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some of the philosophical implications of our results.
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1. Introduction: A copy of the Reverse Mathematics of WKL0

Reverse Mathematics is a program in the Foundations of Mathematics founded
in the Seventies by Harvey Friedman ([5,6]). Stephen Simpson’s famous mono-
graph Subsystems of Second-order Arithmetic is the standard reference ([25]).
The goal of Reverse Mathematics is to determine the minimal axiom system
necessary to prove a particular theorem of ordinary Mathematics. Classify-
ing theorems according to logical strength reveals the following striking phe-
nomenon: It turns out that, in many particular cases, if a mathematical theorem
is proved from appropriately weak set existence axioms, then the axioms will be
logically equivalent to the theorem ([25, Preface]). This phenomenon is dubbed
the ‘Main theme’ of Reverse Mathematics. The following theorem is a good
instance ([25, p. 36]).

Theorem 1 (Reverse Mathematics for WKL0). Within RCA0, Weak König’s
Lemma (WKL) is provably equivalent to any of the following statements:

1. The Heine-Borel lemma: every covering of [0, 1] by a sequence of open
intervals has a finite subcovering.

2. Every continuous real-valued function on [0, 1] is bounded.

3. Every continuous real-valued function on [0, 1] is uniformly continuous.

4. Every continuous real-valued function on [0, 1] is Riemann integrable.

5. The Weierstraß maximum principle.

6. The Peano existence theorem for differential equations y′ = f(x, y).

7. Gödel’s completeness theorem for countable languages.

8. Every countable commutative ring has a prime ideal.

9. Every countable field (of characteristic 0) has a unique algebraic closure.

10. Every countable formally real field is orderable.

11. Every countable formally real field has a (unique) real closure.

12. Brouwer’s fixed point theorem for [0, 1]n with n ≥ 2.

13. The Hahn-Banach theorem for separable Banach spaces.

Here, the theory WKL0 is defined as RCA0 plus Weak König’s lemma. Simi-
lar theorems exist for the systems ACA0, ATR0 and Π1

1-CA0 (See [25, Theorem
I.9.3, Theorem I.9.4 and Theorem I.11.5]). The aforementioned five theories
make up the ‘Big Five’ systems and RCA0 is called the ‘base theory’ of Reverse
Mathematics. This is motivated by the surprising observation that, with very
few exceptions, a theorem of ordinary mathematics is either provable in RCA0 or
equivalent to one of the other Big Five systems, given RCA0. Moreover, each of
the Big Five systems corresponds to a well-known foundational philosophy (See
[25, Table 1, p.43]). We refer to Friedman-Simpson style Reverse Mathematics
as ‘classical’ Reverse Mathematics.

An important open problem is whether Reverse Mathematics can be done in
a weaker base theory (See e.g. [25, X.4.3], [7, 8], or [16, Section 6.1.2]. Indeed,
RCA0 has the first-order strength of IΣ1 and some Reverse Mathematics results
are proved in the base theory RCA∗0, which has roughly the first-order strength
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of I∆0+exp (See [25, X.4]). For ERNA, a version of Nonstandard Analysis based
on I∆0+exp, we have proved the following theorem. The latter contains several
statements, translated from Theorem 1 and [25, IV] into ERNA’s language,
while preserving equivalence (See [19] for details).

Theorem 2 (Reverse Mathematics for ERNA+Π1-TRANS). The theory ERNA
proves the equivalence between Π1-TRANS and each of the following theorems
concerning near-standard functions:

1. Every S-continuous function on [0, 1] is bounded.

2. Every S-continuous function on [0, 1] is continuous there.

3. Every S-continuous function on [0, 1] is Riemann integrable.

4. Weierstraß’ theorem: every S-continuous function on [0, 1] has, or attains
a supremum, up to infinitesimals.

5. The strong Brouwer fixed point theorem: every S-continuous function φ :
[0, 1]→ [0, 1] has a fixed point up to infinitesimals of arbitrary depth.

6. The first fundamental theorem of calculus.

7. The Peano existence theorem for differential equations y′ ≈ f(x, y).

8. The Cauchy completeness, up to infinitesimals, of ERNA’s field.

9. Every S-continuous function on [0, 1] has a modulus of uniform continuity.

10. The Weierstraß approximation theorem.

A common feature of the items in the previous theorem is that strict equal-
ity has been replaced with ≈, i.e. equality up to infinitesimals. This seems the
price to be paid for ‘pushing down’ into ERNA the theorems equivalent to Weak
König’s lemma. For instance, item (7) from Theorem 2 guarantees the existence
of a function φ(x) such that φ′(x) ≈ f(x, φ(x)), i.e. a solution, up to infinites-
imals, of the differential equation y′ = f(x, y). However, in general, there is
no function ψ(x) such that ψ′(x) = f(x, ψ(x)) in ERNA + Π1-TRANS. In this
way, we say that the Reverse Mathematics of ERNA + Π1-TRANS is a copy
up to infinitesimals of the Reverse Mathematics of WKL0. This observation is
important, as it suggests that the equivalences proved in Reverse Mathematics
are robust in the sense this notion is used in the exact sciences. Robustness
(i.e. stability under the variation of parameters) is a central notion in the exact
sciences. This is discussed in greater detail in Section 7.1.

In this paper, we further explore the connection between classical Reverse
Mathematics and ERNA’s Reverse Mathematics. In particular, we consider
the intermediate value theorem (IVT), the mean value theorem (MVT), and
their ‘sequential’ or ‘uniform’ generalizations (See e.g. [25, Exercise IV.2.12] or
Principles 20 and 29 below). By [25, Theorem II.6.6] and [11, Theorem 4],
IVT and MVT can be proved in the base theory RCA0, whereas the sequential
generalizations are equivalent to WKL0. In Sections 3 and 4, we show that
ERNA proves IVT and MVT with ‘=’ replaced with ‘≈’. Moreover, we show
that the ‘sequential’ or ‘uniform’ generalizations of IVT and MVT are equivalent
to Π1-TRANS. Inspired by these results, we obtain an entire class of similar
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results based on sequential generalizations in Section 5 and 6. We discuss some
philosophical implications of our results in the concluding Section 7.

Thus, the situation in ERNA’s Reverse Mathematics mirrors the situation
in classical Reverse Mathematics, modulo the replacement of ‘=’ by ‘≈’. In this
way, we obtain further evidence to support the Main Theme of ERNA’s Reverse
Mathematics.

2. Preliminaries

For an introduction to ERNA, we refer the reader to [14,19,26]. In this sec-
tion, we introduce some results concerning ERNA and some notation. Through-
out this paper, we tacitly assume that all terms and formulas are free of ERNA’s
minimum operator. Also, lower and uppercase variables n,m, k, l, i, j, . . . are al-
ways assumed to run over the hypernatural numbers.

2.1. Transfer

In this paragraph, we recall the transfer principle for universal formulas and
its properties (See [14,19]). This principle expresses Leibniz’ law that the ‘same
laws’ should hold for standard and nonstandard numbers alike.

Principle 3 (Π1-TRANS). Let ϕ(x) ∈ Lst be quantifier-free. Then

(∀stx)ϕ(x)→ (∀x)ϕ(x). (1)

Here, Lst is ERNA’s language L without the symbols ω, ε, ≈ and min. Note
that standard parameters are allowed in the formula ϕ(x).

