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Background Short-range correlations (SRC) are an important ingredient of the dynamics of nuclei.

Purpose An approximate method to quantify the magnitude of the two-nucleon (2N) and three-nucleon (3N) short-range
correlations (SRC) and their mass dependence is proposed.

Method The proposed method relies on the concept of the “universality” or “local nuclear character” of the SRC. We quantify
the SRC by computing the number of independent-particle model (IPM) nucleon pairs and triples which reveal beyond-
mean-field behavior. It is argued that those can be identified by counting the number of nucleon pairs and triples in a
zero relative orbital momentum state. A method to determine the quantum numbers of pairs and triples in an arbitrary
mean-field basis is outlined.

Results The mass dependence of the 2N and 3N SRC is studied. The predictions are compared to measurements. This
includes the ratio of the inclusive inelastic electron scattering cross sections of nuclei to 2H and 3He at large values of
the Bjorken variable. Corrections stemming from the center-of-mass motion of the pairs are estimated.

Conclusions We find that the relative probability per nucleon for 2N and 3N SRC has a soft dependence with mass number
A and that the proton-neutron 2N SRC outnumber the proton-proton (neutron-neutron) 2N SRC. A linear relationship
between the magnitude of the EMC effect and the predicted number of proton-neutron SRC pairs is observed. This
provides support for the role of local nuclear dynamics on the EMC effect.

PACS numbers: 25.30.Fj,24.10.-i,13.60.Hb

I. INTRODUCTION

We define the nuclear packing factor (NPF) as the
fraction of the nuclear volume that is occupied by nu-
cleons. A rough order of magnitude estimate of the
NPF can be arrived at using uniform spheres for the
nuclear and nucleon density. The nuclear radius RA
can be reasonably determined from RA = 1.2(fm) A1/3.
It is not obvious what value of the nucleon radius rN
should be used. In models of relativistic heavy-ion col-
lisions it is customary [1] to use expulsion distances d,
which simulate the hard-core NN repulsion, of the or-
der of 1 fm, corresponding with rN ≈0.5 fm. This leads
to NPF=0.07. A recent reanalysis of electron scattering
data resulted in a root-mean-square charge radius of the
proton rcp =

√〈
r2
p

〉
=0.897(18) fm [2]. Assuming that

the rcp is an estimate of the proton and neutron radius

one arrives at NPF=
(
rcp(fm)

1.2

)3

=0.42. It is clear that the
computed NPF is very sensitive to the adopted value of
the nucleon radius. The estimate of the NPF on the ba-
sis of rcp should be considered as an upper limit. Indeed,
the established value of the nuclear saturation density of
0.17 nucleons/fm corresponds with a mean internucleon
distance of 1.8 fm implying that rN ≤ 0.9 fm.

From the above, it is clear that one expects that the
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nucleus is more like a saturated quantum liquid than a
gas of freely moving nucleons. Accordingly, the nuclear
wave functions receive large corrections from short-range
(SRC) and long-range correlations. These days it is com-
mon practice to implement the effect of SRC in nuclear
computations. Examples include the calculations of ma-
trix elements for double-β decay [3], of event simulations
in heavy-ion collisions [4], and of hadron transparencies
in nuclei [5].

The EMC effect [6] is the reduction of the cross section
for leptonic scattering off a nucleon bound in a nucleus
relative to that of a free nucleon (mass MN ). The EMC
effect was observed in Deep Inelastic Scattering (DIS)
experiments on nuclei at high virtual-photon virtualities
Q2 = q2 − ω2 & 2 GeV2 for Bjorken xB = Q2

2MNω
in

the range 0.3 ≤ xB ≤ 0.7. The ratio of per nucleon
cross sections is denoted by R = 2

A
σA

σD
where σA is the

cross section for leptonic scattering from the target A.
The magnitude of the EMC effect can be quantified by
means of the slope − dR

dxB
[7]. Another remarkable fea-

ture of the ratio R is that it adopts a constant value
(this factor is commonly referred to as the SRC scaling
factor a2(A/D)) for 1.5 . xB . 2 and moderate values of
Q2 [8–10]. It has been suggested [11] that the a2(A/D)
can be related to the high-momentum components of the
nuclear wave functions. A phenomenological linear re-
lationship between the a2(A/D) and the magnitude of
the EMC effect expressed as − dR

dxB
has been observed

[12–14]. This indicates that the magnitude of the Euro-
pean Muon Collaboration (EMC) effect may be driven
by SRC. In this picture the magnitude of the EMC effect
is (partly) related to the temporal local density fluctu-
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ations which are induced by the high virtualities of the
leptonic probe. Recent measurements [7] corroborate this
relation between the local nuclear environment and the
magnitude of the EMC effect.

Given an arbitrary nucleus A(N,Z) we address the is-
sue of quantifying the number of two-nucleon (2N) pairs
prone to SRC and the number of 3N triples prone to
SRC. Along the same lines we investigate to what extent
the mass dependence of the NN SRC can be captured by
some approximate principles. We wish to develop a ro-
bust method which is applicable to any nucleus from He
to Pb. From this method we expect, for example, that
it allows one to study the mass dependence of the SRC
without combining results from various types of calcula-
tions.

Momentum distributions contain the information
about 1N, 2N, 3N, . . . properties of the nuclear ground
state. Over the years various methods to compute
the nuclear 1N and 2N momentum distributions have
been developed. Ab-initio calculations which solve the
Schrödinger equation with realistic nucleon-nucleon in-
teractions are available for light nuclei like 4He [15–
17]. For medium-weight nuclei (12 ≤ A ≤ 40) trunca-
tion schemes based on cluster expansions can be adopted
[18]. Correlated-basis function theory has been applied
to compute ground-state densities and momentum distri-
butions for doubly-closed-shell nuclei from 12C to 208Pb
[19, 20]. Thanks to the enormous progress in theoret-
ical many-body nuclear physics and the availability of
nuclear momentum distributions in a broad mass range,
times are ripe to learn more about SRC, for example by
mapping its A and isospin dependence. It remains no-
toriously difficult, though, to establish quantitative rela-
tionships between observables and the computed momen-
tum distributions [11, 21–25]. Here, we do not attempt
a high-precision calculation of momentum distributions.
Our goal is to gather insight into the mass and isospin
dependence of the SRC from stylized facts of momentum
distributions.

In a mean-field model fluctuations are completely ig-
nored. The SRC induce spatio-temporal fluctuations
from the mean-field predictions for the nuclear density
distributions for example. As a result of SRC, realistic
nuclear wave functions reflect the coexistence of single
nucleon (mean-field) structures and cluster structures.
The clusters account for beyond mean-field behavior. As
the nucleon-nucleon interaction is short ranged, the clus-
ters attributed to SRC are predominantly 2N. The cen-
tral result of this paper asserts that the amount of 2N
and 3N SRC in nuclei can be reasonably quantified by
counting the number of nucleon pairs and triples in a zero
relative orbital state in a mean-field ground-state wave
function. In order to quantify the isospin dependence of
the 2N and 3N correlations, additional information about
the spin dependence of the clusters is necessary.

This paper is organized as follows. Sect. II is devoted
to a discussion of momentum distributions and of how
they can be used to quantify the mass and isospin depen-

dence of SRC. In Sect. III we address the issue whether
inclusive electron scattering data can be linked to the
number of correlated 2N and 3N clusters. Thereby, we
deal with both the a2(A/D) coefficient and the magni-
tude of the EMC effect.

