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Abstract—Preclinical in vivo micro computerized tomography
suffers from high image noise, due to limitations on total scanning
time and the small pixel sizes. A lot of different noise mini-
mization algorithms have already been proposed to reconstruct
images acquired in low dose settings. Sparse-view reconstruction
amongst others can reduce acquisition dose significantly, by
acquiring only a small subset of projection views. Total Variation
minimization has been used extensively to solve these problems.
However, the performance of TV is suboptimal for complex
images, compared to simple images with little texture. This is
mainly due to the underlying piecewise constant image model
imposed by TV.

A recent efficient solver was developed for convex problems,
able to incorporate regularization terms different from TV.
The work presented here is a proof-of-concept study combining
both TV as well as shearlets as regularization terms into one
general CT reconstruction algorithm. Shearlets, closely related
to wavelets, take edges into account in a multitude of directions
at different scales, and have good compaction properties. This
makes shearlets a better candidate than TV for compressed sens-
ing problems. The resulting reconstructions were compared to
TV minimization and to shearlet minimization. The combination
of both shows benefits for sparse-view CT imaging, and leads
to edge-preserved image denoising. Difference images show a
very small loss in resolution, which may be caused by difficult
parameter selection.

Index Terms—Computed Tomography, Iterative Algorithms,
Noise, Reconstruction Algorithms

I. INTRODUCTION

Preclinical in vivo micro computerized tomography (µCT)
suffers from high image noise, as a result of the small detector
pixel sizes, a high scatter-to-primary noise ratio [1], and the
limited time animals can be safely kept under anesthetics.
This results in limited soft tissue contrast. Reducing the
dose without sacrificing image quality could offer significant
benefits for longitudinal preclinical research, where the small
animals receive a large dose within a timeframe of several
days to weeks.
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Total variation (TV) minimization has been extensively
investigated in the last decade for image denoising in general
and sparse-view reconstruction in particular [2]–[5]. These
methods have been shown to have superior denoising perfor-
mance in simple classes of images. However, TV minimization
produces cartoon-like approximations due to its underlying
image model. This model biases the results towards distorted
images, which may be less suitable for medical images used
in diagnostics [3].

In the search for objective functions different from TV, a re-
cent efficient solver was developed, based on a split-Bregman
approach. With this solver, other regularization terms can
easily be tested. One possibility is the shearlet [6], [7], closely
related to wavelets, which has better directional sensitivity,
better `1-norm sparsity and, because of a different underlying
image model, does not lead to the staircasing effect. We
have previously shown that shearlet-regularized reconstructed
images show no staircasing and exhibit small aliasing artifacts.
However, these reconstructions did not outperform TV-based
regularization for all datasets [8]. In the research presented
here, we investigated if combining TV and shearlets can
combine their benefits and reduce the small artifacts induced
by using shearlets in CT reconstruction. This combination has
already been shown effective in Magnetic Resonance Imaging
reconstruction [9]–[11].

The remainder of this paper is organized as follows. In Sec.
II, we introduce the problem formulation and quickly reiterate
the mathematical background for using the split-Bregman ap-
proach in CT. Section III describes the set-up for the evaluation
on simulated and measured preclinical in vivo µCT data. In
Sec. IV we compare the combination of shearlets and TV
to conventional algebraic reconstruction and to reconstruction
with only one of these terms, for sparse-view data. These
results are then discussed in Sec. V, where suggestions are
also made for further research. Our conclusions are in Sec.
VI.

II. PRELIMINARIES

Previously, we have developed the split-Bregman framework
for regularized CT reconstruction [8], [12], [13]. We denote
an `1-norm by |.|1 and and `2-norm by ||.||2. The following
minimization problem is solved:

x̂ = arg min
x

E(x) + λ||C−1/2(y −Wx)||22, (1)

with x the unknown reconstructed image, E(x) the penalty
term, λ the Lagrangian multiplier, a constant which determines



the amount of data-fitting and amount of regularization, C a
prewhitening term, y the measured data and W the system
matrix.

The penalty term E(x) can include different regularizers.
Previously, the `1-norm of the discrete gradient operator has
already been used in anisotropic fasion [13], as well as a case
where shearlets were used [8]. In this study, we will use a
penalty term combining both:

E(x) = γTV (|∇xx|1 + |∇yx|1) + γSH |Sx|1, (2)

with ∇ the discrete gradient operator, S the shearlet transform
and constants γTV and γSH weighting the influence of the two
components.

