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ABSTRACT: A one-pot, controlled method for the nitroxide end-group removal 

from synthetic polymers prepared by nitroxide mediated radical polymerisation 

(NMP) is reported. The strategy relies on the controlled addition of compounds 

such as thiols, radical initiators and carbon tetrabromide with high chain transfer 

constants. From a practical point of view, when the desired molar mass and 

conversion is reached, 1 to 10 equivalents of the transfer agent compared to the 

nitroxide are added and a few minutes later, after transformation of all chain-ends, 

the reaction is quenched. The versatility of the procedure was successfully tested 

with a wide range of monomers (styrene (S), isobornyl acrylate (iBA) or methyl 

methacrylate (MMA)) and nitroxides (2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO) and N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide 

(SG1)). The removal of the nitroxide end-group proceeds with high fidelity for all 

the transfer agents studied, while at the same time the thermal stability of the 

resulting polymer chains increases when thiols are employed. Furthermore, a 

functional group that allows for chain extension by atom transfer radical 

polymerisation (ATRP) has been introduced through the direct synthesis of bromine 

terminated macroinitiators via a chain transfer reaction with carbon tetrabromide.  

INTRODUCTION 

The development of controlled radical polymerisation techniques, such as nitroxide 

mediated polymerisation (NMP)
1
, atom transfer radical polymerisation (ATRP)

2
, and 

reversible addition-fragmentation chain transfer polymerisation (RAFT)
3
, allows for the 

structural control of vinyl polymers as well as a much easier access to complex 

macromolecular architectures
4
. In addition, these controlled techniques yield polymers with 

polydispersity indexes similar to those obtained by ionic polymerisation methods without 

the need for their stringent reaction conditions
5
. 



In many respects, all of the controlled free radical techniques are similar in their 

overall scope, although there are a number of subtle differences, which affect the 

applicability and suitability of each system for specific applications. For example, NMP
6
 is 

easier than RAFT polymerisation
7
 from a mechanistic point of view, while it has the 

advantage, compared to ATRP, that metal complexes are not necessary. Furthermore, NMP 

allows for the synthesis of colourless materials without the need for sophisticated 

purification. Its tolerance to functional groups and applicability to aqueous dispersed 

media
8
 also make the technique interesting for a wide range of applications. Originally, the 

applicability of NMP was limited to styrenic monomers
9
. Nevertheless, this technique has 

witnessed important progress during the last 15 years, mainly thanks to the development of 

novel nitroxides
10

 and alkoxyamines
11, 12

 , which allowed for the polymerisation of other 

monomer classes such as acrylates
13

, methacrylates under specific conditions
14

, 

acrylamides
15

, acrylonitrile
11

, and even 1,3-dienes
16

 as well as the design of complex 

macromolecular architectures
11, 17, 18

 and advanced functional materials
19

. 

 

Scheme 1 Mechanism of nitroxide mediated polymerisation. 

The unprecedented control in NMP is ascribed to the reversible termination of the 

growing polymeric radical by the stable nitroxide free radical
20

 (Scheme 1). This process is 

based on the equilibrium between dormant species, in which the nitroxide is covalently 

bound to the polymer chain-end, and active species, Pn
∙
, in which the nitroxide is 

homolytically cleaved to generate a propagating radical at the polymer chain-end. The 

activation–deactivation equilibrium constant K (K = kd/kc) is a critical parameter for an 

efficient and controlled polymerisation
21

. Below a threshold temperature, which depends on 

the nitroxide and monomer (M) used, K is too low for propagation to occur and the 



nitroxide can be regarded as a radical inhibitor
22

. This is the case at room temperature 

where all polymer chains are dormant and retain the nitroxide end-group. On the other 

hand, if the temperature is too high or if the system is not adequate, K might be too high 

and poor control over the polymerisation is induced as radical termination reactions become 

too important
14

. Ideally, the Pn
∙
 concentration should be low enough to minimise side 

reactions in such a way that they become negligible. Suitable conditions for efficient 

polymerisation are usually met in the temperature range of 90 to 140 °C, depending on the 

monomer and nitroxide used
1
. Another important factor is that the optimal values for kd and 

kc are directly correlated to kp and kt
20

. In order for all the polymer chains to statistically 

grow at the same time from a macroscopic point of view, it is important that the exchange 

between dormant and active species is much faster than the propagation and termination 

steps
23

. Another feature is that chain transfer reactions that can occur in free-radical 

polymerisation can be expected in NMP: e.g. transfer to the monomer
24, 25

 as well as 

transfer to the nitroxide itself
26, 27

. This will generate PnX species in which X is a fragment 

of the transfer agent (Scheme 1). This is especially the case when compounds with very 

high transfer constants, Ctr (Ctr = ktr/kp), are present, as the transfer reaction will be 

favoured over propagation. However, transfer reactions are often regarded as side reactions 

that will hamper the control over the polymerisation and, in a typical NMP experiment, the 

formation of PnX should be minimised as much as possible. For this reason, there was no 

real interest in literature to investigate the use of transfer agents in NMP. 

When all the suitable parameters are met according to the mechanism proposed in 

Scheme 1, the nitroxide group is attached to the resulting polymer chain after terminating 

the polymerisation
28

. Since the nitroxide-monomer bond is thermally instable, heating the 

polymer to temperatures above 70 °C to 100 °C leads to homolytic cleavage yielding the 

nitroxide and a radical on the polymer chain-end. The polymer is, in fact, a macroinitiator, 

which can be used to reinitiate the NMP process in the presence of a second monomer, 

thereby generating block copolymers
29, 30

. However, if an end material is sought, the 

polymerisation thermodynamics might become unfavourable at high temperature as the 

importance of entropy rises accordingly
31

, which will induce depropagation processes
32, 33

. 