II. QUANTIFYING NUCLEAR
CORRELATIONS

In this section we start from stylized facts of nuclear
momentum distributions in order to arrive at criteria to
quantify the 2N and 3N SRC in nuclei. Our focus is on
their mass dependence.

A. Nuclear momentum distributions

In this subsection we provide the definitions and nor-
malization conventions of the nuclear momentum distri-
butions used here. For the sake of the simplicity of the
notations, we will only consider the positional degrees-of-
freedom. Unless stated otherwise the spin - and isospin
degrees-of-freedom are not explicitly written in the ex-
pressions.

The one-body momentum distribution of nuclei is de-
fined as

P1

(
~k
)

=
1

(2π)3

∫
d~r1

∫
d~r ′1e

i~k · (~r1−~r ′1 )ρ1 (~r1, ~r
′

1 ) , (1)

where ρ1 (~r1, ~r
′

1 ) is the one-body non-diagonal density
matrix

ρ1 (~r1, ~r
′

1 ) =
∫
{d~r2−N}Ψ∗A (~r1, ~r2, ~r3, . . . , ~rA)

×ΨA (~r ′1 , ~r2, ~r3, . . . , ~rA) . (2)

Here, ΨA is the ground-state wave function of the nucleus
A and the notation

{d~ri−N} = d~rid~ri+1 . . . d~rA , (3)

has been introduced. For 〈ΨA| ΨA〉 = 1, one has that∫
d~kP1

(
~k
)

= 1 . (4)

We introduce relative and center-of-mass (c.m.) co-
ordinates of nucleon pairs in coordinate

(
~r12, ~R12

)
and

momentum space
(
~k12, ~P12

)
~r12 =

~r1 − ~r2√
2

~R12 =
~r1 + ~r2√

2
(5)

~k12 =
~k1 − ~k2√

2
~P12 =

~k1 + ~k2√
2

, (6)
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and define the two-body momentum distribution in the
standard fashion as

P2

(
~k12, ~P12

)
=

1
(2π)6

∫
d~r12

∫
d~R12

∫
d~r ′12

∫
d~R ′12

×ei~k12 · (~r12−~r ′12)ei
~P12 · (~R12−~R ′12)

×ρ2

(
~r12, ~R12;~r ′12, ~R

′
12

)
. (7)

Here, ρ2

(
~r12, ~R12;~r ′12,

~R ′12

)
is the two-body non-

diagonal density matrix

ρ2

(
~r12, ~R12;~r ′12,

~R ′12

)
= ρ2

(
~r1 =

+~r12 + ~R12√
2

, ~r2 =
−~r12 + ~R12√

2
;~r ′1 =

+~r ′12 + ~R ′12√
2

, ~r ′2 =
−~r ′12 + ~R ′12√

2

)

=
∫
{d~r3−N}Ψ∗A (~r1, ~r2, ~r3, . . . , ~rA) ΨA (~r ′1 , ~r

′
2 , ~r3, . . . , ~rA) . (8)

One has the normalization condition∫
d~k12

∫
d~P12P2

(
~k12, ~P12

)
= 1 . (9)

In a spherically symmetric system, the two-body momen-
tum distribution P2

(
~k12, ~P12

)
depends on three indepen-

dent variables. One of the most obvious choices [26] is(
| ~k12 |, | ~P12 |, θ~k12 ~P12

)
, (10)

where θ~k12 ~P12
is the angle between ~P12 and ~k12.

The distributions P1

(
~k
)

and P2

(
~k12, ~P12

)
reflect all

information about one-nucleon and two-nucleon proper-
ties contained in the ground-state wave function. Other
quantities can be directly related to them. Here, we list
some of the most frequently used ones.

The two-body c.m. momentum distribution is defined
as
(
d~P12 = P 2

12dP12dΩP12

)
P2(P12) =

∫
d~k12

∫
dΩP12P2

(
~k12, ~P12

)
. (11)

The quantity P 2
12P2 (P12) dP12 is related to the probabil-

ity of finding a nucleon pair in A with c.m. momentum
P12 =| ~P12 | irrespective of the value and direction of the
relative momentum ~k12 of the pair. The P2 (P12) receives
contributions from the proton-proton, neutron-neutron,
and proton-neutron pairs

P2 (P12) = P pp2 (P12) + Pnn2 (P12) + P pn2 (P12) . (12)

In a spherically symmetric nucleus, it is convenient to
introduce the quantities

n1 (k) =
∫
dΩkP1

(
~k
)
, (13)

n2 (k12, P12) =
∫
dΩk12

∫
dΩP12P2

(
~k12, ~P12

)
.(14)

The quantity n1 (k) k2dk gives the probability of finding
a nucleon with a momentum in the interval [k, k + dk].
The n2 (k12, P12) k2

12dk12P
2
12dP12 is the combined prob-

ability of finding a nucleon pair with a relative mo-
mentum in [k12, k12 + dk12] and c.m. momentum in
[P12, P12 + dP12].

B. Mean-field approximation and beyond

A time-honored method to account for the effect of
correlations in classical and quantum systems is the in-
troduction of correlation functions. Realistic nuclear
wave functions | Ψ〉 can be computed after applying a
many-body correlation operator to a Slater determinant
| ΨMF 〉

| ΨA〉 =
1√

〈 ΨMF
A | Ĝ†Ĝ | ΨMF

A 〉
Ĝ | ΨMF

A 〉 . (15)

The nuclear correlation operator Ĝ is complicated but as
far as the short-range correlations are concerned, it is
dominated by the central, tensor and spin correlations
[27]

Ĝ ≈ Ŝ
[ A∏
i<j=1

(
1− gc(rij) + ftτ (rij)Sij~τi ·~τj

+ fsτ (rij)~σi ·~σj ~τi ·~τj
)]

, (16)

where gc(r12), ftτ (r12), fsτ (r12) are the central, tensor,
and spin-isospin correlation function, Ŝ the symmetriza-
tion operator and S12 the tensor operator

S12 =
3
r2
12

~σ1 ·~r12 ~σ2 ·~r12 − ~σ1 ·~σ2 =

√
24π
5

∑
ML

(−1)ML

×Y2ML
(Ωr12) [~σ1 ⊗ ~σ2]2−ML

. (17)
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The operator S12 admixes relative two-nucleon states
of different orbital angular momentum, is operative on
triplet spin states only, and conserves the total angular
momentum of the pair.

We stress that the correlation functions cannot be con-
sidered as universal and that in some many-body ap-
proaches, particularly for light nuclei, they do not ap-
pear. The momentum distributions which result from
the calculations depend on the interplay between many
factors, including the choices made with regard to the
nucleon-nucleon interaction, the single-particle basis (if
applicable), the many-body approximation scheme, . . ..
As a matter of fact, different nucleon-nucleon interactions
and many-body approaches may produce, particularly in
the region of SRC (short distances/high momenta), mo-
mentum distributions which are very similar (see, e.g.
Refs. [15, 17, 28, 29]).

The gc(r12) quantifies how strongly two point-like nu-
cleons treated as quasi-particles, are spatially correlated
when they are a distance r12 apart. The gc(r12) gives rise
to local density fluctuations about the mean-field predic-
tions from the reference state | ΨMF

A 〉. The GD gc(r12)
(computed for nuclear matter) from Fig. 1 is not very
different from the one for monoatomic molecules in a liq-
uid. Indeed, for r12 → 0 one has that the GD gc (r12)→ 1
which reflects the fact that nucleons have a finite size (or,
in other words they are subject to a nucleon-nucleon in-
teraction with a hard core). For values of r12 which are
larger than a few times the diameter of a nucleon, the
gc (r12) → 0. From this we conclude that the fluctua-
tions from the MF densities are confined to short inter-
nucleon distances. Therefore, the 2N SRC are a highly
local property and are insensitive to the properties of
the other surrounding nucleons. This is the fundamental
reason why SRC can be considered as “universal” [17].
Whereas a large model dependence for the gc is observed,
the ftτ seems to be much better constrained. We have
added the squared D-wave component of the deuteron
wave function ΨD (k12) in Fig. 1. Obviously, the mo-
mentum dependence of | ftτ (k12) |2 and the deuteron
momentum distribution nD ≡| ΨD (k12) |2 are highly
similar.

