 

exocuticle is smaller than in the endocuticle, appears to be reversed in shrimp. The 

membranous layer lies just above the cuticular epithelia cells and is basically the last 

part of the endocuticle to be secreted. It is unmineralised and composed of thin 

lamellae. It becomes functionally important during the process of shedding the 

exuvium.  

Underneath the cuticle lay the epidermal cells. This single layer of pseudostratified 

epithelium is responsible for the secretion of the entire exoskeleton, including its 

many elaborate structures. Close to the basal lamina, star-shaped chromatophores 

spread out (Noël, 1994). These cells can rearrange pigments in their cytoplasm and 

thereby influence the color of the shrimp. Other categories of cells can also be 

present: trichogenic cells which send out sensory bristles, tegumental glands which 

deposit their exocrine products via a duct through the cuticle, and “accessory cells” 

which have not been fully characterised yet, but appear to be the equivalent of the 

oenocytes known in insects, involved in synthesis of cuticular material (Locke, 1984). 

 

b) The moult cycle: cyclic morphological and physiological integument changes 

 

The moult process in Crustacea is most often described as a cycle, which repeats itself 

every time the cuticle is shed. Typically, this recurrent cycle is divided into 3 stages 

which occur between the pivotal moments of the shedding of the old cuticula 

(ecdysis). Chronologically, these are: post-moult (metecdysis), inter-moult 

(anecdysis) and pre-moult (proecdysis). One of the first researchers working on the 

moult of Crustacea, (Drach, 1939) applied a letter code to these stages: A and B for 

early and late post-moult respectively, C for inter-moult and D for post-moult. The 
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distinction between the stages was initially based on the hardness of the skeleton and 

histology (Drach and Tchernigovtzeff, 1967). In later studies, systems were developed 

to classify the stages in the moult cycle by microscopic observation of appendages, 

preferably areas with setae where morphological changes are more pronounced and 

can be observed more clearly (Stevenson, 1972; Aiken, 1973; Vranckx and Durliat, 

1978; Lyle and Macdonald, 1983; Criel and Walgraeve, 1989; Musgrove, 2000; 

Gorokhova, 2002). 

Studies on the moult process in penaeid shrimp which list selection criteria for the 

various moult stages have been published for Penaeus (Farfantepenaeus) duorarum 

(Schafer, 1968) Penaeus (Farfantepenaeus) merguiensis (Longmuir, 1983) Penaeus 

(Litopenaeus) setiferus and Penaeus (Litopenaeus) stylirostris (Robertson et al., 

1987), Penaeus (Litopenaeus) vannamei (Chan et al., 1988; Cesar et al., 2006) and 

Penaeus monodon (Promwikorn et al., 2004; Promwikorn et al., 2007) (Table 1). The 

key criteria used to determine the moult stage are the appearance of the epidermis and 

the setae. This includes pigmentation, the formation of new setae (setogenesis), the 

presence of matrix or internal coni in the setal lumen and the formation of so-called 

setal organs (nodes) at the basis of the setae (Table 2). 

 

Table 1. Published studies on the characterisation of moult stages in penaeid 

shrimp. 

Species Microscopic 
Observation Age Weight 

(g) 
Length 
(cm) 

Waterparameters 

Author Temperature 
(°C) 

Salinity 
(g l-1) 

P. setiferus 
P. stylirostris 

10-70X 
Uropods Adult 43-57 - 27-29 34-41 Robertson et 

al., 1987 

P. vannamei 
100X  

Exised 
pleopods 

Juvenile - 11.5-13 20-22 28-30 Chan et al., 
1988 

P. 
merguiensis 

400X 
Exised 

pleopods 
Juvenile - - 20.5-24.0 35 Longmuir 

1983 

P. monodon 100X 
Uropods Juvenile 10-20 - - 10-20 Promwikorn et 

al., 2004 
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Below we will define the stages of the moult cycle of penaeid shrimp according to 

literature and own research. In contrast with Astacideae and Brachyurae, the cycle of 

penaeid shrimp is rather short. Hence we divide the cycle in a limited number of 

major stages (Table 3 and Figure 3 and 4). Per stage, the morphological and 

physiological changes in the integument will be reviewed. In the subtitles, between 

brackets, letter codes used by other authors to define more elaborate (sub)stages are 

mentioned (Drach, 1939; Skinner, 1985; Compère et al., 2004). 

 

Table 3. Characteristics of the major moult stages in P. vannamei and P. 

monodon according to Corteel et al. (2009). 

	
  

	
  
	
  
  

Moult stage Characteristics 

 
A 
Early post-
moult 

- epidermis in contact with all of cuticula, runs up into setae 
- setal lumen filled with (granular) epidermal matrix  
- no internal cones in setae 
- setal nodes between setae vaguely visible 

 
B 
Late post-
moult 
 

- retraction of epidermis from setae  
- epidermal matrix still in base of setae 
- small internal cones start to become visible in setae 
- setal nodes clearly visible 

 
C 
Inter-moult 

- epidermis lies in a straight line at bottom of the setal nodes 
- no epidermal matrix in setal lumen and base 
- internal cones clearly visible 
- setal nodes 

 
D1 
Early pre-
moult 

- epidermis retracts from cuticula leaving a translucent zone (apolysis) 
- epidermis begins formation of new cuticula, but still invisible  
- no epidermal matrix in setal lumen 
- internal cones 
- setal nodes 

 
 
D2 
Late pre-
moult 

- translucent zone  
- new cuticula visible 
- newly forming setae visible, folded into epidermis 
- no epidermal matrix in setal lumen 
- internal cones 
- setal nodes 

E 
Moult shedding of old cuticula 
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METECDYSIS 

Early post-moult stage “A” (~ A1, A2) 

Immediately after kicking off the exuvia, shrimp will take up water and expand their 

new cuticle. This stage is, therefore, the only moment in time for shrimp to grow, 

replace damaged cuticle and regenerate extremities. The new cuticle only comprises 

the epicuticle and exocuticle, which have been secreted prior to the moult. The latter 

layer is still unsclerotised and unmineralised at the start of this stage, leaving the 

exoskeleton of shrimp very soft, pliant and fragile. In this stage, the epidermal cells 

are in intimate contact with the cuticle and infiltrate it with cellular extensions 

through pore canals. The epidermis continues to secrete additional layers to the cuticle 

to form the endocuticle. Towards the end of this process, the epidermis will recede 

from the cuticle and withdraw from the lumen of setae.  

The behaviour of shrimp is strongly affected by the state of their cuticle. Shrimp in A-

stage are not able to use their walking legs initially and will spend their time 

swimming in the water column. They do not feed and are more vulnerable to 

cannibalistic attacks. 

Late post-moult stage “B” (~ B1, B2, C1, C2, C3) 

In the B-stage, the processes which started in A-stage are finalised. Especially the 

process of sclerotisation or tanning becomes evident as the epi- and exocuticle 

become stiff and darker. The final endocuticle layers are secreted (including the 

membranous layer as a last), and mineralisation of the exo- and endocuticle takes 

place. The epithelial cells start to decrease in size, even while they are still secreting 

the endocuticle. Meanwhile, the water which was taken up just after moulting is 

replaced by tissue, a process which will be finalised in the next moult stage. 

Shrimp have a sufficiently hard cuticle to start walking and feeding in this stage. One 

of the first things they usually eat is (parts of) their exuvium. 

 

ANECDYSIS 

Inter-moult stage “C” (~ C4) 

The inter-moult stage is considered a resting stage in the moult cycle. The cuticle is 

fully formed (pre- and post-ecdysal layers complete), and the underlying cuticular 

epithelial cells are relatively inactive, reducing in size to a cuboidal morphology. The 

physiology of the animal is concentrated on accumulation of reserves in this stage. 

Glycogen, lipids, calcium etc. are stored, mainly in the hepatopancreas and muscles. 
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PROECDYSIS 

Early pre-moult stage “D1” (~ D0, D1’, D1’’, D1’’’) 

Once the hormonal control triggers the formation of a new cuticle, the pre-moult 

phase commences. One of the first observable changes is the enlargement (especially 

elongation) of the epidermal cells. The cells metamorphosise into secretory cells with 

an extensive cellular production machinery and transport capacity. Also, an increase 

in mitotic activity can be noted in the epidermis, up to the moment of ecdysis. 

Proenzymes (chitinases and proteases) are secreted into the membranous layer which 

will partly digest the old cuticle before it is shed, and gelify it. In D1-stage, the first 

signs of the new cuticle formation can be seen with TEM at the apical membrane of 

the cells. Patches appear on the apical membrane and soon merge, forming the new 

epicuticle. At the same time, the process of apolysis starts with an ecdysal cleft 

opening between the epidermis and the old cuticle.  

In this stage, the hepatopancreas and muscles will start the mobilisation of reserves 

needed for the cuticle construction. 

Late pre-moult stage “D2” (~ D2, D3, D4) 

As epidermal cells continue to increase in size and activity, they start the secretion of 

the exocuticle underneath the epicuticle by D2-stage. Short chitin oligomers are 

synthesised and secreted together with cuticular proteins as chitoproteins. Further 

polymerisation of chitin microfibers / nanofibrils is catalysed by chitin synthetase and 

the fibres are added to the exocuticle in the area around the cytoplasmic extensions of 

epidermal cells. This extensive building operation will result in depletion of reserves 

in hepatopancreas and muscle, although the spectacular atrophy of these organs as 

seen in crabs can not be noted in shrimp (Cesar et al., 2006). 

By this stage, the degradation of the old cuticle will have reached its maximal point. 

The enzymes which had been secreted in the beginning of the pre-moult stage gelify 

the membranous layer and the lower regions of the endocuticle. The ecdysal cleft 

which started to form in the early pre-moult is filled with moulting fluid. From here, 

resorption of the basic molecules such as glucosamine, calcium and amino acids has 

to happen before the new cuticle becomes impermeable.  

Thinning of the old cuticle results in preferential break lines, the ecdysial lines. In 

shrimp, these are located around the caudal and lateral edges of the cephalothorax and 

longitudinally on the legs. These allow easy exit for the animals during ecdysis. 

Probably because of the weakening of the old cuticle and the presence of two 
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superimposed cuticle layers also in the stomach, shrimp stop feeding by the end of the 

pre-moult stage. From here on, until they start eating again in the next B-stage, the 

metabolism of the shrimp will depend on reserves previously stored. 

 

ECDYSIS 

Stage “E” 

Shrimp start a series of muscle contractions to loosen the old exoskeleton. A marked 

swelling can be seen on the end of the cephalothorax, in the arthrodisal membrane 

between the carapace and the first abdominal segment. It is from here that the old 

cuticle of the carapace opens like a hatch through which the shrimp will leave the 

exuvia. 
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Figure 3. Photographs of the edge of 15 g P. vannamei uropods during the major 

moult stages, positioned chronologically around a representation of the moult 

cycle. A: early post-moult stage, setal nodes (sn) are forming, epidermal matrix (em) 

is present inside the setal lumen (magnification 200X); B: late post-moult stage, 

epidermis is retracting (r) from the setae (magnification 100X); C: inter-moult stage, 

epidermis lies on a line (l) just underneath the basis of the setal nodes, small internal 

cones (ic) fill the base of the setae (magnification 100X); D1: early pre-moult stage, 

apolysis (a) causes a space to form between the old cuticula (oc) and the epidermis 

(magnification 100X); D2: late pre-moult stage, epidermis forms the new, folded 

cuticula (nc) and the new setae (ns) (magnification 100X); E: ecdysis, the shedding of 

the old moult skin. 
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Figure 4. Schematic drawings of setae and epidermal tissue on the edge of 

uropods during the major moult stages. A: early post-moult stage, setal nodes (sn) 

are forming, epidermal matrix (em) is present inside the setae lumen; B: late post-

moult stage, epidermis is retracting (r) from the setae; C: inter-moult stage, epidermis 

lies on a line (l) just underneath the basis of the setal nodes, internal cones (ic) fill the 

base of the setae; D1: early pre-moult stage, apolysis (a) causes a space to form 

between the old cuticula (oc) and the epidermis; D2: late pre-moult stage, epidermis 

starts to form the new cuticula (nc) layer and the new setae (ns). 
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c) Hormonal control of the moult cycle 

 

The moult process in shrimp, as in all Crustacea, is primarily controlled by four types 

of endocrine substances: peptides, steroids, terpenoids and biogenic amines 

(Quackenbush, 1986; Van Herp and Payen, 1991; Keller, 1992; Chang et al., 1993; 

Huberman, 2000; Hartnoll, 2001). The major role is played by two antagonistic 

hormones: the peptide moult inhibiting hormone and the steroid moulting hormone, 

ecdysone. The moult inhibiting hormone (MIH) is produced by neuroendocrine cells 

in the X-organ/sinus gland system (XO-SG), located in the eyestalks (Chang, 1985; 

Skinner, 1985; Yang et al., 1996). The moulting hormone ecdysone is produced 

mainly by the pair of Y-organs, which are located in the epithelium of the anterior 

brachial chambers (Bourguet et al., 1977; Spindler et al., 1980; Spaziani, 1990; 

Lachaise et al., 1993; Blais et al., 1994). As long as adequate levels of MIH are 

maintained in the hemolymph, the moult process is halted and shrimp remain in 

anecdysis. A reduction in MIH allows the release of more ecdysone in the 

haemolymph. Blais et al. (1994) showed that the major secreted moult hormone from 

the Y-organ in Penaeus vannamei was 3-dehydroecdysone (3DE). This is 

subsequently metabolised into 20-OH -ecdysone at the level of the epidermal cells 

(Devaraj and Natarajan, 2006), which stimulates the cells to make preparations for the 

ecdysis. A peak of ecdysteroids occurs around the end of early pre-moult, beginning 

of late pre-moult stage when the change of the epidermal cells into secretory mode is 

maximal. This peak in the ecdysone level is followed by a sharp decline by the end of 

the pre-moult stage. Throughout metecdysis, the levels remain low. Crustacean 

hyperglycaemic hormone (CHH) was originally categorised as the central hormone 

regulating the carbohydrate metabolism (Keller and Sedlmeier, 1998). In fact, CHH is 

a member of the same family of neuropeptides as MIH, gonad inhibiting hormone 

(GIH) and mandibular organ inhibiting hormone (MOIH) (Wainwright et al., 1996; 

Webster, 1998). Together they orchestrate a variety of physiological processes in 

crustaceans which are interrelated, such as moulting, carbohydrate metabolism, 

reproduction and osmoregulation (Chung and Webster, 2003; Fanjul-Moles, 2006). 

CHH’s are also secreted by the sinus gland complex and, as they are related to MIH, 

have an inhibitory action on ecdysteroids secretion. Another substance which is 

known to play a role in the control of the moult process in Crustacea is the 

sesquiterpene methyl farnesoate (Yudin et al., 1980; Laufer et al., 1987; Homola and 
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Chang, 1997). Mostly studied in crabs and crayfish (Rodriguez et al., 2002), its 

involvement in the moult process and gonadal development of shrimp was recently 

further investigated (Nagaraju et al., 2002; Hui et al., 2008), although all the roles of 

this multifunctional signal molecule remain to be fully established (Nagaraju, 2007). 

This hormone, which is related to the better-known juvenile hormone in insects 

(Riddiford, 1994), is produced in the mandibular organ of shrimp. Next to MOIH it is 

also inhibited by MIH and mostly secreted in pre-moult stages, when it has a 

stimulatory influence on ecdysteroid levels and the moult process. 

Finally, two other (neuro)hormones have to be mentioned here. Crustacean 

cardioactive protein (CCAP) has been studied for quite some time already (Stangier et 

al., 1986), however, its involvement in the ecdysis of Crustacea is not clear (Chung et 

al., 2006). Bursicon is known to mediate the sclerotisation process of the cuticle in 

insects (Dewey et al., 2004), but indications of its presence in Crustacea have only 

recently been discovered (Wilcockson and Webster, 2008). 

Although the major active substances involved in moult regulation are known, their 

control, functions and interactions are probably more complex than the current model 

shows (Figure 5). For instance the supposition that MIH levels drop at the onset of 

pre-moult has never been demonstrated (Nakatsuji and Sonobe, 2004), while evidence 

exists that MIH even increases in the last stage before moulting (Chung and Webster, 

2005).  

 
Figure 5. Schematic overview of the endocrine control of the moult process in 

penaeid shrimp. (XO-SG: X-organ/sinus gland complex; GIH: gonad inhibiting 

hormone; MIH: moult inhibiting hormone; CHH: crustacean hyperglycaemic 

hormone; MOIH: mandibular organ inhibiting hormone; YO : Y-organ; E: 

ecdysteroids; MO: mandibular organ; MF: methyl farnesoate). 
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The practical relevance of the moult process in penaeid shrimp farming is well-known 

due to the link between reproduction and moulting (Chang, 1997; Charmantier et al., 

1997). As a result, the mechanisms by which the peptide hormones GIH /MIH /CCH 

and ecdysone decide upon the moulting process have been studied (Fingerman, 1987; 

De Kleijn and Van Herp, 1998). Gonadal and somatic development occur 

simultaneously (Subramoniam, 2000) and crucial in the control of both is the XO-SG. 

By the practice of unilateral eyestalk ablation in female broodstock, farmers of 

penaeid shrimp remove the inhibitory influence of this endocrine gland (Bray and 

Lawrence, 1992). The inhibitory function of GIH and MIH is halved, the ovaria 

develop and precocious moulting occurs. Females spawn faster and at a higher 

frequency. However, the metabolic overdrive for vitellogenesis and production of 

moult skins which this procedure induces (Rosas et al., 1993; Racotta et al., 2003) 

ultimately leads to exhaustion of the brooders (Palacios et al., 1999; Vazquez 

Boucard et al., 2004). Although unilateral eyestalk ablation does allow for 

satisfactory reproduction of penaeid shrimp for some time (Marsden et al., 2007), a 

more selective intervention with the gonad inhibiton, which does not interfere as 

much with moulting and the metabolism, could be attempted. 
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2.1.2.1.2. Digestive system 

 

Overall, the digestive tract in Penaeidae is divided in three regions: fore-, mid- and 

hindgut (Figure 6). Embryologically, the epithelial cells in the fore- and hindgut are of 

ectodermal origin and thus covered with cuticle. The epithelial cells of the midgut are 

of entodermal origin, devoid of cuticle, but lined by a peritrophic membrane (Lovett 

and Felder, 1989; 1990a; 1990b). 

 
Figure 6. Schematic drawing of the digestive system of P. vannamei. 

 

The foregut starts at the mouth, located rostro-ventrally in the cephalothorax, covered 

by the labrum and mouth parts. The appendages around the mouth are packed with 

mucus-secreting tegumental glands (Fingerman, 1992; Ceccaldi, 1998). From the 

mouth, the oesophagus leads dorsally to the stomach which is divided in an anterior 

and posterior chamber. The anterior chamber functions as a gastric mill, where 

muscles move the wall of the stomach and its cuticular tooth-like structures in order 

to grind the food. The second part of the stomach functions essentially as a ballows 

with a sieve in it. Food passes dorsally over a sieve composed of evenly spaced 

cuticular hairs, which is moved up and down. Liquid and solid particles which are 



 

26 

smaller than 1 µm pass in ventral direction through the sieve into the hepatopancreas. 

Larger particles pass on into the midgut (Icely and Nott, 1992; Ceccaldi, 1997). 

At the exit of the stomach, the midgut starts and splits up in three directions. Dorsally, 

the anterior midgut cecum makes a sharp bend in rostral direction, where it lies 

against the stomach as a narrow pouch with a folded epithelium. Ventrally, the 

stomach sieve drains into the tubes of the hepatopancreas. This digestive gland is 

composed of hundreds of blind-ending tubes enveloping the posterior part of the 

stomach and most of the cecum. Its main functions are: chemical digestion, nutrient 

absorption, reserve storage and metabolism (Icely and Nott, 1992; Ceccaldi, 1997; 

1998). In between the cecum and the hepatopancreas, the tubular midgut trunk leads 

the coarse solid food particles from the stomach and the digested liquids from the 

hepatopancreas out of the cephalothorax to the last segment of the tail (Icely and Nott, 

1992; Martin and Chiu, 2003). There, the midgut trunk diverts dorsally in the 

posterior cecum, which is similar to the anterior cecum, and connects to the hindgut. 

The high columnar epithelial cells of the midgut are known to secrete a peritrophic 

membrane as a thin barrier around the passing food, but there is discussion in 

literature whether these cells are invovled in the absorption of nutrients and water 

(Lovett and Felder, 1990b; Martin et al., 2006). 

The hindgut, which is essentially the shrimp’s rectum, has a folded, non-calcified 

epithelium and leads the fecal pellet to the anus below the telson (Dall et al., 1990). 

 

2.1.2.1.3. Respiratory system 

 

Shrimp have 14 dendrobranchiate gills on both sides of their cephalothorax, protected 

by the cuticle cover of the branchial chamber or branchiostegite (Figure 7). The gills 

insert on the basis of the legs or body wall with their main axis and their basic plan is 

that of a tree, with paired filaments projecting at right angles along the length of the 

main trunk, and small lamellae increasing the surface of the branches, much like 

leaves do on a tree. The entire surface of the gills is covered by uncalcified cuticle, 

with a thickness of less than 1 µm on the lamellae (Bell and Lightner, 1988; Dall et 

al., 1990; Taylor and Taylor, 1992).  
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Figure 7. Schematic drawing of the gills of P. vannamei. 

 

This is the location where the gas exchange takes place between, on the one hand, the 

water pumped by the scaphognatite appendage of the second maxilliped over the gills 

and, on the other hand, the hemolymph pumped by the heart via afferent and efferent 

vessels through the gills (Bauer, 1999; McGaw and Reiber, 2002).  

Apart from this function, the gills of shrimp are also an important osmoregulatory 

organ. A specific cell type, the nephrocytes, which are large cells (20 - 50 µm) 

ressembling vertebrate glomerular nephrocytes, perform salt/water balance, acid/base 

regulation, ammonia excretion and calcium uptake (Foster and Howse, 1978; Taylor 

and Taylor, 1992; Ahearn et al., 1999; Bauer, 1999). 

Lastly, the gills have also been observed to be the site for expelling encapsulated 

foreign objects, bacteria and possibly lymphoid organ spheroids from the body of 

shrimp (Maina, 1998; Smith and Ratcliffe, 1980; 1981; Martin et al., 1993; 1996; 

2000). 
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2.1.2.1.4. Excretory system 

 

The antennal gland, also named ‘green gland’ in crayfish, is the main excretory organ 

of shrimp. From comparison with other Crustacea, it is known that it is composed of 3 

parts: a bladder, the labyrinth and the coelomosac, but its anatomy is still poorly 

described in penaeid shrimp (Bell and Lightner, 1988; Fingerman, 1992; Felgenhauer 

1992b) (Figure 8). From as far as the hepatopancreas, the tubules of the antennal 

gland can be found throughout the hemocoel. There is also an insertion into the 

lymphoid organ which implies a functional connection between these two organs 

(Duangsuwan et al., 2008; Rusaini and Owens, 2010).  

 
Figure 8. Schematic drawing of the antennal gland in P. vannamei. 