Furthermore, the generated chain-end radical can engage in side reactions such as 

backbiting and chain-scission
34

. It is well known that most thermoplastics are usually 



processed at temperatures around 200 °C or more
35

 where they are in their viscous flow 

region
36

. This flowing behaviour, together with diffusion, will promote side reactions due 

to the reactive chain-end radical and might eventually degrade the properties of the final 

product. From an industrial point of view, this aspect makes NMP less attractive for 

production on large scale. 

To overcome these problems, many strategies were employed in order to remove the 

terminal nitroxide and improve the thermal stability of the resulting polymer. For example 

Solomon et al.
37

 used zinc-acetic acid reduction to transform TEMPO chain-ends into –OH 

groups. Malz et al.
38

 employed a strategy in which polystyrene (PS) synthesised with 

TEMPO was reduced with lithium aluminium hydride. They also oxidised the TEMPO 

end-group by adding m-chloroperbenzoic acid (MCPA) at room temperatures or by heating 

the polymer in the presence of 2,6-di-tert-butyl-4-methylphenol (Ionol). A similar 

procedure was employed by Howell and Chaiwong
39

 with 2,6-di-tert-butyl-4-methylphenol 

(BHT) as reductive agent. Petit et al.
40

 used a transfer reaction with thiophenol to deactivate 

PS prepared in the presence of SG1. Nicolas et al.
33

 adapted this method to poly(methyl 

methacrylate) (PMMA) bearing SG1 chain-ends. Wong et al.
41

 reported the use of 

tributyltin hydride as radical quencher for the removal of the alkoxyamine function from 

polymers prepared by enhanced spin capturing polymerisation. Harth et al.
42

 developed a 

method based on the controlled monoaddition of maleic anhydride and maleimide 

derivatives to generate functional polymers and remove the 2,2,5-tri-methyl-4-phenyl-3-

azahexane-3-nitroxide (TIPNO) end-groups. O’Bryan and Braslau
43

 employed cerium 

ammonium nitrate (CAN) to cleave the N-alkoxyamine bond of PS samples to form 

secondary benzylic cations at the polymer terminus, which can subsequently be trapped by 

water, alcohols, or nitriles to form the corresponding alcohol, ether, or amide chain-end 

functionalised polymers. The same strategy was then later employed to synthesise 

macrocyclic polymers
44

. More recently, Guillaneuf et al.
45

 reported the nearly quantitative 

radical bromination and subsequent radical azidation of SG1 terminated PS in the presence 

of ethyl 2-bromoisobutyrate and ethanesulfonyl azide respectively. The brominated 

polymer was used as ATRP macroinitiator to synthesise a block copolymer. 



Although the methods previously mentioned provide a successful way for the 

removal of nitroxide end-groups while, in some cases, introducing different functional 

groups, all of them involve post-polymerisation reactions and additional purification steps. 

This is a major drawback for industrial purposes, where simplicity and short reaction 

procedures are well appreciated. In a system that possesses some analogy with NMP, 

Debuigne et al.
46

 described the quenching of cobalt-mediated radical polymerisation in one-

pot by radical scavengers such as thiols and nitroxide in order to remove the cobalt 

complex from the polymer chain-ends.  

In this paper, a simple one-pot procedure for the nitroxide end-group removal of 

synthetic polymers prepared by NMP is presented. The approach is based on the controlled 

addition of dodecanethiol, thiophenol, radical initiators or carbon tetrabromide as 

terminating agents for the NMP of styrene, isobornyl acrylate and methyl methacrylate. 

Furthermore, different initiating systems and nitroxides such as TEMPO and SG1 were 

investigated. The thermal stability of the resulting polymers, as well as their potential 

application as ATRP macroinitiators, was also looked for. 

EXPERIMENTAL PART 

Materials. Benzoyl peroxide (BPO), 1-dodecanethiol (≥ 98%), thiophenol (99%), carbon 

tetrabromide (CBr4; 99%) and silver trifluoroacetate (AgTFA, 98%)  were purchased from 

Sigma-Aldrich and used as received. 2,2’-azobis(isobutyronitrile) (AIBN) was purchased 

from Merck and recrystallised twice from methanol before use. 2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPO) was purchased from Sigma-Aldrich and sublimed before use. 3,7-

dioxa-4-aza-6-phosphanonanoic acid, 4,5-bis(1,1-dimethylethyl)-6-ethoxy-2,2-dimethyl-, 

6-oxide (MAMA-SG1) and N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide 

(SG1) were kindly supplied by Prof. Richard Hoogenboom (UGent). Styrene (S) (99%, 

extra pure, Acros Organics) was freshly distilled over Ca2H, and then kept under nitrogen 

atmosphere in a Schlenk flask. Methyl methacrylate (MMA) was purified by freshly 

distilling it over Ca2H prior to use. 1-Ethoxyethyl acrylate (EEA) was prepared following 

the procedure of Van Camp et al.
47

. Isobornyl acrylate (iBA; Aldrich, tech.) was purified by 

vacuum distillation (394 K/18 mmHg). Copper(I) bromide (Cu(I)Br; Aldrich, 98% (metal 



based)) was purified by stirring with acetic acid, then by filtering and washing with ethanol 

and diethyl ether, and finally by drying in a vacuum oven at 343 K. N,N,N’,N’’,N’’-

pentamethyl diethylenetriamine (PMDETA; Acros, 99+ %) was freshly distilled prior to 

use (358-359 K/12 mmHg), and kept under argon atmosphere. The solid chain transfer 

agents (BPO, AIBN, and CBr4) were dissolved in a minimum amount of o-xylene, and the 

resulting solution was degassed under argon prior to use. The other liquid chain transfer 

agents (1-dodecanethiol and thiophenol) were also degassed under a smooth argon flow 

prior to use. All solvents employed were purchased from Sigma-Aldrich (HPLC grade), and 

used without further purification. 