Obviously, the scope of the above principle (also called ‘universal transfer’
or ‘Π1-transfer’) is quite limited. Indeed, a formula cannot be transferred if it
contains, for instance, ERNA’s exponential function ex :=

∑ω
n=0

xn

n! or similar
objects not definable in Lst. This is quite a limitation, especially for the devel-
opment of basic analysis. In [19], the scope of Π1-transfer was expanded so as
to be applicable to objects like ERNA’s exponential. We briefly sketch these
results here.

First, we label some terms which, though not part of Lst, are ‘nearly as good’
as standard for the purpose of transfer. As in [14, Notation 57] and Notation
12 below, the variable ω′ in (∀ω′) runs over the infinite hypernaturals.

Definition 4. Let the term τ(n, ~x) be standard, i.e. not involve ω or ≈. We
say that τ(ω, ~x) is near-standard if ERNA proves

(∀~x)(∀ω′)(τ(ω, ~x) ≈ τ(ω′, ~x)). (2)

An atomic inequality τ(ω, ~x) ≤ σ(ω, ~x) is called near-standard if both members
are. Since x = y is equivalent to x ≤ y ∧ x ≥ y, and N (x) to dxe = |x|, any in-
ternal formula ϕ(ω, ~x) can be assumed to consist entirely of atomic inequalities;
it is called near-standard if it is made up of near-standard atomic inequalities.
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In [19] and [24], several examples of near-standard terms and formulas are
listed. In stronger theories of Nonstandard Analysis, near-standard terms would
be converted to standard terms by the standard part map st(x) which satisfies
st(x+ ε) = x, for ε ≈ 0 and standard x. However, ERNA does not have such a
map and hence functions of basic analysis, like ex :=

∑ω
n=0

xn

n! , are not allowed
in Π1-TRANS. Nonetheless, we can overcome this problem by expanding the
scope of Π1-transfer to near-standard formulas.

Notation 5. We write a� b for a ≤ b ∧ a 6≈ b and a / b for a ≤ b ∨ a ≈ b.

See [4, p. 15] for the definition of ‘positive’ and ‘negative’ sub-formulas.

Definition 6. Given a near-standard formula ϕ(~x), let ϕ(~x) be the formula
obtained by replacing every positive (negative) occurrence of a near-standard
inequality ≤ with / (�).

Now consider the following principle, called ‘bar transfer’.

Principle 7 (Π1-TRANS). Let ϕ(x) be near-standard and quantifier-free. Then

(∀stx)ϕ(x)→ (∀x)ϕ(x). (3)

Despite its much wider scope, bar transfer is equivalent to Π1-transfer.

Theorem 8. In ERNA, the schemas Π1-TRANS and Π1-TRANS are equiva-
lent.

Proof. For special Π1-formulas, this was done in [15, §3] with a relatively easy
proof. For general Π1-formulas, the proof becomes significantly more involved
(See [19, Theorem 9]). Ironically, we have to resort to ε-δ techniques.

The following theorem guarantees that near-standard terms are automati-
cally finite for finite arguments. This is surprising, since Definition 4 does not
mention the (in)finitude of near-standard terms. Thus, near-standardness seems
to be a natural property.

Theorem 9. A near-standard term τ(~x, ω) is finite for finite ~x.

Proof. This is immediate from Theorem 21 in [24] or Theorem 9 in [19].

2.2. Overflow

Here, we introduce the notions ‘overflow’ and ‘underflow’.

Theorem 10. Let ϕ(n) be an internal quantifier-free formula.

1. If ϕ(n) holds for every natural n, it holds for all hypernatural n up to
some infinite hypernatural n (overflow).

2. If ϕ(n) holds for every infinite hypernatural n, it holds for all hypernatural
n from some natural n on (underflow).

Both numbers n and n are given by explicit ERNA-formulas not involving min.
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Proof. Let ω be some infinite number. For the first item, define

n := (µn ≤ ω)¬ϕ(n+ 1), (4)

if (∃n ≤ ω)¬ϕ(n+1) and ω otherwise. Likewise for underflow. By [14, Theorem
58], the bounded minimum operator is available in ERNA.

Sometimes, we write n(ω) instead of n to emphasize the dependence on ω.
The following notations are necessary to keep track of the occurrences of ω in
n(ω).

Notation 11. The symbol ‘ω’ in τ(~x, ω) represents all occurrences of ω in
τ(~x, ω), i.e. τ(~x,m) is τ(~x, ω) with all occurrences of ω replaced by the new
variable m.

In particular, let ϕ(n, ω) be as in Theorem 10 and consider (4). Then n(k)
corresponds to (µn ≤ k)¬ϕ(n+ 1, k). Similarly, we have the following notation.

Notation 12. The formula ‘(∀ω)ϕ(ω)’ is short for (∀n)[n is infinite → ϕ(n)].
Similarly, ‘(∃ω)ϕ(ω)’ is short for (∃n)[n is infinite ∧ ϕ(n)].

2.3. Continuity

In this paragraph, we formulate several notions of continuity inside ERNA
and list some fundamental results.

Definition 13 (Continuity). A function f(x) is ‘continuous over [a, b]’ if

(∀x, y ∈ [a, b])(x ≈ y → f(x) ≈ f(y)). (5)

A function f(x) is ‘S-continuous over [a, b]’ if

(∀stk)(∃stN)(∀stx, y ∈ [a, b])(|x− y| < 1
N → |f(x)− f(y)| < 1

k ). (6)

A sequence fn(x) is ‘equicontinuous over [a, b]’ if

(∀stk)(∃stN)(∀stn)(∀stx, y ∈ [a, b])(|x− y| < 1
N → |fn(x)− fn(y)| < 1

k ). (7)

The attentive reader has noted that (5), (6) and (7) constitute the uniform
versions of (non)standard continuity and equicontinuity. Let us motivate this
choice. If we limit the variable x in (5) to Q, the function 1

x2−2 satisfies the
resulting formula, although this function is infinite in the interval [−2, 2]. Simi-
larly, the function g(x), defined as 1 if x2 < 2 and 0 if x2 ≥ 2, satisfies (5) with x
limited to Q, but this function has a jump in its graph. The same holds for the
pointwise ε-δ continuity and thus both are not suitable for our purposes. This
explains the use of (5) and (6). We discuss ERNA’s version of equicontinuity
in more detail below.

Next, we study the connections between ERNA’s various notions of conti-
nuity.
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Theorem 14. In ERNA, for an internal function f(x), continuity, i.e. (5),
implies S-continuity, i.e. (6).

Proof. Assume that (5) holds for an internal function f(x). Fix k ∈ N and
consider the following internal formula

(∀x, y ∈ [a, b])
[
(‖x, y‖ ≤ ω ∧ |x− y| < 1/n)→ |f(x)− f(y)| < 1/k

]
. (8)

By corollary [14, Corollary 53], the above formula is equivalent to a quantifier-
free one. By assumption, (8) holds for all infinite n. Hence, by underflow, it
holds for all n ≥ N , for some N ∈ N. From this, (6) follows immediately.

Theorem 15. In ERNA, for an internal sequence fn(x), continuity, i.e. (5),
for all n, implies equicontinuity, i.e. (7).

Proof. Assume that (5) holds for every element of the internal sequence fn(x).
Fix k ∈ N and n and consider the following internal formula

(∀x, y ∈ [a, b])
[
(‖x, y‖ ≤ ω ∧ |x− y| < 1/m)→ |fn(x)− fn(y)| < 1/k

]
. (9)

By corollary [14, Corollary 53], the previous formula is equivalent to a quantifier-
free one. By assumption, (9) holds for all infinite m. Let m(k, n) be the finite
number obtained by applying underflow to (9). Note that m(k, n) is finite for
all n and all k ∈ N. Let m(k) be maxn≤ωm(k, n). By the previous, m(k) is
finite for finite k and (9) holds for m ≥ m(k) and n ≤ ω. From this, (7) follows
immediately.