 

The structure of the tubules of the antennal gland shares some similarity with 

vertebrate glomeruli and renal tubules, both by the histological aspect of the tubule 

cells, as by the presence of podocytes. Similar as for kidneys, the main functions of 

the antennal gland are osmo-regulation, acid/base homeostasis and detoxification 

(Potts and Parry, 1964; Ahearn et al., 1999; Wheatly, 1999; Lin et al., 2000). Finally, 

close to the base of the antennae, the bladder expels urine through a pore. Most of the 

nitrogenous waste of shrimp is under the form of ammonia, although some is 

converted to urea (Chen and Cheng, 1995). 
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2.1.2.1.5 Circulatory system 

 

The heart of shrimp is located at the dorsal edge of the cephalothorax (Figure 9). 

Hemolymph collects in the spongy epicard, and is pumped from there by a series of 

subchambers with valves in three general directions around the body. The paired 

anterio-lateral, hepatic and subgastric arteries and the anterior aorta supply the 

cephalothorax, the sternal arteriy leads straight down to the ventral parts of the body, 

while the posterior aorta runs down the abdomen, next to the midgut (Martin et al., 

1989; Dall et al., 1990). 

 
Figure 9. Schematic drawing of the circulatory system of P. vannamei. 

 

Unlike vertebrate blood, shrimp hemolymph does not contain red blood cells or 

platelets. Instead, oxygen is transported by hemocyanin proteins and the clotting 

function of platelets is replaced by clotting protein. The only circulating cells are the 

hemocytes which are comparable to leucocytes. Other main plasma components are: 

electrolytes and proteins for osmoregulation, lipoproteins for fat and cholesterol 

transport, glucose as the main energy reserve molecule of shrimp, minerals for the 

calcification of the cuticle and waste, mostly in the form of ammonia (Shimizu et al., 

2001). 
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The hematopoietic tissue is the formation site of hemocytes (Dall, 1964; Oka, 1969; 

Martin et al., 1987; van de Braak et al., 2002a). These lobules of tissue lie dorsally on 

the stomach and in the coxae of the maxillipeds, closely associated to hemolymph 

vessels. They are constituted of dense packages of highly mitotic precursor cells of 

the hemocytes and maturing prohemocytes (Bell and Lightner, 1988; Martin and 

Hose, 1992). 

The lymphoid organs of shrimp lie as a pair of lobes at the end of the subgastric 

arteries, ventrally of the stomach and just anterior of where the stomach enters the 

hepatopancreas (Martin et al., 1987; Bell and Lightner, 1988). The artery branches 

many times into contorted tubules with a central hemolymph lumen surrounded by an 

endothelium and a manchette of cells. These stromal cells which lie around the 

hemolymph vessels show similarities to hemocytes and are observed to filter particles 

from the passing hemolymph as it drains from the incoming vessels to the hemal 

spaces between the tubes and out of the lymphoid organ. The functions of the organ in 

antibacterial and antiviral immunity have been studied, and a notable transformation 

of groups of cells into lymphoid organ spheroids (LOS) was observed in many viral 

infections. These basophilic clusters of hypertrophic cells appear to be a mass of 

phagocytic cells involved in the encapsulation of pathogens, which are thereby 

immobilised and eliminated (Martin et al., 1996; van de Braak et al., 2002b; 

Duangsuwan et al., 2008; Rusaini and Owens, 2010). 

 

2.1.2.1.6. Central nervous system 

 

Penaeid shrimp have a ganglion in each segment of the body, with a single ventral 

nerve cord connecting them along the body (Figure 10). Larger ganglions lie in the 

anterior part of the cephalothorax, where the nerve cord makes a ring around the 

esophagus. This supra-esophagal ganglion is often considered the brain of the shrimp 

and is mainly involved in processing of the sensory functions of eyes, antennae and 

antennulae, as well as coordinating the rest of the body and the ingestion of food.  
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Figure 10. Schematic drawing of the central nervous system of P. vannamei. 

 

Furthermore, the central nervous system is closely linked to neuroendocrine organs 

such as the X-organ/sinus gland complex in the eye stalk, the Y-organ and the 

mandibular organ. (Sandeman, 1982; Cooke and Sullivan, 1982; Skinner, 1985; 

Fingerman, 1992; Subramoniam, 2000; Diwan, 2005). 

 

2.1.2.1.7. Reproductive system 
 

Penaeid shrimp have separated sexes which can be easily distinguised by their genital 

organs. Males have petasma, a pair of extra appendages on the first abdominal 

segment which are used to deliver spermatophores. Internally, the male has two testes 

which deposit non-motile spermatozoa via the vas deferens into the terminal 

ampoules on the border between the cephalothorax and abdomen where the 

spermatophore packages are stored (Bailey-Brock and Moss, 1992; Krol et al., 1992). 

For receiving the spermatophores, the female has a thelycum located between the 

bases of the 4th and 5th walking legs. In open thelycum species such as P. vannamei, 

the spermatophore is introduced into the female while her exoskeleton is hard in inter- 

or pre-moult stages. The female gonads are a pair of large ovaries, which can run up 

into the abdomen, and oviducts leading the eggs to the gonopores, opening towards 
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the thelycum, where they are fertilised with sperm from the spermatophores (Bailey-

Brock and Moss, 1992). 

 

2.1.2.1.8. Defense system 

 

As they are invertebrates, the immune system of shrimp is essentially aspecific or 

innate, with only a few indications that they might possess specific or adaptive 

immune responses as well (Hauton and Smith, 2007). In general, shrimp recognise 

non-self molecules and mount rapid responses by means of their humoral and cellular 

defense systems (Beutler, 2004). 

The activation of the defense response is initiated when the presence of pathogen-

associated molecular patterns (PAMPs) inside the body is detected by pattern 

recognition proteins (PRPs) of the shrimp. PAMPs are typically conserved molecules 

of microbial origin, such as lipopolysaccharides (LPS) and Beta-1-3-glucans. PRPs 

are B-glucan-binding protein (BGBP), LPS- and glucan-binding protein (LGBP) and 

lectins such as C-type lectin. The opsonisation and detection of pathogens will start 

the activation of defense cascades, mainly that of the prophenoloxidase-activating 

(proPO) system (Söderhäll and Cerenius, 1998). Once the proPO-activating enzyme 

(a serine protease) has cleaved the inactive proPO into the active phenoloxidase (PO), 

a chain reaction occurs, involving both humoral and cellular responses (Cerenius and 

Söderhäll, 2004). PO is responsible for the well-known melanisation reaction, which 

is generally observed in wounded areas or during immune responses in invertebrates 

(Sritunyalucksana and Söderhäll, 2000). Besides, PO also triggers other defense 

mechanisms such as cell adhesion (Holmblad and Söderhäll, 1999), opsonisation 

(Söderhäll and Cerenius, 1998), phagocytosis (Roch, 1999), encapsulation (Lee and 

Söderhäll, 2002), antibacterial activity and bacterial clearance (Bachère et al., 1995; 

Vargas-Albores et al., 1996; Jimenez-Vega et al., 2005; Lai et al., 2005). Other 

humoral responses consist of reactive oxygen species (ROS), antimicrobial peptides, 

and lysozymes (Bachère et al., 1995; Söderhäll and Cerenius, 1998; Roch, 1999; 

Sritunyalucksana and Söderhäll, 2000; Cerenius and Söderhäll, 2004; Lai et al., 

2005).  

The cellular arm of the immune system consists essentially of the shrimp white blood 

cells, the hemocytes. These are categorised, based on the increasing amount of 
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granules present in the cytoplasm, in three groups: hyaline, semi-granular and 

granular hemocytes (Bauchau, 1981; Söderhäll and Cerenius, 1992).  

The hyaline cells represent 5-20% of the hemocyte population, are ovoid to spindle-

shaped and generally smaller that the other two hemocyte types. With 60-75% of the 

total, semi-granular hemocytes are the predominant subpopulation, with the granular 

cells taking up the remaining 10-25% (Martin and Graves, 1985; Hose et al., 1987). 

These two categories are possibly different stages of maturation, originating from the 

same progenitor prohemocytes (Bauchau, 1981; Hose et al., 1990; van de Braak et al., 

2002a; Söderhäll et al., 2003: Zhang et al., 2006). Up to date, little is known with 

certainty about the functions of the different subpopulations in shrimp. Hyalinocytes 

tend to lyse quickly in vivo and in vitro, releasing anti-microbial and pro-

inflammatory compounds, and are in that sense reminiscent of neutrophil 

granulocytes of mammals (Dantas-Lima et al., 2012). Semi-granulocytes are thought 

to be the main phagocytic cell type in shrimp and also degranulate rapidly when they 

detect non-self molecules (van de Braak et al., 1996; Johansson et al., 2000; Zhang et 

al., 2006). These cells will take up and digest foreign particles within phagolysosomes 

by producing lysozyme and other hydrolytic enzymes and ROS. Granulocytes 

obviously serve their main function as storage cell for immunoactive compounds. 

They are the main source of proPO, which is released by degranulation during the 

processes of encapsulation and nodulation when combating fungi and bacteria, 

respectively (Hose and Martin, 1989).  

As one will notice, the defense system described above mainly revolves around anti-

fungal and anti-bacterial responses. Antiviral immunity in penaeid shrimp remains 

poorly understood (Liu et al., 2009; Cerenius et al., 2010; Smith et al., 2010; Flegel 

and Sritunyalucksana, 2011). RNA interference (RNAi) is one of the few pathways 

know to play an important role in crustacean innate antiviral immunity, and has been 

studied in shrimp mainly in the context of anti-WSSV defense. In this thesis we 

discuss this subject in chapter 2.2.6.3. as part of the WSSV-host interactions. 
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2.1.2.2. Life cycle of penaeid shrimp 

 

The life cycle of penaeid shrimp is quite complex (Bailey-Brock and Moss, 1992; 

Treece and Yates, 1988) (Figure 11). Twenty-four hours after a female lays her eggs, 

the shrimp emerges as a nauplius. In this stage, the larva does not feed but uses its 

yolk reserves to develop the body. After five moults (instars), the nauplius larva 

metamorphoses into the zoea stage, when it starts to feed on microalgae. After three 

zoea instars, the larva metamorphoses again into the mysis stage. From this stage on, 

the shrimp will eat zooplankton (such as Artemia nauplii in aquaculture facilities). 

After 3 instars as a mysis, the shrimp will go through a final metamorphosis and 

become a post-larva. The stages before post-larva are found in off-shore, pristine 

water. Post-larvae and juveniles migrate into estuaries and mangroves until mature, 

when they return to the sea to spawn. 

 
Figure 11. Life cycle of penaeid shrimp (after Bailey-Brock and Moss, 1992). 

 

After spermatophore transfer from male to female, the eggs are released and fertilised 

externally. Embryogenesis subsequently occurs in the water during 12 to 14 hours. 

The eggs sink, but the phototropic nauplii quickly swim to the sea surface where they 

will develop in plankton-rich waters.  
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2.1.3 Palaemonid prawn biology 

 

2.1.3.1. Morphology and physiology 

 

The external anatomy of M. rosenbergii is similar to that of penaeid shrimp (Figure 

12). We refer to the chapter on penaeid shrimp for the general information, and will 

only discuss the noteworthy differences here. 

The cephalothorax of M. rosenbergii is relatively larger compared to their abdomen, 

and the rostrum is well-developed. This is more pronounced in males, which also 

have a more narrow abdomen.  

One of the most spectacular characteristics of M. rosenbergii is their extremely large 

second pair of walking legs (chelipeds). Especially in adult, dominant males, these 

claws are very long and bright blue in colour. These claws mainly function in social 

hierarchy, for territorial competition and the protection of females. Next to the 

dominant “blue claw” males, a society of M. rosenbergii prawns also includes large 

“oranje claw” males and small “white claw” males or “runts”. 

The abdomen of female M. rosenbergii is quite different from that of penaeid shrimp, 

as the exoskeleton (pleura) forms a protective brood chamber and the pleopods are 

modified to hold eggs. The genital pores of the male are between the bases of the fifth 

walking legs, those of the female at the base of the third walking legs. Once a female 

is mature and her ovaries are carrying eggs, she will moult and seek the protection of 

a dominant male. The hard-shelled male will mate with her while she still has a soft 

shell. Within a few hours after mating, the female will lay her eggs and glue them 

onto her pleopods. She will hold, clean and aerate them for about 3 weeks, when they 

hatch. Females normally mature once they are 15 to 20g, but berried females have 

been observed as small as 6.5g (Daniels et al., 2000). M. rosenbergii is the largest of 

all Macrobrachium species, adult males having been reported with a total body length 

of up to 33 cm, and adult females of up to 29 cm (FAO, 2002). 

 



 

36 

 
Figure 12. External morphology of M. rosenbegii prawns (Forster and Wickins, 

1972). 

 

The internal anatomy and physiology of the different organ systems in M. rosenbergii 

has not been extensively described in literature (Brown et al., 2009). Here we will 

only discuss those aspects which are different from penaeid shrimp. 

The gill architecture is not dendrobranchiate (tree-like) in M. rosenbergii, but 

phyllobranchiate. Each gill consists of a main axis, on which many lamellae are 

inserted perpendicularly, more comparable to a heating radiator.  

The digestive system is grosso modo the same as in penaeids, although the fine 

structure of the stomach, stomach diverticulae and midgut cecae has not been 

investigated up to date. Although it has been mentioned that the gastric mill is absent 

in Caridea prawns such as M. rosenbergii (Dall and Moriarty, 1983), even though the 

foregut of this species can be clearly seen masticating food in a similar way as in 

penaeid shrimp species. 

Other systems, such as the integument, the excretory, nervous and reproductive 

systems, are all comparable to those of penaeid shrimp. It is important to realise 

however, that many gaps still exist in the current knowledge. For instance, even basic 

information on the lymphoid organ or hematopoietic tissue and hematogenesis in M. 

rosenbergii is not available. 
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2.1.3.2. Life cycle of palaemonid prawns 

 

The life cycle of M. rosenbergii is less complex than that of penaeid shrimp. Upon 

hatching from the eggs which are held by the mother on her pleopods, the planktonic 

(zoeae) larvae of M. rosenbergii go through 11 distinct stages over a period of 15 to 

40 days (Uno and Kwon, 1969) (Figure 13). These larvae swim actively in brackish 

water, with their ventral side up and in the direction of their tail. Their diet consists of 

zooplankton (Artemia nauplii in aquaculture facilities). After the last moult as larva, 

the prawns metamorphose into postlarvae and start their return to freshwater where 

they will mature and mate. The cycle will be completed once a gravid female goes 

downstream and releases her larvae in brackish water. 

 

 
Figure 13. Life cycle of M. rosenbergii (Wickins and Lee, 2002). 
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2.2. White Spot Syndrome (WSS) 
 

This section has been published as: Cuéllar-Anjel J, Corteel M, Galli L, Alday-

Sanz V, Hasson KW (2010) Chapter 22, Principal shrimp infectious diseases, 

diagnosis and management. In: Alday-Sanz V (Ed) “The shrimp book”, 

Nottingham University Press, United Kingdom. 

 

White Spot Syndrome has been the most problematic infectious agent affecting the 

global shrimp farming industry since emerging in 1992 and is caused by White Spot 

Syndrome virus (WSSV). The disease was named after its primary clinical sign in 

affected P. monodon: formation of circular white calcium deposits on the underside of 

the cuticle of the cephalothorax. This denomination can be misleading as WSSV 

rarely induces white spots in infected American penaeids and similar spotting of the 

cuticle may result from other causes, such as bacterial infection (Wang et al., 2000a). 

 

2.2.1. The virus 

 

2.2.1.1. Morphology and classification 

 

White Spot Syndrome virus is an enveloped, bacilliform double-stranded DNA-virus 

(Figure 14). Both the size of the virion (up to 350 nm in length) and the size of the 

genome (30,000 kbp) are exceptionally large. The agent was assigned to a newly 

created virus family, the Nimaviridae, and placed in the genus, Whispovirus. WSSV 

stands alone in this family group and has only distant genomic resemblance to other 

DNA viruses such as pox, herpes and baculovirus (Vlak et al., 2002). The virus was 

initially given a variety of names by researchers located in different countries who 

perceived the outbreaks to be caused by different viral agents. These early names 

included hypodermal and haemotopoietic necrosis baculovirus (HHNBV), rod-shaped 

nuclear virus of P. Japonicus (RV-PJ), systemic ectodermal and mesodermal 

baculovirus (SEMBV), white spot baculovirus (WSBV), and P. monodon non-

occluded baculovirus (PMNOB) (Durand et al., 1997; Karunasagar et al., 1997; Chou 

et al., 1998; Sahul-Hameed et al., 1998). All of these agents are currently recognised 

as one virus, which is called WSSV. 
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Figure 14. Schematic drawing of a WSSV virion. 

 

2.2.1.2. Physical inactivation 

 

There are reports describing that WSSV can be inactivated in less than 2h at 50°C 

(Chang et al., 1998a; Nakano et al., 1998) and in less than 5 minutes at 60°C; that it 

remains viable for at least 30 days at 30°C in seawater under laboratory conditions 

(Momoyama et al., 1998); and is viable in ponds for at least 3-4 days (Maeda et al., 

1998, Nakano et al., 1998). Experiments on incubating a WSSV suspension in 

artificial sea water showed a 50% reduction of infectious titer after 3 hours at 27°C 

(Corteel et al., 2009). 

 

2.2.1.3. Variability in isolates 

 

Few differences have been found among various geographical isolates of WSSV. 

Protein profiles and aminoacid sequences are similar (Lo et al., 1999; Wang et al., 
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2000b; Rajendran et al., 2004) with little antigenic variability found among isolates 

using polyclonal or monoclonal antibodies in different immunoassays (Nadala and 

Loh, 2000; Shih et al., 2001; Poulos et al., 2001; Anil et al., 2002; You et al., 2002; 

Yoganandhan et al., 2004). WSSV also appears to have a very stable genome 

compared to other viruses. In three of the isolates which have been fully sequenced, 

from Thailand, China and Taiwan (van Hulten et al., 2001; Yang et al., 2001; Chen et 

al., 2002), only minor differences were found in a limited number of variable regions, 

mainly in ORF 14/15 and 23/24 (Marks et al., 2004; Marks, 2005). These variable 

parts of the genome exhibit deletions, recombinations and a transposase region. The 

presence of a 13 kbp deletion in ORF23/24 has been correlated with an increased 

virulence of WSSV, accelerating the median lethal time from 14 to 3.5 days (Marks et 

al., 2004; 2005). However, this is in conflict with the publication by Lan et al. (2002), 

which describes that a similar deletion mutant of WSSV was less virulent. None of 

the WSSV isolates analysed by Pradeep et al., (2008) contained the sequence which is 

lost by this deletion in ORF23/24, confirming that the sequence for the coded 

nucleocapsid protein VP35 is not important for virulence in WSSV. Zwart et al. 

(2010) used the ORF14/15 and ORF23/24 variable regions as molecular markers to 

study the evolution of the WSSV genome as it spread through Asia. They saw a 

shrinkage of the genome over the years while WSSV spread, from 312 kbp to 293-

298 kbp, at which it stabilised. By data analysis and bioassays, the authors further 

reinforce the hypothesis that deletions in the genome are correlated with improved 

WSSV fitness. 

In the WSSV genome, there are also three other areas which vary between isolates, 

namely the variable number tandem repeat (VNTR) loci which are present in ORF75, 

ORF94 and ORF125 (Wongteerasupaya et al., 2003; Marks et al., 2004). These 

VNTR allow genotyping of WSSV and have been used to track the molecular 

epidemiology and evolution of WSSV (Dieu et al., 2004; Pradeep et al., 2008; Dieu et 

al., 2010a; 2010b). The repeats appear to change in size remarkably fast between 

virus generations, might be influenced by the host species during passage and are 

suspected to affect virulence (Waikhom et al., 2006).  

Hoa et al. (2011) found a correlation between the occurrence of different genotypes of 

WSSV with different number of tandem repeats and the absence of disease outbreaks 

in shrimp ponds. Syed-Musthaq et al. (2006) had previously stated that the virulence 

of WSSV was not affected by the number of tandem repeats, but these authors did not 
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show the results of their experiments gauging the virulence of the different WSSV 

isolates. Walker et al. (2011) also observed a multitude of WSSV genotypes 

circulating at the same time in shrimp farms, but did not identify a correlation 

between particular (virulent) genotypes and disease outbreaks. Rather, these authors 

pointed out that pond management was primordial in determining whether disease 

outbreaks would occur in ponds with WSSV-infected shrimp. 

A few laboratory studies have confirmed that certain WSSV isolates cause significant 

differences in clinical expression. The study by Wang et al., (1999a) showed 

differences in virulence of six WSSV isolates in P. vannamei post-larvae and juvenile 

P. duorarum inoculated per os. An isolate obtained from US shrimp induced 100% 

mortality in P. vannamei faster than an isolate from crayfish, while neither of the 

isolates induced death among experimentally infected P. duorarum.  

In another study by Rahman et al., (2008), clear differences in virulence between 

three isolates (2 Thai and 1 Vietnamese) were shown with a reproducible 

intramuscular inoculation procedure and known doses of virus. The most virulent 

Thai isolate caused an onset of mortality at 36 hours post-injection (hpi), 100% 

cumulative mortality by 72-84 hpi and a median lethal time of 47 hpi. This represents 

one of the early isolates from the mid 90´s. In contrast, the manifestations of disease 

due to the least virulent, Vietnamese strain were timed at 36–60, 204–348 and 120 

hpi, respectively. The Vietnamese isolate induced a more chronic disease and slower 

mortality rate than that observed with the Thai isolates, possibly because it replicated 

in significantly fewer cells in target organs. This difference was most pronounced in 

gills. This Vietnamese isolate was more recently isolated in the mid 2000’s, and might 

represent an evolutionary adaptation of the virus.  

 

2.2.2. Host range 
 

WSSV has an exceptionally broad host range. Over 50 crustacean species have been 

found to be susceptible to WSSV. It is generally assumed that the virus can replicate 

in tissues of ecto- and mesodermal origin of all decapod crustaceans from marine and 

brackish or freshwater sources (Lo et al., 1996a; Flegel, 1997; Chang et al., 1998b, 

Flegel and Fegan, 2002; Sahul-Hameed et al., 2003, OIE 2006; for review: see 

Escobedo et al., 2008), including all commercially important penaeid species. In 

general, Natantia (notably shrimp) show more severe symptoms and mortality than 
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Reptantia (crabs and lobsters). One exception appears to be the giant freshwater 

prawn, Macrobrachium rosenbergii. On the one hand, some publications claim that 

natural and experimental WSSV infections of M. rosenbergii can occur. These reports 

mention that the infection causes disease and mortality mainly in young life stages 

with rather high viral loads, but that it can usually only be detected in adults by 2-step 

PCR. In some of these studies, a degree of mortality and higher viral loads were 

detected by bioassay and histology in older animals (Lo et al., 1996b; Peng et al., 

1998; Rajendran et al., 1999; Hossain et al., 2001; Pramod Kiran et al., 2002). In 

contrast, several other publications show no mortality among WSSV-inoculated M. 

rosenbergii juveniles and adults with induction of transient infection during the first 

few days after inoculation. These infections were found to be detectable by Western 

blot, 2-step or RT-PCR and, subsequently, became undetectable (Sahul-Hameed et 

al., 2000; Yoganandhan et al., 2006; Waikhom et al., 2006). Although the variable 

experimental outcomes in the above studies are partly due to a lack of standardised 

and reproducible methodology, the fact that M. rosenbergii has some capacity to 

survive and even clear WSSV infections has now become clearly established and 

suggests that this species possesses an effective defense response against WSSV 

(Sarathi et al., 2008). Based on a hemagglutination test of hemolymph from WSSV-

injected M. rosenbergii and P. monodon, Pais et al., (2007) suggested that 

hemagglutinins or lectins of the fresh water prawn may be involved in the antiviral 

response. 