Synthesis of polymers by NMP. (A general procedure is described here. More details can 

be found in the electronic supporting information (ESI) provided). A monomer (M), the 

corresponding initiating system (bimolecular initiator with AIBN and the corresponding 

nitroxide or unimolecular initiator with MAMA-SG1) were gently stirred during 30 min, 

transferred into a Schlenk vessel, and then conveniently degassed by three freeze-pump-

thaw cycles. Subsequently, the vessel was backfilled with nitrogen gas, and the reaction 

mixture was then immersed in an oil bath, which was preheated at the reaction temperature. 

The polymerisation was conducted under nitrogen atmosphere with magnetic stirring. For 

kinetic analyses, samples were withdrawn from the reactor. The monomer conversions 

were determined by 
1
H NMR analysis on crude samples dissolved in CDCl3. Molecular 

weights were determined by size exclusion chromatography (SEC). When the desired molar 

mass and conversion were obtained, a crude sample from the reaction mixture was cooled, 

diluted with THF, and precipitated into an excess of methanol. The remaining reaction 

mixture was reacted with different chain-transfer agents (1-dodecanethiol, thiophenol, 

AIBN, BPO or CBR4). Typically, the transfer agent was added to the reaction mixture 

under a smooth nitrogen flow, and left to react for at least 10 minutes up to 1 hour. After 

that, the crude reaction mixture was cooled with ice or liquid nitrogen, diluted with THF, 

and precipitated into an excess of chilled methanol or heptane. The resulting polymers were 

isolated by filtration and dried under vacuum (10
-2

 mmHg) at 298 K for 2 h to yield a dry 

powder. 



The different samples obtained by the procedures described above were subjected to 

physicochemical analyses (NMR, SEC, MALDI-TOF MS, TGA). Also, the bromine 

terminated polymers were employed as macroinitiators during ATRP experiments, which 

are described as follows. 

Chain extension by using bromine terminated macroinitiator and ATRP. (More details 

can be found in the ESI provided). A typical ATRP experiment was carried out as follows. 

First, a mixture of a bromine terminated homopolymer (P-Br), the monomer for chain 

extension, and PMDETA was gently stirred during 30 min. Then, it was transferred to the 

Schlenk reactor, and degassed by three freeze-pump-thaw cycles. Subsequently, it was 

backfilled with nitrogen, and Cu(I)Br was added under a smooth nitrogen flow. One aliquot 

of this mixture was taken, after which the reaction flask was placed in an oil bath set at the 

reaction temperature. At distinct polymerisation times, samples were withdrawn from the 

reaction system to determine the conversion and the polymer properties. Finally, the ATRP 

experiment was terminated by quenching the reaction mixture with liquid nitrogen. After 

dissolution in THF, passing over a neutral aluminium oxide column to remove copper and 

evaporation of the solvent, the polymer was precipitated in a 10-fold excess of methanol. 

Characterisation 

NMR. 
1
H nuclear magnetic resonance (NMR) spectra were recorded at 300 or 500 MHz in 

CDCl3 solution at room temperature on a Bruker Avance 300 or Bruker DRX 500 

spectrometer, respectively. A relaxation delay of 30s between scans was applied to ensure 

quantitative results. 
31

P NMR was measured on a Bruker Avance 300 apparatus fitted with 

a BBO probe at 121.49 MHz with conditions for quantitative analysis: 64 scans and 

relaxation delay of 90s between scans. Due to the low amount of SG1 compared to the 

polystyrene chains, a high of amount of product (200 mg) was dissolved in 0.8 mL of 

CDCl3. Chemical shifts are presented in parts per million (δ). 

SEC. Size Exclusion Chromatography (SEC) analyses were performed on an Agilent 

(Polymer Laboratories) PL-GPC 50 plus instrument, using a refractive index detector, 

equipped with two PLgel 5 μm MIXED-D columns thermostated at 40 °C. PS and PMMA 

standards were used for calibration. PS and PiBA samples were analysed using PS 



calibration while PMMA samples were analysed using PMMA calibration. THF was used 

as eluent at a flow rate of 1 mL/min. Samples were injected using a PL-AS RT 

autosampler. 

Matrix assisted laser desorption/ionization time of flight mass spectroscopy. MALDI-

TOF MS was performed on an Applied Biosystems Voyager De STR MALDI-TOF 

spectrometer equipped with 2 m linear and 3 m reflector flight tubes, and a 355 nm Blue 

Lion Biotech Marathon solid state laser (3.5 ns pulse). All mass spectra were obtained with 

an accelerating potential of 20kV in positive ion mode and in linear and/or reflector mode. 

Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malonitrile (BMPM) (20 mg/mL 

in THF) was used as a matrix, AgTFA (1 mg/mL) was used as a cationising agent, and 

polymer samples were dissolved in THF (2 mg/mL). Analyte solutions were prepared by 

mixing 10 μL of the matrix, 5 μL of the salt, and 5 μL of the polymer solution. 

Subsequently, 0.5 μL of this mixture was spotted on the sample plate, and the spots were 

dried in air at room temperature. A poly(ethylene oxide) standard (PEO, Mn = 2000 g.mol
-1

) 

was used for calibration. All data were processed using the Data Explorer 4.0.0.0 (Applied 

Biosystems) software package. 

TGA. Thermogravimetric analysis (TGA) was performed with a Mettler Toledo 

TGA/SDTA851e instrument under N2 atmosphere at a heating rate of 10 °C/min between 

25 and 800 °C. 