The effect of the correlation functions on the momen-
tum distributions can be roughly estimated from their
squared Fourier transforms. The effect of the tensor
correlation function is largest for moderate relative mo-
menta (100 . k12 . 500) MeV. For very large k12, the
gc is the dominant contribution. The harder the gc(r12)
the stronger the effect of correlations. We stress that
in the plane-wave impulse approximation, the SRC con-
tribution to the (e, e′pp) cross section is proportional to
|gc (k12)|2 [25].

After introducing the wave functions of Eq. (15),
the one-body and two-body momentum distributions of

Eqs. (1) and (7) can be written as

P1

(
~k
)

= P
(0)
1

(
~k
)

+ P
(1)
1

(
~k
)
, (18)

P2

(
~k12, ~P12

)
= P

(0)
2

(
~k12, ~P12

)
+ P

(1)
2

(
~k12, ~P12

)
.

(19)

The P (0)
1 and P (0)

2 are the mean-field parts and are fully
determined by the Slater determinant | ΨMF

A 〉. After
inserting the expressions (1) and (2) into the Eq. (13)
one obtains

n
(0)
1 (k) =

∫
dΩkP

(0)
1

(
~k
)

=
2
π

∑
nhlhjh

(2jh + 1)Snhlhjh

×
(∫

drr2jlh(kr)ψnhlhjh(r)
)2

, (20)

where jl(r) is the spherical Bessel function of the first
kind and the sum extends over all occupied single-particle
states. The 0 ≤ Snhlhjh ≤ 1 is the occupation probability
of the corresponding single-particle state. The presence
of short-range and long-range correlations leads to occu-
pation probabilities smaller than one. With the adopted
normalization convention of Eq. (4) one typically obtains
that ∫

dkk2n
(0)
1 (k) ≈ 0.6− 0.8 , (21)

or, about 60−80% of the nucleons are mean-field like. We
stress that a considerable fraction of this depletion can
be attributed to long-range correlations, an effect which
is not considered here.

The distribution k2n
(0)
1 (k) as it can be computed

from Eq. (20) is reminiscent for a phenomenon which
is confined to a certain scale, or, in other words, it is
Gaussian like. The typical scale is determined by the
Fermi momentum kF ≈ 250 MeV. This is illustrated
in Fig. 2 where we show the momentum dependence
of the k2n

(0)
1 (k) for 12C, 56Fe and 208Pb as computed

with Woods-Saxon (WS) wave functions. For the sake of
curiosity we have fitted the computed k2n

(0)
1 (k) with a

Boltzmann distribution

4π

(2πMNkT )3/2
k2 exp− k2

2MNkT
. (22)

The results of the one-parameter fit are shown in Fig. 2.
The fit is remarkably good for Carbon and gets increas-
ingly inaccurate with increasing mass number. From the
fit of the Boltzmann distribution we obtain kT ≈ 12 MeV
(C), kT ≈ 14 MeV (Fe), kT ≈ 16 MeV (Pb). Accord-
ingly, for the IPM part of the momentum distribution,
the typical energy exchange per momentum degree-of-
freedom 1

2kT is of the order of 6-8 MeV.
The correlated part k2n

(1)
1 (k), on the other hand, is

reminiscent of the nucleus as a system of interdependent
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FIG. 1: (color online). The radial and momentum dependence of a central and some tensor correlation functions. The central
correlation function “GD” is for nuclear matter and from Ref. [30]. The tensor correlation function “Pieper” is for 16O and
from Ref. [28], the “CBF” one is for 16O and from Ref. [29], and the “cluster” one is for 16O and from Ref. [31], ΨD (k12) is
the l = 2 component of the non-relativistic deuteron wave function generated with the Paris potential [32, 33] (not to scale).

nucleons and is obviously non-Gaussian. In contrast to
the mean-field part n(0)

1 , the correlated part n(1)
1 extends

over “all” momentum scales. Or, in other words the 2N,
3N, . . . correlations generate a fat momentum tail to the
n1 (k). The high momentum tails to n1 (k) have a very
similar form for all nuclei, including the deuteron, which
alludes to some universal character of SRC [17].

It has been theoretically predicted [34–36] and exper-
imentally confirmed in semi-exclusive A(e, e′p) measure-
ments [37] that the major fraction of the n(1)

1 (k > kF )
strength is contained in very specific parts of the single-
nucleon removal energy-momentum phase space, namely
those where the ejected nucleon is part of a pair with
high relative and small c.m. momentum. This is the so-
called ridge in the spectral function [35] which reflects
the fact that high-momentum nucleons in the one-body
momentum distribution are related to 2N dynamics with
two nucleons which are close and move back-to-back with
approximately equal and opposite momenta.

From recent calculations [26] of the two-body momen-

tum distributions in 3He and 4He the following conclu-
sions could be drawn. At high relative momenta and
small c.m. momenta, the c.m. and relative motion of the
pair is decoupled, an effect which is reminiscent of 2N
SRC. For the correlated pn pairs the relative motion can
be described by the high-momentum part of the deuteron
wave function. This suggests the following expression for
the correlated part of the pn two-body momentum dis-
tribution

n
(1)
2 (2kF . k12, P12 . 150 MeV)

≈ apn (A,Z)nD (k12)F pn (P12) , (23)

where apn (A,Z) is a proportionality factor related to
the number of correlated proton-neutron pairs in the nu-
cleus AZ relative to the deuteron and nD (k12) is the
high-k12 deuterium momentum distribution. Further,
the F pn (P12) is the c.m. distribution of the correlated
pn pairs. It corresponds with that part of P2 (P12)
of Eq. (11) that stems from pn pairs with a zero rel-
ative orbital angular momentum l12 = 0 and a total
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FIG. 2: (color online). The computed k2n
(0)
1 (k) versus k for

the nuclei 12C, 56Fe and 208Pb and a Boltzmann fit including
the error bars. The extracted values of kT are 12.0±0.5 MeV
(C), 14±1 MeV (Fe), and 16±1 MeV (Pb). The calculations
are performed with WS single-particle states. The adopted

normalization convention is
R
dk k2 n

(0)
1 (k) = 1.

spin S = 1. The proposed scaling behavior (23) can
be attributed to the dominance of the tensor correla-
tions at medium relative momenta and the fact that
| ftτ (k12 > kF ) |2∼ |ΨD (k12)|2, two qualitative obser-
vations which can made from Fig. 1.