Due to its tremendously wide host range, together with the international movement of 

shrimp stocks of unknown health status, WSSV has become one of the most wide-

spread viruses in the industry, occurring in all shrimp-farming countries except 

Australia (Flegel and Fegan, 2002). Once the virus becomes established in 

neighboring wild populations, exclusion of the virus from shrimp ponds becomes a 

difficult task. 

All life stages are potentially susceptible to infection, from eggs to broodstock. To 

date, it is still not clear whether WSSV-infected shrimp eggs can undergo 

development (Lo et al., 1997; Manjusha et al., 2009). Very low, undetectable levels 

of infection might allow the development of the egg and per ovum and possibly intra 

ovum transmission of WSSV can occur from broodstock to offspring. 
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2.2.3 Geographical distribution and prevalence 

 

First described in China and Taiwan in 1992, WSSV spread throughout East, South-

East and South Asia causing a panzootic by 1994 (Escobedo-Bonilla et al., 2008). 

There were some occasional reports of the virus in North America during the mid 90s 

until it created a second panzootic wave, which reached North, South and Central 

America in 1999 (Escobedo-Bonilla et al., 2008). Generally speaking, we can say that 

WSSV is present in all shrimp producing countries except for Australia and some 

African countries. 

The disease prevalence is highly variable and seasonal. During the cold and/or rainy 

seasons, the prevalence increases both in captive and wild populations. 

 
2.2.4. Disease pattern 
 

2.2.4.1 Clinical signs  

 

In the field, WSS symptoms appear in farm ponds 14-40 days post-stocking. As 

mentioned, the characteristic white spots are not always present, particularly in P. 

vannamei. In addition, similar white spots have been reported due to the use of 

probiotics and under certain water quality conditions (Wang et al., 2000a). Apart from 

the white spots, symptoms of WSS are aspecific (Figure 15). Farmers often report 

unusual gathering of shrimp at the edges of ponds and a cessation of feeding. After 

experimental inoculations, anorexia and lethargia appear within 1 to 2 days. 

Sometimes a change in colour can be noted, with legs and uropods becoming red or 

the whole body turning whitish. Mortalities typically reach 100% within 5 to 10 days 

of disease onset. In contrast, latent infections have been described in which the 

animals do not become diseased, but the latency has never been documented under 

laboratory conditions.  
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Figure 15. Clinical signs of WSSV infection in P. vannamei. Symptoms of WSS are 

variable and aspecific: white spots are not always present (arrow), red coloration of 

extremities (arrowhead) and opaqueness of muscle are variably present. Lethargy and 

anorexia can be noted by the empty stomach and midgut. 

 

 
 
2.2.4.2. Pathology 
 

The virus causes systemic infections that show characteristic lesions in tissues of 

ectodermal and mesodermal origin. It does not affect tissues of endodermal origin 

(e.g. midgut and hepatopancreatic epithelia) although it does infect cells in the 

interstitial tissue of the organ (mesodermal origin). In early stages of viral 

development, the hyperthrophied nuclei of infected cells show an acidophilic 

(reddish) central inclusion surrounded by a thin non-stained zone that is framed by a 

basophilic (blue) ring of marginated chromatin. In the later stages of infection, the 

central inclusion expands to fill the whole hyperthrophied nucleus and it becomes 

progressively more basophilic with age (Alday and Flegel, 1999). To confirm WSSV 

histologically, the best tissues to examine in P. vannamei and P. monodon is the 

epithelium of the stomach and gills. In the case of P. stylirostris subcuticular 

epithelium is a better option. In general, WSSV induced disease is rather easy to 

diagnose histologically because of the tremendous number and widespread 

distribution of infected cells present in a moribund penaeid shrimp. 
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2.2.5. Epidemiology 

 

2.2.5.1. Transmission 

 

Since the first reports on the virus, it has become generally accepted that transmission 

between shrimp and other Decapod crustacea can occur via 3 routes: (1) oral, by 

consumption of tissues from infected hosts (2) waterborne, when virus is transmitted 

via the water by immersion or cohabitation and possibly (3) trans-ovum or per ovum 

vertically from broodstock to offspring (Lo et al., 1997).  

A high number of experimental studies demonstrated that feeding of infected shrimp 

tissues is an effective way to transmit the virus to shrimp and other decapods (Chang 

et al., 1996; Chang et al., 1998b; Sahul-Hameed et al., 1998; Supamattaya et al., 

1998; Wang et al., 1998; Rajendran et al., 1999; Rajan et al., 2000; Tan et al., 2001; 

Wu et al., 2001). It was mainly these early reports which helped to build the image of 

WSSV being a highly contagious pathogen. However, many authors needed to 

administer infected tissues in several feedings, for periods sometimes as long as 7 

days (Lightner et al., 1998; Wang et al., 1999b; Sahul-Hameed et al., 2001; Kiran et 

al., 2002; Jiravanichpaisal et al., 2004; Bonnichon et al., 2006; Jha et al., 2007). Vidal 

et al. (2001) and Escobedo-Bonilla et al. (2006) published procedures for delivering 

WSSV inoculum straight into the stomach by intubation (Vidal et al., 2001; 

Escobedo-Bonilla et al., 2006). Both procedures resulted in infection in all inoculated 

shrimp. However, only in the latter study the viral stock had been titrated and a 

known dose was given to the animals (Escobedo-Bonilla et al., 2005).  

For the waterborne route, there are many studies which reported that immersion and 

even cohabitation readily allow the entry of WSSV into hosts (Wang et al., 1997; 

Kanchanaphum et al., 1998; Chen et al., 2000; Witteveldt et al., 2004; Witteveldt et 

al., 2006), and older shrimp were reported to be less susceptible (Chou et al., 1995; 

Yoganandhan et al., 2003).  

It is important to note, however, that most of the studies cited above were not 

performed under fully controlled experimental circumstances in terms of specific 

pathogen-free (SPF) status of experimental animals, administered dose, occurrence of 

secondary transmissions after the inoculation, presence of other pathogens in the 

inoculum, temperature of the rearing water and detection of actual WSSV replication. 

These features make it impossible to reproduce those studies and prevent reliable 
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conclusions. Probably the best-controlled experimental studies on WSSV 

transmission so far were published by Soto and Lotz (Soto et al., 2001; Lotz and Soto, 

2002; Soto and Lotz, 2003) and Prior et al. (2003). Soto and Lotz concluded that 

ingestion of infected tissues was far more effective in transmitting the virus between 

shrimp than immersion in infected water. Remarkably, however, even when shrimp 

were isolated to ensure they had equal chances to consume the infected tissues offered 

to them, not all shrimp became infected (50-60%). Prior et al. (2003) succeeded in 

determining the lethal intramuscular dose of a WSSV stock and also tried to develop a 

controlled bio-assay by immersion of shrimp. Although very large amounts of 

infectious virus were added to the water (as shown by the injection study), mortality 

rates stayed below 40%. Later, another study by Gitterle et al. (2006) showed the 

difficulty encountered when experimental infection by waterborne route is attempted. 

Merely adding virus inoculum to the water proved insufficient to result in infection 

and shrimp were placed in tanks in which orally infected shrimp had previously died. 

The overall impression from these studies is that there are restrictions on the ability of 

WSSV to gain entry to its host. This does not have to seem illogical as specific 

behaviour such as active feeding has to be present in order to have a high exposure to 

the virus. Another factor which can not be neglected is that all the tissues known to be 

susceptible to WSSV replication are protected from the out-side world by cuticula 

(Wongteerasupaya et al., 1995; Chang et al., 1996; Durand et al., 1996; Mohan et al., 

1998; Escobedo-Bonilla et al., 2007). This is even true for the gills and the stomach 

epithelium (Bell and Lightner, 1988). Although little details are known about the 

structure and function of the cuticula of penaeid shrimp, it is well-known that they 

change dramatically in time (Chan et al., 1988; Cariolou and Flytzanis, 1994; 

Promwikorn et al., 2007). Therefore, to elucidate the transmission of WSSV in 

shrimp, it will be important to take the moult stage into account (Le Moullac et al., 

1997; Mugnier and Soyez, 2005). 

 

2.2.5.2. Persistent / latent infection 

 

Apart from typically causing mass mortality among shrimp populations, WSSV has 

also been observed in the field to persist inside its hosts in a latent state. In these 

cases, animals are asymptomatic carriers for extended periods and the virus is present 

in low amounts. Although these low levels of WSSV have been confirmed using 
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sensitive diagnostic methods (ie. 2-step PCR), the reproduction of latent infections 

under controlled laboratory conditions has not been reported (Tsai et al., 1999; Chen 

et al., 2000; Magbanua et al., 2000; Thakur et al., 2002). Further reports from the 

field indicate that WSSV can reactivate under stressing circumstances such as 

ablation, spawning (Lo and Kou, 1998), low temperature (Vidal et al., 2001), etc. 

The description of latency-related genes in the WSSV genome supports the possibility 

that this virus indeed can halt its lytic cycle and allow the host to survive (Hossain et 

al., 2004). Usually these genes are identified based on their similarity to gene 

sequences of other viruses that are known to go into latency, such as Herpesviridae 

and Baculoviridae (Groves et al., 2001; Hughes et al., 1997; Leib et al., 1991; Leight 

and Sugden, 2000). 

One of the main problems in clarifying the issue on whether the infection is latent or 

persistent, both in the laboratory and field, is detection. All diagnostic tests have a 

detection limit and it is believed that WSSV can still be present in shrimp, even if 2-

step PCR results are negative for the virus (Khadijah et al., 2003). Additionally, 

appropriate target tissues have to be sampled for detection of latent infections. 

Pleopods are often collected for PCR analysis because the procedure is nonlethal and 

ideal for testing valuable broodstock. However, WSSV may be present in low 

concentrations in other tissues and missed by this testing method. For example, 

human Herpes simplex virus type 1 (HSV-1) is known to remain inside neural ganglia 

in a latent state during the life of the host, but is capable of reactivation (Roizman and 

Knipe 2001). As a result, sampling of tissues, other than neural ganglia for the 

presence of HSV-1, will result in a false negative result. 

The possibility of WSSV going into latency creates the dangerous risk that animals 

labeled as ‘specific pathogen-free’ (SPF) might, in fact, be WSSV carriers that are 

capable of introducing the disease unknowingly. A recent publication supported this 

possibility by measuring viral latency-associated genes transcription in asymptomatic 

shrimp, which were SPF according to routine PCR testing (He and Kwang, 2008). It 

was suggested that the WSSV genome can be present in shrimp over extended periods 

of time while its lytic cycle is halted. These findings should also motivate shrimp 

growers to only purchase SPF stocks from reputable sources that have an established 

record of providing disease-free shrimp.  
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2.2.5.3. Vectors and source of contamination 

 

Mechanical vectors include rotifers, non-decapod crustacea such as Artemia sp. and 

copepods, bivalves and polychaete worms, all common feeds for larvae and 

broodstock. In addition, non-crustacean aquatic arthropods such as sea slaters 

(Isopoda) and Euphydradae insect larvae have all been found to be PCR-positive for 

WSSV (Escobedo et al., 2008). All of these species have been found capable of 

accumulating high concentrations of viable WSSV, although there is no evidence of 

virus replication (Lo et al., 1996a; Chang et al., 2002).  

Infected frozen shrimp for human consumption or used as fishing bait may also act as 

a carrier of WSSV (Lightner et al., 1997; Hasson et al., 2006). Improper disposal of 

processing wastes (head, shells, etc.) and water may be a source of contamination if 

disposed near wild or farmed shrimp stocks. 

 

2.2.6. WSSV - host interactions 
 

During the last few years, various reports have been published indicating that some 

hosts are capable of stopping, eliminating or at least tolerating WSSV infections. 

Many researchers have studied the shrimp-WSSV interaction with the hope that a 

better understanding of the underlying mechanisms invoking virus elimination or 

persistence could lead to the development of strategies to control or prevent shrimp 

viral diseases in the future (Flegel, 2010; 2011). 

Since the report of Venegas et al., (2000) that shrimp possess some kind of defense 

against WSSV enabling them to survive infection, many observations have been 

published that penaeid shrimp can mount a defensive response against WSSV. As 

mentioned before, palaemonid shrimp appear to have an efficient mechanism to 

withstand and clear WSSV infection (Sarathi et al., 2008). 

  

2.2.6.1. WSSV-receptor and cellular ligand 
 

A crucial interaction in viral infection is the receptor-ligand binding, which needs to 

occur between the viral particle and its host cell (Liu et al., 2009). In both naturally 

occurring innate defense and vaccination attempts, preventing WSSV from 
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binding/fusing with target cells could be the basis for successful control of the 

infection.  

At the cellular level, a shrimp protein called Penaeus monodon Rab7 (PmRab7), 

identified from the membrane of hemocytes, may function as one of the receptors for 

the virus (Sritunyalucksana et al., 2006). It binds directly to the major viral envelope 

protein VP28 and is present in most shrimp tissues. In vivo neutralisation assays 

demonstrated that PmRab7 is essential for infection. Other researchers have 

concluded that the Rab-dependent signaling complex might act as a virus recognition 

protein that triggers a phagocytic defense against the virus, which aids in fighting 

infection (Wu et al., 2007). They reported that the PjRab protein (found in 

Marsupenaeus japonicus) could regulate shrimp hemocytic phagocytosis through a 

protein complex consisting of the PjRab, beta-actin, tropomyosin, and enveloped 

protein VP466 of WSSV. Another molecule that may serve as a WSSV receptor is the 

beta-integrin molecule (Li et al., 2007). 

Two of the major WSSV envelope proteins known to be involved in the interaction 

with host cells are VP28 and VP19, but many others have been implicated in different 

studies, while more than 35 structural proteins have been characterised (Escobedo et 

al., 2008). Interfering with several of these proteins directly or administering them in 

a recombinant form to shrimp has been demonstrated to hamper WSSV infection (van 

Hulten et al., 2001; Yi et al., 2004; Wu et al., 2005; Li et al., 2006; Xie and Yang, 

2006; Ha et al., 2008). As more becomes known about the structure of the WSSV 

virion, it is becoming clear that the many structural proteins are interacting with each 

other, forming protein complexes in the envelope (Chang et al., 2010) and 

nucleocapsid (Tsai et al., 2008). In the latter, VP664, the largest viral protein ever 

described, is also note-worthy (Leu et al., 2005). 

 

2.2.6.2. Apoptosis 

 

The process of programmed cell-death or apoptosis is one of the main innate anti-viral 

defense responses known in animals (Everett and McFadden, 1999). This ‘scorched 

earth policy’ by the host in response to WSSV infection has been observed in WSSV-

infected shrimp and implicated as an important reason for the death of shrimp by 

some authors (Wongprasert et al., 2003; Flegel, 2007b). Anti-apoptotic genes, which 

support this hypothesis, have been recognised in the WSSV genome (Wang et al., 
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2004). In addition, the apoptosis cascade that occurs in penaeid shrimp has been 

studied and one of the central enzymes necessary for initiating and executing 

apoptosis in animals, caspase, has been described. This enzyme was upregulated in 

survivors of WSSV challenge according to one study, suggesting that shrimp can 

increase their chance of survival by eliminating target cells before the virus can use 

them to replicate (Wang et al., 2008a). Investigations into the regulation of host cell 

apoptosis by WSSV demonstrated that the virus can prevent programmed cell death 

through ubiquitination of a tumor suppressor-like protein (He et al., 2006) and that the 

process of ubiquitination plays an important role in the regulation of WSSV latency 

(He and Kwang, 2008). It has now been established that WSSV has a gene coding for 

an anti-apoptosis protein, which serves as a direct caspase inhibitor (Leu et al., 2008). 

Despite this progress, the cellular pathways and interactions involved are still poorly 

understood in shrimp and in invertebrates in general. The role of apoptosis in shrimp 

death or survival following viral infection has not been established. In a lot of the 

research on WSSV pathogenesis and virus-host interactions, apoptosis is not 

discussed. If this process of cell death would be of major importance, it would be 

unlikely that it could be overlooked. In those studies which do focus on apoptosis in 

WSSV-infected shrimp, conflicting conclusions have been reached. Some researchers 

on the one hand, concluded that apoptosis could be considered as a host anti-viral 

defense response, as the down-regulation of an initiator caspase gene favored the 

replication of WSSV (Wang et al., 2008b) or the administration of apoptosis 

inhibitors increased survival rates of WSSV challenged shrimp (Wang and Zhang, 

2008), while on the other hand Rijiravanich et al. (2008) described that knock-out of 

caspase-3 gene resulted in improved protection against death due to WSSV infection. 

In conclusion, more work is needed to clarify the role of apoptosis during WSSV 

infections in shrimp. 

Another interesting study looking into the complex host-virus interaction shows that 

WSSV can use a shrimp signal transducer and activator of transcription protein 

(STAT) to enhance expression of the immediate-early gene ie1, which is an important 

promotor in the early stages of WSSV infection. Thereby, WSSV is taking advantage 

of a mechanism which is normally supposed to be a defense against virus infection, as 

was seen in Drosophila, and using it to enhance viral replication (Dostert et al., 2005; 

Liu et al., 2007). 
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2.2.6.3. RNA interference 

 

The technique of RNA interference (RNAi) has long been a potent research tool to 

down-regulate expression of target genes in a wide range of eukaryotes (Fire et al., 

1998; Friedman and Perrimon, 2004). The administration of sequence-specific RNA 

that was designed using WSSV-sequences was shown to be very successful in 

blocking the viral infection in shrimp, either with long dsRNA or short interfering 

RNA (siRNA) (Robalino et al., 2004; 2005). Huang and Zhang (2012) and Haung et 

al. (2012) further confirmed that this mechanism is used by shrimp. These researchers 

showed that the central Argonaute effector proteins of the siRNA and miRNA 

pathways are upregulated during WSSV infection, leading to reduced WSSV loads. 

The interesting role of RNAi in the interaction between WSSV and the shrimp host 

was prominently mentioned in a recent hypothesis forwarded by Flegel (2009). Upon 

observing persistent IHHNV, YHV and TSV infections in grossly healthy animals, it 

was proposed that a process of active accommodation of the viruses by the host was 

taking place in which the virus prevents an apoptotic response, which would 

otherwise kill the host (Flegel, 2007b). However, with the discovery of reverse 

transcriptase (RT), integrase (IN) and viral-like sequences in the genome of shrimp 

and insects, it is possible that they would use viral mRNA as a weapon against the 

viruses themselves and create a balance with the pathogen. The principle is that viral 

mRNA would be recognised by the host cell and by means of RT and IN, the mRNA 

sequence would be copied into the hosts’ genome. This, in turn, would lead to the 

production of viral antisense immunospecific RNA and the induction of the host RNA 

interference (RNAi) mechanism, thus reducing viral mRNA transcription. Many 

important steps such as the recognition of foreign viral mRNA, viral sequences 

present in the genome of viral infection survivors and hereditary resistance via 

integration in gonad cells need to be confirmed, but it would provide an explanation 

for the observed reduction of viral load and persistent viral infections in shrimp. The 

finding by Huang et al. (2011) that over 20% of the P. monodon genome is made up 

of WSSV-like sequences, is already a strong support for the idea of Flegel (2009), and 

presents a fascinating insight in the origin of this virus and the co-evolution with its 

host. 
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2.2.6.4. Viral interference IHHNV – WSSV 

 

Finally, a natural phenomenon of viral interference between IHHNV and WSSV has 

been described (Tang and Lightner, 2002; Bonnichon et al., 2006). It was discovered 

by routine histology that P. stylirostris survivors from a WSSV infectivity study were 

also infected by IHHNV. Subsequent laboratory studies with IHHNV and WSSV in 

P. styilirostris showed that animals with an active IHHNV infection were clinically 

protected from WSSV, achieving survivals of 80% following a WSSV challenge 

lethal for control shrimp. The underlying mechanism remains unknown, but could be 

very relevant, as multiple viral pathogens are often present in shrimp under culture 

conditions. 

 

2.2.6.5. Conclusion on WSSV - host interaction 
 

While advanced studies of WSSV infection and the host response are undertaken, it 

does appear that an effort needs to be made to standardise the methodology used. It is 

still common practice to conduct experiments with poorly characterised viral 

inoculums and randomly purchased or collected shrimp of unknown health history. 

Other shrimp pathogens, especially the major viruses that are widespread, can easily 

interfere with the outcome of such studies. Additionally, factors such as temperature, 

moult stage, stocking density and possible transmission between experimental 

animals must be strictly recorded and controlled. 

Even with this caution for the interpretation of published results on WSSV infection 

in shrimp, different opportunities to decrease the effects caused by this viral infection 

have been established. Particularly defense-modulation and improvement of host 

resistance appear promising directions of investigation to contain the losses caused by 

the disease. 
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2.2.7. Diagnosis 
	
  

It is ill-advised to diagnose WSSV solely based on symptomatology, as the general 

signs of anorexia, lethargy, chromatophore expansion and rapid mortality can be the 

result of many types of both infectious and non-infectious diseases. Even white spots 

on the cuticle are not pathognomonic for WSSV and can occur during bacterial 

colonisation as well (Goarant et al., 2000; Wang et al., 2000a).  

There is a full range of methods for the detection of WSSV. Each of them has 

advantages and disadvantages. The following table (Table 4) has been modified from 

the Manual of Diagnostic Tests for Aquatic Animals where the description of each 

method is available (www.oie.int). 

 

Table 4. Description of each diagnostic method for WSSV according to OIE.  

Method 
Surveillance Disease diagnosis 

Larvae PLs Juvenile Adults Presumptive Confirmatory 

Gross signs D C C D C D 

Bioassays D C D D C C 

Whole mount 

light microscopy 
D C C D C C 

Histopathology D C C C B B 

TEM D D D D D A 

Antibody based 

methods 
D C D D B B 

DNA-probes C B B C A A 

PCR A A A A A A 

Sequence D D D A D A 

From A: most suitable method to D: not recommended method 

 

Commercial diagnostic kits available: Dot blot, in situ hybridization, PCR, 

immunodot, immunohistochemistry, immunosquash and immunochromatography. 
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2.2.8. Control and prevention 

 

2.2.8.1. “Vaccination” or “immunisation” 

 

Many reports have described an increased relative survival of shrimp in experimental 

“vaccination” trials (Johnson et al., 2008; Rowley and Pope, 2012). The possibility of 

including recombinant viral proteins (mainly VP28) in either injectable or per os 

vaccines has shown promise for use in the field (Witteveldt et al., 2004, Jha et al., 

2006, Fu et al., 2008).  

Ning et al., (2009) reported a technique by which the oral administration of 

transfected bacteria could increase the survival among WSSV-challenged crayfish. 

Viral gene fragments encoding WSSV envelope protein VP28 were introduced in the 

attenuated Salmonella bacteria, which upon uptake via the food, were successfully 

expressed inside the tissues of the crayfish. This would then give rise to VP28 

exposure of the host during about 7 days and confer protection by inducing an 

antiviral response. 