Now consider the following continuity principles.

Principle 16 (Continuity principle). For a near-standard function f(x), S-
continuity implies continuity, i.e. (6) implies (5).

Principle 17 (Equicontinuity principle). For a near-standard sequence fn(x),
equicontinuity implies continuity for all n.

Theorem 18. In ERNA, the Continuity principle is equivalent to Π1-TRANS.

Proof. See Theorem 43 in [19].

Theorem 19. In ERNA, the Equicontinuity principle is equivalent to Π1-
TRANS.

Proof. Easy adaptation of the proof of Theorem 43 in [19].

3. The intermediate value theorem

In this section, we study the well-known intermediate value theorem (IVT)
inside ERNA’s Reverse Mathematics. By [25, Theorem II.6.6], IVT is provable
in RCA0. Furthermore, the following ‘sequential’ or ‘uniform’ version of IVT is
equivalent to WKL0 (See [25, IV.2.12]) and [18].
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Principle 20. If φn, n ∈ N, is a sequence of continuous real-valued functions on
the closed unit interval 0 ≤ x ≤ 1, then there exists a sequence of real numbers
xn, n ∈ N, 0 ≤ xn ≤ 1 such that (∀n)(φn(0) ≤ 0 ≤ φn(1)→ φ(xn) = 0).

Next, we show that ERNA proves IVT with equality ‘=’ replaced with ‘≈’.
Then, we introduce IVT, ERNA’s version of Principle 20, and show that it is
equivalent to Π1-transfer.

Theorem 21 (IVT). Let f be internal and S-continuous on [0, 1]. If f(0) / 0
and f(1) ' 0, there is an x0 ∈ [0, 1] such that f(x0) ≈ 0.

Proof. Let f be as in the theorem. If either f(0) ≈ 0 or f(1) ≈ 0, we are done.
Hence, we may assume f(0)� 0 and f(1)� 0. The S-continuity of f implies

(∀stk)(∃stN > k)(∀x, y ∈ [0, 1])(‖x, y‖ ≤ 2N ∧|x−y| < 1
N → |f(x)−f(y)| < 1

k ).

In the previous formula, replace the quantifiier ‘∃stN ’ by ‘∃N ≤ ω’. By [14,
Corollary 52], the resulting formula qualifies for overflow. Let k be the infinite
number obtained in this way. This yields, for all k ≤ k, that

(∃N ∈ [k, ω])(∀x, y ∈ [0, 1])(‖x, y‖ ≤ 2N ∧ |x− y| < 1
N → |f(x)− f(y)| < 1

k ).
(10)

For k = k, let N0 be a witness to the previous formula. Now define xi = i
2N0

for i ≤ 2N0 . By the previous, we have xi ≈ xi+1 and f(xi) ≈ f(xi+1), for
i ≤ 2N0 − 1. As f(1) � 0, there certainly are j ≤ 2N0 such that f(xj) > 0.
Using ERNA’s bounded minimum (See [14, Theorem 58]), define j0 as the least
j ≤ 2N0 such that f(xj) > 0. By definition, we have f(xj0−1) ≤ 0, but also
f(xj0) ≈ f(xj0−1). Clearly, this implies f(xj0) ≈ 0 and we are done.

From the proof, it is clear that continuity, i.e. (5), is not necessary. Indeed,
it suffices to have a grid of points xi covering [0, 1] such that xi ≈ xi+1 and
f(xi) ≈ f(xi+1). The existence of such a grid can be derived from the S-
continuity of f .

As noted by Bishop in [3, Preface], there is a preference for uniform versions
of continuity, convergence, differentiability, and other notions in constructive
analysis. A similar preference seems present in ERNA’s Reverse Mathematics.
Indeed, comparing the items in Theorem 1 and Theorem 2, we observe that
theorems in ERNA’s Reverse Mathematics usually assume stronger conditions
than their counterparts in the Reverse Mathematics of WKL0. For instance,
standard pointwise continuity is used in item (4) of Theorem 1, whereas item
(3) in Theorem 2 uses standard uniform continuity. Thus, it should be no sur-
prise that ERNA’s version of Principle 20, considered next, requires a condition
stronger than continuity, namely equicontinuity. Also note that both in ERNA
and constructive analysis, only an approximate version of IVT is proved (See
[3]). Other connections between ERNA and constructive analysis are observed
in [19, Section 5], [21], [22] and Remark 41.

Now consider the following principle.
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Principle 22 (IVT). Let fn(x) be near-standard and equicontinuous on [0, 1].
There exists g(n) ∈ [0, 1] such that (∀n)(fn(0) / 0 / fn(1)→ fn(g(n)) ≈ 0).

We have the following theorem.

Theorem 23. In ERNA, IVT is equivalent to Π1-TRANS.

Proof. For the direction from right to left, assume Π1-TRANS and let fn(x)
be as in IVT. By Theorem 19, fn(x) is continuous on [0, 1], for each n. By
Theorem 14, fn(x) is also S-continuous on [0, 1], for each n. By IVT, for all n,
there is an x0 ∈ [0, 1] such that fn(x0) ≈ 0 if fn(0) / 0 / fn(1). We define g(n)
as that x ∈ [0, 1] with ‖x‖ ≤ ω such that |fn(x)| is minimal. By [14, Section
5.1 and Corollary 53], this function is available in ERNA. By the previous, g(n)
satisfies f(g(n)) ≈ 0 if fn(0) / 0 / fn(1), for all n.

For the forward direction, assume IVT, let ϕ be as in Π1-TRANS and let
fn be as in IVT. Now suppose ϕ(m) holds for all finite m and define the near-
standard function hn(x) as follows:

hn(x) =

{
fn(x) (∀m ≤ ‖x, n‖)ϕ(m)

k(x) otherwise
. (11)

Here, k(x) is defined as 3
4 if x > 1

2 and− 1
4 if x ≤ 1

2 . Note that k(x) satisfies (∀x ∈
[0, 1])(k(x) 6≈ 0) and k(0)� 0 and k(1)� 0. For standard n and x ∈ [0, 1], we
have hn(x) = fn(x), by the definition of hn(x) and our assumption that ϕ(m)
holds for all finite m. Thus, hn(x) is also equicontinuous and IVT applies to this
sequence. Let g(n) be the sequence provided by the latter principle. If there
were some m0 such that ¬ϕ(m0), we would have hm0

(g(m0)) = k(g(m0)) 6≈ 0,
hm0(0) = k(0)� 0 and hm0(1) = k(1)� 0. However, by IVT, hm0(g(m0)) ≈ 0.
This yields a contradiction, implying that the number m0 cannot exist. Hence,
we have ϕ(m) for all m. This implies Π1-TRANS and we are done.

Note that the number n in the final formula in IVT runs over all numbers,
not just the standard ones. This is motivated by Corollary 24 below, provable
in ERNA + Π1-TRANS. By the former, IVT produces a near-standard term
fn(g(n)) if we have (∀stn)(fn(0) / 0 / fn(1)). By Theorem 8, such a term may
appear in the formula ϕ in bar transfer. Hence, near-standard terms are the
input and the output of IVT, i.e. it is a ‘closed circuit’. In ERNA, this cannot
always be guaranteed, see e.g. the Bolzano-Weierstraß theorem in [20].

Corollary 24. Let fn(x) be as in IVT. If (∀stn)(fn(0) / 0 / fn(1)), then the
term fn(g(n)) is near-standard.