C. Quantifying two-nucleon correlations

We suggest that the significance of 2N correlations in
a nucleus A(N,Z) is proportional to the number of rel-
ative l12 = 0 states [21]. There are experimental re-
sults supporting this conjecture. First, in high-resolution
16O(e, e′pp)14N measurements performed at the electron
accelerators in Amsterdam [38] and Mainz [39], the quan-
tum numbers of the target nucleus and the residual nu-
cleus are unambiguously determined. For the transitions
to low-lying states in the residual nucleus, the eightfold
differential cross section for the exclusive (e, e′pp) reac-
tion has been studied as a function of the initial c.m.
momentum P12 of the proton-proton pair which is in-
volved in the reaction process. This has provided insight
into the quantum numbers of the pairs involved in the
reaction process. We denote by

∣∣∣l12 (~r12) ,Λ12

(
~R12

)〉
the orbital wave function corresponding with the relative
and c.m. motion of a nucleon pair. For the ground-state
(g.s.) to g.s. transition, for example,

16O(0+, g.s.) + e −→14 C(0+, g.s.) + e′ + pp , (24)

the active diproton resides in a state with quantum num-
bers |l12 = 0,Λ12 = 0〉 at lower P12 and |l12 = 1,Λ12 = 1〉
at higher P12. Two independent calculations from
the Pavia and Ghent groups have demonstrated that
the largest contributions from SRC to the eight-fold
cross section are confined to low P12 values [39]. This
provides direct evidence of pp correlations being con-
fined to |l12 = 0,Λ12 = 0〉 pairs. In that sense, the
16O(e, e′pp)14N measurements nicely confirmed the back-
to-back picture of SRC: diprotons are subject to SRC
whenever they happen to be close (or, in a relative l12 = 0
state) and moving back-back (or, in a state with P12 ≈ 0
which corresponds with Λ12 = 0).

High-resolution (e, e′pn) measurements which have the
potential to access the pn correlations are very challeng-
ing [40]. Theoretical (e, e′pn) calculations [35, 41, 42]
have predicted that the tensor parts of the SRC are re-
sponsible for the fact that the correlated pn strength is
typically a factor of 10 bigger than the correlated pp
strength. Calculations indicated that the tensor corre-
lations are strongest for pn pairs pairs with “deuteron-
like” |l12 = 0, S = 1〉 relative states [41, 42]. Recently,
the dominance of the pn correlations over pp and nn ones
has been experimentally confirmed [43, 44].

Accordingly, a reasonable estimate of the amount of
correlated nucleon pairs in A(N,Z) is provided by the
number of pairs in a l12 = 0 state. In order to deter-
mine that number for a given set of single-particle states,
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one needs a coordinate transformation from (~r1, ~r2) to(
~r12 = ~r1−~r2√

2
, ~R12 = ~r1+~r2√

2

)
. For a harmonic oscillator

(HO) Hamiltonian this transformation can be done with
the aid of Moshinsky brackets [45]

| n1l1 (~r1)n2l2 (~r2) ;LML〉 =
∑

n12l12N12Λ12

〈n12l12N12Λ12;L | n1l1n2l2;L〉

× | n12l12 (~r12)N12Λ12

(
~R12

)
;LML〉 . (25)

We define the interchange operator for the spatial,
spin, and isospin coordinate as

P12 = P12 (~r1, ~r2)P12 (~σ1, ~σ2)P12 (~τ1, ~τ2) . (26)

After introducing the spin and isospin degrees-of-
freedom, in a HO basis a normalized and antisym-
metrized two-nucleon state reads (αi ≡ (nilijiti))

|α1α2; JM〉na =
1√

2 (1 + δα1α2)
× (1− P12) |α1 (~r1)α2 (~r2) ;JM〉

=
∑
LML

∑
n12l12

∑
N12Λ12

∑
SMS

∑
TMT

1√
2 (1 + δα1α2)

×
[
1− (−1)l12+S+T

]
×〈n12l12N12Λ12;L | n1l1n2l2;L〉

×ĵ1ĵ2L̂Ŝ

l1 l2 L
1
2

1
2 S

j1 j2 J

 〈LMLSMS | JM〉

×〈1
2
t1

1
2
t2 | TMT 〉

×
∣∣∣[n12l12 (~r12), N12Λ12

(
~R12

)]
LML, SMS , TMT

〉
,

(27)

where we have used the shorthand notation ĵ ≡
√

2j + 1.
With the above conventions one has that the total

amount of proton-neutron pairs can be obtained from
a sum over all pn pairs in the nuclear ground state∑
JM

∑
α1≤αpF

∑
α2≤αnF

na 〈α1α2; JM |α1α2; JM〉na = NZ ,

(28)
where αpF and αnF denote the Fermi level for the proton
and neutron. Similar expressions hold for the number of
proton-proton and neutron-neutron pairs

Z(Z − 1)
2

=
∑
JM

∑
α1≤αpF

∑
α2≤αpF

na 〈α1α2; JM |α1α2; JM〉na , (29)
N(N − 1)

2
=
∑
JM

∑
α1≤αnF

∑
α2≤αnF

na 〈α2α2; JM |α1α2; JM〉na . (30)
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FIG. 3: (color online). The computed values for 2
Z(Z−1)

Npp,
2

N(N−1)
Nnn, and 1

(NZ)
Npn(S) which represent the predicted

fraction of the pairs which are prone to SRC. The re-
sults are obtained for HO single-particle wave functions with

~ω(MeV ) = 45.A−
1
3 − 25.A−

2
3 and for the target nuclei 4He,

9Be, 12C, 16O, 27Al, 40Ca, 48Ca, 56Fe, 63Cu, 108Ag, and
197Au.

Starting from the Eq. (27) one can compute in a HO
single-particle basis how much a pair wave function with
quantum numbers∣∣∣[n12l12 (~r12) , N12Λ12

(
~R12

)]
LML, SMS , TMT

〉
(31)

contributes to the sum-rules of Eqs. (28,29,30). This can
also be done for any other basis |nljm〉 of non-relativistic
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single-particle states. In that case, the adopted proce-
dure involves an extra expansion of |nljm〉 in a HO basis

|nljm〉 =
∑
mlms

〈lml
1
2
ms | jm〉ψnlj(r)Ylml (Ω)χ 1

2ms

=
∑
nH

(∫
drr2φ∗nH l(r)ψnlj(r)

)
|nH ljm〉 , (32)

where φnH l(r) are the radial HO wave functions. A two-
nucleon state can then be expressed in a HO basis for
which the Eq. (27) can be used to determine the weight
of the pair wave functions of Eq. (31).

The IPM pp pairs are mainly subject to the central
SRC which requires them to be close. This implies that a
reasonable estimate of the number of IPM pp pairs which
receive substantial corrections from the SRC is given by
an expression of the type

Npp(A,Z) =
∑
JM

∑
α1≤αpF

∑
α2≤αpF

na 〈α1α2; JM | P l12=0
~r12

|α1α2; JM〉na , (33)

where P l12=0
~r12

is a projection operator for two-nucleon rel-
ative states with l12 = 0. A similar expression to Eq. (33)
holds for the nn pairs. For the pn pairs it is important to
discriminate between the triplet and singlet spin states

Npn(S)(A,Z) =
∑
JM

∑
α1≤αpF

∑
α2≤αnF

na 〈α1α2; JM | P l12=0
~r12

PS~σ |α1α2; JM〉na . (34)

In Fig. 3 we display some computed results for the
Npp, Nnn, and Npn(S) for 11 nuclei. The selection of
the nuclei is motivated by the availability of inclusive
electron-scattering data and covers the full mass range
from Helium to Gold. We have opted to display the
results relative to the sum rule values of the Eqs. (28)
and (29), which allows one to interpret the results in
terms of probabilities: given an arbitrary pair wave func-
tion, what is the chance that it has zero orbital rela-
tive momentum and a specific spin quantum number.
In a naive IPM picture for 4He, the pp pair is in a
|l12 = 0, S = 0, T = 1〉 state. As this 2N configuration is
prone to central SRC effects, the corresponding probabil-
ity is 1. The physical interpretation is that for 4He “all”
IPM pp-pair wave function combinations receive correc-
tions from SRC. For a medium-heavy nucleus like 56Fe or
63Cu we find Npp

Z(Z−1)
2

≈ 0.1, which leads one to conclude

that about 90% of the IPM pp pair wave functions do
not receive corrections from central SRC. For the heav-
iest nucleus considered here (Au) 2Npp

Z(Z−1) = 0.06, which
means that only about 190 out of the 3081 possible pp
pair combinations are subject to SRC.