A different strategy is to introduce a constructed DNA plasmid coding for the viral 

proteins via injection directly into the host where it induces the production of WSSV 

proteins by the host cells. By using this technique, Rout et al., (2007) demonstrated 

that they could improve the relative survival of their P. monodon test shrimp to 

WSSV challenge and showed that expression of the DNA vaccine in the tissues of the 

experimental animals lasted for up to 2 months. It was proposed that an increase in 

prophenoloxidase, superoxide dismutase and superoxide anion levels occurred as an 

antiviral response mounted by the shrimp against the endogenously produced viral 

proteins (Rajesh Kumar et al., 2008). Alternatively, the DNA vaccine could be 

delivered successfully to shrimp through chitosan nanoparticles (Rajesh Kumar et al., 

2009).  

While "vaccination" of shrimp can result in clinical protection, it is uncertain whether 

it leads to prevention or elimination of WSSV infection. It is thus important to note 

that "vaccinated" shrimp could remain lifelong asymptomatic carriers, capable of 

spreading infectious virus to other shrimp populations. 

Despite this progress in published work on protecting shrimp against WSSV, the 

underlying mechanism by which viral antigens activate the shrimp’s defense system 

remains unknown. One of the major questions yet to be answered is whether the 
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shrimp’s response to the presented pathogen, or subunit thereof, is specific. Indeed, 

the use of the word “vaccination” is not proper in the context of invertebrates where 

the existence of adaptive immunity is unclear. Little solid proof exists that adaptive 

immunity exists in shrimp or other invertebrates (Hauton and Smith, 2007; Johnson et 

al., 2008). Evidence for an antibody response, involving B-cells, T-cells, etc. is 

lacking in invertebrates. As long as the underlying mechanisms remain unknown, the 

ability to design a successful WSSV vaccine will be hampered. 

To date, only innate immunity has been demonstrated in shrimp and most of the 

knowledge obtained relates to defense against bacterial and fungal infections. For any 

hopes on an active creation of immune memory, this leaves us with the possibility for 

a form of “innate immunity training” in shrimp in response to exposure to pathogen 

associated molecular patterns (PAMPs). In fact, a number of studies have shown 

improved survival among WSSV-challenged shrimp following exposure to unrelated 

molecules originating from bacteria or yeast. Anti-lipopolysaccharide factors, a 

category of antimicrobial peptides known to stop bacterial and fungal infections in 

shrimp (de la Vega et al., 2007), were also reported to interfere with WSSV 

replication in the crayfish Pacifastacus leniusculus (Liu et al., 2006).  

 

2.2.8.2. "Immunostimulation" or enhancement of anti-viral defense 

 

Numerous papers have reported either variable levels of improved protection by using 

beta-glucans, vitamin C, seaweed extracts (fucoidan) and various other natural 

substances under experimental conditions (Cruz et al., 2002, Soltanian et al., 2009). 

However, the mode of action of these additives remains unknown and most 

descriptions in literature appear to point in the direction of an aspecific enhancement 

of the defense system (cfr. innate immunity training). Up to date, no data supporting 

full protection of shrimp against WSS in the field have been published (Chotigeat et 

al., 2004; Rahman et al., 2006a; Balasubramanian et al., 2008; Rameshthangam and 

Ramasamy, 2007).	
  No specific antiviral therapies have been described either. 

 

2.2.8.3. Selective breeding for resistance 

 

Resistant stocks against WSSV infection are not commercially available. Unlike for 

taura syndrome virus (TSV), the process of selective breeding of shrimp for WSSV 



 

56 

resistance appears to be particularly difficult (Gitterle et al., 2006; Cock et al., 2009). 

Some larvae producers have claimed a reduced susceptibility to WSS in past, but this 

had not been supported by scientific evidence, until recently by Cuéllar-Anjel et al. 

(2012). Selective breeding of P. vannamei over the course of 10 years in Panama had 

resulted in improved survival and lower infection rates than in unselected control 

lines. 

 

2.2.8.4. Good husbandry and biosecurity 

 

Improvement of biosecurity measures in and around shrimp farms reduces the risk of 

disease. Special attention should be given to water inlets and outlets, culture systems, 

possible carriers and movement of people and materials. Use of SPF broodstock and 

PL screened by nested PCR provides the best possibility of preventing WSSV entry 

into the farm or hatchery (Bondad-Reantaso et al., 2005).  

The construction of plastic greenhouses over ponds helps in isolating them from the 

surroundings, as well as its function to increase pond water temperature. 

 

2.2.8.5. Temperature 

 

For reasons not yet understood, it has been demonstrated that WSSV replication in 

shrimp is blocked when the water temperature is maintained at 32°C or higher (Vidal 

et al., 2001; Guan et al., 2003; Du et al., 2006; Granja et al., 2003; 2006; Rahman et 

al., 2006b; 2007) and below 15°C (Jiravanichpaisal et al., 2004). As a result, 

numerous farms have constructed greenhouses over nursery ponds and reported that 

this strategy has helped to prevent WSSV outbreaks during the nursery phase as well 

as reduce WSSV losses during growout. Recent discoveries by Lin et al. (2011) have 

shown the involvement of heat-shock proteins and aldehyde dehydrogenase in the 

suppression of WSSV by high temperatures.  
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Abstract 

 

This study was carried out to gather quantitative data on the moult cycle and its 

different stages in laboratory-raised shrimp, kept at a constant temperature of 27°C. 

The stages of the moult cycle were differentiated and characterised by microscopic 

analysis of cuticle, epidermis and moulting processes in the uropods of Penaeus 

vannamei and P. monodon. Five major moult stages were defined: early and late post-

moult (A and B), inter-moult (C) and early and late pre-moult (D1 and D2). Total 

moult cycle duration was around 5 and 6.5 days for 2 g P. vannamei and P. monodon, 

and 11 and 12 days for 15 g P. vannamei and P. monodon. Overall, the relative 

duration of the moult stages within the cycle was 5-10% for A, 9-16% for B, 12-20% 

for C, 28-36% for D1 and 30-38% for D2 stage. It was concluded from this study that 

the pre-moult stages comprised the dominant phase of the cycle and that P. monodon 

moulted at a significantly slower rate than P. vannamei, under the given conditions. 

Without the use of invasive techniques, the moult process was charted in laboratory-

raised shrimp in Europe, providing a tool for taking into account this important 

physiological factor in further experiments. 

 

Introduction 

 

Like in all Crustacea, the body surface of penaeid shrimp is covered by an 

exoskeleton, called cuticula or cuticle. To allow growth and regeneration, this shell 

has to be shed periodically during a cyclic process called moulting. Most metabolic 

and endocrinological functions revolve around this cycle, making the moult a pivotal 

event in shrimp physiology (Skinner 1962; Skinner 1985; Chang 1995). 

Typically, the moult cycle of Crustacea is divided into 4 recurrent stages: post-moult 

(metecdysis), inter-moult (anecdysis), pre-moult (proecdysis) and the moment of the 

shedding of the old cuticle (ecdysis). For a long time already, a letter-code is used to 

refer to these stages: A and B for early and late post-moult, C for inter-moult and D 

for pre-moult (Drach 1939). Studies on the moult process in penaeid shrimp which list 

selection criteria for the various moult stages have been published for Penaeus 

(Farfantepenaeus) duorarum (Schafer 1968) Penaeus (Farfantepenaeus) merguiensis 

(Longmuir 1983) Penaeus (Litopenaeus) setiferus and Penaeus (Litopenaeus) 

stylirostris (Robertson et al. 1987), Penaeus (Litopenaeus) vannamei (Chan et al. 
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1988; Cesar et al. 2006) and Penaeus monodon (Promwikorn et al. 2004). The key 

criteria for characterising the stages were the appearance of the epidermis, 

pigmentation, the formation of new setae (setogenesis) and the presence of matrix or 

internal coni in the setal lumen. Relative durations of the moult stages in shrimp have 

been provided so far by Chan et al. (1988) for 11.5-14 cm P. vannamei whose moult 

cycles took 34 days on average at a rearing temperature of 20-22°C. Since the 

retraction of Promwikorn et al. (2007), no data is available in literature for P. 

monodon. 

Seeing the importance of the moult process in shrimp physiology, much more 

consideration should be given to it in animal experimentation. The aim of the present 

work was to record the duration of the stages of the moult cycle in P. vannamei and P. 

monodon under the rearing conditions at the laboratory of the authors. 

 

Materials and Methods 

 

Experimental animals and conditions 

 

The shrimp used in this study were: Penaeus vannamei from Molokai Sea Farms Int. 

and P. monodon from Moana Technologies Nucleus Breeding Centre (both on 

Hawaii, USA). All batches of shrimp were certified to be SPF by Dr. James Brock of 

Moana Technologies. Batches of 10,000 shrimp arrived as post-larvae stage 10 and 

were reared in a recirculation system at the Laboratory of Aquaculture and Artemia 

Reference Center, Gent University, Belgium. They were fed with Artemia nauplii 

twice daily for 3 weeks and were then weaned onto a commercial pelleted feed (A2 

monodon high performance shrimp feed, INVE aquaculture nv, Belgium), fed twice 

daily at a total rate of 5 % of their mean body weight (MBW). Water temperature was 

kept at 27 ± 1°C and salinity at 35 ± 1 g l–1. Bio-filtration and regular water changes 

kept total ammonia-N below 0.5 mg l–1 and nitrite-N below 0.15 mg l–1. The room 

was illuminated 12 hours per day by dimmed TL-light. 

 

Moult stage determination 

 

The stages of the moult cycle were differentiated and characterised based on the 

studies by Drach (1939), Robertson et al. (1987), Chan et al. (1988) and Compère et 
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al. (2004). By analyzing the aspect of cuticle, epidermis and moult processes of 

uropods, 5 major moult stages were defined: early and late post-moult (A and B), 

inter-moult (C) and early and late pre-moult (D1 and D2). Briefly, the main 

characteristics used to discern the stages were A: epidermal tissue is present inside the 

setal lumen; B: the epidermis is retreating from the setae but is still present in the base 

of the setae; C: the epidermis lies on a line just underneath the base of the setae; D1: 

apolysis causes a translucent space to form between the old cuticle and the epidermis; 

D2: the new, folded cuticle and the new setae have become visible; E: ecdysis, the 

shedding of the old moult skin. As E stage lasted only a few minutes, the moult was 

considered as the transition from D2 to A, and was not further included in the 

analysis. 

 

Illustrations of the moult stages and the criteria to differentiate them can be found in 

chapter 2.1.2.1.1. of this thesis. 

 

Study of the moult cycle of P. vannamei and P. monodon 

 

The moult cycle of P. vannamei was followed when they had a size of 2.0 ± 0.3 g and 

14.8 ± 0.9 g, at the age of 61 and 150 days, respectively. P. monodon were examined 

when they had reached a size of 2.1 ± 0.5 and 15.2 ± 1 g at the age of 55 and 158 

days, respectively. During each of the observation periods, 12 shrimp were followed 

individually for the duration of one entire moult cycle. Shrimp had been previously 

tagged with visible implant elastomer (kindly provided by Dr. David Solomon of 

Northwest Marine Technology, USA) in different locations of the tail muscles to 

allow identification and housed inside the recirculation system. Feeding regime and 

environmental circumstances were maintained as described for the growing of the 

shrimp. All animals were taken from the system and examined by inverted 

microscope every 12 hours. Digital photographs (at a magnification of 100X and 

200X) were made of the exopodites of uropods, consistently focusing on the central 

part of the caudal end. During this procedure, shrimp were immobilised for about 30 

seconds by gently wrapping them inside a Styrofoam tube, with only the last tail 

segment remaining outside for placement on the microscope. Examination was 

stopped for each animal as soon as it had shed its moult twice, thereby passing at least 

one whole moult cycle while under observation. 
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Photographs were analysed on the appearance of the cuticle, epidermis and moult 

processes such as apolysis and setogenesis. The durations of the stages and the total 

cycle were measured. For P. vannamei, the study was repeated in 2 subsequent 

batches of shrimp. Differences between stages and between shrimp species were 

analysed by t-test. 

 

Results 

 

Moult stage determination 

 

The characteristics by which the stages were defined, were found to be uniform for 

both ages studied and for both P. vannamei and P. monodon (except for the obvious 

differences in size and pigmentation). They could therefore readily be used to 

differentiate the different moult stages in both species.  

 

Study of the moult cycle 

 

Total moult cycle duration was 4.8 and 6.4 days for 2 g P. vannamei and P. monodon, 

and 10.9 and 12.3 days for 15 g P. vannamei and P. monodon (Table 1). Overall, the 

relative duration of the moult stages within the cycle was 5-10% for A, 9-16% for B, 

12-20% for C, 28-36% for D1 and 30-38% for D2 stage. In all species and ages, the 

pre-moult stages were found to be significantly longer than the post- and inter-moult 

stages (p<0.05). Statistically significant differences were found between 2 and 15 g P. 

vannamei in all moult stages and in D stages for P. monodon. In P. vannamei, all 

moult stages increased proportionally in duration with age, while in P. monodon, the 

post- and inter-moult stages only increase slightly in duration but the elongation of the 

pre-moult phase was responsible for the longer moult cycle. When total moult cycle 

durations were compared between shrimp groups of the same size, P. monodon 

moulted at a significantly slower rate than P. vannamei. Obviously, 15 g shrimp 

moulted at a significantly slower pace than 2 g. 
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Table 1. Average durations of the major moult stages and total moult cycles of 2 

and 15 g P. vannamei and P. monodon. 

 

Species 
Average duration of moult stage in days ± SD 

(percentage of total cycle) 
Duration 

of 

total cycle 
(weight; number of shrimp) A B C D1 D2 

       

P. vannamei 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.2 1.7 ± 0.4 1.5 ± 0.3 4.8 ± 0.5 a* 

(2.0 ± 0.3 g; n = 36) (10%) (11%) (12%) (35%) (32%)  

       

P. vannamei 0.8 ± 0.3 1.1 ± 0.5 1.6 ± 0.5 3.8 ± 0.8 3.6 ± 0.7 10.9 ± 1 b 

(14.8 ± 0.9 g; n = 36) (7.5%) (10%) (15%) (34.5%) (33%)  

       

P. monodon 0.5 ± 0.2 1 ± 0.5 1.3 ± 0.5 1.8 ± 0.5 1.9 ± 0.4 6.4 ± 0.9 c 

(2.1 ± 0.5 g; n = 12) (8%) (16%) (20%) (28%) (30%)  

       

P. monodon 0.6 ± 0.1 1.1 ± 0.3 1.5 ± 0.4 4.4 ± 0.7 4.7 ± 0.6 12.3 ± 0.6 d 

(15.7 ± 1.2 g; n = 12) (5%) (9%) (12%) (36%) (38%)  

       

*different subscripts indicate statistically significant differences 

 

Discussion 

 

In the present study, the moult process was assessed in individual shrimp at two 

stages of development by light microscopical analyses twice daily. This was done 

without the use of invasive techniques such as cutting off parts of appendages, as 

these manipulations are known to interfere with the moult rate of Crustacea (Skinner, 

1985). 

The relative durations of the stages in the moult cycle were found to be remarkably 

similar between species and ages. In absolute time, P. vannamei shrimp shed their 
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skin at a higher frequency than P. monodon of the same age and size. The pre-moult 

stages became lengthier with age, and this was more pronounced in P. monodon. 

Overall, the pre-moult phase was by far the longest, occupying as much as two thirds 

of the entire moult cycle. 

Up to now, few publications have provided quantitative data on the moult cycle in P. 

vannamei. In a first study by Chan et al. (1988), the total cycle duration of 34 days 

was a lot longer compared to the findings of the present study, while a relatively long 

period was taken up by the inter-moult stage. As rearing temperature is known to have 

a major impact on the metabolism and the moult process of shrimp (Vijayan and 

Diwan, 1995; Verhoef et al., 1998), it is likely that the difference in temperature of 

6°C between the studies is responsible for this acceleration, specifically speeding up 

the inter-moult stage which is essentially a resting phase in the cycle. In the study of 

Cesar et al. (2006), in which rearing temperature was about the same as that used in 

our study, 1 month-old and 3 month old P. vannamei shrimp moulted at the same rate 

as 2 month-old and 5 month-old shrimp respectively in our study. Since weights of 

the animals were not reported, a clear comparison could not be made, but this is an 

indication that laboratory-raised shrimp can have a delayed development compared to 

shrimp in pond culture. Cesar and Yang (2007) registered a 12-day long cycle in 3-

month old P. vannamei, with again the inter-moult making up half of the cycle, but 

did not mention the rearing temperature. Since the retraction of Prowikorn et al. 

(2007), no quantitative data is available on the moult cycle in P. monodon except a 

description of the moult stages (Promwikorn et al., 2004). 

In our study, we limited the moult stages to those major phases which can be readily 

and practically indentified with light microscopic examination: early and late post-

moult (A and B), inter-moult (C) and early and late pre-moult (D1 and D2). 

Robertson et al. (1987), Cesar et al. (2007), Liu et al. (2004; 2010) and Sanchez-Paz 

et al. (2003) all used a similar division of the moult cycle into 5 stages. As Robertson 

et al. (1987) also argued, a more refined separation of these major stages is only 

possible by TEM and thus not practical or usually not even relevant for research into 

the moult process and its impact on other factors. 

 

For the present study, we were most interested in the moult cycle and the relative 

importance of the different moult stages of the experimental shrimp present at the 

Laboratory of Aquaculture in Belgium. From comparison with literature it becomes 
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clear that quantitative data on the moult cycle of shrimp can not be simply 

extrapolated to all shrimp and conditions. In Europe, research on tropical shrimp 

relies on the availability of laboratory-raised shrimp. Even though their growth might 

be slower than under farm conditions, the highly controlled environment does allow 

for reproducible reference values to be registered. The fact that three consecutive 

batches of P. vannamei had almost identical cycles at a similar weight, gave us 

confidence to trust the acquired data and to consider the selection system reliable to 

pick out shrimp in specific moult stages. This selection system will be used in 

experiments to investigate the impact of the moult stage on shrimp susceptibility to 

infections. 
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3.2 Moult stage and cuticle damage determine WSSV 

immersion infection in penaeid shrimp 
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Abstract 

 

Transmission of white spot syndrome virus (WSSV) in shrimp has been reported to 

occur by feeding and immersion. In the present study, the impact of the moult process 

and artificial lesions in the cuticle on shrimp susceptibility to WSSV was examined 

using intramuscular and immersion routes. 

For the intramuscular route, Penaeus (Litopenaeus) vannamei shrimp (n=450) were 

injected with 10-2.3 up to 102.7 shrimp infectious dose 50% end point (SID50) of WSSV 

in early and late post-moult, inter-moult, early and late pre-moult; resp. A-, B-, C-, 

D1- and D2-stage. The resulting infection titers demonstrated that no difference 

(p>0.05) in susceptibility existed between different moult stages when virus was 

injected.  

For the waterborne route, shrimp in different moult stages were immersed in sea 

water containing 104 SID50 ml-1 of WSSV. In a first study, P. vannamei (n=125) 

incubated in cell culture flasks, became infected with WSSV mostly in post-moult 

stages. In a second study, 2 groups of P. vannamei (n=100) and P. monodon (n=100) 

were transferred into plastic bags to prevent damage to the cuticle; and in 1 group a 

pleopod was cut off prior to incubation. Induction of damage increased infection 

significantly (p<0.05) in A-stage from 0-40% to 60-100%, in B-stage from 0-20% to 

40-60%, in C-stage from 0-20 to 20-60%, while infection was 0% in D-stages with 

both immersion methods. 

This study proved that shrimp are more susceptible to WSSV infection via immersion 

after moulting than in the period before moulting and wounding facilitates infection. 
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Introduction 

 

White spot syndrome virus (WSSV) is one of the most wide-spread viruses in penaeid 

shrimp aquaculture and is considered to be responsible for a large portion of crop 

failures (for reviews on WSSV, see: Sanchez-Martinez et al., 2007; Escobedo-Bonilla 

et al., 2008). Since the first reports on the virus, it has become generally accepted that 

transmission between shrimp and other Decapod Crustacea can occur via 3 routes: (1) 

oral uptake of tissues from infected hosts; (2) waterborne, when virus is transmitted 

via the water by immersion or cohabitation and (3) per ovum (vertical) and possibly 

intra-ovum from broodstock to offspring. When reviewing literature on WSSV, one 

finds a high number of experimental studies demonstrated that feeding of WSSV-

infected shrimp tissues is an effective way to infect shrimp and other decapods. 

Especially the early reports on WSSV helped to build the image that the virus is 

highly contagious, even though many researchers had to administer WSSV-infected 

tissues more than one feeding, sometimes as long as 7 days. For the waterborne route, 

many studies reported that immersion and even cohabitation exposure readily allowed 

WSSV to cause infection, although older shrimp were reported to be less susceptible.  

It is important to note, however, that most of the studies published so far were 

performed with non-specific pathogen-free (SPF) animals, without knowing the 

administered doses of WSSV and without screening the inoculum for the presence of 

other pathogens. Often, possible secondary transmissions after inoculation were not 

ruled out, temperature of the rearing water was not under control and most 

importantly, WSSV infections were rarely confirmed.  

These facts make it difficult to reproduce those studies or make reliable conclusions. 

Probably the best-controlled experimental studies on WSSV transmission so far, were 

published by Soto and Lotz (Soto et al., 2001; Lotz and Soto, 2002; Soto and Lotz, 

2003) and Prior et al. (Prior et al., 2003). Soto and Lotz concluded that ingestion of 

infected tissues was a far more effective treatment than immersion in infected water. 

Remarkably however, even when P. vannamei were isolated to ensure they had equal 

chance to consume the infected tissues offered to them, not all shrimp became 

infected (50-60%). Prior et al. (2003) succeeded in determining the lethal 

intramuscular dose of a WSSV stock and also tried to develop a controlled bio-assay 

by immersion of P. vannamei. Although very large amounts of infectious virus were 

added to the water (as shown by the injection study), mortality rates stayed below 
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40%. Recently, another study clearly illustrated the difficulty to infect animals by 

WSSV immersion challenge (Gitterle et al., 2006), while a study on an ornamental 

shrimp’s susceptibility to WSSV resulted in a discussion of the problems encountered 

with experimental feeding challenges (Laramore, 2007). Gitterle et al. (2006) showed 

that merely adding virus inoculum to the water was not sufficient to result in P. 

vannamei infection but needed to place the shrimp in tanks in which orally infected 

shrimp had previously died to finally obtain successful transmission. Finally, in the 

PhD thesis by Dr. Bonny Bayot (2006), less than 17% of P. vannamei shrimp became 

infected upon individual challenge with WSSV via oral route and none or merely 3% 

by immersion. 

The overall conclusion from these publications is that there are restrictions on the 

ability of WSSV to gain entry into its host. With feeding of virus-infected tissues to 

shrimp, this is to be expected as the lack of control on the dose of virus actually 

reaching the site of entry, inherently creates irreproducible results. The fact that any 

portion of the animals might not be feeding (due to moulting, stress, …) for instance, 

can easily prevent an equal chance to become infected. Another factor which cannot 

be ignored is that all tissues known to be susceptible to WSSV replication are 

protected from the outside world by cuticle (Escobedo-Bonilla et al., 2007). This is 

also true for the gills and the epithelium of stomach and hindgut (Bell and Lightner, 

1988). 