RESULTS & DISCUSSION 

In order to improve the stability of polymers synthesised by NMP, it is necessary to 

remove the nitroxide and neutralise the polymer chain-end in an efficient and clean way. As 

shown in Scheme 2, it is expected that the use of transfer agents with very high transfer 

constants, Ctr, will yield the desired product. To confirm this hypothesis we developed a 

one-pot two-step process. First, polymerisation by NMP proceeds under standard 

conditions for the monomer of choice. Secondly, when the desired molecular weight and 

conversion are reached, the transfer agent is added. After a few minutes, all the propagating 

polymer chains are terminated and the transferred radical may be able to initiate new 



polymer chains. In order to avoid a bimodal molar mass distribution, the reaction is 

quenched only a few minutes after addition of the corresponding transfer agent, and 

purification by standard procedures is then performed. Furthermore, if the chosen chain 

transfer agent is able to provide a functional group, this new methodology opens the way to 

one-pot functionalisation of polymers produced by NMP. 

 

Scheme 2 One-pot nitroxide removal and direct synthesis of a macroinitiator for ATRP. 

Compounds having the highest transfer constant, Ctr, in free-radical polymerisation 

of styrenics, acrylates and methacrylates were chosen as, by analogy, it is expected that 

those compounds would exhibit the highest activity in NMP. The transfer agents chosen 

were thiols, radical initiators and carbon tetrabromide. Their uses and efficiencies are 

described separately in the following paragraphs. 

Thiols 

In order to study the one-pot nitroxide removal using thiol compounds, different 

monomer and initiating systems were proposed: PS with TEMPO and SG1 as well as PiBA 

and PMMA with SG1 (Table 1). As shown in Scheme 2, chain transfer with thiols occurs 

through hydrogen abstraction from the thiol, which will result in thermally stable hydrogen 

terminated polymers. From literature it is known that the transfer constants of aliphatic 

thiols are very high in free radical polymerisation of styrene (Ctr = 16 for 1-dodecanethiol at 



60 °C in bulk
48

) and acrylates (Ctr = 1.5 for butyl acrylate (BA) with 1-dodecanethiol at 60 

°C in bulk
49

). Furthermore, in the case of acrylates, thiols are also susceptible to react with 

mid-chain radicals, thereby limiting the side reactions they can induce
50

. Although smaller, 

the transfer constant for MMA is also relatively important with aliphatic thiols (Ctr = 0.7 for 

1-dodecanethiol at 60 °C in bulk
49

). However, higher transfer constants were observed with 

thiophenol during free radical polymerisation of MMA (Ctr = 2.7 for thiophenol at 60 °C in 

bulk
51

). For this reason we were interested to compare the activity of the different types of 

thiols. Moreover, 1-dodecanethiol was chosen as aliphatic thiol as it is widely used in 

industry and has a limited smell when compared to lower molecular weight aliphatic or 

aromatic thiols. 

Table 1 Experiments for one-pot removal of nitroxides from NMP polymers with thiols
a
. 

Entry M
b
 Initiation DP

c
 T (K) Thiol Eq.

d
 

ti – tf
e
 

(min) 

Mp,i – Mp,f
f
 

(g.mol
-1

) 

convi – convf
g
 

(%) 

1 S AIBN / SG1 412 393 1-dodecanethiol 1 180 – 240 40,800 – 43,500 54.0 – 64.0 

2 MMA
h
 MAMA-SG1

i
 244 363 1-dodecanethiol 10 120 – 180 20,900 – 21,900 67.3

j
 – 70.8

j
 

3 MMA
h
 MAMA-SG1

i
 240 363 thiophenol 10 120 – 180 21,200 – 21,200 68.7

j
 – 68.2

j
 

4 iBA MAMA-SG1
i
 245 393 thiophenol 10   60 – 120 12,500 – 14,000 29.6 – 38.7 

5 S AIBN / TEMPO 233 408 1-dodecanethiol 1 180 – 210 7,300 – 7,500 14.2 – 16.0 
a 

Further details on the polymerisation conditions can be found in the ESI. 
b
 M = monomer. 

c
 Theoretical degree of 

polymerisation at 100% conversion. 
d
 Thiol equivalents compared to the nitroxide. 

e
 ti = thiol injection time; tf = final reaction 

time. 
f
 Mp,i = molar mass just before thiol injection; Mp,f = molar mass at the end of the reaction. 

g
 convi = conversion just before 

thiol injection; convf = conversion at the end of the reaction. 
h
 8.8 mol% of S was added to ensure control over the 

polymerisation
14

. 
i
 10 mol% of SG1 was added to improve control over the polymerisation

14, 52
. 

j
 Conversion of MMA only, S 

was not considered. 

For styrene, the systems were based on bimolecular initiation (entries 1,5, Table 1), 

for practical reasons, but it had no influence on the transfer to thiols as those were added 

well after completion of the initiation step and similar results would be expected with 

unimolecular initiation. Mp (peak molecular weight) was used to compare if the molar 

masses of the original chains were still increasing 30 min (entry 5, Table 1) or one hour 

(entries 1, 2, 3 and 4, Table 1) after thiol addition. This was necessary because the thiol 

does not stop the propagation but merely transfers the propagating radical, which will in 

turn generate new polymer chains. Since the transfer agent is still present, it is likely that 

the reinitiation / NMP / termination cycle continues until the reaction is stopped, thereby 

producing oligomers, some of which might possess the nitroxide end-group. Hence, the 



result is that Mn will be lowered and PDI will increase significantly (see ESI, Table S1). 

This is visible in  

Figure 1, which corresponds to entry 1 in Table 1, and in which the molar mass of 

the polymer increased regularly with time during the NMP process. However, after 3h, 

when 1-dodecanethiol was added, the molar mass increase stopped and, 30 min later, a 

second lower molar mass distribution was observed. On the other hand, Mp was found to 

increase very little one hour after thiol addition, which indicates that the initial propagating 

chains are effectively terminated. A noticeable fact is that no oligomer shoulder was 

observed 10 min after addition of the thiol to the system. Furthermore, similar trends were 

observed for all monomers and initiating systems (entries 2-5, Table 1), which confirms 

that the procedure can be regarded as a universal approach (see ESI). Also, the PMMA 

chains (entries 2,3, Table 1) were synthesised in the presence of 8.8 mol% of styrene to 

ensure control over the polymerisation
14

. As a consequence, those polymers contain styrene 

as a last monomer unit
53

, which means that the Ctr of the thiol with respect to the styrene 

radical should be considered. 