Comparing the mass dependence of the pp and nn re-
sults of Fig. 3 one observes similar trends. For the pn
results a softer decrease with increasing A is predicted.

FIG. 4: (color online). Use of Jacobi coordinates in the ppn
system.

There are about three times as many pn(T = 0) states
than pn(T = 1) states with l12 = 0. This would be trivial
in a system with only spin and isospin degrees of freedom.
In a system in which the kinetic energy plays a role and
in which there are spin-orbit couplings, we cannot see
any trivial reason why this should be the case. In this
respect, we wish to stress that for most nuclei discussed
N 6= Z. A stronger criterion for selecting nucleon pairs at
close proximity is imposing n12 = 0 in addition to l12 = 0
and we have added also those results to Fig. 3. We find
the results of Fig. 3 robust in that the A dependence and
magnitudes are not very sensitive to the choices made
with regard to the single-particle wave functions. All the
results of Fig. 3 are displayed on a log-log plot and can
be reasonably fitted with a straight line, pointing towards
a power-law mass dependence Aα for the Npp, Npn and
Npn(S).

D. Quantifying three-nucleon correlations

In order to quantify the magnitude of the 3N corre-
lations for an arbitrary A(N,Z), we build on a recent
paper by Feldmeier et al. [17]. There, it is pointed out
that 3N correlations can be induced without introducing
genuine three-body forces. In terms of the correlation
operators of Sect. II B, three-body correlations will natu-
rally emerge in cluster expansions by means of operators
of the type gc (r12) gc (r13), gc (r12) ftτ (r13), . . . .

The strongest source of three-nucleon correlations is
the tensor correlation operator acting on the (S = 1, T =
0) channel of the pn states of Eq. (27). We consider
ppn configurations and explain one possible mechanism
to create a correlated state (see also Fig. 4). In the un-
correlated wave function one has a n(1)p(2) pair in a
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|l12 = 0 S12 = 1 ;T12 = 0〉 state and a p(2)p(3) pair in a
|l23 = 0 S23 = 0 ;T23 = 1〉 state. Accordingly, both pairs
are in relative l = 0 states. In Ref. [17] it is explained that
these two pairs can be brought into a correlated three-
nucleon status by flipping the spin of proton 2. In the
correlated part of the wave function one has an n(1)p(2)
pair in a |l12 = 2 S12 = 1 ;T12 = 0〉 and an p(2)p(3) pair
in a |l23 = 1 S23 = 1 ;T23 = 1〉 state. This configura-
tion can be energetically favorable through the presence
of the strong tensor correlation in the pn pair. Indeed,
the energy gain through the tensor induced n(1)p(2) cor-
relation can compensate for the energy loss of breaking
the pairing in the p(2)p(3) pair.

Given A(N,Z) we propose to find all the antisym-
metrized 3N states with orbital quantum numbers

(n12 = 0 l12 = 0 n(12)3 = 0 l(12)3 = 0) , (35)

in the IPM wave function and identify them as the dom-
inant contributors to 3N SRCs. This corresponds with
seeking for those 3N wave-function components where
all three nucleons are “close”. This can be techni-
cally achieved by constructing antisymmetrized 3N states
starting from a MF Slater determinant, and performing
a transformation from the particle coordinates (~r1, ~r2, ~r3)
to the internal Jacobi coordinates

(
~r12, ~r(12)3, ~R123

)
~r(12)3 =

~R12 −
√

2~r3√
3

, ~R123 =
√

2~R12 + ~r3√
3

. (36)

One readily finds for uncoupled three-nucleon states in a
HO basis [45]

|n1l1ml1 (~r1) , n2l2ml2 (~r2) , n3l3ml3 (~r3)〉 =∑
LML

∑
n12l12

∑
N12Λ12

∑
L1ML1

∑
n(12)3l(12)3

×
∑

N123Λ123

∑
ml12mΛ12

∑
ml(12)3

mΛ123

×〈l1ml1 l2ml2 | LML〉〈l12ml12Λ12MΛ12 | LML〉
×〈Λ12MΛ12 lcmlc | L1ML1〉
×〈l(12)3ml(12)3Λ123MΛ123 | L1ML1〉
×〈n12l12N12Λ12;L | n1l1n2l2;L〉
×〈n(12)3l(12)3N123Λ123;L1 | N12Λ12n3l3;L1〉β
× |n12l12ml12 (~r12)〉

∣∣n(12)3l(12)3ml(12)3

(
~r(12)3

)〉
×
∣∣∣N123Λ123MΛ123

(
~R123

)〉
, (37)

where we have adopted the notation 〈. . . | . . .〉β for the
Standard Transformation Brackets (STB) [45].

Antisymmetrized (a) uncoupled three-nucleon states
can be obtained from the three-nucleon wave functions
of Eq. (37) using the interchange operator of Eq. (26)

|αama, αbmb, αcmc〉a =
[1− P12] |αama (~r1) , αbmb (~r2) , αcmc (~r3)〉

+ [1− P12] |αbmb (~r1) , αcmc (~r2) , αama (~r3)〉
+ [1− P12] |αcmc (~r1) , αama (~r2) , αbmb (~r3)〉 .(38)
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FIG. 5: (color online). The mass dependence of
the amount of ppn triples with quantum numbers˛̨
n12 = 0 l12 = 0, n(12)3 = 0 l(12)3 = 0

¸
. The results can be

reasonably fitted with a power law 0.28A1.58±0.20. The re-
sults are obtained for HO single-particle wave functions with

~ω(MeV ) = 45.A−
1
3 − 25.A−

2
3 and for the nuclei 4He, 9Be,

12C, 16O, 40Ca, 48Ca, 56Fe, 63Cu, 108Ag, and 197Au.

The total number of ppn triples can now be expressed as

N
Z(Z − 1)

2
=

∑
αa,αb≤αpF

∑
αc≤αnF

∑
mambmc

na 〈αama, αbmb, αcmc |αamaαbmbαcmc〉na ,(39)

which allows for a stringent test of the analytical deriva-
tions and their numerical implementation. Along similar
lines to those used to derive the number of correlated 2N
clusters in Eq. (33), the number of ppn triples with the
orbital quantum numbers of Eq. (35) can be obtained
from

Nppn(A,Z) =
∑

αa,αb≤αpF

∑
αc≤αnF

∑
mambmc

na 〈αama, αbmb, αcmc| Pn12=0,l12=0
~r12

Pn(12)3=0,l(12)3=0

~r(12)3

|αama, αbmb, αcmc〉na . (40)

We associate the Nppn(A,Z) with the number of ppn
SRC triples. The A dependence of Nppn(A,Z) is dis-
played in Fig. 5. There is striking linear correlation be-
tween the logarithm of the mass number and the loga-
rithm of the number ppn triples which are close in the
MF ground-state wave function.