This cost function can be minimized by using Bregman
iterations and variable splitting [12], effectively splitting the
`1- and `2-norm into subproblems which are easier to solve
[13]. This results in equations (3a) - (3g).

III. MATERIALS AND METHODS

A. Simulated data

Fan-beam data was simulated using MC-GPU v1.2 [14]1, a
GPU-accelerated x-ray transport simulator. A high resolution
phantom was built based on the work of the FORBILD group2

(Fig. 1a). The resolution rods were simulated as containing air,
surrounded by soft tissue. One 3.6864× 3.6864× 0.1395 cm
thick slice was generated, containing 8192 × 8192 voxels, to
get sufficient subsampling in the holes with smallest diameter.
The detector was simulated as a perfect detector with 100%
efficiency, and consists of 296 elements with a pixel pitch
of 0.14 mm, acquiring 360 uniformly spaced projection views
over 2π. All data was generated using a 60 keV monoenergetic
x-ray source with 108 photons per ray. The sinogram includes
scattered photons.

B. Measured data

The X-O CT system (Gamma Medica Ideas, Northridge,
California, USA) was used to obtain preclinical data of one
in vivo contrast-enhanced mouse study. This flat-panel cone-
beam system consists of a 1280×1120 detector with a 100
µm pixel pitch. The tube current is determined automatically
during calibration to ensure that the dynamic range of the
detector is optimally used. Fan-beam data were generated by
retaining only the central detector row. 2048 projection views
were obtained over 2π. A new dataset was generated from
this projection data, by removing all but every 16th projection
(128 views).

C. Data reconstruction and analysis

All datasets were reconstructed using 4 methods: SIRT,
split-Bregman using anisotropic TV (SpBR-TV), split-
Bregman using shearlets (SpBR-SH) and split-Bregman using
both shearlets and anisotropic TV (SpBR-SHTV). In SpBR,
Eq. 3a was solved using 30 iterations of conjugate gradient

1Freely available from http://code.google.com/p/mcgpu/
2http://www.imp.uni-erlangen.de/phantoms/highcontrast/highcontrast.html
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Fig. 1. Reference images for the simulated data (resolution phantom
converted to 60 keV attenuation values) and the preclinical data (converged
SIRT reconstruction of 2048 projection views).

on the normal equations. Matrix W was implemented as the
2D Distance Driven projector [15]. The shearlet transform S
was implemented as previously implemented by Goossens et
al. [16], based on the Meyer wavelet. Equations 3b-3d were
implemented using soft-shrinkage [12]. Equations 3e-3g are
trivial to solve. All regularized reconstructions converged and
were stopped at iteration 20. All SIRT reconstructions were
stopped when ||x(i+1) − x(i)||22/||x(i+1)||22 < 10−4.

The simulated data was reconstructed to a 2562-grid with
voxel pitch 0.16 mm, the preclinical data was reconstructed to
a 2562-grid with 0.13 mm voxel pitch. The diagonal elements
of C (see Eq. 3a) were set to cii = e−yi [17] with yi the
measured counts, serving as an estimator for the mean number
of counts.

For each regularized reconstruction, parameter λ was em-
pirically chosen, by reconstructing with different λ values
and gradually making the search interval smaller, fine tuning
the amount of denoising. This generally results in 5 to 10
reconstructions needed to determine a good λ value for the
case of only one regularizer. When SH and TV were com-
bined, γSH and γTV also had to be empirically determined.
The parameter µ was always set to 0.585 × λ, which was
empirically determined.

The peak signal-to-noise ratio (PSNR) was determined to
objectively evaluate the preclinical images. The SIRT recon-
struction of 2048 projection views was used as the reference
high dose image (Fig. 1b).

IV. RESULTS

Figure 2 shows the resolution phantom reconstructed with
the different methods, zoomed in to the low resolution part
of the resolution phantom. some For SpBR-TV, noise patches
become apparent in the heavily denoised image (λ = 600),
compared to less denoising (λ = 4000). However, a slight
increase in resolution can be noted when only a small amount
of denoising is applied. Furthermore, the rods are shaped
irregularly and are not perfectly round.