Although little details are known about the structure and function of the cuticle of 

penaeid shrimp, it is well-known that it changes dramatically in time (Chan et al., 

1988; Compère et al., 2004; Promwikorn et al., 2007). During the course of its life, a 

shrimp passes through consecutive moult cycles. Therefore, in a study examining 

transmission of pathogens in shrimp, it could be important to take the moult stage into 

account (Le Moullac et al., 1997; Mugnier et al., 2008).  

Considering the inability to reproducibly cause infection in shrimp exposed to WSSV 

by immersion, the present study was set-up to investigate the factors determining 

WSSV infection by waterborne route. In a first hypothesis we tested whether the 

susceptibility of shrimp to WSSV infection changes during the course of their moult 

cycle. The virus was delivered intramuscularly, thus passing the cuticle in order to 

compare the internal susceptibility between the different moult stages. In a second 

approach, the barrier function of the cuticle against natural infection by waterborne 

virus was tested in a series of immersion inoculation experiments of shrimp in 
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different moult stages. Groups of artificially damaged shrimp were compared with 

control shrimp to test the hypothesis that the cuticle presents a barrier against WSSV 

and that wounding can promote infection. 

 

Materials and Methods 

 

Experimental animals and conditions 

 

The shrimp used in this study were Penaeus (Litopenaeus) vannamei from  

Molokai Sea Farms Int., Hawaii, USA and P. monodon, from Moana Technologies  

Nucleus Breeding Centre, Hawaii, USA. The batches of shrimp from Moana  

Technologies were certified to be SPF by Jim Brock, DVM. Those from Molokai Sea 

Farms had SPF status according to inspection services by the Aquaculture 

Development Program, State of Hawaii. Batches of 10,000 PL-10 shrimp were 

shipped to Belgium and reared in a recirculation system at the Laboratory of 

Aquaculture & Artemia Reference Center (ARC), Ghent University, Belgium. They 

were fed with Artemia nauplii twice daily for a period of 3 weeks and were then 

weaned onto a commercial pelleted feed (A2 monodon high performance shrimp feed, 

INVE Aquaculture SA, Belgium), fed twice daily at a total rate of 5 % of their mean 

body weight (MBW). Water temperature was kept at 27 ± 1°C and salinity at 35 ± 1 

gl–1. Regular water changes kept total ammonia-N below 0.5 mg l–1 and nitrite-N 

below 0.15 mg l–1. The room was illuminated 12 hours per day by dimmed TL-light. 

For the viral challenge experiments, shrimp were transported to the facilities of the 

Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, where the 

experiments were performed under bio-safety conditions. 

 

Molt stage determination 

 

Molt stages were determined based on the descriptions by Robertson et al. (1987) and 

Chan et al. (1988). Briefly, shrimp were restrained for a few seconds and their 

uropods were examined by inverted microscope. At a magnification of 100 to 200X, 

the exopodites of uropods were analysed on the appearance of the cuticle, epidermis 

and moult processes such as apolysis and the formation of new cuticle. Shrimp were 
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separated into 5 major moult stages: early and late post-moult (A and B), inter-moult 

(C) and early and late pre-moult (D1 and D2). 

Post-moult stages are characterised by an epidermis in close contact with all of the 

still thin cuticle. The epidermis is present in the setae in A-stage and retracts in B-

stage, while it constantly secretes additional layers to the cuticle. In the inter-moult 

stage the epidermis lies in a straight line at the bottom of the setae while the 

construction of the cuticle is finalised. The pre-moult phase starts as the epidermis 

retracts from the cuticle in stage D1 and begins formation of a new cuticle. In the final 

stage before the moult, D2, the newly forming cuticle and setae become visible.  

 

Virus 

 

The WSSV Thai-1 isolate was used in the present study. This isolate has been studied 

before (Jiravanichpaisal et al., 2001; Escobedo-Bonilla et al., 2005; Escobedo-Bonilla 

et al., 2006; Escobedo-Bonilla et al., 2007; Rahman et al., 2008). It was collected 

from naturally infected Penaeus monodon in Thailand in 1996 and passaged in 

crayfish Pacifastacus leniusculus (Jiravanichpaisal et al., 2001). Crayfish gill 

suspension containing WSSV Thai-1 was kindly provided by K. Söderhäll (Uppsala 

University, Sweden) and amplified in SPF P. vannamei juveniles to produce virus 

stocks. The median infectious titer of the stock used for all experiments in this study 

was determined to be 106.0 shrimp infectious dose 50% end point (SID50) per ml, 

following the in vivo intramuscular titration procedure in SPF P. vannamei described 

by Escobedo et al. (2005). 

 

In vivo titration by intramuscular inoculation using shrimp in different moult 

stages 

 

P. vannamei juveniles (MBW = 5.6 ± 2.7 g; n = 450) were taken from stock cultures 

maintained at ARC and screened for their moult stage. Thirty shrimp were selected in 

each of the 5 major moult stages (A, B, C, D1 and D2) and inoculated intramuscularly 

with 50 µl of a 10-fold serial dilution of the WSSV stock (10-2 to 10-7), with 5 shrimp 

per dilution. After the inoculation, shrimp were housed individually in covered 10 l 

aquaria, filled with artificial seawater at a salinity of 35 g l-1, provided with constant 

aeration and maintained at 27°C by air heaters. Approximately 2.5% of BW of a 
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commercial shrimp diet was provided to each shrimp in 2 rations per day. Moribund 

and dead shrimp were recorded, removed from the aquaria and processed for 

detection of WSSV infection. The experiment was terminated at 120 hpi, when 

surviving shrimp were sacrificed and analyzed for WSSV infection. The experiment 

was performed in triplicate. 

 

Study of WSSV infection by immersion route 

 

Immersion inoculation inside cell culture flasks 

The aim of this experiment was to develop a model for WSSV infection by 

immersion. A total of 125 SPF P. vannamei were used. As the batch of shrimp grew 

up, 5 groups of shrimp with a MBW of 1, 4, 6, 11 and 20 g were taken from the stock 

culture at ARC and screened for their moult stage. For each size group, 5 shrimp per 

moult stage were immersed. The WSSV inoculum used to immerse the shrimp was a 

1% dilution of the WSSV stock. It was prepared in a volume of 25 ml artificial 

seawater (35 g l-1) per g bodyweight, resulting in a dose of 104 SID50 ml-1. Shrimp of 1 

g were put inside ‘25 cm2’ cell culture flasks (Nunc A/S, Denmark) containing 25 ml 

of the inoculum. Animals of 4, 6 and 11 g were put inside ‘75 cm2’ cell culture flasks 

containing respectively 100, 150 and 275 ml of the inoculum. Shrimp of 20 g were 

put inside ‘175 cm2’ cell culture flasks containing 500 ml of the inoculum. Flasks 

were placed on a lateral side in order to allow the shrimp to stay in a physiological 

position. The duration of the immersion was 3 hours and water was aerated with an 

airstone.  

After the inoculation, the procedures were identical to those as described for the 

intramuscular route, except no food was given the first 12 h after the immersion to 

avoid additional oral up-take of virus via the food. Shrimp were monitored for clinical 

signs every 12 h and dead shrimp were removed and processed for detection of virus 

replication. The experiment was terminated 5 days post immersion. At this time, all 

surviving shrimp were euthanised and processed for virus detection. Mortality and 

infection rates were compared between the moult stages and between the sizes. 
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Immersion inoculation inside plastic bags of shrimp with and without damaged cuticle 

In this experiment, damage was induced to 1 group of shrimp by cutting off a pleopod 

while shrimp of the control group were left undamaged. Both groups were put inside 

plastic bags to limit physical damage as much as possible. The aim was to evaluate 

whether mechanical damage would allow a higher incidence of WSSV infections in 

shrimp. 

A total of 100 P. vannamei and 100 P. monodon were used in this experiment. For 

each species, 2 size groups of 50 shrimp were tested with a MBW of 2 and 15 g. 

Shrimp were taken from the stock culture at ARC and screened for their moult stage. 

An attempt was made to minimise damage to the cuticle by carefully catching and 

handling the animals. Of each species and size, 10 shrimp of each moult stage were 

selected and placed individually in 4 l transparent polyethylene bags (220x330nm, 

50my, Binpac) filled with sea water. These were placed inside buckets lined with 

shock-absorbing plastic for transport to the facilities of the Laboratory of Virology. At 

the start of the immersion, the water in the plastic bags containing the individual 

shrimp was replaced by 50 ml of the inoculum for 2 g shrimp and 375 ml for 15 g 

shrimp. The inoculum was prepared as described for the experiment in cell culture 

flasks. Per moult stage, 5 shrimp were then briefly recaptured and 1 pleopod of the 

first abdominal segment was cut off by bistouri blade at the level of the coxa. During 

the immersion, bags were hung in mid-air in order to allow the animals to stay in a 

physiological position in the layer of inoculum on the bottom and a tube with an 

aeration stone was inserted to allow aeration of the water. After 3 h of incubation, the 

inoculum was drained from the bag and shrimp were placed straight into aquaria. The 

set-up of the remainder of the experiment was identical to that described for 

experiment in cell culture flasks. Mortality and infection rates were compared 

between the moult stages, artificially damaged and intact shrimp and their respective 

sizes. 

 

Detection of WSSV infection by indirect immunofluorescence (IIF) 

 

The procedure to detect WSSV infection by IIF was described before (Escobedo-

Bonilla et al., 2005). In brief, the cephalothoraxes of dead shrimp were dissected 

longitudinally, embedded in 2% methylcellulose and quickly frozen at -20 °C. 

Cryosections (5 µm) were made and immediately fixed in 100% methanol at -20 ºC 
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for 20 min. Sections were washed three times for 5 min each in phosphate buffered 

saline (PBS) and incubated with 2 µg ml-1 of the monoclonal antibody 8B7 

(Diagxotics Inc. USA) directed against viral protein VP28 (Poulos et al., 2001) for 1 h 

at 37 ºC. Then, sections were washed three times for 5 min each in PBS and incubated 

with fluorescein isothiocyanate (FITC)-labelled goat anti-mouse IgG (F-2761, 

Molecular Probes, The Netherlands) for 1 h at 37 ºC. Sections were finally washed in 

PBS, rinsed in deionised water, dried and mounted with a solution of glycerine and 1, 

4-diaza-bicyclo[2,2,2]-octane (DABCO) (ACROS organics, USA). Slides were 

analyzed by fluorescence microscopy (Leica DM RBE). 

 

Statistical analysis 

 

The virus titers of the intramuscular titration were compared between moult stages 

using the Wilcoxon rank-sum non-parametric test (Zar, 1996). 

Differences in WSSV infection after immersion between moult stages within groups 

of 5 to 10 shrimp per group were tested for significance using Fisher’s exact test 

(Kirkwood and Sterne, 2003). 

In the experiments with immersion and induction of damage, both species and ages 

were pooled into groups of 20 shrimp, and the difference in infection rates was tested 

between the moult stages and between the control and the pleopod cut groups by 

Pearson’s Chi Square tests with Yates’ correction. 

All calculations were performed using S-plus version 6.1 (Lucent Technologies). 

 

Results 

 

In vivo titration by intramuscular inoculation (Table 1) 

 

IIF analysis of dead and surviving shrimp revealed the following virus infection titers: 

106, 106.5  and 106.8 for A-stage (106.5
±
0.4); 106.6, 106.8 and 107.5 for B-stage (107.1

±
0.4); 

106.5, 106.7 and 106.8  for C-stage (106.7
±
0.2); 106.8, 106.8  and 107.1 for D1-stage (106.9

±
0.2) 

and 106.3, 106.7 and 107 for D2-stage (106.7
±
0.3) (Table 1). No significant differences in 

infection titers were observed between the stages (p>0.05). 
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Table 1. Infection titers of White Spot Syndrome Virus stock by intramuscular 

inoculation in P. vannamei in different molt stages (3 repetitions of 5 shrimp per 

dilution). Average titers were not significantly different between molt stages (p>0.05). 

Molt 
Stage 

Dilution of 
WSSV Mortality Confirmed infected by 

IIF Infection titer 

 
A 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

15/15 
15/15 
15/15 
10/15 
0/15 
0/15 

15/15 
15/15 
15/15 
10/15 
0/15 
0/15 

106.5
±
0.4 SID50 ml-1 

 
B 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

15/15 
15/15 
15/15 
11/15 
6/15 
0/15 

15/15 
15/15 
15/15 
11/15 
6/15 
0/15 

107.1
±
0.4 SID50 ml-1 

 
C 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

15/15 
15/15 
15/15 
10/15 
2/15 
0/15 

15/15 
15/15 
15/15 
10/15 
2/15 
0/15 

 
106.7

±
0.2 SID50 ml-1 

 
D1 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

15/15 
15/15 
15/15 
13/15 
4/15 
0/15 

15/15 
15/15 
15/15 
13/15 
4/15 
0/15 

106.9
±
0.2 SID50 ml-1 

 
D2 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

15/15 
15/15 
15/15 
10/15 
4/15 
0/15 

15/15 
15/15 
15/15 
10/15 
4/15 
0/15 

106.7
±
0.3SID50 ml-1 
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Immersion inoculation inside cell culture flasks (Table 2) 

 

Of the 1 g shrimp, only 1 shrimp in the A-stage group started to become anorectic and 

lethargic at 36 hpi. This was the only shrimp to die due to WSSV before the end of 

the experiment. All other shrimp were euthanised at 120 hpi and were negative for 

WSSV on IIF. When the immersion was performed with 4 g shrimp, all survived the 

experiment uninfected. At a size of 6 g, 3 out of 5 A-stage shrimp started to show 

clinical signs at 36 hpi and died at 60-84 hpi. When the experiment was performed 

with 11 g, all A- and one B-stage shrimp showed clinical signs and died due to WSSV 

infection between 48 and 120 hpi. Two D2-stage animals moulted during the 

immersion and one died before the end of the 3 hours procedure. This was the only 

mortality during the course of the experiment which was not caused by WSSV 

infection. In the experiment performed on 20 g shrimp, all A-, 2 out of 5 B- and 1 C-

stage shrimp showed clinical signs after 36 hpi. These shrimp died between 48 and 72 

hpi and were confirmed to be infected with WSSV, while all other shrimp survived 

and were uninfected. The difference in infection rate was significantly higher in A-

stage than in the other stages in 11 g shrimp, and between A- and C-, D1- and D2-

stage in 20 g animals (p<0.05). 

During this experiment, it was noticed that the 11 and 20 g post-moult shrimp had 

suffered injuries to appendages during the immersion procedure. Because of this 

observation, an alternative immersion procedure using plastic bags was designed in an 

attempt to limit self-generated damage to the shrimp. 
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Table 2. Immersion of P. vannamei in different moult stages in cell culture flasks 

containing WSSV inoculum with 10000 SID50 ml-1. 

 

Weight Molt stage Mortality (hpi) Confirmed infected by IIF 

    
1 g A 1/5 (60) 1/5 

B 0/5 0/5 
C 0/5 0/5 

D1 0/5 0/5 
D2 0/5 0/5 

    
4 g A 0/5 0/5 

B 0/5 0/5 
C 0/5 0/5 

D1 0/5 0/5 
D2 0/5 0/5 

    
6 g A 3/5 (60, 60, 84) 3/5 

B 0/5 0/5 
C 0/5 0/5 

D1 0/5 0/5 
D2 0/5 0/5 

    
11 g A 5/5 (48, 48, 48, 72, 72) 5/5 

B 1/5 (120) 1/5 
C 0/5 0/5 

D1 0/5 0/5 
D2 1/5† 0/5 

    
20 g A 5/5 (48, 60, 60, 60, 72) 5/5 

B 2/5 (60, 60) 2/5 
C 1/5 (60) 1/5 

D1 0/5 0/5 
D2 0/5 0/5 

    
†: 1 shrimp died during immersion (<3 hpi) 

 

 
Immersion inoculation inside plastic bags (Table 3) 
 

One pleopod of the first abdominal segment could be removed at the level of the coxa 

by bistouri blade without causing any clinical signs or mortality. Damaged sites 

showed melanization within 12-24 hours after injuries had occurred. Melanizations 

which were present on the animals after natural damage and prior to immersion were 
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recorded. Thus, the physical damage occurring during the immersion procedure could 

be estimated. 

Throughout the experiment, anorexia was recorded in D2-stage shrimp 24 to 48 h 

before moulting and in A-stage shrimp. Uninfected animals started eating normally 

again by the end of A-stage. Infected animals displaying anorexia on the other hand 

also became lethargic between 48 to 72 hours post immersion (hpi), generally 24 

hours before dying.  

In 2 g juvenile P. vannamei immersed in plastic bags without cutting of pleopods, 2 

shrimp in A-stage and 1 in C-stage died. Of the shrimp with cut off pleopods, 3 in A- 

and B- and 1 in C-stage died between 48 and 72 hpi. All other shrimp of the various 

moult stages with pleopods left intact or cut survived until the end of the experiment 

at 120 hpi. Of 15 g P. vannamei with no pleopod cut, only 1 out of five A- and B-

stage animals died at 72 hpi. Cutting a pleopod increased the mortality to 5 in A-stage 

(48 to 120 hpi), 2 out of 5 in B-stage (96 hpi) and 1 in C-stage (120 hpi). All other 

shrimp survived until 120 hpi.  

In 2 g juvenile P. monodon immersed with pleopods intact, only 1 shrimp in A-stage 

died. Of those with cut off pleopods, 3 in A- and B- and 2 in C-stage died between 48 

and 120 hpi. All other shrimp survived until the end of the experiment. Of 15 g P. 

monodon with pleopods left intact, 2 out of five A- and 1 B-stage shrimp died (48 or 

72 hpi). Cutting a pleopod induced mortality in 3 shrimp in A-stage (48 to 72 hpi), 2 

in B-stage (48 to 72 hpi) and 3 in C-stage (72 to 84 hpi). All other shrimp survived 

until the end of the experiment. In all cases, dead shrimp were WSSV positive on IIF, 

and surviving shrimp were WSSV negative. 

Only in 15 g P. vannamei with cut pleopods, significant differences were calculated 

between A-stage on one hand and C-, D1- and D2-stage on the other (Fisher’s exact 

test; p<0.05). When the infection rates of species and sizes were pooled (Table 3B), 

the Chi Square test on the results showed the following: 1) a significantly higher 

infection rate in A-stage than in D1- or D2-stage of the control groups (p<0.05); 2) a 

highly significant difference between A- and D1- or D2-stage in the pleopod cut 

groups (p<0.001); 3) no significant difference between A-, B- or C-stage in the 

pleopod cut groups (p>0.05); 4) significantly more infected shrimp in B- and C-stage 

than in D1- and D2-stage of the pleopod cut groups (p<0.05); 5) significantly more 

infected shrimp in A-, B and C-stages with cut pleopods than in the control group 

(p<0.05). 



Chapter 3 

106 

Table 3. Immersion of P. vannamei or P. monodon in different molt stages inside 

plastic bags containing inoculum with 10000 SID50 ml-1 of White Spot Syndrome 

Virus, with or without removal of one appendage. 

 

A Species Weight Removal of 
appendage 

Molt 
stage Mortality (hpi) 

Confirmed 
infected by 

IIF 
       
 P. vannamei  2 g none 

(control) 
A 2/5 (48, 72) 2/5 

 B 0/5 0/5 
 C 1/5 (72) 1/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
      1 pleopod  A 3/5 (48, 60, 72) 3/5 
 B 3/5 (60, 60, 72) 3/5 
 C 1/5 (60) 1/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
      
 15 g none 

(control) 
A 1/5 (72) 1/5 

 B 1/5 (72) 1/5 
 C 0/5 0/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
      1 pleopod  A 5/5 (48, 72, 84, 84, 120) 5/5 
 B 2/5 (96, 96) 2/5 
 C 1/5 (120) 1/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
       
 P. monodon 2 g none 

(control) 
A 1/5 (72) 1/5 

 B 0/5 0/5 
 C 0/5 0/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
      1 pleopod  A 3/5 (48, 72, 72) 3/5 
 B 3/5 (72, 72, 84) 3/5 
 C 2/5 (72, 120) 2/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
      
 15 g none 

(control) 
A 2/5 (48, 72) 2/5 

 B 1/5 (48) 1/5 
 C 0/5 0/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
      1 pleopod  A 3/5 (48, 60, 72) 3/5 
 B 2/5 (48, 72) 2/5 
 C 3/5 (72, 84, 84) 3/5 
 D1 0/5 0/5 
 D2 0/5 0/5 
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B Species Removal of 
appendage 

Molt 
stage Mortality Confirmed 

infected by IIF % infected 

       
 

All shrimp 

none 
(control) 

A 6/20 6/20 30 ab 
 B 2/20 2/20 10 ac 
 C 1/20 1/20 5 ac 
 D1 0/20 0/20 0 c 
 D2 0/20 0/20 0 c 
      
 

1 pleopod 

A 14/20 14/20 70 d 
 B 12/20 12/20 60 bd 
 C 7/20 7/20 35 bd 
 D1 0/20 0/20 0 c 
 D2 0/20 0/20 0 c 
      

a,b,c: percentages indicated by different superscripts were significantly different by χ² 
analysis (p<0.05, except between A- and D-stages in pleopod cut group p<0.001.) 



Chapter 3 

108 

Discussion 

 

In preliminary WSSV immersion experiments leading up to this study, an influence of 

the moult cycle on the susceptibility to the virus had been observed. In the present 

study, an in vivo titration of the virus stock in shrimp in different moult stages was 

first performed by intramuscular route. This experiment showed that no significant 

intrinsic difference in susceptibility to WSSV existed between shrimp in the different 

moult stages. Hence, the underlying mechanism responsible for the difference in 

susceptibility to WSSV between moult stages had to be examined using trials 

mimicking natural transmission. 

A new immersion inoculation procedure was set up to study the infection of WSSV 

by waterborne route. Studies on the waterborne route of WSSV transmission in 

literature all employed simply aquaria for inoculations of shrimp, except for Prior et 

al. (2003) who used cell culture flasks. At first sight, cell culture flasks seemed to be 

adequate tools to perform an immersion procedure as these containers are sterile, do 

not inactivate virus and allow observation of the animals. However, prevention of 

uncontrollable physical damage to the animals during transport in buckets and the 

immersion procedure in cell culture flasks proved to be difficult. All shrimp 

instinctively struggled by contracting their tail during catching and handling in an 

attempt to escape and jumped violently against the walls of the containers. Only post-

moult (A- and B-stage) shrimp suffered visible damage. Most affected were 

appendages such as rostrum, telson, uropods, antennae, pleo- and pereiopods. The 

damage was mainly comprised of fractures of the cuticle, noticed by deformities and 

hemolymph bleeding from the fractures. Sometimes this resulted in loss of 

appendages. Especially the larger 11 and 20 g shrimp were suffering injuries due to 

the relatively small access of the flasks.  

As an alternative immersion recipient, polyethylene bags were tested in this study. 

When shrimp were carefully placed inside plastic bags before transport and the water 

replaced by inoculum, the amount of resistance and jumping of the shrimp was 

reduced and much less obvious injuries could be observed while the shrimp hung 

suspended in mid-air. Even though the bags proved to be useful, it remained 

impossible to completely prevent the occurrence of damages in the soft post-moult 

shrimp.  
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Overall, the incidence of infection and mortality was clearly higher in shrimp 

immersed in WSSV inoculum during the post-moult stages than in pre-moult stages. 