III. RESULTS

In this section we discuss how our predictions for the
number of correlated 2N pairs and correlated 3N triples
can be connected with experimental results from inclu-
sive electron scattering.
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A. Separation of the correlation and mean-field
contributions

We start with illustrating that the separation of the
mean-field and correlated contributions to the inclusive
A(e, e′) cross sections is feasible. In order to achieve this,
we use stylized features of the n1(k) in Monte-Carlo (MC)
simulations to illustrate that a separation between the
mean-field n(0)

1 (k) and the correlated n(1)
1 (k) part can be

made in the A(e, e′) signal.
We assume that quasi-elastic single-nucleon knockout

e+A→ e′ + (A− 1) +N is the major source of A(e, e′)
strength. With q(ω, ~q), pA(MA,~0), pA−1(EA−1, ~pA−1),
pf (EN , ~pf ) we denote the four-momenta of the virtual
photon, of the target nucleus, of the residual A − 1 sys-
tem, and of the ejected nucleon. From energy-momentum
conservation

q + pA − pA−1 = pf , (41)

one can deduce for A = 2 a relation between the min-
imum of the missing momentum ~pm = ~pf − ~q and the
Bjorken scaling variable xB for fixed Q2 [46]. The results
are shown in Fig. 6. Obviously, for Q2 ≥ 1.5 GeV2 and
xB > 1.5 one mainly probes nucleons with a momentum
well above the Fermi momentum for the deuteron. For
finite nuclei the situation is more involving as A− 1 rep-
resents an additional degree of freedom which can carry a
fraction of the transferred four-momentum. We have per-
formed MC simulations for a fixed energy of the imping-
ing electron beam εi and a fixed electron scattering angle
θe. The pm for a mean-field nucleon is drawn from the
MF part n(0)

1 (k) of n1(k). For a correlated nucleon the
pm is drawn from n

(1)
1 (k). Parameterizations for n(0)

1 (k)
and n

(1)
1 (k) are obtained from [34]

n
(0)
1 (k) = A(0)e−B

(0)k2
[1 +O(k2)], (42)

n
(1)
1 (k) = A(1)e−B

(1)k2
+ C(1)e−D

(1)k2
, (43)

where A(0), B(0), A(1), B(1), C(1) and D(1) depend on A.
In Fig. 7 we compare the xB distribution of simula-

tions for the mean-field and correlated part of one nu-
cleon knockout in 12C. As stated in Eq. (21), the number
of events is normalized as

∫
dk k2n

(0)
1 (k) = 0.7. For

xB > 1.5, the events originate almost uniquely from
n

(1)
1 (k).

B. Two-body correlations

Following the experimental observation [9, 10, 47] that
the ratio of the inclusive electron scattering cross sections
from a target nucleus A and from the deuteron D

σA
(
xB , Q

2
)

σD (xB , Q2)
, (44)
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FIG. 6: (Color online). Relation between the minimum of the
missing momentum |pmin

m | for the deuteron and xB at various
values of the frour-momentum transfer Q2.

FIG. 7: (Color online). Simulation of one-nucleon knockout in
12C with separated mean field and correlated momentum dis-
tribution. The number of events is normalized as in Eq. (21).
The electron kinematics is determined by εi = 5.766 GeV and
θe = 18◦.

scales for 1.5 . xB . 2 and moderate Q2, it has been
suggested [47] to parameterize the σA in the following
form

σA
(
1.5 . xB . 2, Q2

)
=
A

2
a2 (A/D)σ2

(
A, xB , Q

2
)
,

(45)
where σ2

(
A, xB , Q

2
)

is the effective cross section for scat-
tering from a correlated 2N cluster in nucleus A. Assum-
ing that σ2 is some local function which does not depend
on the target nucleus A

σ2

(
A, xB , Q

2
)
≈ σ2

(
A = 2, xB , Q2

)
≈ σD

(
xB , Q

2
)
,

(46)
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one can rewrite Eq. (45) as

a2 (A/D) =
2
A

σA
(
xB , Q

2
)

σD (xB , Q2)
(1.5 . xB . 2) . (47)

In this simplified reaction-model picture, which ignores
amongst other things the c.m. motion of pairs in finite
nuclei, the quantity A

2 a2 (A/D) can be connected with
the number of correlated pairs in the nucleus A. As-
suming that all pn pairs contribute one would expect
that for the relative amount of correlated two-nucleon
clusters a2 (A/D) ∼ A. Based on the observed domi-
nance of correlated pn pairs over pp and nn pairs [43],
and the universality of the deuteron-like high momentum
tail of the correlated two-body momentum distribution
(23), we suggest that the correlated pn pairs contribut-
ing to the a2(A/D), are predominantly (T = 0, S = 1)
pairs and that a2(A/D) is proportional to the quantity
Npn(S=1)(A,Z) defined in Eq. (34).

In Ref. [48] the ratio of Eq. (44) has been calculated
with spectral functions obtained from state-of-the-art nu-
clear matter calculations in the local density approxima-
tion for the correlated part and A(e, e′p) scattering data
for the mean-field part [49, 50]. The calculations sug-
gested large FSI effects, whilst the plane-wave calcula-
tions did not exhibit the scaling present in the data at
1.5 . xB . In Refs. [11, 22] it is argued that a complete
treatment of FSI in this kinematics needs to include in-
elastic channels in the rescattering and that this cancels
part of the elastic FSI contribution included in Ref. [48].
The results in Ref. [48] seem to refute the validity of
Eq. (45), which hinges on the assumption that the FSI
effects on correlated pairs in a nucleus are almost identi-
cal to those in the deuteron in a high-momentum state.
This requires that for 1.5 . xB the FSI is primarily in the
correlated pair and that the remaining A−2 nucleons act
as spectators. Such a behavior is suggested by the calcu-
lation of the quasi-elastic cross sections in Ref. [51] and
by a space-time analysis of the nuclear FSI at xB > 1
carried out in Ref. [11] where it is stressed that the rein-
teraction distances are . 1 fm, supporting the idea that
the first rescattering should be very similar to FSI in the
deuteron (see a recent discussion in Ref. [22]). Therefore
the assumption of Eq. (45) seems a reasonable one for
light nuclei where the amount of rescatterings is of the
order of 1. For medium-heavy and heavy nuclei, the aver-
age amount of rescatterings is larger than 1 and it has to
be verified if the assumption still holds. The settlement
and clarification of all the cited issues related to the role
of FSI in inclusive reactions requires further studies with
a full reaction model.

In a finite nucleus correlated pairs can have a non-
zero c.m. momentum. This c.m. motion is a correction
factor when connecting the measured a2(A/D) to the
number of correlated pn pairs Npn(S=1)(A,Z). We aim to
provide an estimate for this correction factor. Therefore,
we consider the two-nucleon knockout reaction e+ A →
e′+(A−2)+N+N following the break-up of a correlated
2N cluster. For an inclusive cross section, the tensor

correlated pn(S = 1) pairs dominate the signal [43, 44,
52].

As pointed out in Refs. [11, 25], the cross section for
the exclusive (e, e′NN) reaction can be written in a fac-
torized form as

σA(e, e′NN) = KFNN (P12)σeNN (k12) , (48)

where P12(k12) is the c.m. (relative) momentum of the
correlated pair on which the photoabsorption takes place
and K is a kinematic factor. The above expression is
valid in the plane-wave and spectator approximation for
electron scattering on a pair with zero relative orbital mo-
mentum. The σeNN stands for the elementary cross sec-
tion for electron scattering from a correlated 2N pair with
relative momentum k12. The σeNN contains the Fourier-
transformed correlation functions gc(k12) and ftτ (k12).
An analytic expression for σepp is contained in Ref. [25]
and has been tested against data in Ref. [53].