 
Figure 1 Evolution of molar mass distribution for PS synthesised by NMP and one-pot SG1 removal with 1-

dodecanethiol (entry 1, Table 1). 



Chain transfer in radical polymerisation can be affected by factors such as chain 

length and temperature
54

. Therefore the transfer constant value, Ctr, for one-pot removal of 

nitroxides might vary over the whole conversion and degree of polymerisation (DP) ranges. 

However, the results showed that the propagating chains were effectively terminated for 

different monomers and at various DP’s and conversions (Table 1). This can be explained 

by the increased Ctr at the relatively high temperatures required in NMP, resulting in greater 

chances for transfer reaction to occur. Similar results were also obtained for the different 

reactions, both with 1-dodecanethiol and thiophenol (entries 1,5 for styrene and entries 2,3 

for MMA, Table 1), which indicates that above a certain Ctr value no significant difference 

was macroscopically observed on the transfer behaviour. Another remarkable feature of the 

transfer process is that as low as 1 equivalent of thiol compared to the nitroxide is needed 

(entries 1,5, Table 1), thereby reducing possible smell concerns. This also suggests that 

other thiols with lower transfer constants might be effective to a certain extent. 

Because polymers are usually processed at temperatures well above their Tg’s or 

Tm’s
35

, their thermal stability is an important parameter for applications. It is known that 

under these conditions polymers prepared by NMP are prone to earlier degradation due to 

the presence of the labile nitroxide end-group. However, after transfer reaction with thiols, 

hydrogen terminated polymers with higher thermal stability are expected. By analysing the 

samples by TGA before and after thiol addition, this characteristic can be used to confirm 

the successful removal of the nitroxide in one-pot. In  

Figure 2a, TGA results for PS synthesised in the presence of TEMPO (entry 5, 

Table 1), before and after stabilisation, are shown. When the nitroxide is still present, 

degradation occurs around 200 °C, which corresponds to the temperature at which 

polystyrene starts to flow and side-reactions are favoured. However, 1 min after thiol 

addition the thermal stability of the system is clearly increased. A slight inflection in the 

curve is still observed around 250 °C but it disappears 10 min after thiol addition. This 

indicates that most but not all of the nitroxide end-groups were removed after 1 min and 

that polymer stabilisation was complete 10 min after thiol addition. In Figure 2b, TGA’s for 

PMMA synthesised with SG1 before and after stabilisation are presented. Although the 

samples seem to contain residual solvent from the purification procedure as shown by the 



loss of mass around 100 °C (heptane), the stabilisation effect is also clear since the loss of 

mass is reduced up to about 400 °C after thiol addition. 

 
Figure 2 a) TGA before, 1 min and 10 min after 1-dodecanethiol addition for PS synthesised with TEMPO 

(entry 5, Table 1). b) TGA before and 1h after thiophenol addition for PMMA synthesised with SG1 (entry 3, 

Table 1). 



In order to further confirm these results, a MALDI-TOF analysis has been 

performed on the PS samples (entry 5, Table 1) before and after addition of the thiol 

compound (Figure 3).  

 

Figure 3 MALDI-TOF spectra of PS synthesised in presence of TEMPO and terminated by 1-dodecanethiol 

(entry 5, Table 1). Top spectrum: before the addition of 1-dodecanethiol; middle spectrum: 1 min after the 

addition of 1-dodecanethiol; bottom spectrum: 10 min after the addition of 1-dodecanethiol. 

Before the addition of 1-dodecanethiol (Figure 3, top spectrum), up to 3 different 

series of signals could be observed at a location denoted as (1), (2) and (4). The mass 

difference between two successive, analogous signals is 104 Da (molar mass of one styrene 

repeating unit). None of the series corresponds to the theoretical isotope distribution of the 

expected structure (see ESI, Figures S5-S8) although it is supposed that series (2) and (4) 

can be attributed to TEMPO terminated PS. This assumption is based on the disappearance 

of these series upon addition of 1-dodecanethiol (see further). It is known that 

fragmentation is occurring during MALDI analysis, which gives rise to these series
55

. 

Series (2) corresponds to the theoretical isotope distribution of AIBN initiated PS and a 

methylene exo double bond at the end, whereas series (4) can be attributed to a similar 

structure that was thermally initiated (see ESI, Figure S6). Series (1) is mostly visible at 

higher molecular weights and corresponds to a small fraction of proton terminated PS (dead 

polymer chain). One minute after the addition of 1-dodecanethiol, one additional series (3) 

is appearing while the relative intensity of the other series is changing (Figure 3, middle 

spectrum). The new series corresponds to proton terminated PS with a thermal initiation 

group. The decrease of series (2) and (4) in combination with an increase of the proton 



terminated series clearly demonstrates the one-pot substitution of the TEMPO end-group 

from PS synthesised via NMP with a proton. Nevertheless, the reaction does not seem to be 

completed since the series that could be attributed to the TEMPO terminated PS are still 

partially visible. After 10 min, series (4) could not be observed anymore and series (2) 

almost vanished, indicating that the reaction is near to be quantitative (Figure 3, bottom 

spectrum). 

In conclusion, the one-pot removal of nitroxides can be performed as such: the 

monomer is polymerised under NMP conditions until the desired molar mass and 

conversion are reached, after which thiol addition occurs and, 10 min later, the reaction is 

quenched to prevent the formation of oligomers. The stabilised polymer can subsequently 

be recovered by simple purification methods. 

Radical Initiators 

The use of thiols as transfer agents does not allow for the replacement of the 

nitroxide with a different functional group. Thus, other possible alternatives to thiols were 

investigated. In this respect, another category of compounds active as transfer agents in 

radical polymerisation, which was extensively studied in literature, are radical initiators. 