It was postulated that immersion inoculation of shrimp in hard-walled containers 

could result in infection in larger shrimp in post-moult stages, because of damage to 

the cuticle which is softer and thinner in these stages. An inoculation procedure using 

plastic bags resulted in much less infection in post-moult stages as the animals were 

handled more carefully. A clear correlation between damage of the cuticle and 

infection was demonstrated by cutting a pleopod at the start of immersion. The 

incidence of infection was increased 2 to 8-fold between undamaged and artificially 

damaged groups. Similar results could also be obtained by cutting the rostrum in A-

stage shrimp (data not shown). However, even with the infliction of a wound, no 

infection was ever recorded in shrimp which had been pre-moult at the time of 

exposure to waterborne virus. While differences were seen in infection rates between 

ages in shrimp immersed in cell culture flasks, no such differences were recorded 

between 2 or 15 g shrimp inoculated inside plastic bags. 

The actual portal of entry of WSSV from the water into a host has never been 

described, but some assume that the gills are the best candidates (Chang et al., 1996; 

Witteveldt et al., 2004; Arts et al., 2007). The experimental findings of the present 

study demonstrate that an artificially induced wound in the cuticle increases the rate 

of WSSV infection upon immersion. Cutting off a pleopod creates an open wound 

which can allow either (1) infection of cells at the site of the wound or (2) entry of 

WSSV into the hemolymph followed by direct systemic spread or on the other hand 

(3) reduce the competence of shrimp to resist WSSV infection. In the first two 

scenarios, entry of the virus would occur through the opening in the cuticle itself. If 

one considers the (ultra)structure of the cuticle of crustacea such as shrimp, it is not 

difficult to imagine that the cuticle constitutes an impregnable barrier against viruses 

from food or the environment (Compère, pers.comm.). Although damage to the 

cuticle appears to be the key to WSSV infection from the water, the situation is more 

complex. Even when an open wound is present in shrimp, this does not always lead to 

infection, especially in moult stages when the exoskeleton is well-developed (i.e. 

inter- and pre-moult). Factors which determine whether WSSV can ultimately invade 

a shrimp could be: (1) morphological and physiological (cuticle and epidermal cells) 

or (2) (a)specific defence-related (coagulation time, phagocytosis, phenoloxidase and 

reactive oxygen species activity etc.). All these factors are likely or are already known 
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to vary between different stages of the moult cycle (Charmantier et al., 1994; Le 

Moullac et al., 1997; Liu et al., 2004; Chiou et al., 2007; Promwikorn et al., 2007; 

Mugnier et al., 2008). The third alternative explanation for the increased chance for 

WSSV infection in damaged shrimp, would be that wounding has a direct or indirect 

effect on the capacity of shrimp to resist to WSSV infection. Indeed, removal of a 

pleopod will induce stress, which could have an effect on the subsequent immune 

response of the shrimp. The inflicted damage and subsequent clotting, hemocyte 

migration and exocytosis at the site of the wound, and immune responses to other 

microorganisms which may enter, can all alter possible defence against WSSV 

infection. 

Overall, the findings in the present paper give the impression that there are important 

restrictions on the ability of WSSV to gain entry to its host and question whether the 

water in which shrimp live is a natural medium for the spread of the virus, as long as 

the cuticle of shrimp is a firm barrier. This clearly differs from some reports on 

WSSV infections from water in literature (Kanchanaphum et al., 1998; Witteveldt et 

al., 2004; Arts et al., 2007), while it is supported by other (Prior et al., 2003; Bayot, 

2006; Gitterle et al., 2006). Differences in virulence or invasive ability of WSSV 

isolates, administered dose and methodology are the likely explanations for these 

variable results. 

Conclusion 

 

This study revealed that the moult stage of penaeid shrimp does not influence their 

susceptibility to WSSV infection when the virus is injected, but that on the other hand 

shrimp in post-moult stages of the moult cycle become more easily infected with 

WSSV from water than in pre-moult stages. The procedure by which shrimp were 

immersed in WSSV inoculum strongly affected the chances for infection. The rate of 

infection was significantly higher in animals with damages to the exoskeleton due to 

immersion in hard-walled containers or with a pleopod removed. From these findings 

we postulate that the cuticle is a barrier against WSSV infection and wounding can 

increase the susceptibility of shrimp. 
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Abstract 

 

As some literature on the susceptibility of different life stages of Macrobrachium 

rosenbergii to white spot syndrome virus (WSSV) is conflicting, the pathogenesis, 

infectivity and pathogenicity of 2 WSSV strains (Thai-1 and Viet) were investigated 

here in juveniles using conditions standardized for Penaeus vannamei. As with P. 

vannamei, juvenile M. rosenbergii (2 to 5 g) injected with a low dose of WSSV-Thai-

1 or a high dose of WSSV-Viet developed comparable clinical pathology and 

numbers of infected cells within 1 to 2 d post-infection. In contrast, a low dose of 

WSSV-Viet capable of causing mortality in P. vannamei resulted in no detectable 

infection in M. rosenbergii. Mean prawn infectious dose 50% endpoints (PID50 ml–1) 

determined in M. rosenbergii were in the order of 100-fold higher for WSSV-Thai-1 

(105.3±0.4 PID50 ml–1) than for WSSV-Viet (103.2±0.2 PID50 ml–1), with each of these 

being about 20-fold and 400-fold lower, respectively, than found previously in P. 

vannamei. The median lethal dose (LD50 ml–1) determined in M. rosenbergii was also 

far higher (~1000-fold) for WSSV-Thai-1 (105.4±0.4 LD50 ml–1) than for WSSV-Viet 

(102.3±0.3 LD50 ml–1). Based on these data, it is clear that juvenile M. rosenbergii are 

susceptible to WSSV infection, disease and mortality. In comparison to P. vannamei, 

however, juvenile M. rosenbergii appear more capable of “resisting” infection and 

disease, particularly in the case of a WSSV strain with lower apparent virulence. 

 

Introduction 

 

White spot syndrome virus (WSSV) infects a wide spectrum of crustaceans and is one 

of the most important pathogens of cultured penaeid shrimp. Over 80 species, 

including freshwater prawns, crayfish, lobsters and crabs, have been described to be 

hosts or carriers of WSSV (Escobedo-Bonilla et al., 2008). Crustaceans that can carry 

WSSV pose a potential risk of transmitting infection and disease to cultured shrimp 

(Rajendran et al., 1999; Flegel, 2007). 

M. rosenbergii is the most widely cultured freshwater prawn species worldwide 

(New, 2002) with annual yields exceeding 30,000 t (FAO, 2009). Compared to 

penaeid shrimp, it is generally considered less prone to disease in culture (Bonami 

and Widada, 2011). With respect to WSSV, however, there have been some 

conflicting reports on the susceptibility of different M. rosenbergii life stages. For 
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example, some studies have reported larval and post-larval stages to be susceptible 

but older prawns to be quite refractive to acute infection and mortality (Lo et al., 

1996; Peng et al., 1998; Pramod Kiran et al., 2002). Indeed, in a comparative study 

including 2 other Macrobrachium sp. (M. idella and M. lamerrae) as well as Penaeus 

monodon, M. rosenbergii juveniles (1 to 2 g) and adults (5 to 7 g) were confirmed to 

be less susceptible to disease and mortality when challenged with WSSV by water-

borne exposure, tissue ingestion and intramuscular injection (Sahul Hameed et al., 

2000). Follow-up studies showed WSSV infection to be transient, diminishing within 

a few days post-challenge (Waikhom et al., 2006, Yoganandhan et al., 2006). PCR 

tracking of WSSV loads in M. rosenbergii adults challenged by injection has also 

shown that the majority of WSSV is cleared within 5 d post-challenge, after which 

time low levels of virus remained detectable in some organs for 25 to 50 d (Sarathi et 

al., 2008). Although not investigated in detail, there is some evidence to suggest 

hemagglutinins or lectins are involved in the process that protects M. rosenbergii 

against WSSV (Pais et al., 2007). 

In the present study, the pathogenicity of WSSV strains of high (Thai-1) and low 

(Viet) virulence for penaeid shrimp (Rahman et al., 2008) was investigated in juvenile 

M. rosenbergii under standardized conditions used to determine their pathogenicity 

for P. vannamei. Tracking of numbers of infected cells in different organs over time 

in prawns injected with high and low doses of each strain and determinations of 

prawn infectious dose (PID50) and lethal dose (LD50) 50% end-points for the 2 WSSV 

strains confirmed the lower susceptibility of juvenile M. rosenbergii to infection and 

disease compared to P. vannamei, especially for the low virulence strain. 

 

Materials and Methods 

 

Prawns 

 

M. rosenbergii were bred and reared using standard practices in the aquarium 

facilities at Ghent University, Belgium (New, 2002). Prawns used were 3rd 

generation offspring from broodstock imported from Thailand. Juvenile M. 

rosenbergii (2 to 5 g) were fed commercial penaeid shrimp feed pellets at a rate of 

2.5% of their weight per day and maintained at 27 ± 0.5°C water temperature. 
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WSSV 

 

The WSSV strains used to challenge M. rosenbergii originated from diseased P. 

monodon from either Thailand in 1996 (WSSV-Thai-1) or Vietnam in 2003 (WSSV-

Viet) (Rahman et al., 2008). WSSV-Thai-1 had been passaged once in Pacifastacus 

leniusculus (Jiravanichpaisal et al., 2001) and WSSV-Viet had been passaged once in 

Cherax quadricarinatus. Crayfish gill homogenates containing WSSV-Thai-1 (from 

P. Jiravanichpaisal and K. Söderhäll, Uppsala University, Sweden) or WSSV-Viet 

(from Research Institute for Aquaculture no. 2, Ho Chi Minh City, Vietnam) were 

passaged in specific pathogen-free (SPF) P. vannamei to produce inocula and 

determine infectious titers as described previously (Escobedo-Bonilla et al., 2005). 

Shrimp infectious dose 50% endpoint (SID50) ml–1 titers were 106.6 and 105.8 for 

WSSV-Thai-1 and WSSV-Viet, respectively. Inocula were stored at –70°C and 

dilutions used to challenge M. rosenbergii were prepared in ice-cold phosphate-

buffered saline (PBS). 

 

Challenge protocols 

 

In all bioassays, WSSV inoculum (50 ml) was injected into muscle at the junction 

between the 3rd and 4th abdominal segments. Methods to assess WSSV pathogenesis 

followed closely those described by Rahman et al. (2008). In brief, 140 M. 

rosenbergii juveniles (2 to 5 g) were stocked into 50 l aquaria (5 prawns per 

aquarium), each equipped with a water filter and heater. Based on SID50 ml–1 titers, 

each WSSV strain was injected into 30 prawns at either a low dose (LD, 30 SID50) or 

a high dose (HD, 10000 SID50). At 12, 24, 36, 48, 72 and 120 h post injection (hpi), 

prawns surviving in 1 tank were euthanized to collect and process cephalothorax 

tissue for immunohistochemistry (IHC). Prior to sampling, prawns were observed for 

gross disease signs and mortality was recorded. A group of 5 prawns was sampled at 

the beginning of the trial (0 hpi). 

Bioassays to determine the PID50 were performed essentially as described previously 

(Escobedo-Bonilla et al. 2005, 2006), except that the WSSV infectivity titer was 

determined at 48 hpi instead of 120 hpi based on when most prawns were found to be 

infected by indirect immunofluorescence (IIF). In brief, 5 prawns (2 g) in each of 3 

replicate 10 l aerated and covered plastic aquaria (15 prawns per dilution) were 
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injected with 10-fold serial dilutions of either WSSV-Thai-1 (10–1 to 10–6) or WSSV-

Viet (undiluted to 10–4). Prawns were examined at 12 h intervals for gross disease 

signs and at 48 hpi, all prawns were euthanized and cephalothoraxes were processed 

for IIF. 

The challenge procedure used to determine infectivity was used similarly to determine 

the LD50, except that prawns (2 g) were maintained for longer (5 d). Prawns were 

examined at 12 h intervals for gross disease signs and to record deaths and moribund 

prawns (considered as dead). At 120 hpi, all surviving prawns were euthanized to 

process cephalothoraxes for IIF. 

 

IHC 

 

The cephalothoraxes of dead and euthanized prawns were fixed with Davidson’s 

fixative for 48 h (Bell and Lightner, 1988; Lightner, 1996) sectioned longitudinally 

and embedded in paraffin. Sections of 5 µm were made and placed on silane-coated 

slides, and stained for IHC according to the procedure described by Escobedo-Bonilla 

et al., (2007).  

Sections were deparaffinized by heating at 55-60°C for 30 min and rehydrated by 

immersion in xylene and in gradual decreasing ethanol concentration (from 100% to 

50%) and Tris buffer (pH 7.6). Endogenous peroxidase was blocked by incubating the 

slides for 30 min at room temperature in sodium azide (1%) and hydrogen peroxide 

(0.02%) in Tris buffer. Then sections were incubated with 2 µg ml-1 8B7 for 1 h at 

37°C. They were washed 3 times for 5 min each in Tris buffer  and incubated for 1 h 

at 37°C with 1:200 dilution of biotinylated sheep anti-mouse IgG antibodies (RPN 

1001, Amersham Biosciences). Afterwards, they were washed 3 times in Tris buffer 

and incubated in streptavidine-biotinylated horseradish peroxidase complex (RPN 

1051, Amersham Biosciences, UK) for 30 min at room temperature and washed 3 

times again. Finally, they were incubated for 10-15 min in 0.01% of 3,3´ 

diaminobenzidine (D8001, Sigma Aldrich) for color development and counterstained 

with Gill’s hemaluin, washed, dehydrated and mounted with Depex Polystyrene 

dissolved in xylene (DPX mountant for histology, Fluka, Biochemika, 44581, UK). 
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As in the study of P. vannamei (Rahman et al., 2008), WSSV-infected cell numbers 

in gills, hematopoietic tissue and cuticular epithelium of stomach and body wall were 

quantified by light microscopy at 400× magnification. For gills and hematopoietic 

tissue, infected cells in 5 randomly selected fields were counted and expressed as cells 

mm–2. For cuticular epithelium, both WSSV-infected and uninfected cells were 

counted in 5 fields selected at random and expressed as average percentage (%) 

infected cells. Differences in numbers of infected cells were tested for significance 

using t-tests. 

 

IIF 

 

Tissues of prawns were processed for IIF to detect WSSV using procedures described 

previously (Escobedo-Bonilla et al., 2006). The cephalothoraxes of dead and 

euthanized prawns were dissected longitudinally, embedded in 2% methylcellulose 

and quickly frozen at -20 °C. Cryosections of 5 µm were made and immediately fixed 

in absolute methanol at -20 ºC for 20 min. Sections were washed three times for 5 min 

each in phosphate buffered saline (PBS) and incubated for 1 h at 37°C with 2 µg ml-1 

of monoclonal antibody 8B7 (Diagxotics, USA) against WSSV envelope protein 

VP28 (Poulos et al., 2001). Then they were washed three times for 5 min each in PBS 

and incubated for 1 h at 37°C with 0.02 µg ml–1 of fluorescein isothiocyanate (FITC)-

labelled goat anti-mouse IgG antibodies (F-2761 Molecular Probes, The Netherlands). 

Finally, they were washed in PBS, rinsed in deionised water, dried and mounted with 

a solution of glycerine and 1, 4-diaza-bicyclo[2,2,2]-octane (DABCO) (ACROS 

organics, USA). Slides were analyzed by fluorescence microscopy (Leica DM RBE). 

Tissues of moribund penaeid shrimp known to be infected with WSSV and uninfected 

shrimp were stained as positive and negative controls, respectively.  
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Results 

 

WSSV pathogenesis in M. rosenbergii 

 

When injected with a low dose of WSSV-Thai-1, the number of M. rosenbergii 

prawns displaying disease signs peaked at 48 hpi (all 5 prawns) and then declined, 

with none of the prawns displaying disease signs at 120 hpi (Table 1). Over this 

period, only 1 of 5 prawns became moribund at 48 hpi, and 2 of 5 prawns at 72 hpi. 

IHC analysis of gills, hematopoietic tissue and cuticular epithelium of stomach and 

body detected WSSV-infected cells in the majority of prawns sampled from 36 hpi 

onwards (Table 1). In the 3 prawns in which WSSV was detected at 120 hpi, infected 

cell numbers were lower than in prawns sampled at either 48 hpi or 72 hpi. Except for 

at 24 hpi (p > 0.05), infected cell numbers seen in organs of M. rosenbergii (Table 1) 

were not significantly different from numbers seen in comparable organs of P. 

vannamei challenged with the same dose of WSSV (Rahman et al., 2008) 

When injected with a high dose of WSSV-Thai-1, the number of prawns displaying 

disease signs peaked similarly at 48 hpi and declined thereafter very similarly to the 

low-dose challenge (Table 1). More moribund shrimp were evident at 36 hpi and at 48 

hpi (3 of 5), 72 hpi (2 of 5) and 120 hpi (1 of 5) compared to the low dose challenge. 

IHC also detected WSSV-infected cells earlier (2 of 5 prawns at 24 hpi) and in all 

prawns sampled thereafter. Similarly to the low dose of WSSV-Thai-1, WSSV-

infected cell numbers increased from 24 hpi to a maximum around 48 to 72 hpi before 

declining to very low levels at 120 hpi (Table 1, Fig 1A). Curiously, except for 

hematopoietic tissue at 48 hpi (p < 0.05), infected cell numbers did not differ 

significantly in any tissue type compared to those seen with the low dose WSSV-

Thai-1 inoculum. 

When injected with a low dose of WSSV-Viet, none of the prawns displayed gross 

disease signs, none died and no WSSV-infected cells were found by IHC analysis at 

any time point (Table 1, Fig. 1). At the high dose, however, 1 of 5 prawns showed 

disease signs at 24 hpi and this increased to a maximum of 4 of 5 prawns at 36 hpi 

and 48 hpi before declining to no prawns at 120 hpi (Table 1). Despite prawns 

showing disease signs, no deaths occurred prior to when prawns were sampled. 

WSSV-infected cells were first detected by IHC in low numbers at 36 hpi (12 hpi 

later than with WSSV-Thai-1) and numbers peaked at 48 hpi before declining (Table 



Susceptibility of M. rosenbergii to WSSV infections 
 

123 
 

1, Fig. 1B). Infected cell numbers in gill tissues at 36 hpi (5 ± 9) and 72 hpi (18 ± 29) 

were significantly lower (p < 0.05) than those seen at these times with WSSV-Thai-1 

(49 ± 32 and 157 ± 94, respectively), but at all other times there were no significant 

differences (p > 0.05) across the tissues examined. 

 

Table 1. Immunohistochemistry quantification of infected cells in various organs 

of M. rosenbergii injected with either WSSV-Thai-1 or WSSV-Viet. 

 
WSSV 
Strain Dose hpi Number of prawns 

(Total n = 5) 
Average number of infected cells  

in infected prawns 

   Disease 
signs Mortality 

Infected 
cells 

detected 

Gills  
(mm-2) 

Stomach 
epitheliu
m (%) 

Cuticular 
epithelium 

(%) 

Hematopoietic 
tissue (mm-2) 

          
Thai-1 Low 0 0 0 0 0 0 0 0 

  12 0 0 0 0 0 0 0 
  24 1 0 0 0 0 0 0 
  36 3 0 4 39±42 2±4 12±9 23±15 
  48 5 1 5 129±149 9±12 19±21 53±33 
  72 3 2 5 239±203 29±13 28±14 15±16 
  120 0 0 3 1±3 0.8±2 3±5 0 

          
 High 0 0 0 0 0 0 0 0 
  12 0 0 0 0 0 0 0 
  24 2 0 2 7±7 0.8±0.7 0.6±0.4 2.5±0.7 
  36 4 3 5 49±32 10±8 8±8 22±20 
  48 5 3 5 199±270 13±11 14±13 109±23 
  72 4 2 5 157±94 20±5 22±4 37±24 
  120 2 1 5 3±3 5±12 6±2 8.6±12 

          
Viet Low 0 0 0 0 0 0 0 0 

  12 0 0 0 0 0 0 0 
  24 0 0 0 0 0 0 0 
  36 0 0 0 0 0 0 0 
  48 0 0 0 0 0 0 0 
  72 0 0 0 0 0 0 0 
  120 0 0 0 0 0 0 0 
          
 High 0 0 0 0 0 0 0 0 
  12 0 0 0 0 0 0 0 
  24 1 0 0 0 0 0 0 
  36 4 0 3 5±9 9±11 0.4±0.8 7.5±9 
  48 4 0 5 53±33 21±15 30±20 43±21 
  72 3 0 5 18±29 7±6.5 11±13 10±19 
  120 0 0 2 15±17 9±7 2±4 21±39 
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Fig. 1. Photomicrographs of gills, cuticular epithelia of the stomach and body 

wall, hematopoietic tissues, and antennal glands of juvenile M. rosenbergii 

sampled at 48 h post-injection with either 30 SID50 (low dose) or 10,000 SID50 

(high dose) of either (A) WSSV-Thai-1 or (B) WSSV-Viet. Infected cells were 

detected by immunohistochemistry using a VP28-specific monoclonal antibody, 

resulting in a brown-red colour; b = gill branch; l = gill lamella; c = cuticula; ep = 

epithelium; ct = connective tissue; scale bars = 50 µm. 
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Determination of the PID50 of the WSSV strains 

 

Among groups of prawns injected with WSSV-Thai-1 inoculum diluted 10–1 to 10–6, 

those injected with 10–1, 10–2 and 10–3 dilutions began to display disease signs from 

24 hpi. Based on IIF detection of WSSV infection across prawns injected with the 

various inoculum dilutions and sacrificed at expected peak viremia (48 hpi), the 

geometric mean infectious dose determined for the 3 replicate prawn groups (105.05, 

105.13 and 105.80 PID50 ml–1) was 105.33±0.41 PID50 ml–1 (Table 2). Among groups of 

prawns injected with WSSV-Viet inoculum diluted up to 10–4, all prawns injected 

with the undiluted and 10–1 diluted inoculum began to display disease signs from 24 

hpi. Based on IIF detection of WSSV infection across prawns from all dilutions 

sacrificed at 48 hpi, the geometric mean infective titer determined from the 3 replicate 

groups (102.80, 103.13 and 103.67 PID50 ml–1) was 103.20±0.44 PID50 ml–1 (Table 2). 

 

Table 2. Numbers of M. rosenbergii found to be infected at 48 h post-injection of 

10-fold dilutions of either WSSV-Thai-1 or WSSV-Viet as determined by IIF 

staining. 

Dilution 
% prawns infected (n = 15/dilution) 

 

WSSV-Thai-1 WSSV-Viet 

undiluted ND 100 

10-1 100 100 

10-2 100 40 

10-3 100 0 

10-4 53 0 

10-5 7 ND 

10-6 0 ND 

ND = not done 
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Determination of the LD50 of the WSSV strains 

 

All prawns injected with 10–1, 10–2 and 10–3 dilutions of WSSV-Thai-1 began to 

shown gross disease signs from 24 hpi. Among prawns injected with dilutions of 10–4, 

10–5 and 10–6, only those in which infected cells were evident when sampled at 120 

hpi showed disease signs from 24 hpi. Except for the absence of white spot formation 

in cuticle, disease signs were comparable to those seen in penaeid shrimp and 

included anorexia, lethargy and whitening of the body. Deaths occurred from 48 hpi 

onwards and the LD50 determined when the bioassay was terminated (120 hpi) for the 

3 replicate groups of prawns (105.51, 105.14 and 105.48 LD50 ml–1) was 105.38±0.21 LD50 

ml–1. 