As argued above, in order to link the exclusive cross
section of Eq. (48) to the inclusive ones contained in the
Eq. (45) one assumes that σepn ≈ σeD and one introduces
a proportionality factor Npn(S=1)(A,Z) which counts the
number of correlated pn pairs in A. With the scaling
relation of Eq. (48) for the (e, e′pn) reaction, one can
transform the ratio of Eq. (47) into a form which accounts
for the c.m. motion of the pair

a2(A/D) =
2
A

×
∫
PS

d~k12d~P12Npn(S=1)(A,Z)F pn(P12)σeD (k12)∫
PS

d~k12σeD(k12)
,

≈ 2
A
Npn(S=1)(A,Z)

∫
PS

d~P12F
pn (P12) , (49)

where the integrations extend over those part of the c.m.
momentum phase (PS) included in the data. A basic
assumption underlying the above equation is that the
factorization of Eq. (23) approximately holds. The com-
puted widths of the c.m. momentum distributions for the
correlated pn pairs contained in Table 1 indicate that the
major fraction of the pn pairs has P12 . 150 MeV which
is within the ranges for the validity of Eq. (23).

In line with our assumption that the correlated pairs
are dominated by pn in a relative 3S1 state, F pn (P12)
can be expressed as the conditional two-body c.m. mo-
mentum distribution

F pn (P12) = P pn2

(
P12|3S1

)
. (50)

Figure 8 shows calculations for the P pn2 (P ) and
P pn2

(
P |3S1

)
for 12C. The c.m. distribution of correlated

pn pairs (F pn(P12)) can be well parameterized in terms of
a Gaussian distribution. The widths σc.m. obtained from
a Gaussian fit to P pn2

(
P12|3S1

)
are given in Table I.

To estimate the c.m. correction factor we have per-
formed MC simulations of pn knockout with and with-
out inclusion of the c.m. motion. This amounts to
drawing the c.m. momentum from F pn(P12) = δ(P12)
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P12|3S1

´
= P 2

12F
pn (P12) for 12C. The calcula-

tions are performed with HO single-particle states and adopt
the normalization convention

R
dP12 P

2
12P

pn
2 (P12) = NZ.

and F pn(P12) ∼ e
− P2

12
2σ2
c.m. , where σc.m. is the A depen-

dent width. For 1.5 ≤ xB ≤ 2, the initial momen-
tum distribution of the correlated pair is given by cor-
related part of the two-body momentum distribution
n

(1)
2 (k12, P12). The Eq. (23) states that the n(1)

2 (k12, P12)
can be considered universal. As illustrated in Fig. 1 one
has nD (k12) ∼ |ftτ (k12)|2. As the relative momentum
distribution is approximately proportional to the tensor
correlation function, we draw k12 from the distribution
k2

12|ftτ (k12)|2. Energy conservation reads

(q + pA − pA−2 − ps)2 = p2
f = m2

N , (51)

where q(ω, ~q), pA(MA,~0) and pA−2(EA−2,−(~ps + ~pm))
are the four-momenta of the virtual photon, target nu-
cleus and residual A − 2 system, respectively. The vir-
tual photon interacts with one of the nucleons, result-
ing in a fast nucleon pf (Ef , ~pf ) with ~pf = ~pm + ~q and
a slow nucleon ps(Es, ~ps). With the aid of Eq. (51), one
can calculate the xB-distribution of the simulated events.
We apply the kinematics of the Jefferson Lab (JLab) ex-
periment E02-019 [10]: εi = 5.766 GeV and θe = 18◦.
The average < Q2 > of the generated events (including
c.m. motion) in the xB region of interest is 2.7 GeV2.
This value, which is A-independent, agrees with the one
quoted in Ref. [10].

The results of our simulations are summarized in
Figs. 9 and 10. Fig. 9 shows the xB − k12 scatter plot
of 106 simulated events with and without inclusion of
c.m. motion for 12C. In both situations the mass differ-
ence between inital and final state causes a small shift to
lower xB compared to the deuteron case. Second, we ob-
serve considerable shifts in the distribution of the events
in the (k12, xB) plane due to c.m. motion. In Fig. 10,
one can observe how c.m. motion considerably increases
the number of events with 1.5 ≤ xB ≤ 2. The impact

A σc.m. c.m. correction factor
12C 115 MeV 1.64± 0.23
56Fe 128 MeV 1.70± 0.27

208Pb 141 MeV 1.71± 0.29

TABLE I: The second column gives the width of the c.m.
distribution of correlated pn pairs. The third column provides
the computed c.m. correction factor. The errors represent the
dependence on the choice of correlation function.

of the c.m. corrections increases with growing xB . Ex-
perimentally, the a2(A/D) coefficient is determined by
integrating data for 1.5 ≤ xB ≤ 1.85. We estimate the
c.m. correction factor by the ratio

# simulated events with inclusion of c.m. motion
# simulated events without inclusion of c.m. motion

.

(52)
in this xB region. The resulting correction factor for
several nuclei is contained in Table I. We performed the
simulations with the three different correlation functions
ftτ in Fig. 1. The dependence of the result on the choice
of correlation function is represented by the error of the
c.m. correction factor.

Fig. 3 quantifies the fraction of all possible pn pairs
which are prone to SRC relative to the total amount of
possible pn pair combinations. In our picture one has
Npn(S=1) = 1 for D. This means that we do interpret
the l12 = 0 component of the deuteron wave function as
the IPM part which receives large corrections from tensor
SRC. The per nucleon probability for a pn SRC relative
to the deuterium can be defined as

2
N + Z

Npn(S=1)(A,Z)
Npn(S=1)(A = 2, Z = 1)

=
2
A
Npn(S=1)(A,Z) .

(53)
Similar expressions hold for the per nucleon pp SRC and
the per nucleon nn SRC

2
Z
Npp(S=0)(A,Z)

2
N
Nnn(S=0)(A,Z) . (54)

The results of the per nucleon probabilities are collected
in Fig. 11. Relative to 2H, the per nucleon probability
of pn SRC are 2.20, 3.63, 4.73 times larger for Carbon,
Iron, Gold. Along similar lines, relative to the “free” pp
system the per nucleon probability of pp SRC are 1.39,
2.34, 3.11 times larger for Carbon, Iron, Gold.

In Fig. 12 we compare our predictions computed with
the aid of the Eq. (49) with the extracted values of
a2(A/D). We have opted to correct the predicted a2 co-
efficients and not the data for c.m. motion. We stress
that the c.m. correction factor cannot be computed in a
model-independent fashion. For light nuclei our predic-
tions tend to underestimate the measured a2. This could
be attributed to the lack of long-range clustering effects
in the adopted wave functions. Indeed, it was pointed
out in Ref. [54] that the high-density cluster components
in the wave functions are an important source of correla-
tion effects beyond the mean-field approach. For heavy



13

FIG. 9: (Color online) The k12 − xB scatter plot of 12C(e, e′pn) MC simulations with (F (P12) ∼ e
−

P2
12

2σ2
c.m. ) and without

(F (P12) ∼ δ(P12)) inclusion of c.m. motion. For the sake of comparison the solid line shows the minimum relative momentum
kmin
12 for Q2 = 2.7 GeV2 in the deuteron.

FIG. 10: (Color online) Histogram of the xB distribution of

12C(e, e′pn) MC simulations with (F (P12) ∼ e
−

P2
12

2σ2
c.m. ) and

without (F (P12) ∼ δ(P12)) inclusion of c.m. motion. The
kinematics is the one of the JLab experiment E02-019 [10]:
εi = 5.766 GeV and θe = 18◦.

nuclei our predictions for the relative SRC probability
per nucleon do not saturate as much as the data seem
to indicate. In Ref. [11] the authors estimated the mass
dependence of a2 by means of an expression of the type
a2 ∼

∫
d3~rρ2

MF(~r). Using Skyrme Hartree-Fock densities
ρMF(~r) a power-law of A0.12 emerged. After normaliz-
ing to the measured value for a2(12C/D) the predicted
power-low dependence agrees nicely with the data.