Proof. Let fn(x) be as in IVT and assume (∀stn)(fn(0) / 0 / fn(1)). The latter
formula implies (∀stn, k)

(
fn(0) ≤ 1

k ∧ fn(1) ≥ − 1
k

)
. As fn(x) is near-standard,

we may apply bar transfer, implying (∀n, k)
(
fn(0) / 1

k∧fn(1) ' − 1
k

)
For k = ω,

this implies (∀n)
(
fn(0) / 0 ∧ fn(1) ' 0

)
. Hence, by IVT, there is a function

g(n) such that fn(g(n)) ≈ 0, for all n. Note that for any other choice of the
infinite number ω, the term fn(g(n)) still satisfies the latter formula. Hence,
this term is near-standard and we are done.
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In light of Theorem 19, we can expect some flexibility in the conditions of
IVT. For instance, consider the following principle and reversal.

Principle 25 (B). Let m be infinite and fn(x) be near-standard and continuous
on [0, 1] for n ≤ m. There is g(n) ∈ [0, 1] s.t. (∀n)(fn(0) / 0 / fn(1) →
fn(g(n)) ≈ 0).

Theorem 26. In ERNA, B is equivalent to Π1-TRANS.

Proof. For the reverse direction, let fn(x) be as in B. In particular, let m0 be
such that fn(x) is continuous on [0, 1] for n ≤ m0. Now fix k ∈ N and consider
the following internal formula Φ(N)

(∀x, y ∈ [0, 1])(∀n ≤ m0)
[
(‖x, y‖ ≤ ω∧|x−y| < 1/N)→ |fn(x)−fn(y)| < 1/k

]
.

By the continuity of fn(x), Φ(N) is true for all infinite N . By [14, Corollary
53], Φ(N) qualifies for underflow. Using underflow, we obtain

(∀stk)(∃stN)(∀stx, y ∈ [0, 1])(∀stn)
[
|x− y| < 1/N → |fn(x)− fn(y)| < 1/k

]
.

Hence, fn(x) is equicontinuous on [0, 1] and this case follows from Theorem 23.

For the forward direction, let ϕ be as in Π1-TRANS and let fn be as in B.
In particular, let m1 be an infinite number such that fn(x) is continuous for
n ≤ m1. Now assume (∀stm)ϕ(m) and apply overflow to obtain an infinite m2

such that ϕ(m) for m ≤ m2. Let m0 be the least of m1 and m2 and let hn(x)
be as in (11), but with ‘‖x, n‖’ replaced by ‘n’.

For n ≤ m0 and x ∈ [0, 1], we have hn(x) = fn(x), by assumption. Thus, B
applies to hn(x) and let g(n) be as provided by the former principle. If there were
some n0 such that ¬ϕ(n0), we would have hn0

(g(n0)) = k(g(n0)) 6≈ 0, hn0
(0) =

k(0)� 0 and hn0
(1) = k(1)� 0. However, this contradicts hn0

(g(n0)) ≈ 0 and
hence ϕ(n) must hold for all n. This yields Π1-TRANS and we are done.

The previous theorem seems false if we replace ‘n ≤ m’ with ‘n ∈ N’ in
B. However, we can replace continuity with S-continuity. Indeed, consider the
following principle and reversal.

Principle 27 (C). Let m be infinite and let fn(x) be near-standard and S-
continuous on [0, 1] for n ≤ m. There exists g(n) ∈ [0, 1] such that (∀n)(fn(0) /
0 / fn(1)→ fn(g(n)) ≈ 0).

Theorem 28. In ERNA, C is equivalent to Π1-TRANS.

Proof. The forward direction is essentially the same as in the proof of Theo-
rem 26. For the reverse direction, let fn(x) and m be as in C. The S-continuity
of the sequence fn implies that for all n ≤ m

(∀stk)(∃stN > k)(∀x, y ∈ [0, 1])(‖x, y‖ ≤ 2N∧|x−y| < 1
N → |fn(x)−fn(y)| < 1

k ).

10



By [14, Theorem 58], there is a function h(k, n) that computes the number N
in the previous formula. Define g(k) as maxn≤m h(k, n). Note that g(k) is finite
for finite k, as h(k, n) is finite for finite k and any n ≤ m. We have

(∀stk)(∀n ≤ m)(∀x, y ∈ [0, 1])

(g(k) > k ∧ ‖x, y‖ ≤ 2g(k) ∧ |x− y| < 1
g(k) → |f(x)− f(y)| < 1

k ).

As g(k) does not depend on n, the previous implies that for all finite k

(∃stN > k)(∀n ≤ m)(∀x, y ∈ [0, 1])(‖x, y‖ ≤ 2N∧|x−y| < 1
N → |fn(x)−fn(y)| < 1

k ).

Finally, by weakening, we obtain that for all finite k, there is finite N > k s.t.

(∀stn)(∀x, y ∈ [0, 1])(‖x, y‖ ≤ 2N ∧ |x− y| < 1
N → |fn(x)− fn(y)| < 1

k ).

Now apply transfer and pull the quantifier (∀n) through the existential quantifier
(∃stN > k). Hence, we have, for all n,

(∀stk)(∃stN > k)(∀x, y ∈ [0, 1])(‖x, y‖ ≤ 2N∧|x−y| < 1
N → |fn(x)−fn(y)| < 1

k ).

The rest of the proof is identical to that of Theorem 21, with the exception
that the numbers k, N0, and j0 now depend on n. However, the proof still goes
through.

A sketch of the previous proof is as follows: First of all, in the definition
of continuity, bound the quantifier (∀x, y) using the condition ‖x, y‖ ≤ 2N as
in IVT. Secondly, push the quantifier (∀n ≤ m) through (∃stN > k). Thirdly,
apply transfer to the former quantifier and pull it back out. Finally, the proof
of IVT goes through for the resulting formula, for all n.

It seems that the condition on fn(x) in C is weaker than equicontinuity, but
we do not have a proof of this.

4. The mean value theorem

In this section, we study the well-known mean value theorem (MVT) inside
ERNA’s Reverse Mathematics. By [11, Theorem 4], MVT is provable in RCA0.
Furthermore, the following ‘sequential’ or ‘uniform’ version of MVT is equivalent
to WKL0. This is due to Takeshi Yamazaki, unpublished. In [12], a number of
similar sequential principles are considered.

Principle 29. Let φn be a sequence of functions, continuous on [0, 1], differ-
entiable on (0, 1), and such that (∀n)(φn(0) = φn(1) = 0). There is a sequence
xn in [0, 1] such that φ′n(xn) ≈ 0, for all n ∈ N.

In ERNA, we will use the following definitions of differentiability, to be
compared to [11, Definition 3] and [3, Definition 5.1]. We write ‘∆hf(x)’ for
f(x+h)−f(x)

h .

11



Definition 30. [S-differentiability] A function f is ‘S-differentiable over (a, b)’
if there is a finite-valued function g such that for a� c� d� b

(∀stk)(∃stN)(∀sth)(∀stx ∈ [c, d])
[
0 < |h| < 1

N → |∆hf(x)− g(x)| < 1
k

]
. (12)

Definition 31. [Differentiability] A function f is ‘differentiable over (a, b)’ if
∆εf(x) ≈ ∆ε′f(x) is finite for all nonzero ε, ε′ ≈ 0 and all a� x� b.

Using underflow, it is easy to prove that differentiability implies S-differentiability.
Moreover, using Π1-transfer, S-differentiability implies differentiability. Thus,
the function g in Definition 30 is called the ‘derivative’ of f and is denoted f ′.
In case of a differentiable function, f ′ can be taken to be any term ∆εf with
ε ≈ 0. Note that the derivative is only unique up to infinitesimals.