All prawns injected with undiluted and 10–1 diluted WSSV-Viet began to show gross 

disease signs from 24 hpi. Among prawns injected with the 10–2 dilution, only those 

in which infected cells were evident when sampled at 120 hpi showed disease signs 

from 24 hpi. Deaths occurred from 48 hpi onwards and the LD50 determined when the 

bioassay was terminated (120 hpi) for the 3 replicate groups of prawns (102.00, 102.50 

and 102.30 LD50 ml–1) was 102.27±0.25 LD50 ml–1. A reduced LD50 compared to PID50 for 

prawns injected with the WSSV-Viet strain was indicative of its lower relative 

virulence predicted from bioassays in penaeid shrimp. 

 

Discussion 

 

Some challenge experiments have reported juvenile and adult life stages of M. 

rosenbergii to be quite refractive to WSSV infection (Sahul Hameed et al. 2000, 

Waikhom et al. 2006, Yoganandhan et al. 2006). However, in the present study, with 

bioassays using high and low virulence strains of WSSV, juvenile (2 to 5 g) M. 

rosenbergii were found to readily support WSSV replication and succumb to disease 

and mortality. These data concur with alternative findings of higher infection levels 

and mortality occurring in earlier life stages (larvae and juveniles) than in adults (Lo 

et al. 1996, Peng et al. 1998, Rajendran et al. 1999, Pramod Kiran et al. 2002). While 

the differences in clinical outcomes with juvenile M. rosenbergii remain to be 

determined, possibilities include differences in M. rosenbergii age and origin, stress 

factors such as water temperature, and dose and virulence of the WSSV strain used. In 

examining WSSV strain virulence and dose factors in the bioassays reported here, 
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18.6-fold more WSSV-Thai-1 virus and 398-fold more WSSV-Viet virus was found 

to be required to establish infection in juvenile M. rosenbergii compared to P. 

vannamei shrimp (Escobedo-Bonilla et al., 2005). These data indicate clearly that 

higher doses of WSSV are needed to establish infection in M. rosenbergii compared 

to shrimp, and that the WSSV strain origin can affect what dose is required for it to be 

capable of causing disease and mortality. 

While both WSSV-Thai-1 and WSSV-Viet originated from diseased P. monodon, 

each had been passaged through different crayfish species before being passaged 

through SPF P. vannamei to prepare the inocula used to challenge juvenile M. 

rosenbergii. It is possible that passage through the different crayfish species had some 

role in determining the virulence of the inocula. However, as the double-stranded 

DNA genome of WSSV evolves quite slowly (Zwart et al., 2010), virulence 

differences appear more likely to be inherent to each strain rather than a factor of their 

recent passage history. 

Published bioassays with M. rosenbergii have used various, often poorly described 

conditions and water temperatures ranging between 18 and 32°C. It is quite possible 

that water temperature, which is known to affect WSSV replication (Rahman et al., 

2006), had a major impact on the clinical and virological outcome. Here the water 

temperature was standardized to 27°C, as this is optimal for replication of the WSSV-

Thai-1 and WSSV-Viet strains in P. vannamei (Rahman et al., 2006; 2007). 

IHC detection of infected cells in cephalothorax tissues of M. rosenbergii showed 

WSSV to replicate in the same target organs as found in P. vannamei (Escobedo-

Bonilla et al., 2007; Rahman et al., 2008), with the exception of the lymphoid organ 

for which no equivalent organ has been described in M. rosenbergii (P. Sithigorngul 

pers. comm.). Apart from the detection of infected cells being delayed from 24 to 36 

hpi in M. rosenbergii compared to P. vannamei challenged with a low dose of WSSV-

Thai-1, their numbers did not differ significantly across the organs examined. Indeed 

there were few significant differences between infected cell numbers seen in any 

organs at any times following challenge with either low or high doses of WSSV-Thai-

1 and a high dose of WSSV-Viet. However, in contrast to this as well as observations 

in P. vannamei, no infected cells were detected in any M. rosenbergii challenged with 

a low dose of WSSV-Viet. 

Similarities in infected cell numbers seen in juvenile M. rosenbergii challenged with 

high/low doses of WSSV-Thai-1 and a high dose of WSSV-Viet are confounding 



Chapter 4 
 

130 
 

considering the differences in clinical outcomes. However, fewer infected gill cells 

were apparent with WSSV-Viet than with WSSV-Thai-1, which supports the 

hypothesis that gill infection levels provide a good barometer of clinical outcomes in 

shrimp (Rahman et al., 2008). Consistent with previous observations of a transitory 

viremic period in which disease signs and WSSV are readily detectable (Sahul 

Hameed et al., 2000; Waikhom et al., 2006; Yoganandhan et al., 2006; Sarathi et al., 

2008), there was a general trend of falling numbers of infected cells in M. rosenbergii 

between 3 and 5 d post-challenge. More pronounced clearance effects appear to occur 

in challenged adult prawns (Sahul Hameed et al., 2000, Sarathi et al., 2008), and 

infection during the first couple of days following challenge has been tracked by 

immune-detection of the WSSV VP28 protein (Yoganandhan et al., 2006). 

The mechanism by which WSSV infection is cleared by M. rosenbergii remains a 

mystery that, if solved, could help devise strategies to protect cultured shrimp species. 

WSSV challenge affects levels of prophenoloxidase (proPO), superoxide anion, 

superoxide dismutase, total hemocyte count and clotting time, factors generally 

involved in antibacterial defense responses (Sarathi et al., 2008). There is evidence to 

suggest some role for proPO in defending non-crustacean invertebrates against 

viruses (Shelby and Popham, 2006). However, the increases in proPO levels in 

hemolymph and melanized lesions of shrimp infected with Taura syndrome virus 

(Hasson et al., 1999, Song et al. 2003) do not occur in M. rosenbergii infected with 

WSSV. No hemocytic infiltrations, encapsulations or ectopic spheroids typical of 

bacterial or viral infections in penaeid shrimp occur in WSSV-infected M. rosenbergii 

(Sarathi et al., 2007), so direct hemocyte-mediated intervention appears unlikely. 

Hemagglutinins or lectins in the hemolymph of M. rosenbergii might be the reason 

for their greater tolerance for WSSV infection compared to P. monodon (Pais et al., 

2007). However, if they are, their mode of action must be far more effective than the 

C-type lectins stimulated in response to WSSV infection in highly susceptible shrimp 

(Luo et al., 2003; Ma et al., 2007; 2008; Wang et al., 2009; Zhao et al., 2009). 

Moreover, while lectins may have roles in defending both vertebrates and 

invertebrates against viruses as well as bacteria and fungi (Wang et al., 2009; 

Cerenius et al., 2010), their function relies on their carbohydrate recognition domains 

(Cambi et al., 2005). As none of the 5 major structural proteins of WSSV appear to be 

glycosylated (van Hulten et al., 2002; Wei et al., 2012), any direct interaction 

between lectins and WSSV seems unlikely. 
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M. rosenbergii defense against WSSV involves some mechanism that actively clears 

most infected cells within a few days of challenge. However, as M. rosenbergii that 

survive WSSV challenge appear to maintain low levels of virus detectable only by 

nested-PCR (Peng et al., 1998), the clearance mechanism might be evaded or 

deactivated once infection loads reach levels which can persist indefinitely, in the 

absence of pathology. 

In summary, data reported here confirm that juvenile M. rosenbergii have lower 

susceptibility to infection and more effective mechanisms for clearing infection and 

thus protecting themselves against disease than penaeid shrimp. These abilities were 

particularly evident here with a WSSV strain of lower apparent virulence. However, 

when challenged with a strain of higher virulence or with high doses of the low 

virulent strain, similar numbers of infected cells are established as in the more 

susceptible P. vannamei challenged using identical conditions. This finding clearly 

indicates that once some acute infection load threshold has been passed, whatever 

defense mechanisms are mounted by M. rosenbergii become swamped, and the 

clinical outcome of disease through to mortality progresses similarly to that in shrimp 

with acute infection. The dose and strain variables assessed in this study are likely to 

explain in part why differences in the susceptibility of juvenile M. rosenbergii have 

been reported, and highlight the importance of using well-characterized WSSV strains 

and standardized challenge conditions. M. rosenbergii and other palaemonid prawns 

can serve as useful model crustaceans for understanding anti-WSSV protection 

mechanisms and how these might be primed to protect these and cultured penaeid 

shrimp against disease caused by WSSV and other problematic viruses. 
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1. THE CUTICLE AS BARRIER TO PREVENT ENTRY OF WSSV IN SHRIMP 

VIA THE WATER 

 

The first part of this thesis focused on the barriers which can protect penaeid shrimp 

against WSSV entry. The limited work that has been done on the pathogenesis of 

WSSV showed that oral or immersion inoculations resulted in primary replication in 

stomach epithelium and gills (Wongteerasupaya et al., 1995; Chang et al., 1996; Arts 

et al., 2007; Escobedo-Bonilla et al., 2007). How the virus can reach these sites of 

primary replication has never been understood, as these target cells are all shielded 

from the outside world by their exoskeleton, the cuticle. In a lot of experimental 

studies, it was simply assumed that WSSV reaches these cells, and there was little to 

no attention to possible barriers. The fact that no studies have shown the entry site of 

WSSV with certainty should be seen in the broader frame of shrimp research. In fact, 

for all systemic shrimp viruses, neither the site of entry nor the sites of primary 

replication have been clearly defined (Lightner, 2011). 

The cuticle of shrimp has the same function as skin in mammals and, when intact, will 

present a barrier against the entry of any invading virus. As in all crustaceans, the 

cuticle of shrimp is essentially composed of chitin, tightly-packed with chitin-binding 

proteins and calcium (Compère et al., 2004). It forms an acellular layer covering all 

external surfaces of the shrimp body, and the stomach and hindgut as well. Even on 

the gills and in the stomach, where the cuticle is only a few micrometer thick, 

ultrastructural analyses have shown that there are very few openings to the surface 

through which virus particles could enter (Bell and Lightner, 1988; Andrews and 

Dillaman, 1993). The ultrastructure of the outermost thin epicuticle, on one hand, and 

the exo- and endocuticle, on the other, provide an impregnable shield which does not 

even allow water molecules to pass. The only openings in the cuticle with a diameter 

wide enough for virions to pass, are the antennal gland pore and excretory canals of 

tegumental glands. Although the detailed anatomy of the antennal and tegumental 

glands in shrimp have not been described (Bell and Lightner, 1988), it seems unlikely 

that any virus would be able to move against the outward stream of urine and 

tegumental secretion. Another weak spot in the armour of shrimp, where there is no 

cuticle, lies in the midgut. Here, the cells are only protected from the outside world by 

a much thinner and looser layer called the peritrophic membrane (PM). This layer is 

composed of chitin strands and chitin-binding proteins such as peritrophins and 
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intestinal mucins (Wang and Granados, 2001). Two studies have already considered 

the midgut as the site of entry of WSSV (Di Leonardo et al., 2005; Arts et al., 2007). 

However, as WSSV has never been described to replicate in cells of endoblastic 

origin, virus particles would have to pass the epithelial cells and the basement 

membrane. But before that, they would also have to cross the PM which shields the 

enterocytes from the passing gut contents (Wang and Granados, 2001; Martin et al., 

2006). Some insect viruses such as entomopoxviruses and baculoviruses are known to 

cross the PM (Mitsuhashi and Miyamoto, 2003; Hoover et al., 2010). They use 

special enzymes for this, known as enhancins or fusolins, which digest the protein and 

chitin in the PM, thus creating holes through which the virions can pass (Peng et al., 

1999). Further research in our laboratory is under way to examine the possibility that 

WSSV uses a similar mechanism to enter into shrimp. 

Again, in analogy with the situation in mammals, dermotropic viruses or viruses 

which enter the host via the skin do not cross the skin when it is intact but rather 

require wounds to be present (cfr. papilloma- and poxviruses) or depend on vectors to 

be deliverd transcutaneously (cfr. arboviruses). The involvement of a single 

macroscopic organism responsible for the transcuticular delivery of WSSV into 

shrimp is highly unlikely, as this would have been identified in shrimp farms by now 

(cfr. sea lice in fish). However, the role of microscopic organisms in facilitating entry 

of WSSV can not be ruled out. Many bacteria living on and around shrimp are 

facultatively pathogenic to them, and often possess the capacity to produce chitinase 

and proteinases capable of digesting shrimp cuticles (Hood and Meyers, 1977; 

Suginta et al., 2000). This is a potential threat to the primary barriers of a shrimp and, 

under the right circumstances, could result in WSSV target cells becoming exposed.  

Unlike the skin in mammals, the exoskeleton of shrimp is not renewed and repaired in 

a continuous manner. Instead, it is replaced periodically, and during this moulting, the 

new cuticle is very thin, fragile and the secreting cells send apical projections close to 

the surface. The pores left by the cellular extensions are not well-studied in shrimp 

and could potentially be large enough to allow certain virus particles to pass 

(Compère and Goffinet, 1987a; b), or at least they could greatly increase the chances 

for viruses to reach susceptible cells when superficial wounds in the thin cuticle are 

present. It is with this background that we hypothesised that the susceptibility of 

shrimp to WSSV infection changes during the moult cycle and that it can be increased 

by the presence of open wounds. 
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We started our investigations first with per os inoculations. Using a catheter, careful 

oral inoculation of a high dose of WSSV in shrimp in all stages of the moult cycle did 

not result in any infection. When the same dose was administered by intramuscular 

injection in shrimp in all moult stages, infection occurred in all subjects. This 

outcome showed that the digestive tract remained shielded from WSSV entry in all 

moult stages, both at the level of stomach cuticle and at the peritrophic membrane in 

the midgut.  

We then went on to inoculate shrimp by immersing them in WSSV suspensions. This 

method of exposing the host should allow the virus to reach all external surfaces, as 

well as leaving a possibilitiy for the virus to be ingested, thus reaching the stomach 

and gut. After a first set of experiments, it became clear that despite bringing the 

virions in contact with all potential sites of entry, no infection was established. It was 

thus concluded that it was impossible for the virus to penetrate successfully through 

intact cuticle, either when it was fully formed in inter-moult, or still thin and weak in 

post-moult stages. However, when accidental wounds of the cuticle were observed, or 

when wounds were inflicted in a controlled way by cutting appendages, the infection 

did occur, but most consistently in those shrimp which had recently moulted. As the 

moult cycle progressed (D stages), shrimp became refractory to WSSV infection from 

water. It, therefore, appears that a period exists after moulting (A and B stage, less in 

C stage), during which WSSV has an increased chance to enter shrimp via waterborne 

contact route. When an in vivo titration of the virus stock was performed by the 

intramuscular injection route, no significant intrinsic differences in susceptibility to 

WSSV infection existed between shrimp in different moult stages. This allows to 

conclude that the underlying mechanism responsible for the difference in 

susceptibility to WSSV by waterborne route is likely to be linked to the impact of the 

moult process on the site of viral entry.  

Possible underlying mechanisms of a moult-dependent change could be: (1) clotting 

time (i.e. leaving a longer window of opportunity for the virus to enter), (2) innate 

antiviral defense at the level of viral entry (i.e. an antiviral factor circulating in the 

hemolymph), (3) activated antiviral response (i.e. hemocytes involved in clotting), (4) 

cell structure, polarity or physiology. Concerning the first three hypotheses, it has 

been shown several times that the defense competence of shrimp varies during the 

moult cycle (Le Moullac et al., 1997; 1998; Cheng et al., 2003b; Liu et al., 2004). 

Although one would expect that during the critical period of moulting, evolution 
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would have taken care of protection of shrimp against pathogens, it is possible that 

some of these systems are undermined when rearing shrimp in captivity. In support of 

the fourth hypothesis, it is known that the epidermal cells exhibit a dramatic change in 

size and activity during the moult cycle (Skinner, 1985). The cytoskeleton changes 

and the cells metamorphose from a cubical, dormant epithelium into a high columnar, 

secretory epithelium with a highly increased transport through the cells, first to the 

bloodstream from the old cuticle when this is being resorbed (D1 stage), and 

subsequently towards the new cuticle in order to lay down chitin, proteins etc. (D2 

stage to B stage). It is conceivable that the expanded apical surface during cuticle 

formation increases the chances for WSSV binding with its target cells. Moreover, the 

virus can (ab)use the cytoskeleton of the secretory epithelial cells to more easily start 

its replication, or can pass through in the direction of the basement membrane in order 

to reach the hemolymph circulation. The hypothesis that hemolymph coagulation 

could be determining in WSSV susceptibility was already supported by preliminary 

experiments in our laboratory (unpublished results). These tests showed that the time 

required for hemolymph to clot and a wound to be closed was 2 to 4 times shorter in 

post-moult than in pre-moult shrimp. 

Overall, our findings clearly showed that open wounds in the cuticle increase the 

chance for a WSSV infection to become established. To our knowledge, this is the 

first description of a shrimp virus entering its host via wounds.  

In a follow-up study (unpublished results, Tan 2008), we tried to aswer the question 

whether WSSV enters directly into the bloodstream of shrimp, or first needs to 

establish a primary replication at the site of the wound (tissue or hemocytes) prior to 

spreading systemically. For this, we exposed post-moult shrimp to WSSV via 

immersion after removal of a pleopod and screened the cells in and around the wound, 

the circulating hemocytes and the internal target organs of WSSV for presence of 

virus at different time points. The first WSSV-infected cells at the wound site were 

found at 24 hpi. By that time, the virus was also already detected in the gills and 

haematopoietic tissue. This indicates that entry of WSSV into the haemolymph occurs 

early and that the spread can be directly systemic. At 36 hpi, a very limited number of 

hemocytes was found positive for WSSV, supporting the idea that hemocytes do not 

play an important role in WSSV pathogenesis (Escobedo-Bonilla et al., 2007). 

During the course of this thesis, many attempts were made to further develop the 

inoculation model with WSSV entering through the cuticle. By using a dental drill 
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fitted with metal and diamond burrs, or an argon fluoride (ArF) ablation laser, 

attempts were made to remove the cuticle and expose the underlying cells 

(unpublished data). None of these experiments were successful in reproducibly 

inducing WSSV infection in all exposed animals, not even in those which had 

recently moulted. This shows that the virus cannot infect cuticular epithelial cells 

from the outside. 

From the work in this thesis, it has become clear that the entry of WSSV into its host 

needs to be closely examined and that existing notions on inoculation models need to 

be revisited. For instance the role of open wounds in natural infections needs to be 

investigated. Shrimp are known to be cannibalistic, so it is not unlikely that some 

pathogens may be transmitted easily when shrimp are living in overcrowded and 

stressful conditions. 

Sudden environmental changes, such as a drop in temperature, salinity or pH are 

known to induce a peak in moulting in a shrimp pond (Vijayan and Diwan, 1995). 

While synthesis of the new moult skin is not entirely finalized, it has a reduced barrier 

function, and precocious moulting could leave the shrimp more vulnerable to 

infections. This idea fits very well with the field observation that WSSV outbreaks 

often occur simultaneously over wide areas affected by sudden climatological 

changes (Lightner, 2011). 

Focusing on maintaining a healthy, strong cuticle could be an effective strategy to 

reduce the transmission of WSSV and other shrimp viruses. 

 

 

2. THE REDUCED SUSCEPTIBILITY OF M. rosenbergii TO WSSV INFECTION 

AND DISEASE COMPARED TO P. vannamei 

 

In the second part of this thesis, the susceptibility of M. rosenbergii to WSSV 

infection and disease was investigated. WSS was first described in penaeid shrimp in 

1993-1995 (Chou et al., 1995; Wongteerasupaya et al., 1995). Within a few years it 

was noticed that the situation of WSS in M. rosenbergii was different from that in 

penaeids. Several observational and experimental studies showed that the incidence of 

WSSV infection in M. rosenbergii was lower and that disease severity and mortality 

due to WSSV infections were lower (Chang et al., 1998; Peng et al., 1998; Sahul 

Hameed et al., 2000; Bonami and Sri Widada, 2011). All these existing studies were 
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performed with poorly standardised and hardly reproducible methodologies and thus 

did not yield conclusive results. Moreover, little progress has been made to explain 

the mechanisms which are responsible for the observations. So far, only changes in 

some aspecific immune parameters (prophenoloxidase (proPO), superoxide anion, 

superoxide dismutase, total hemocyte count and clotting time) (Sarathi et al., 2008) 

and an increase of C-type lectins in hemolymph have been reported (Pais et al., 2007). 

How these parameters connect to the pathogenesis of the virus is not understood. 

Our work on WSSV infections in M. rosenbergii showed that M. rosenbergii indeed 

possesses some degree of reduced susceptibility to WSSV infection and disease. 

However, the situation turned out to be more complex than what had been reported so 

far, as we found that, under certain conditions, the outcome of the infection was 

similar to that in P. vannamei i.e. wide-spread viral replication and acute mortality.  

By using a standardised methodology, as previously used in our laboratory for 

penaeid shrimp (Rahman et al., 2008) (the only difference was the use of fresh water 

instead of salt water), our study in M. rosenbergii confirmed that (1) 20-400x more 

virus was needed to establish a WSSV infection in M. rosenbergii than in P. 

vannamei, (2) M. rosenbergii showed clinical signs and mortality comparable to P. 

vannamei when the dose was high, (3) infected animals had the same WSSV target 

organs and similar numbers of WSSV-infected cells in time as P. vannamei. These 

last two observations indicate that if the initial defense of M. rosenbergii is overcome 

by inoculating sufficiently high virus quantity, a lethal infection with a replication rate 

comparable to that observed in P. vannamei follows. 

The difference in virulence between the WSSV Thai-1 and WSSV Viet isolates in M. 

rosenbergii is similar as was observed in penaeid shrimp, with the former being more 

virulent than the latter. It could even be concluded that the WSSV Viet is even less 

virulent in M. rosenbergii, as relatively more virus was needed to establish infection 

and cause mortality. This underlines the importance of virus isolate characterisation 

and virus dose determination prior to performing experimental infections. 

Our findings that in M. rosenbergii WSSV is able to replicate and to cause severe 

signs of disease are in accordance with most publications on the topic. However, the 

observation that the virus causes mortality is in sharp contrast with most published 

data. Since 2002, no publications have mentioned significant mortality caused by 

WSSV replication. Because we used quantified doses of WSSV, we can now 
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conclude that high doses of WSSV can overwhelm the prawn’s defense system and 

lead to acute death. 

These results shed new light on the published studies describing the clinical outcome 

of WSSV infections in M. rosenbergii, as well as on the underlying mechanism. The 

delayed detection of infected cells, and the reduction in infectious titer compared to P. 

vannamei both indicate that M. rosenbergii possesses an early defense. Additionally, 

the reduction in the number of infected cells 4-5 days after inoculation is a proof for a 

late(r) defense response. 

In order to better understand the defense mechanisms, it will be necessary to 

differentiate the possibilities of a lack of susceptibility to the virus, or (a)specific 

antiviral defense. A first hypothesis is that M. rosenbergii has less susceptible cells or 

less receptors per cell than penaeid shrimp, which results in less vital organs being 

affected by WSSV. The receptor(s) for WSSV is currently still unknown (Li et al., 

2007), and only their discovery will allow to verify this concept. However, the 

counting of infected cells showed that, compared to those in penaeid shrimp, target 

organs are the same, and the number of infected cells are similar. 