We stress that final-state interactions (FSI) represent
another source of corrections which may induce an ad-
ditional A-dependent correction to the data. FSI of the
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FIG. 11: The mass dependence of the per nucleon probability
for pn SRC relative to the deuterium.

outgoing nucleons with the residual spectator nucleons,
could shift part of the signal strength out of the cuts ap-
plied to the experimental phase space (or likewise move
strength in) and decrease (or increase) the measured
cross section and the corresponding a2 coefficient.

In Fig. 13 we display the magnitude of the EMC effect,
quantified by means of − dR

dxB
versus our predictions for

the quantity 2
ANpn(S=1) or, the ”per nucleon probability

for pn SRC relative to the deuteron”. We stress that the
numbers which one finds on the x-axis are the results of
parameter-free calculations. We consider the ”per nu-
cleon probability for pn SRC relative to the deuteron” as
a measure for the magnitude of the proton-neutron SRC
in a given nucleus. Obviously, there is a nice linear rela-
tionship between the quantity which we propose as a per
nucleon measure for the magnitude of the SRC and the
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values of a2(A/D) for the c.m. motion of the pair. The
correction factor are determined by linear interpolation of the
factors listed in Table I. The width of the shaded area is
determined by the error of the c.m. correction factors.
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FIG. 13: The magnitude of the EMC effect versus the com-
puted per nucleon number of correlated pn pairs. The data
are from the analysis presented in Refs. [7, 14, 55]. The
fitted line obeys the equation − dR

dxB
= (0.108 ± 0.028) +

2
A
Npn(S=1) · (0.074± 0.010).

magnitude of the EMC effect.

C. Three-body correlations

The measurements of Refs. [9, 10] indicate that the
ratio of the inclusive cross sections

σA
(
xB , Q

2
)

σ3He (xB , Q2)
, (55)

approximately scales for 2.25 . xB . 3.0. Along sim-
ilar lines as those used in quantifying the 2N SRC in

Sec. III B, it has been suggested [9] to parameterize the
inclusive A(e, e′) cross section in the following form

σA
(
2.25 . xB . 3, Q2

)
=
A

3
a3

(
A/3He

)
σ3

(
xB , Q

2
)
,

(56)
where σ3

(
xB , Q

2
)

is the cross section for scattering from
a correlated 3N cluster which is once again assumed to
be A independent. Inserting Eq. (56) into Eq. (55), one
obtains

a3

(
A/3He

)
=

3
A

σA
(
xB , Q

2
)

σ3He (xB , Q2)
(2.25 . xB . 3.0) .

(57)
Notice that in the kinematic regime where 3N correla-
tions are expected to dominate (2.25 . xB) the experi-
mental situation is unsettled. For example, the recently
measured a3(4He/3He) ratios [10] are significantly larger
than those reported in Ref. [9].

Similar to the per nucleon pn SRC of Eq. (53) we
define the per nucleon probability for a ppn SRC relative
to 3He as

3
A

Nppn (A,Z)
Nppn (A = 3, Z = 2)

=
3
A
Nppn (A,Z) , (58)

where we used the fact that Nppn (A = 3, Z = 2) = 1 in
our framework. The results of the per nucleon probability
of ppn SRC are collected in Figure 14.

The quantity of Eq. (58) can be linked to a3(A/3He)
under the condition that corrections stemming from c.m.
motion of the correlated ppn triples, FSI effects, . . . are
small. Under those idealized conditions one would have

a3(A,3 He) ≈ 3
A
Nppn(A,Z) . (59)

In the naive assumption that all 3N pairs contribute to
the a3(A/3He) ratio, one expects an A2 dependency. We
suggest that only ppn triples in a “close” configuration
contribute and we count the number of SRC triples with
the aid of the Eq. (40). The ppn contributions will be
larger than the pnn ones due to the magnitude of the
electromagnetic coupling. Correlated triples should have
at least one pn pair due to the dominant character of
the tensor component. In Fig. 14 we show the predic-
tions for the a3(A/3He) coefficient as computed with the
Eq. (59) and compare it to the data. We stress that the
experimental situation is largely unsettled and that nei-
ther the data nor the theoretical calculations have been
corrected for c.m. motion and FSI effects. For Helium
and Carbon our predictions are in line with the experi-
mental value. For Iron the prediction is about a factor
of two larger than the experimentally determined ratio
of cross sections. Our parameter-free calculations repro-
duce the fact that the mass dependence is much softer
than the A2 dependence that one would expect on naive
grounds.



15

 0

 2

 4

 6

 8

 10

 12

 14

 10  100

R
el

a
ti

ve
 p

ro
b
a
b
il

it
y 

fo
r 

p
p
n

 S
R

C

mass number A

  ppn
  CLAS data

FIG. 14: The mass dependence of the per nucleon probability
for ppn SRC relative to 3He. We stress that neither the data
nor the theoretical calculations have been corrected for c.m.
motion and FSI effects. The data are from Ref. [9].

IV. CONCLUSION

We have provided arguments that the mass depen-
dence of the magnitude of the NN and NNN correlations
can be captured by some approximate principles. Our
method is based on the assumption that correlation op-
erators generate the correlated part of the nuclear wave
function from that part of the mean-field wave function
where two nucleons are “sufficiently close”. This trans-
lates to computing those parts of the two-nucleon and
three-nucleon wave functions with zero relative orbital
momentum in order to identify short-range correlated
pairs and triples.

We have calculated the number of pn, pp and nn
l12 = 0 SRC pairs and studied their mass and isospin
dependence. The A dependence of the magnitude of the
pp, nn, and pn SRC manifests itself in a power-law de-
pendence. We found a significant higher per nucleon SRC
probability for pn pairs than for pp and for nn. To con-

nect the computed number of SRC pairs to the measured
a2 (A/D) corrections are in order. Published experimen-
tal data include the radiation and Coulomb corrections.
The correction factor stemming from final-state interac-
tions and from the c.m. motion of the correlated pair,
however, is far from established. We proposed a method
to estimate the c.m. correction factor based on general
properties of nucleon momentum distributions. Using
Monte Carlo simulation we find a correction factor of
about 1.7± 0.3. Our model calculations for a2 are of the
right order of magnitude and capture the A-dependence
qualitatively. For small A our predictions underestimate
the data, while we do not find the same degree of satu-
ration for high A that the (scarce) data seem to suggest.

To compute the number of 3N SRC in a nucleus, we
count the ppn states with three nucleons which are close.
We have quantified the number of 3N SRC and pro-
vided predictions for the measured a3

(
A/3He

)
coeffi-

cients. Our model calculations for the a3 are of the same
order of magnitude as the (scarce) data but overestimate
the 56Fe data point. In this comparison no corrections for
c.m. motion and FSI effects have been made and it re-
mains to be studied in how far they can blur the connec-
tion between inclusive electron-scattering data and the
SRC information. We find a linear relationship between
the magnitude of the EMC effect and the computed per
nucleon number of SRC pn pairs. This may indicate that
the EMC effect is (partly) driven by local nuclear dy-
namics (fluctuations in the nuclear densities), and that
the number of pn SRC pairs serves as a measure for the
magnitude of this effect.
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