The reason is that transfer reaction to an initiator will affect the polymerisation efficiency 

and thus the final molar mass and structure of the polymer
56, 57

. However, transfer reactions 

are depending on the monomer and the initiator system used as well as on the conversion. 

A perhaps more important feature of radical initiators is their ability, during free radical 

polymerisation, to react with propagating radicals through primary radical termination 

events, which can occur by disproportionation or combination
54

. Usually, this phenomenon 

is small and negligible as the concentration of propagating radicals is higher than that of 

primary radicals generated from the radical initiator. However, for NMP, the concentration 

of propagating radicals is much lower than for free radical polymerisation. Thus, it is 

expected that the controlled addition of a rapidly decomposing radical source will terminate 

the polymerisation and remove the nitroxide from the growing polymer chains, as shown in 

Scheme 2. Furthermore, it is presumed that, at the end of the reaction, the nitroxide will be 

coupled to newly formed oligomer chains or become part of alkoxyamines, which also 

contain the radical source fragment and one monomer unit
58

. At the temperatures required 



for NMP (usually above 100 °C), radical sources such as AIBN and BPO have a half-life of 

only a few minutes
59

. This is also the reason why these initiators are commonly used for the 

bimolecular initiation of NMP; in this case it is important that all the chains are initiated at 

the same time. The experiments performed for the one-pot removal of nitroxide with radical 

sources are described in Table 2. Styrene polymerisation in the presence of SG1 was used 

as a model system to investigate their efficiency. 

Table 2 Experiments for one-pot removal of nitroxides from NMP polymers with radical sources
a
. 

Entry DP
b
 Radical source Eq.

c
 

ti – tf
 d
 

(min) 

Mp,i – Mp,f
e
  

(g.mol
-1

) 

convi – convf
f
  

(%) 

6 446 BPO 10  180 – 240 42,200 – 44,900 51.3 – 96.4 

7 476 AIBN 10  180 – 240 39,600 – 41,500 55.5 – 87.4 

8 446 AIBN 2  180 – 240 44,200 – 52,700 - 

9 443 AIBN 4  180 – 240 49,400 – 54,400 - 

10 428 AIBN 10  900 – 1440 87,600 – 84,900 88.2 – 98.9 

 11
g
 379 AIBN 10  900 – 1440 83,500 – 80,900 - 

a 
Monomer: styrene; initiation: AIBN / SG1; temperature: 393 K (Further details on the polymerisation 

conditions can be found in the ESI). 
b
 Theoretical degree of polymerisation at 100% conversion. 

c
 Radical 

source equivalents compared to the nitroxide. 
d
 ti = radical source injection time; tf = final reaction time. 

e
 

Mp,i = molar mass just before radical source injection; Mp,f = molar mass at the end of the reaction. 
f
 convi = 

conversion just before source radical injection; convf = conversion at the end of the reaction; - = not 

determined. 
g
 50 vol% of o-xylene was also added. 

It appears from entries 6 and 7 in Table 2 that the addition of 10 equivalents of BPO 

or AIBN leads to a dramatic increase in conversion. For example for entry 6, the 

conversion increased from 51 % before addition up to 96 % after addition. This, however, 

was expected since monomer was still present when the radical source was added. The 

sudden concentration increase of initiating radicals could not be counterbalanced by the 

nitroxide, which was present in lower concentration. The result was that Mn decreased and 

the PDI increased significantly as the control over the polymerisation was lost (see ESI, 

Table S2). Nevertheless, the important point is that Mp values are very similar before and 

after the radical source addition: from 42,200 to 44,900 g.mol
-1

 for entry 6 (Table 2). This 

indicates that the propagating chains were effectively terminated in a rapid manner. No 

significant differences were observed between BPO and AIBN. Therefore, only AIBN was 

chosen for the remaining study. 



For entries 6 and 7 (Table 2), the amount of radicals added was so substantial that, 

while the controlled polymer chains were terminated, oligomers were formed due to the 

high number of initiation and termination events (Figure 4a).  

 



Figure 4 a) Evolution of molar mass distribution for PS synthesised by NMP and one-pot SG1 removal with 

BPO (entry 6, Table 2). b) Evolution of molar mass distribution for PS synthesised by NMP and one-pot SG1 

removal at high conversion with AIBN (entry 10, Table 2). 

For this reason, the amount of AIBN added was lowered to 2 equivalents (entry 8, 

Table 2) and 4 equivalents (entry 9, Table 2) compared to SG1. The formation of oligomers 

was effectively lowered (see ESI, Figures S10 and S11) but Mp values before and after 

addition increased: from 44,200 to 52,700 g.mol
-1

 for entry 8 (2 equivalents of AIBN 

compared to SG1) and from 49,400 to 54,400 g.mol
-1

 for entry 9 (4 equivalents of AIBN 

compared to SG1). This indicates that the growing chains were not terminated immediately 

and that 10 equivalents of the radical source with respect to the nitroxide are required in 

order to obtain a fast removal of the nitroxide. 

In order to obtain stabilised polymers in a one-pot procedure and avoid the 

formation of undesirable oligomers, the addition of the radical source was performed at 

high conversion (entries 10 and 11, Table 2). It can be seen in Figure 4b that there is almost 

no difference between the SEC traces for entry 10 (Table 2) before and 9h after AIBN 

addition, at the exception of a small high molar mass shoulder that might result from 

undetermined side reactions. This is a clear evidence that the lower amount of monomer 

left in the reaction mixture prevented the formation of oligomers. Also, based on this 

observation, it is possible to wait more than 10 min between the radical source addition and 

the end of the reaction. In the case of entry 11 (Table 2), 50 vol% of o-xylene was added to 

the reaction mixture to facilitate the homogenisation of the radical source and displacement 

of the nitroxide end-groups. However, no significant difference with entry 10 (Table 2) was 

observed (see ESI, Figure S12). 