Before we can consider ERNA’s version of MVT or Principle 29, we need to
establish some properties of differentiable functions. As in Bishop’s construc-
tive analysis, ERNA uses uniform notions of differentiability. Hence, ERNA’s
derivative will have stronger properties, as witnessed by the following theo-
rem. A function is said to be ‘continuous over (a, b)’ if it satisfies (5) for all
a� x, y,� b.

Theorem 32. If f is differentiable over (a, b), then f ′(x) is cont. over (a, b).

Proof. Choose points x ≈ y such that a� x < y � b. If |x− y| = ε ≈ 0, then

∆εf(x) = f(x+ε)−f(x)
ε = f(y)−f(y−ε)

ε = f(y−ε)−f(y)
−ε = ∆−εf(y) ≈ ∆εf(y).

This implies f ′(x) ≈ f ′(y) and we are done.

Since the derivative is only defined up to infinitesimals in ERNA, the state-
ment f ′(x) > 0 is not very strong, as f ′(x) ≈ 0 may also hold. Similarly,
f(x) < f(y) is consistent with f(x) ≈ f(y) and we need stronger forms of
inequality to express meaningful properties of functions and their derivatives.

Definition 33. A function f is �-increasing over an interval [a, b], if for all
x, y ∈ [a, b] we have x� y → f(x)� f(y). Likewise for �-decreasing.

Theorem 34. If f is differentiable over (a, b), there is an N ∈ N such that

1. if f ′(x0)� 0, then f is �-increasing in [x0 − 1
N , x0 + 1

N ],
2. if f ′(x0)� 0, then f is �-decreasing in [x0 − 1

N , x0 + 1
N ],

for all a� x0 � b.

Proof. For the first item, f ′(x0) � 0 implies f(y) > f(z) for all y, z satisfying
y, z ≈ x0 and y > z. Fix an infinite number ω1 and let M � 0 be f ′(x0)/2. By
the previous, the following sentence is true for all infinite hypernaturals N :

(∀y, z)
[
‖y, z‖ ≤ ω1∧y > z∧|x0−z| < 1

N∧|x0−y| <
1
N → f(y) > f(z)+M(y−z)

]
.

By [14, Corollary 53], the previous formula is equivalent to a quantifier-free one.
Applying underflow yields the first item, as f is continuous over (a, b). Likewise
for the second item.

12



Now we are ready to prove ERNA’s version of the mean value theorem. A
function is said to be ‘continuous at a’ if (5) holds for x = a.

Theorem 35. If f is differentiable over (a, b) and continuous in a and b, then

there is an x0 ∈ [a, b] such that f ′(x0) ≈ f(b)−f(a)
b−a .

Proof. Let f be as in the theorem. First, we prove the particular case where
f(a) ≈ f(b). By [19, Theorem 12], f attains its maximum (up to infinitesimals),
say in x0, and its minimum (idem), say in x1, over [a, b]. If f(x0) ≈ f(x1) ≈
f(a), then f is constant up to infinitesimals. By Theorem 34 we have f ′(x) ≈ 0
for all a� x� b. If f(x0) 6≈ f(a), then by Theorem 34 we have f ′(x0) ≈ 0. The
case f(x1) 6≈ f(a) is treated in a similar way. The general case can be reduced

to the particular case by using the function F (x) = f(x)− f(b)−f(a)
b−a (x− a).

Theorem 36 (MVT). If f is S-differentiable over (a, b) and S-continuous in a

and b, then there is an x0 ∈ [a, b] such that f ′(x0) ≈ f(b)−f(a)
b−a .

Proof. The proof of MVT is a straightforward, but long and tedious, adaptation
of the proof of Theorem 35. Thus, we only provide a sketch.

First of all, we change (12) in the same way as (6) is changed in the proof
of Theorem 21 using the bound 2N . Then, we obtain a version of Weierstraß’
extremum theorem for S-continuous functions where the weight of x in the
conclusion is bounded. A similar theorem can be found for Theorem 34. Using
these theorems, the proof of Theorem 35 can be adapted to suit S-differentiable
functions.

As noted before IVT, the latter principle uses a stronger condition, namely
equicontinuity, than Principle 20, the sequential version of IVT. Similarly, for
ERNA’s version of Principle 29, the sequential version of MVT, we need a
stronger notion of differentiability.

Definition 37. [Equidifferentiability] A sequence fn(x) is ‘equidifferentiable on
(a, b)’ if there is a finite-valued sequence gn such that for a� c� d� b

(∀stk)(∃stN)(∀sth, n)(∀stx ∈ [c, d])
[
0 < |h| < 1

N → |∆hfn(x)− gn(x)| < 1
k

]
.

(13)

Surprisingly, this definition actually occurs in mathematical practice here
and there (See [2,17,28]). As for equicontinuity, the equidifferentiability of fn is
equivalent to the differentiability of fn, for all n. We can now formulate ERNA’s
version of Principle 29.

Principle 38 (MVT). Let fn be equidifferentiable over (a, b) and S-continuous
in a and b. There exists g(n) ∈ [a, b] s.t., for all n and ε ≈ 0, ∆εfn(g(n)) ≈
fn(b)−fn(a)

b−a .

Theorem 39. In ERNA, MVT is equivalent to Π1-TRANS.
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Proof. For the reverse direction, assume Π1-TRANS and let fn(x) be as in
MVT. It is easy to show that fn(x) is differentiable for all n. By Theorem 35,

for every n, there is some z ∈ [a, b] such that f ′n(z) ≈ fn(b)−fn(a)
b−a . Put xi = i

ω ,

fix ε ≈ 0 and define g(n) as that i ≤ ω such that
∣∣∣∆εfn(xi)− fn(b)−fn(a)

b−a

∣∣∣ is

minimal. By [14, Section 5.1 and Corollary 53], this function is available in
ERNA. By the previous, g(n) satisfies the required condition.

For the forward direction, assume MVT, let ϕ be as in Π1-TRANS and let
fn be as in MVT. For simplicity, put a = 0, b = 1, and fn(0) ≈ fn(1) ≈ 0 for
all n. Now suppose ϕ(m) holds for all finite m and define the near-standard
function hn(x) as follows:

hn(x) =

{
fn(x) (∀m ≤ ‖n, x‖)ϕ(m)

z(x, n) otherwise
. (14)

Here, z(x, n) is any function which is not differentiable at x = 1
2 for infinite n.

For instance, z(x, n) could be a certain instance of the well-known Koch curve
at some limit stage, i.e. for some infinite n. Note that hn(x) is continuous at 0
and at 1, and that z(x, n) is not differentiable for x = 1

2 . For standard n and
x ∈ [0, 1], we have hn(x) = fn(x), by the definition of hn(x) and our assumption
that ϕ(m) holds for all finite m. Thus, hn(x) is also equidifferentiable and MVT
applies to this sequence. Let g(n) be such that h′n(g(n)) ≈ 0, for all n. If there
were some m0 such that ¬ϕ(m0), we would have hm0(g(m0)) = z(g(m0),m0).
However, by MVT, h′m0

(g(m0)) ≈ 0. This yields a contradiction, implying that
the number m0 cannot exist. Hence, we have ϕ(m) for all m, not just the finite
numbers. This implies Π1-TRANS and we are done.