In the SH reconstruction, denoising with a low λ factor
does not eliminate all noisy patches in between of the rods.
The resolution increases when less denoising is used, also
increasing the noise in the background. However, when SH
and TV are combined (γSH = 1.0 and γTV = 0.45), round
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Fig. 2. Comparison of SIRT of noisy data, combined SH and TV
(γSH = 1.0, γTV = 0.45), TV with low and high λ, SH with low
and high λ. All images were normalized to the same window.

rods are achieved, whilst still perfectly minimizing the noise
in the background.

Figure 3 compares SpBR-TV, SpBR-SH and SpBR-SHTV
to the reference high-dose SIRT reconstruction in the case
of measured preclinical data. Parameter λ was set to 2000
for SpBR-SHTV, with γSH = 0.25 and γTV = 1.0. Plotted

on the right are the absolute difference images, each time
between the reconstruction and the reference image. SIRT
shows streaking artifacts when only 128 views are used. All
regularized reconstructions lead to higher PSNR compared to
SIRT.

The difference image for SpBR-TV shows some resolution
loss at the edges of the animal bed and at the body contour, pri-
marily at edges which are not mainly horizontally or vertically
oriented. For SH, these edges are not visible. However, there
are some streaking artifacts left, which could not be minimized
with a different λ choice without sacrificing resolution. When
SH and TV are combined, good denoising properties are
obtained with a small amount of resolution loss. This is
primarily visible at the sternum, where the spongious bone is
more difficult to distinguish on SpBR-SHTV reconstructions
than on SIRT or with TV alone.

V. DISCUSSION

Combining TV and SH regularization into one algorithm
shows benefits for sparse-view CT imaging. Previous research
has shown that shearlets do not lead to any form of piecewise-
constant behavior, but on the other hand do not tend to
approximate uniform regions as well as TV [8]. The prelim-
inary results presented here show that a combination of both
regularization terms combines the benefits of both SH as well
as TV.

One tricky and very sensitive area is parameter selection in
iterative algorithms. Next to determining λ empirically, there
is now also the difficulty of weighing the contribution of SH
against the contribution of TV with γSH and γTV . Special care
has to be taken to not let TV overpower SH, as this will result
in piecewise constant behavior. In theory, we would like to
use shearlets to minimize the cost function in general, and use
a little bit of TV to minimize the introduced artifacts, such as
Gibbs phenomena next to jump discontinuities, or remaining
streaking artifacts. We have shown that this works sufficiently
in the case of preclinical data, although with a small loss of
resolution. This may be due to parameter selection.

On the other hand, a larger γTV than γSH is needed when
phantom data is reconstructed. Shearlets can not reconstruct
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Fig. 3. Preclinical sparsified data reconstructed from 128 projection
views with SIRT, SpBR-TV, SpBR-SH and SpBR-SHTV (γSH = 0.25,
γTV = 1.0). All images were normalized to the same window. Difference
is the absolute difference between reconstruction and reference.

the uniform areas in phantoms accurately, as was demonstrated
with the resolution phantom in Fig. 2. However, these cases
are not realistic when doing (pre)clinical measurements. Op-
timal selection of these parameters will be subject to future
research, as well as task-based observer studies to determine
if SpBR-SHTV has better diagnostic value than simple TV
minimization.

VI. CONCLUSION

We have combined TV and shearlet minimization into one
reconstruction algorithm, and have shown its benefits for
sparse-view CT imaging in a proof-of-concept study. A small
loss of resolution is apparent, probably due to suboptimal
parameter selection.
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[9] A. Pižurica, J. Aelterman, F. Bai, S. Vanloocke, H. Quang Luong,
B. Goossens, and W. Philips, “On structured sparsity and selected ap-
plications in tomographic imaging,” Proc. of SPIE Conference Wavelets
and Sparsity XIV, p. 81381D, 2011.

[10] L. He, T.-C. Chang, S. Osher, T. Fang, and P. Speier, “MR image
reconstruction from undersampled data by using the iterative refinement
procedure,” PAMM, vol. 7, no. 1, pp. 1 011 207–1 011 208, Dec. 2007.

[11] J. Huang, S. Zhang, H. Li, and D. Metaxas, “Composite splitting
algorithms for convex optimization,” COMPUTER VISION AND IMAGE
UNDERSTANDING, pp. 1–13, Sep. 2011.

[12] T. Goldstein and S. Osher, “The split Bregman method for L1 regularized
problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–
343, 2009.

[13] B. Vandeghinste, B. Goossens, J. De Beenhouwer, A. Pižurica,
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