Halogen: CBr4 

As it is well-described in the literature, controlled radical polymerisation (CRP) 

techniques have been proven to be a very efficient method for the preparation of functional 

polymers
60

. In particular, due to the CRP mechanism, polymer chains prepared by such 

techniques are end-capped by a ‘dormant’ unit, which can be transformed into diverse 

functional groups after polymerisation. ATRP is probably the most practical technique, 

because the terminal alkyl halide can be used for standard nucleophilic substitutions or 



elimination reactions. Formation of azides, amines, double bonds, sulfide and even thiols 

have been shown to be feasible by performing an appropriate modification of the ω-halogen 

end-group of ATRP synthesised polymers
60

. However, depending on the targeted functional 

group, transformations can be more or less efficient or easy to achieve. 

Nevertheless, one of the major disadvantages of ATRP is the use of a transition 

metal catalyst. For this reason, the preparation of bromine containing polymers via NMP 

was aimed for. These polymers can be synthesised via a one-pot substitution of the 

nitroxide end group by a bromine group at the end of a NMP reaction. Such a strategy does 

not require any transition metal, and furthermore, the experimental procedure is much 

easier compared to ATRP. 

For this purpose, the possibility to use halogens, known as an important class of 

transfer agents in free radical polymerisation, was investigated. They are known to react by 

halogen-atom transfer with carbon centred radicals
54

. Halogens usually exhibit lower 

transfer constants than thiols. For this reason CBr4 was selected due to the relatively high 

chain transfer constants with this compound: Ctr = 4.2 with S at 60 °C
61

 and Ctr = 0.15 with 

MMA at 60 °C
62

. By a controlled addition of CBr4 at the end of a NMP reaction, bromine 

functionalised polymers can be prepared in a one-pot procedure (Scheme 2). This 

methodology was applied to obtain the corresponding bromine terminated PS-Br, PiBA-Br 

and PMMA-Br (Table 3), regardless of the initiation system employed (unimolecular or 

bimolecular, according to NMP theory). 

Table 3 Experiments for one-pot removal of nitroxides from NMP polymers with CBr4
a
. 

Entry M
b
 Initiation DP

c
 T (K) CBr4 Eq.

d
 

ti – tf
e
 

(min) 

Mp,i – Mp,f
f
 

(g.mol
-1

) 

convi – convf
g
 

(%) 

12 S AIBN / SG1 468 393 10 180 – 240 40,800 – 42,800 33.3 – 37.0 

13 S AIBN / SG1 95 393 1 180 – 190 12,600 – 11,000 - 

14 S AIBN / SG1 71 393 1 240 – 250 3,700 – 3,700 - 

15 iBA AIBN / SG1 49 393 1 360 – 370 5,600 – 5,800 - 

16 MMA
h
 MAMA-SG1

i
 86 363 1 120 – 130 8,000 – 8,200 - 

a 
Further details on the polymerisation conditions can be found in the ESI. 

b
 M = monomer. 

c
 Theoretical degree 

of polymerisation at 100% conversion. 
d
 CBr4 equivalents compared to the nitroxide. 

e
 ti = CBr4 injection time; tf 

= final reaction time. 
f
 Mp,i = molar mass just before CBr4 injection; Mp,f = molar mass at the end of the reaction. 

g
 

convi = conversion just before CBr4 injection; convf = conversion at the end of the reaction; - = not determined. 
h
 

8.8 mol% of S was added to ensure control over the polymerisation
14

. 
i
 10 mol% of SG1 was added to improve 

control over the polymerisation
14, 52

. 



For entry 12 (Table 3), a minor conversion increase is observed after CBr4 addition, 

with only a 3% increase one hour after the addition. It was postulated that due to steric 

hindrance, only one Br-group was abstracted from CBr4, which in turns generate the radical 

∙
CBr3. It is expected that this radical can reinitiate the polymerisation to form oligomers. In 

addition, termination reaction between 
∙
CBr3 radicals and propagating radicals on the 

oligomer chain-ends or another 
∙
CBr3 radical is likely to occur

63
. Similarly, the nitroxide 

can react with either the 
∙
CBr3 radical or the propagating oligomer. The advantage in this 

case is that the reaction can proceed for longer times without the risk of forming an 

excessive amount of oligomers. This was verified by SEC ( 

Figure 5) where no low molecular weight shoulder was observed one hour after 

CBr4 addition at the exception of a small population below 1000 g.mol
-1

. Furthermore, the 

reaction seems to be fast since the Mp values for entry 12 (Table 3) before (40,800 g.mol
-1

) 

and after the CBr4 addition (42,800 g.mol
-1

) are very similar, which indicates that the 

propagating chains were terminated almost immediately upon addition. 

 
Figure 5 Evolution of molar mass distribution for PS-Br synthesised by NMP with addition of CBr4 (entry 

12, Table 3). 



Figure 6 shows the 500 MHz 
1
H NMR spectrum of a PS-Br (entry 14, Table 3) 

obtained by applying this methodology. The signal at δ = 4.40 – 4.50 ppm should be 

undoubtedly attributed to the methine end-group (peak c) directly attached to the bromine 

atom in PS-Br. According to the spectrum, the intensity of this signal corresponds to the 

one of a bromine end-group (functionality of 77%). The end-group functionality is not 

complete, ascribed to the possibility of incomplete bromine substitution and termination in 

NMP. However, the functionality of 77% found for entry 14 (Table 3), compares well with 

that determined by Lutz et al. for a PS-Br prepared by ATRP (Mn = 12,000 g.mol
-1

; 

conversion = 93.0%; functionality of 76%)
64

. The successful removal of the alkoxyamine 

moiety was further confirmed by 
31

P NMR. Figure 7 displays the 
31

P NMR spectra for 

entry 14 (Table 3) before (bottom) as well as 1 min (middle) and 10 min (top) after addition 

of CBr4. The three measurements were performed with identical concentration. It is clearly 

noticed that the intensity of the signal at δ = 25 ppm, corresponding to the phosphorus atom 

in the SG1 nitroxide, has disappeared almost completely 10 min after the addition of the 

CBr4 solution, thereby confirming the disappearance of the SG1 end-groups as they are 

replaced by bromine atoms. Similarly to the thiols, it is necessary to wait at least 10 min or 

more after the CBr4 addition to ensure an almost quantitative reaction. 