Let D (resp. E) be MVT with ‘equidifferentiable over (a, b)’ replaced by
‘differentiable over (a, b) for n ≤ m, for some infinite m’ (resp. ‘S-differentiable
for n ≤ m over (a, b), for some infinite m’). As for IVT, we have the following
theorem.

Theorem 40. In ERNA, MVT is equivalent to D and to E.

Proof. Similar to the proofs of Theorems 26 and 28.

We end this section with a note on differentiability and a preliminary con-
clusion.

Remark 41. In the weaker theories of Reverse Mathematics, the notion of dif-

ferentiability can be quite subtle. For instance, the existence of limh→0
f(x+h)−f(x)

h
does not guarantee the existence of the derivative f ′(x) in RCA0. In particular,
for continuously differentiable functions, the existence of f ′(x) is equivalent to
ACA0 ([27, Theorem 3.8]). For ERNA, consider the following natural candidate
for a definition of differentiability.

(∀stk)(∃stN)(∀sth, h′)(∀stx ∈ [c, d])
[
|h− h′| < 1

N → |∆hf(x)−∆h′f(x)| < 1
k

]
.

(15)
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Nonetheless, it seems difficult to extract a derivative f ′(x) in ERNA from the
previous formula. Moreover, the statement a function satisfying (15) is differen-
tiable is equivalent to Π1-TRANS, implying that ∆εf(x) is not a good derivative
in ERNA. Thus, we choose (12), inspired by Bishop’s definition ([3, Definition
5.1]). Finally, in [21], we pointed out a connection between Π1-TRANS and
ACA0. The above indicates a further correspondence.

In the previous two sections, we showed that ERNA’s Reverse Mathematics
mirrors the situation in classical Reverse Mathematics when it comes to IVT,
MVT and their uniform generalizations. These are examples of the following
schema.

Schema 42. Let T be a theorem of ordinary mathematics asserting the exis-
tence of a solution x to a problem P . Let T be the statement that there is a
certain sequence xn of solutions to the sequence of problems Pn. If T is prov-
able in the base theory, then T is equivalent to the next system1 of Reverse
Mathematics.

In the following sections, we observe several other examples of this schema
in ERNA’s Reverse Mathematics.

5. The integral mean value theorem

In this section, we investigate the integral mean value (IMV) theorem (See
[13, Theorem 21.96]) inside ERNA’s Reverse Mathematics. In particular, we
show that IMV conforms to the situation described in Schema 42. For details
concerning integration in ERNA, we refer to [19, Section 3.1].

First of all, we prove the following theorem inside ERNA.

Theorem 43 (IMV). On [a, b], let f be continuous and let g be integrable. If
g is non-negative on [a, b], there exists c ∈ [a, b] such that∫ b

a
f(x)g(x) dx ≈ f(c)

∫ b

a
g(x) dx.

Proof. By ERNA’s version of the Weierstraß extremum theorem ([19, Theorem
12]), there exists c, d ∈ [a, b] such that f(c) / f(x) / f(d), for all x ∈ [a, b].
This implies

f(c)J /
∫ b

a

f(x)g(x) dx / f(d)J, (16)

where J =
∫ b

a
g(x) dx. If J ≈ 0, the theorem follows, as f(c) and f(d) are finite.

If J 6≈ 0, then (16) implies

f(c) /
1

J

∫ b

a

f(x)g(x) dx / f(d).

By IVT, there exists e ∈ [a, b] such that f(e) ≈ 1
J

∫ b

a
f(x)g(x) dx.

1Here, the ‘next system’ is meant in terms of increasing logical strength.
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As an aside, we prove the following reversal. Let IMV be IMV with ‘con-
tinuous’ replaced by ‘S-continuous and near-standard’.

Corollary 44. In ERNA, IMV is equivalent to Π1-TRANS.

Proof. Immediate from Theorems 43 and 50 in [19].

In the context of classical Reverse Mathematics, it is easy to show that IMV,
limited to uniformly continuous functions, is provable in RCA0 and that IMV
limited to pointwise continuous functions is equivalent to WKL0.

We now define ERNA’s sequential version of IMV.

Principle 45 (IMV). On [a, b], let the near-standard fn be equicontinuous and
let g be integrable. If g is non-negative on [a, b], there exists h(n) ∈ [a, b] such
that

(∀n)
[∫ b

a
fn(x)g(x) dx ≈ fn(h(n))

∫ b

a
g(x) dx

]
.

Theorem 46. In ERNA, IMV is equivalent to Π1-TRANS.

Proof. The forward implication is immediate from [19, Theorem 50]. For the
reverse direction, assume Π1-TRANS and let fn(x) and g(x) be as in IMV. In
particular, assume that g is non-negative on [a, b]. By Theorem 19, fn(x) is
continuous on [0, 1], for each n. By IVM, we have that for all n, there is an

z0 ∈ [0, 1] such that
∫ b

a
fn(x)g(x) dx ≈ fn(z0)

∫ b

a
g(x) dx. We define h(n) as that

z ∈ [0, 1] with ‖z‖ ≤ ω such that
∣∣ ∫ b

a
fn(x)g(x) dx−fn(z)

∫ b

a
g(x) dx

∣∣ is minimal.
By [14, Section 5.1 and Corollary 53], this function is available in ERNA. By

the previous, h(n) satisfies
∫ b

a
fn(x)g(x) dx ≈ fn(h(n))

∫ b

a
g(x) dx, for all n.

It should be straightforward to prove that a suitable version of IMV is equiv-
alent to WKL0. Moreover, let F be IMV with ‘equicontinous over [a, b]’ replaced
by ‘continuous over [a, b] for n ≤ m, for some infinite m’. As for IVT and MVT,
we have the following theorem.

Theorem 47. In ERNA, IMV is equivalent to F.

Proof. Similar to the proofs of Theorems 26 and 28.

6. Et Sequentia

In this section, we consider several more theorems that conform to the sit-
uation described in Schema 42. Furthermore, we sketch an informal procedure
for generating such theorems.
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6.1. The Weierstraß Extremum Theorem

Here, we consider ERNA’s version of the Weierstraß extremum theorem. By
[19, Theorem 12], the following theorem is provable in ERNA.

Theorem 48 (WEI). If f is continuous over [a, b], there is a number c ∈ [a, b]
such that for all x ∈ [a, b], we have f(x) / f(c).

The previous theorem yields the following principle.

Principle 49 (WEI). Let fn be equicontinuous on [a, b] and near-standard.
Then there exists g(n) ∈ [a, b] such that (∀x ∈ [a, b])(|fn(x)| / |fn(g(n))|), for
all n.

Theorem 50. In ERNA, WEI is equivalent to Π1-TRANS.

Proof. For the forward implication, note that WEI reduces to the Weierstraß ex-
tremum principle for n = 1 (See [19, Principle 44]). By [19, Theorem 45], this
principle is equivalent to Π1-TRANS.

For the inverse implication, let fn be as in WEI. By Theorem 17, fn is
continuous over [a, b], for all n. By WEI, we have that for all n, there is a
c ∈ [0, 1] such that (∀x ∈ [a, b])(|fn(x)| / |fn(c)|). We define g(n) as that
x ∈ [a, b] with ‖x‖ ≤ ω such that |fn(x)| is maximal. By [14, Section 5.1 and
Corollary 53], this function is available in ERNA. By the previous, we have
(∀x ∈ [a, b])(|fn(x)| / |fn(g(n))|), for all n.

6.2. The Peano Existence Theorem

Here, we consider ERNA’s version of the Peano existence theorem. By [19,
Theorem 31], the following theorem is provable in ERNA.