Another hypothesis is that M. rosenbergii better “tolerates” WSSV infection, allowing 

the virus to replicate without the development of pathology. This implies a different 

virus-host interaction where, for instance, the virus allows for better survival and 

function of infected cells than in penaeid shrimp (i.e. less cell lysis, less interference 

with cell metabolism). The better virus-host adaptation which apparently exists for 

WSSV in M. rosenbergii would be the result of a longer, more beneficial co-evolution 

of the virus and the prawns. This in the logic that over the course of evolution, 

parasites generally tend to allow better survival of their hosts, in the interest of their 

own fitness.  

Closely related to this idea of tolerance is the theory that some hosts will accomodate 

WSSV replication, in a proces described as “viral accomodation” (Flegel, 2007). The 

viral accommodation theory attributes a central role to apoptosis. Either a viral-

induced, massive and uncontrolled apoptosis (kakoapoptosis) will lead to the death of 

the host, or the viral replication is tolerated in the absence of kakoapoptosis and the 

host survives (Sahtout et al., 2001; Flegel, 2009; Flegel and Sritunyalucksana, 2011). 

In these scenarios, viral-induced apoptosis is considered detrimental. This is in direct 

conflict with the more commonly accepted concept that apoptosis is an antiviral 

defense response, which is beneficial for the host. This has also been shown for 
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WSSV infections in shrimp where increased apoptosis levels were correlated with 

increased survival rates (Wang et al., 2008; Wang and Zhang, 2008). In either case, 

no signs of increased apoptosis were noted by histopathological examination during 

our study. Specific detection techniques for apoptotic cells e.g. TUNEL and caspase 

stainings did not work and, therefore, other approaches are required to reach a 

conclusion in this matter. 

A third hypothesis explaining the increased resistance against WSSV of M. 

rosenbergii compared to penaeid shrimp is that the freshwater prawn can mount an 

active defense response. This could be the inactivation of inoculated virus by a 

humoral factor or an immediate cellular response which is already present at the time 

of inoculation (innate defense). As already indicated in previous research, this could 

be a circulating lectin or antiviral protein (Pais et al., 2007, Sarathi et al., 2008). This 

could be complemented with specific antiviral defense which eliminates infected cells 

i.e. apoptosis, cytotoxic hemocytes etc. If freshwater prawns are capable of mounting 

an active antiviral response during WSSV infection, then evidence of classic 

inflammatory processes should be present. In our work, we did not encounter signs of 

hemocytic infiltrations, encapsulations and lymphoid organ spheroids. These 

hemocytic responses are typically found in chronic virus infections of shrimp 

(Lightner, 2011), where it is clear that the host is “fighting” against the virus. This 

indicates that the antiviral reponse of M. rosenbergii is more likely to be of humoral 

nature and less cellular, or it is subtle in terms of histopathological changes. The 

identification of the antiviral defense of M. rosenbegii is extra interesting, in the light 

of the accumulating evidence that invertebrates might possess some level of adaptive 

immunity. This has been described for instance in Drosophila (Pham et al., 2007) and 

is referred to as “innate immunity training” (Netea et al., 2011). WSSV infections in 

M. rosenbegii could be a good model to investigate this principle in a crustacean, 

which can open possibilities towards control strategies. 

It is also important to point out that the apparent clearance of detectable WSSV 

replication in M. rosenbergii could in fact be the process of WSSV going into latency, 

rather than the shrimp's defense system eliminating the virus. Long-term studies with 

the appropriate sensitive detection methods will be necessary to differentiate these 

two scenarios. 

In any case, it is clear that M. rosenbegii is less susceptible to WSSV infection and 

disease than penaeid shrimp, and the decreasing number of infected cells in time are 
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an indication that M. rosenbegii can mount an antiviral defense response against the 

virus. Seeing the low incidence of viral diseases in M. rosenbergii in general, the 

species’ antiviral defense could have a broad activity against all viruses.  

The importance of understanding the exact mechanism of WSSV infection in M. 

rosenbergii lies in two areas. Firstly, M. rosenbergii is often cultured and processed in 

the same areas as penaeid shrimp. It is therefore of great importance to know whether 

M. rosenbergii is shedding infectious virus during the course of infection and can 

present a reservoir for the virus. Secondly, M. rosenbergii is a promising model 

species for studying the antiviral defense apparently lacking or blocked by WSSV in 

penaeid shrimp. 
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Since its appearance in the early 90’s, White Spot Syndrome Virus (WSSV) has 

continuously caused devastating outbreaks of penaeid shrimp mortality, from the 

shores of South-East Asia, all over Latin-America and more recently in all middle-

eastern countries were shrimp culture had only started to expand. In all that time, only 

limited progress has been made in reducing the impact of the virus on shrimp 

production. Unlike with many of the other shrimp viruses circulating in the culture 

ponds, no signs of resistance against WSSV infection and disease in penaeid shrimp 

have been documented. 

In chapter 1, shrimp aquaculture is introduced, the problem of WSSV infections is 

situated and the aims of this thesis are outlined. We aimed to lay the groundwork for 

two strategies which have the potential to stop WSSV entry. The first was to better 

understand the primary barrier of shrimp, their exoskeleton cuticle, and its potential 

role in the start of the infection. The second strategy was to look at the pathogenesis 

of WSSV in a non-penaeid species such as the freshwater prawn Macrobrachium 

rosenbergii, which reportedly, has a better capacity to survive WSSV challenges.  

In chapter 2, an overview of the current knowledge is given, firstly on the main 

cultured shrimp species Penaeus (Litopenaeus) vannamei and M. rosenbergii, and 

secondly of WSSV.  

In chapter 3, we focused on the route of infection of WSSV in penaeid shrimp, with 

special attention to the barrier function of the cuticle. In WSSV research so far, the 

entry of the virus and the protective barriers of the shrimp have been mostly 

overlooked. The virus is usually administered via infected tissues or water and simply 

assumed to have entered the host. In our work, we aimed to test whether the cuticle of 

the shrimp can function as a barrier, rendering shrimp non-susceptible to waterborne 

infection. However, as the cuticle of shrimp is periodically changing in composition 

and thickness during the animal’s moult process, we hypothesized that the barrier 

function of the cuticle would vary between different stages in the moult cycle. The 

first aim of this study was thus to compare the susceptibility of shrimp in different 

moult stages to WSSV and test whether shrimp in certain stages were less susceptible 

to waterborne infection. The second aim was to investigate whether wounding the 

cuticle could increase the chances of waterborne WSSV infection. 

Before we studied WSSV infection, we performed an extensive study of the moult 

process in our experimental animals in part 3.1. Both P. vannamei and P. monodon 

were microscopically examined for the aspect of their cuticle, epidermis and moulting 
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processes. This allowed the differentiation and characterisation of 5 major moult 

stages: early and late post-moult (A and B), inter-moult (C) and early and late pre-

moult (D1 and D2). The total moult cycle duration for 2 g P. vannamei and P. 

monodon was around 5 and 6.5 days, respectively. For 15 g P. vannamei and P. 

monodon, this was 11 and 12 days, respectively. The relative duration of the moult 

stages within the cycle was A: 5-10%, B: 9-16%, C: 12-20%, D1: 28-36% and D2: 

30-38%. One of the conclusions of this study was that the majority of the cycle was 

comprised of the pre-moult stages. In literature data, these stages had been relatively 

shorter in duration. Also we saw that P. monodon moulted less frequent than P. 

vannamei, under the given conditions. By avoiding the use of invasive techniques, we 

minimized the possible iatrogenic influences on the moult process. With the moult 

cycle in our experimental animals mapped, we possessed the necessary tools to take 

this important physiological factor into account during the following experiments. 

In part 3.2, the impact of the moult cycle on the susceptibility of shrimp to WSSV, 

both by intramuscular and immersion route, was examined. The intramuscular route 

was investigated by performing a standard in vivo titration via injection in SPF P. 

vannamei in different moult stages. The resulting infection titers were similar for all 

moult stages, showing that no changes in internal susceptibility occur during the 

moult cycle. Next, to study the barrier function of the cuticle against WSSV in the 

water, the cuticle was damaged in some shrimp and the outcome of WSSV exposure 

was compared with undamaged shrimp. For this, SPF shrimp in different moult stages 

were immersed in sea water containing a high dose of WSSV. In a first study, juvenile 

P. vannamei of different sizes in different stages of the moult cycle were incubated in 

WSSV suspensions inside cell culture flasks. Five days after this exposure, it was 

noted that more shrimp in post-moult stage than shrimp in inter- or pre-moult stages 

had become infected with WSSV. The number of infected shrimp rose with age, and 

once shrimp reached 11 g, 100% of A-stage shrimp were infected. As accidental 

damage occurred inside the cell culture flasks, the study was repeated using plastic 

bags, both for P. vannamei and P. monodon. To confirm the role of wounds in the 

establishment of WSSV infection, a pleopod was cut off prior to incubation in 1 group. 

For both species, the cutting of a pleopod increased the infection rates in A-stage from 

0-40% to 60-100%, in B-stage from 0-20% to 40-60% and in C-stage from 0-20 to 

20-60%. In shrimp which had been in D1- and D2-stages at the time of inoculation 

inside the cell culture flasks or bags, no WSSV infection was observed. These 
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experiments lead us to conclude that shrimp have a higher chance to become infected 

with WSSV when they have recently moulted. This is the first evidence that the 

exoskeleton of shrimp protects against WSSV entry and that the virus may reach 

susceptible cells via open wounds. 

In chapter 4, we examined the situation of WSSV in the freshwater prawn M. 

rosenbergii. Several findings have been published, showing that this prawn possesses 

a level of decreased susceptibility to WSSV infection and disease, compared to 

penaeid shrimp. However, some of the results in literature are conflicting and the use 

of unstandardized methodology renders a lot of the information inconclusive. Hence, 

we aimed to examine the susceptibility of M. rosenbergii to WSSV infection using 

conditions standardized for P. vannamei. We collected quantitative data on the 

infectivity, pathogenesis and pathogenicity of 2 WSSV strains (Thai-1 and Viet) in 

juvenile M. rosenbergii and compared these with data previously obtained in penaeid 

shrimp. M. rosenbergii injected with a low dose of WSSV-Thai-1 and a high dose of 

WSSV-Viet developed clinical pathology and numbers of infected cells within 1 to 2 

days post-infection comparable to P. vannamei. On the other hand, a low dose of 

WSSV-Viet which was previously capable of causing mortality in P. vannamei did 

not result in infection in M. rosenbergii. About 100 times more infectious virus was 

needed to establish infections in M. rosenbergii with WSSV-Viet than with WSSV-

Thai-1, and the mean prawn infectious dose 50% endpoints (PID50 ml–1) for the 

respective strains were 20 to 400 times lower that the titers obtained previously in P. 

vannamei. The median lethal dose (LD50 ml-1) determined in M. rosenbergii was also 

far higher (~1000-fold) for WSSV-Thai-1 (105.4±0.4 LD50 ml-1) than for WSSV-Viet 

(102.3±0.3 LD50 ml-1). These experiments clearly showed that juvenile M. rosenbergii 

can be infected with WSSV and that the virus can cause pathology and mortality. 

However, it was confirmed that the freshwater prawns are less susceptible to the 

infection and disease, in particular when challenged with the low virulent WSSV Viet 

strain. 
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In chapter 5, the general discussion elaborated on the main findings in this thesis and 

the conclusions were formulated. The findings presented in this thesis have opened 

the doors leading to two novel strategies to combat WSSV. The discovery that WSSV 

can enter shrimp via wounds urges shrimp farmers and researchers to pay more 

attention to the barrier function of the cuticle. The importance of environmental 

factors on WSSV outbreaks had already been recognised, but our findings can give 

new directions for improvement of cuticle quality by changes in management and 

nutrition. The confirmation that M. rosenbergii is indeed less susceptible to WSSV 

infection and disease than penaeid shrimp rises the hope that a successful anti-viral 

response can be mounted against WSSV. Once the underlying mechanism has been 

uncovered, this knowledge can be extrapolated to penaeid shrimp and the anti-viral 

defense can be improved by therapeutic measures or genetic selection. 
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De laatste twee decennia worden de meeste penaeïde garnalen ("scampi") gekweekt in 

gevangenschap, voornamelijk in Azië en Latijns-Amerika. Vanaf het eerste 

verschijnen van het White Spot Syndrome Virus (WSSV) in de vroege jaren 90, heeft 

dit virus ieder jaar zware verliezen veroorzaakt in de garnalenkwekerijen. Sindsdien is 

er maar weinig vooruitgang geboekt in de bestrijding van dit virus. In tegenstelling tot 

vele andere garnalenvirussen, zijn er voor het WSSV geen aanwijzingen dat er zich 

resistentie ontwikkelt bij de penaeïde garnalen tegen infectie en ziekte. Ondanks 

uitgebreide inspanningen van onderzoekers en kwekers is er tot op heden nog geen 

afdoende bestrijdingsmethode ontwikkeld tegen het WSSV. 

Hoofdstuk 1 van deze thesis introduceert de aquacultuur van garnalen, situeert de 

problemen met de WSSV-infecties en beschrijft de doelstellingen van deze thesis.   

De doelstellingen van deze thesis kaderden in de zoektocht naar twee nieuwe 

strategieën om het optreden van WSSV infecties te voorkomen.  

De eerste strategie was gericht op een beter begrip van de primaire barrière van de 

garnaal, het exoskelet, en de mogelijke rol die het speelt bij de start van de infectie. 

Voor de tweede strategie gingen we na of bepaalde gastheren een betere capaciteit 

bezitten om WSSV-infecties te overleven. 

In hoofdstuk 2 wordt een literatuuroverzicht gegeven van de meest gekweekte 

garnaalsoorten (de witpootgarnaal Penaeus (Litopenaeus) vannamei en de 

zoetwatergarnaal Macrobrachium rosenbergii) en van het White Spot Syndrome 

Virus. 

In hoofdstuk 3 bestudeerden we de infectieroute van het WSSV in penaeïde garnalen 

met speciale aandacht voor de barrièrefunctie van het exoskelet, de cuticula. Tot 

dusver werd in het WSSV-onderzoek niet stilgestaan bij de mogelijk beschermende 

barrières bij de gastheer die het binnendringen van het virus kunnen verhinderen. 

Meestal wordt in experimenteel onderzoek het virus via geïnfecteerd weefsel of water 

toegediend aan de dieren en wordt er simpelweg aangenomen dat het virus de 

gastheer binnentreedt. Tijdens ons werk wilden we testen of de cuticula van de 

garnaal als barrière kan functioneren waardoor de garnaal niet gevoelig zou zijn voor 

virusinfectie via het water. 

Omdat de cuticula van een garnaal echter periodiek verandert qua samenstelling en 

dikte gedurende de vervellingscyclus van het dier, formuleerden we de hypothese dat 

de barrièrefunctie van de cuticula varieert naargelang het vervellingsstadium. 
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De eerste doelstelling van deze studie was bijgevolg om de gevoeligheid van garnalen 

in verschillende vervellingsstadia te vergelijken, om te testen of bepaalde stadia 

minder gevoelig waren voor WSSV-infectie vanuit het water.  

De tweede doelstelling was om na te gaan of wonden in de cuticula de kans op 

infectie met het WSSV vanuit het water konden vergroten. 

Maar voor we konden overgaan tot de studie van de WSSV-infecties, waren we 

genoodzaakt om een uitgebreide studie van het vervellingsproces bij onze proefdieren 

uit te voeren.  

In deel 3.1 werd bij zowel P. vannamei als bij P. monodon aan de hand van een 

microscopische studie het uitzicht van de cuticula, de epidermis en het 

vervellingsproces bekeken.  

Dit liet ons toe om 5 vervellingsstadia te differentiëren en te karakteriseren: vroeg en 

laat post-vervelling (A en B), inter-vervelling (C) en vroeg en laat pre-vervelling (D1 

en D2). De totale cyclus duurde 5 en 6,5 dagen bij respectievelijk P. vannamei en P. 

monodon van 2 gram en 11 en 12 dagen bij respectievelijk P. vannamei en P. 

monodon van 15 gram.  

De verschillende stadia namen de volgende percentages van de vervellingscyclus in:  

A: 5-10%, B: 9-16%, C: 12-20%, D1: 28-36% en D2: 30-38%.  

Een van de conclusies van deze studie was dat het grootste deel van de cyclus werd 

ingenomen door de pre-vervellingsstadia. Andere onderzoekers hadden deze stadia tot 

nu toe steeds als korter beschreven. Ook zagen wij in onze proefopstelling dat P. 

monodon minder frequent vervelde dan P. vannamei. Door geen invasieve technieken 

te gebruiken, beperkten we de risico's op iatrogene invloeden op het vervellingsproces. 

In deel 3.2 werd de impact van de vervellingscyclus op de gevoeligheid van garnalen 

voor het WSSV geëvalueerd, zowel via intramusculaire weg als langs immersieroute. 

De intramusculaire route werd onderzocht aan de hand van een gestandaardiseerde in 

vivo titratie, waarbij het virus geïnjecteerd werd in SPF-P. vannamei tijdens de 

verschillende vervellingsstadia. De resulterende infectueuze titers waren gelijkaardig 

voor alle stadia, wat aantoont dat de interne gevoeligheid niet varieert gedurende het 

verloop van de vervellingscyclus. Om vervolgens de barrièrefunctie van de cuticula 

tegen WSSV-infecties vanuit het water te bestuderen, werd gekeken naar het resultaat 

na blootstelling van garnalen met een intacte cuticula tegenover dieren met een 

beschadigde cuticula. Hiervoor werden SPF-garnalen in verschillende 

vervellingsstadia ondergedompeld in zeewater dat een hoge dosis WSSV bevatte. 
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In een eerste studie werden jonge P. vannamei van verschillende groottes in de 5 

vervellingsstadia blootgesteld aan het WSSV in celcultuurflessen. Vijf dagen later 

werd vastgesteld dat garnalen die zich op het moment van blootstelling in post-

vervellingsstadia bevonden, meer kans hadden om geïnfecteerd te worden met het 

WSSV dan de proefdieren in de inter- en pre-vervellingsstadia. Het aantal 

geïnfecteerde garnalen nam toe met de leeftijd en eenmaal de garnalen 11 gram 

wogen, was 100% van de dieren in het A-stadium geïnfecteerd.  

Vermits er accidentele schade aan de cuticula werd vastgesteld na het verblijf in de 

celcultuurflessen, werd de proef herhaald in plastic zakken. Daarbij werd de rol van 

wonden in het optreden van WSSV-infecties bevestigd door een zwempoot bij de 

garnalen af te snijden op het moment van blootstelling.  

Voor beide garnaalsoorten noteerden we dat het afsnijden van een zwempoot het 

percentage geïnfecteerde garnalen in het A-stadium deed toenemen van 0-40% naar 

60-100%, in het B-stadium van 0-20% naar 40-60% en in het C-stadium van 0-20% 

naar 20-60%. Bij de garnalen die zich in het D1- en D2-stadium bevonden op het 

moment van inoculatie in de celcultuurflessen of de plastic zakken, werd nooit 

WSSV- infectie vastgesteld.  

Het besluit van deze experimenten was dat de kans op WSSV-infectie bij garnalen 

groter was wanneer de dieren recent verveld waren.  

Deze studie is het eerste bewijs dat het exoskelet van garnalen een bescherming biedt 

tegen het binnendringen van het WSSV en dat het virus gevoelige cellen kan bereiken 

via open wonden. 

In hoofdstuk 4 onderzochten we de situatie van het WSSV in de zoetwatergarnaal     

M. rosenbergii. Een aantal publicaties wijzen erop dat deze diersoort minder gevoelig 

is voor infectie en ziekte veroorzaakt door het WSSV in vergelijking met penaeïde 

garnalen. 

De informatie in deze literatuur bevat echter tegenstrijdigheden en de methodes die 

gebruikt werden, laten niet toe om met zekerheid conclusies te trekken. Vandaar dat 

het ons doel was om de gevoeligheid van M. rosenbergii ten opzichte van het WSSV 

te bestuderen met dezelfde, gestandaardiseerde methodologie waarmee dit eerder in 

ons labo werd gedaan voor P. vannamei.  

In deze studie verzamelden we kwantitatieve data betreffende de infectiviteit, 

pathogenese en pathogeniciteit van 2 WSSV-isolaten (Thai-1 and Viet) in juveniele  

M. rosenbergii en vergeleken we deze data met wat we eerder geobserveerd hadden in 
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penaeïde garnalen. Wanneer M. rosenbergii geïnjecteerd werden met een lage dosis 

WSSV-Thai-1 en een hoge dosis WSSV-Viet, ontwikkelde er zich klinische 

pathologie en waren de aantallen geïnfecteerde cellen gelijkaardig aan deze in P. 

vannamei binnen de eerste 2 dagen na de inoculatie. Dit stond in contrast met de 

resultaten na inoculatie met een lage dosis WSSV-Viet, want waar deze dosis eerder 

in P. vannamei sterfte had veroorzaakt, werd er geen infectie gedetecteerd in M. 

rosenbergii. Er was ongeveer 100 maal meer infectieus WSSV nodig om een infectie 

tot stand te brengen in M. rosenbergii met WSSV-Viet dan met WSSV-Thai-1 en de 

"mean prawn infectious dose 50% endpoints" (PID50 ml–1) voor de respectievelijke 

isolaten waren 20 tot 400 maal lager dan de titers die voordien bekomen waren in P. 

vannamei. De "median lethal dose" (LD50 ml-1) bekomen in M. rosenbergii was ook 

veel hoger (~1000 maal) voor WSSV-Thai-1 (105.4±0.4 LD50 ml-1) dan voor WSSV-

Viet (102.3±0.3 LD50 ml-1).  

Deze experimenten toonden duidelijk aan dat jonge M. rosenbergii geïnfecteerd 

kunnen worden door het WSSV en dat het virus wel degelijk pathologie en sterfte kan 

veroorzaken. Er werd echter ook duidelijk bevestigd dat de zoetwatergarnalen minder 

gevoelig zijn aan infectie en ziekte, iets wat vooral duidelijk was in het geval van 

WSSV-isolaten met lage virulentie. 

In hoofdstuk 5 wordt dieper ingegaan op de belangrijkste bevindingen in deze thesis 

en worden de conclusies geformuleerd. De resultaten van deze thesis openen 

perspectieven op twee nieuwe strategieën om het WSSV te bestrijden. De ontdekking 

dat het WSSV een gastheer kan binnentreden via wonden is een aanzet voor kwekers 

en onderzoekers om meer aandacht te besteden aan de barrièrefunctie van de cuticula 

van garnalen. Het belang van omgevingsomstandigheden bij de WSSV-uitbraken was 

reeds erkend  maar onze bevindingen kunnen een aanzet zijn voor verbeteringen in de 

cuticulakwaliteit door middel van specifieke ingrepen in het management en de 

voeding van de dieren. De definitieve bevestiging dat M. rosenbergii daadwerkelijk 

minder gevoelig is voor WSSV-infecties en ziekte doet de hoop rijzen dat een 

succesvolle antivirale afweerreactie tegen het WSSV mogelijk is.  

Eenmaal de onderliggende mechanismen verantwoordelijk voor deze afweer gekend 

zullen zijn, kan deze kennis geëxtrapoleerd worden naar penaeïde garnalen om ook 

hun antivirale afweer te verbeteren door therapeutisch ingrijpen of door genetische 

selectie. 
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