Theorem 51 (PEA). Let f(x, y) be continuous on the rectangle |x| ≤ a, |y| ≤ b,
let M be a finite upper bound for |f | there and let α = min(a, b/M). Then there
is a function φ, S-differentiable for |x| ≤ α, such that

φ(0) = 0 and φ′(x) ≈ f(x, φ(x)). (17)

The previous theorem gives rise to the following principle.

Principle 52 (PEA). Let fn(x, y) be near-standard and equicontinuous for
|x| ≤ a, |y| ≤ b, let Mn be a finite upper bound for |fn| there and let αn =
min(a, b/Mn). There is a sequence φn, S-differentiable for |x| ≤ αn and all n,
such that

φn(0) = 0 and φ′n(x) ≈ fn(x, φn(x)). (18)

We have the following reversal.

Theorem 53. In ERNA, PEA is equivalent to Π1-TRANS.
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Proof. For the forward implication, note that PEA reduces to the Peano exis-
tence theorem for n = 1 (See [19, Theorem 31]). By [19, Theorem 54], this
principle is equivalent to Π1-TRANS.

For the inverse implication, let fn be as in PEA. By Theorem 17, fn is
continuous over [a, b], for all n. By PEA, we have that for all n, there is an
S-differentiable function φn(x) such that φn(0) = 0 and φ′n(x) ≈ fn(x, φn(x))
for |x| ≤ αn. Moreover, the function φn(x) is given by an explicit formula (See
[19, Formula (22)]).

Note the final sentence of the previous proof: Like in constructive analysis,
the existence of a mathematical object in ERNA (in general) comes with a
procedure to construct it.

6.3. A general schema

From the previous paragraphs, it should be clear that there is a general
schema underlying the examples considered hitherto. Thus, we sketch a proce-
dure for generating theorems that conform to Schema 42 in ERNA’s Reverse
Mathematics.

Procedure 54.

1. Find a theorem T (=) of ordinary Mathematics that states the existence
of a solution x to a problem P (=) involving equality.

2. Replace equality ‘=’ by ‘≈’ to obtain T (≈).

3. If necessary, change the conditions of T (≈) to make it provable (or mean-
ingful) in ERNA.

4. Let T be the sequential version of T (≈), i.e. the statement there is a
sequence xn of solutions to P (≈).

5. In T, introduce equicontinuity or similar conditions.

Then ERNA proves that T is equivalent to Π1-TRANS.

Now, it is an easy exercise to consider the Weierstraß approximation theorem
(See [19, Section 4.5]) in this context.

To conclude this section, we list a possible interpretation of IVT and other
theorems conforming to Schema 42. As mentioned in the latter, such theorems
state the existence of a sequence of solutions xn to a collection of problems
Pn. In the case of ERNA, the objects xω are also solutions to Pω for infinite
ω. Classically, one would say that ‘xn still satisfies Pn after taking the limit
n→∞’. Thus, a possible interpretation of IVT, and similar principles, is that
-under certain conditions- if ∗x and ∗P , the limits of xn and Pn for n → ∞,
are somehow meaningful, then ∗x is still a solution to ∗P . In other words, as
long as the limits ∗x and ∗P are meaningful, the limit n→∞ can be taken for
xn and Pn without problems. The latter is a typical example of the informal
reasoning in Physics where operations such as limits are performed without
much mathematical rigor, as long as the end result is physically meaningful.
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7. Conclusion

In this section, we formulate some concluding remarks to this paper.

7.1. Robust Reverse Mathematics

The main goal of Reverse Mathematics is to identify the minimal axioms
that prove a certain theorem of ordinary Mathematics. As Theorem 1 shows,
in many cases, the minimal axioms are also equivalent to the theorem at hand,
given some base theory. Historically, the framework of second-order arithmetic is
used to formalize ordinary Mathematics and to carry out the program of Reverse
Mathematics ([25]). While second-order arithmetic is generally agreed upon to
be the right system to formalize (countable or countably dense) Mathematics,
the question nonetheless remains whether the observations made in Reverse
Mathematics (e.g. the Main Theme) depend somehow on the formalization or
framework used.

In this paper, we have gathered evidence in support of the thesis that no
such dependence exists. Indeed, by Theorem 2, many of the equivalences be-
longing to the Reverse Mathematics of WKL0 remain valid when changing the
framework to Nonstandard Analysis with ERNA as a base theory, provided the
replacement of ‘=’ by ‘≈’. Thus, we observe similar equivalences in a frame-
work very different from second-order arithmetic. From another point of view,
these equivalences are even observed to be robust, i.e. stable under variations of
parameters. Indeed, the introduction of an infinitesimal error does not change
the essential meaning of the observation that many theorems of ordinary Math-
ematics are equivalent (either to WKL0 or Π1-TRANS). In this paper, we
have demonstrated that ERNA’s Reverse Mathematics mirrors classical Reverse
Mathematics when it comes to IVT, MVT and their sequential generalizations,
modulo the replacement of ‘=’ by ‘≈’. Thus, we have contributed to showing
that the equivalences of Reverse Mathematics are indeed robust.

A subsequent natural question is whether it is possible to construct a gen-
eral procedure that translates equivalences from classical Reverse Mathemat-
ics to ERNA’s Reverse Mathematics (and vice versa). Although it is clear in
many instances how to translate theorems while preserving equivalences be-
tween them, our experience and intuition suggest that no such procedure exists.
We now discuss two reasons why this need not be problematic. Note that such
discussion is inherently vague, but, in our opinion, meaningful to the above.

First of all, a similar observation can be made for Reverse Mathematics.
Indeed, once a given kind of theorem T is established to be equivalent to some
logical principle A, it is usually a generic2 exercise to find many similar theorems
T ′, T ′′,. . . which are also equivalent to A. Nonetheless, there is no general
procedure that takes a theorem of ordinary Mathematics as input and produces a

2Sometimes, it is colloquially said that Once you’ve seen one reversal, you’ve seen them
all. Note that the author does not share this opinion.
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proof of equivalence to some logical principle. The existence of such a procedure
seems highly doubtful, as it would provide us with a kind of formal criterion
concerning ordinary Mathematics, an inherently vague concept.

Secondly, the notion of robustness (i.e. invariance under variations of param-
eters) seems to involve syntax and semantics. While a syntactical translation
is (more or less) a literal transposition, a robust translation connects two syn-
tactical systems (different due to some variation in parameters) that still have
(approximately) the same semantical behaviour. Thus, it seems doubtful that
there might be a finite procedure (providing a syntactical translation) connect-
ing classical and ERNA’s Reverse Mathematics. We finish this paragraph with
two clarifying examples.

As discussed above, the comparison of Theorems 1 and 2 provides us with
an example of robust behaviour: although syntactically different, both theorems
carry the same meaning: they express that theorems of ordinary Mathematics
are equivalent to a logical principle. An example of non-robust behaviour is pro-
vided by [1]. In this paper, the authors construct a pair of computable random
variables (X,Y ) in the unit interval whose conditional distribution P [Y |X] en-
codes the halting problem. However, they also show that the introduction of a
small perturbation, such as independent absolutely continuous noise, results in
a computable conditional distribution. Thus, the non-computability of P [Y |X]
is not a robust phenomenon: a small variation (the introduction of noise) breaks
the non-computability. In other words, the introduction of noise causes a sharp
phase transition in the semantical behaviour of the conditional distribution (i.e
from non-computable to computable).

Finally, the previous example suggests the value of robust models in the exact
sciences: if a robust model has a sudden change in its (semantical) behaviour,
we can trust this happens not due to some artifact of our modelling, but due to
a genuine real-world phenomenon (which we are trying to discover/study). In
other words, robustness provides a ‘no-false positives’ guarantee.

7.2. Philosophical implications

In this paragraph, we consider our results from the point of view of Philos-
ophy of Science.

The system ERNA was introduced by Richard Sommer and Patrick Suppes
to provide a foundation that is close to the mathematical practice characteristic
of theoretical physics (See [26, p. 2]). In [23], it is argued that several equivalent
formulations of Π1-transfer (e.g. the Continuity principle, the Dirac Delta theo-
rem, and the Peano existence theorem) are essential to Physics. Here, we claim
the same for sequential principles like IVT introduced in this paper. In particu-
lar, we argue that these principles are essential to a well-known renormalization
technique from Physics called dimensional regularization.

In general, renormalization is a collection of techniques used to treat infinities
arising in calculations in physical theories. A philosophical discussion of this
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topic can be found in [9]. An early example of dimensional regularization can
be found in [10]. This technique provides a way of studying (physical) objects
whose mathematical representation τ(z0) is singular (i.e. infinite or undefined)
in a certain physical theory. The first step to extracting information from τ(z0)
is to avoid the singularity z0 by introducing a parameter ε > 0. Thus, τ(z0 + ε)
is (mathematically) well-defined, but need not have physical meaning. Secondly,
τ(z0 + ε) undergoes some mathematical manipulation, yielding a term σ(z0 +
ε) that behaves better around the singularity z0. Thirdly, for the resulting
object σ(z0 + ε), the limit ε → 0 is taken to obtain a (physically) meaningful
term σ(z0). The properties of the latter yield new information about τ(z0)
and the corresponding physical object. It goes without saying that plenty of
(mathematical and physical) objections can be raised with regard to dimensional
regularization.

First of all, an essential part of this regularization technique is that the ob-
ject σ(z0 + ε) is ‘well-behaved’ in the limit ε→ 0. As such a limit is in general
not even a function, this property is by no means a trivial requirement. Sec-
ondly, limits and other operations are applied in Physics without much care for
mathematical detail as long as the end result somehow has (physical) mean-
ing. As motivated at the end of Paragraph 6.2, both these considerations are
reflected in sequential principles like IVT: these principles express that, if the
limits ∗x and ∗P of xn and Pn for n→∞ are somehow meaningful, then ∗x is
still a solution for ∗P . Moreover, a sequence of objects is always given by the
sequential principles. This is important, as in Physics, an existence statement
concerning an object is usually accompanied by a procedure to approximate or
determine this object.

Acknowledgement 55. This publication was made possible through the gen-
erous support of a grant from the John Templeton Foundation for the project
Philosophical Frontiers in Reverse Mathematics. I thank the John Templeton
Foundation for its continuing support for the Big Questions in science. Please
note that the opinions expressed in this publication are those of the author and
do not necessarily reflect the views of the John Templeton Foundation.

Furthermore, I would like to thank the following people from Tohoku Uni-
versity, Japan, for their valuable advice: Professor Kazuyuki Tanaka, Professor
Takeshi Yamazaki, Assistant-professor Keita Yokoyama and Dr. Yoshihiro Hori-
hata.

References

[1] Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy, Noncomputable Condi-
tional Distributions, Proceedings of the Twenty-Sixth Annual IEEE Symposium on Logic
In Computer Science (Toronto, Canada, 2011), IEEE press, 2011.

[2] Martin Berz, Analytical and computational methods for the Levi-Civita field, p-adic func-
tional analysis (Ioannina, 2000), Lecture Notes in Pure and Appl. Math., vol. 222, Dekker,
New York, 2001, pp. 21–34.

21



[3] Errett Bishop and Douglas S. Bridges, Constructive analysis, Grundlehren der Mathe-
matischen Wissenschaften, vol. 279, Springer-Verlag, Berlin, 1985.

[4] Samuel R. Buss, An introduction to proof theory, Handbook of proof theory, Stud. Logic
Found. Math., vol. 137, North-Holland, Amsterdam, 1998, pp. 1–78.

[5] Harvey Friedman, Some systems of second order arithmetic and their use, Proceedings
of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad.
Math. Congress, Montreal, Que., 1975, pp. 235–242.

[6] , Systems of second order arithmetic with restricted induction, I & II (Abstracts),
Journal of Symbolic Logic 41 (1976), 557–559.

[7] , Strict Reverse Mathematics, philpapers.org/rec/FRISRM (20 Nov. 2009).

[8] Harvey Friedman and Stephen G. Simpson, Issues and problems in reverse mathematics,
Computability theory and its applications (Boulder, CO, 1999), Contemp. Math., vol. 257,
Amer. Math. Soc., Providence, RI, 2000, pp. 127–144.

[9] Stephan Hartmann, Effective Field Theories, Reduction and Scientific Explanation, Stud-
ies in History and Philosophy of Modern Physics (2001), 267–304.

[10] Gerard ’t Hooft and Martinus J. G. Veltman, Regularization and Renormalization of
Gauge Fields, Nuclear Physics B (1972), 189–213.

[11] Christopher S. Hardin and Daniel J. Velleman, The mean value theorem in second order
arithmetic, J. Symbolic Logic 66 (2001), no. 3, 1353–1358.

[12] Yoshihiro Horihata, Weak subsystems of first and second order arithmetic, PhD thesis,
Tohoku University, Sendai, 2011.

[13] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New
York, 1975. Graduate Texts in Mathematics, No. 25.

[14] Chris Impens and Sam Sanders, Transfer and a supremum principle for ERNA, Journal
of Symbolic Logic 73 (2008), 689-710.

[15] , Saturation and Σ2-transfer for ERNA, Journal of Symbolic Logic 74 (2009),
901-913.

[16] Antonio Montalbán, Open questions in reverse mathematics, Bull. Symbolic Logic 17
(2011), no. 3, 431–454.

[17] Paul Milgrom and Ilya Segal, Envelope theorems for arbitrary choice sets, Econometrica
70 (2002), no. 2, 583–601.

[18] Nobuyuki Sakamoto, Reverse mathematics and higher order arithmetic, PhD thesis, To-
hoku University, Sendai, 2004.

[19] Sam Sanders, ERNA and Friedman’s Reverse Mathematics, Journal of Symbolic Logic
76 (2011), 637-664.

[20] , ERNA and Friedman’s Reverse Mathematics II, In preparation (2011).

[21] , A tale of three Reverse Mathematics, Submitted (2011).

[22] , On the notion of algorithm in Nonstandard Analysis, Submitted (2011).

[23] , Reverse mathematics and non-standard analysis; a treasure trove for the philos-
ophy of science (Mitsuhiro Okado, ed.), 2011. Proceedings of the Ontology and Analytic
Metaphysics meeting, Keio University Press.

[24] Sam Sanders and Keita Yokoyama, The Dirac delta function in two settings of Reverse
Mathematics, Submitted (2010).

[25] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in
Logic, Cambridge University Press, Cambridge, 2009.

[26] Richard Sommer and Patrick Suppes, Finite Models of Elementary Recursive Nonstan-
dard Analysis, Notas de la Sociedad Mathematica de Chile 15 (1996), 73-95.

[27] Keita Yokoyama, Standard and non-standard analysis in second order arith-
metic, PhD thesis, Tohoku University, Sendai, 2007. Available online at
http://www.math.tohoku.ac.jp/tmj/PDFofTMP/tmp34.pdf.

[28] T. Zolezzi, On equiwellset minimum problems, Appl. Math. Optim. 4 (1977/78), no. 3,
209–223.

22