 



Figure 6 
1
H NMR (500 MHz) for PS-Br 10 min after CBr4 addition (entry 14, Table 3). 

 
Figure 7 

31
P NMR (121.49 MHz) for PS-Br before (bottom) and 1 min (middle) and 10 min after CBr4 

addition (entry 14, Table 3). 

In the case of PiBA (entry 15, Table 3), the functionality was determined to be 95% 

from NMR (see ESI, Figure S18), which is significantly higher than for PS. It is suggested 

that the transfer reaction to CBr4 is faster for iBA than S. For PMMA (entry 16, Table 3), 

the removal of the alkoxyamine moiety by adding CBr4 was also achieved in a similar 

manner. Nevertheless, it should be pointed out that the bromine end-group functionality for 

PMMA could not be determined by NMR due to overlapping signals, but chain extension 

should provide more insight into the bromine functionalisation of PMMA. 

Chain Extension by ATRP 

The successful functionalisation of PS, PiBA and PMMA with CBr4 was also tested 

by investigating the efficiency of PS-Br, PiBA-Br and PMMA-Br as macroinitiators for 

ATRP. Chain extension experiments were performed in order to verify the ability of the 



bromine terminated polymers to generate higher molar mass polymers. In a typical 

procedure, a ratio of 300/1/1/1 between monomer, macroinitiator, Cu(I)Br, and PMDETA 

was employed (Table 4). 

Table 4 Chain extension by ATRP with bromine terminated macroinitiators
a
. 

Entry MI
b
 M

c
 

[M]0/[MI]/[Cu(I)Br]/ 

[PMDETA] 
T (K) t (min) 

Mn,i
d
 

(g.mol
-1

) 
PDI

d Mn,f
e
 

(g.mol
-1

) 
PDI

e
 

17 
PS-Br 

(entry 13) 
S 300/1/1/1 383 360 10,000 1.07 25,300 1.18 

18 
PS-Br 

(entry 14) 
S 300/1/1/1 383 360 3,800 1.06 21,200 1.31 

19 
PiBA-Br 

(entry 15) 
iBA 300/1/1.5/1.5 348 1260 5,200 1.12 7,000 1.21 

20 
PMMA-Br 

(entry 16) 
MMA 300/1/1/1 363 240 8,400 1.20 30,200 2.12 

21 
PMMA-Br 

(entry 16) 
MMA 300/1/0.5/0.5 363 240 8,600 1.17 28,600 2.12 

a 
Further details on the polymerisation conditions can be found in the ESI. 

b
 MI = macroinitiator. 

c
 M = monomer. 

d
 

Molar mass and PDI of the macroinitiator. 
e
 Molar mass and PDI after chain extension.

 

Figure 8 shows the SEC chromatographs for the chain extension experiments 

performed by using styrene as monomer and PS-Br as macroinitiator (entry 17, Table 4). A 

noticeable shift can be observed by comparing the initial and the final product after 6 h of 

reaction. This shift is a clear evidence for the presence of the bromine end-group in the 

macroinitiator, which proves the suitability of the functionalisation procedure. 

Nevertheless, it should be pointed out that a shoulder can be seen at low molar masses, 

which should be considered as a low fraction of non-functionalised PS-Br or unexpected 

termination reactions. In addition a small amount of coupling can be observed, but with 

limited importance by judging the PDI evolution before and after functionalisation: from 

1.07 to 1.18 for entry 17 (Table 4) and 1.06 to 1.31 for entry 18 (Table 4). 



 
Figure 8 Molar mass distribution before (left) and after (right) chain extension of a PS-Br macroinitiator by 

ATRP (entry 17, Table 4). 

Similar experiments were performed by using PiBA-Br (entry 19, Table 4) and 

PMMA-Br (entries 20 and 21, Table 4) as macroinitiators with, respectively, iBA and 

MMA as the chain extension monomers. For PiBA-Br the chain extension occurred as 

expected although the molar mass increase was small: from 5,200 to 7,000 g.mol
-1

 after 21h 

of reaction. It is believed that the bulkiness of the growing PiBA
∙
 radical restricts the access 

to the monomer, which slows down the polymerisation kinetics. Nevertheless, the molar 

mass increase suggests that the bromine functionalisation of PiBA (entry 15, Table 3) was 

successful. For PMMA chain extension (entry 21, Table 4), a noticeable molar mass 

increase occurred after 4h of reaction, which is again a clear evidence for the successful 

chain extension due to the presence of the bromine end-group in the PMMA macroinitiator. 

Nevertheless, the end product possesses a high PDI (above 2) ascribed to a shoulder at low 

molar masses
65

 (see ESI, Figure S23). Another experiment performed by using a higher 

catalyst to ligand ratio (1 instead of 0.5) showed a similar trend (entry 20, Table 4). These 

facts may account for a low fraction of unfunctionalised macroinitiator present in PMMA-

Br as a result of termination events during the synthesis of the precursor, or the presence of 

PMMA-S-Br due to the use of a low amount of styrene during the NMP of MMA
14, 53

, 

which would not exhibit a sufficient dissociation rate constant to ensure a proper initiation 



of MMA by ATRP. Additional kinetic experiments would be needed in order to further 

elucidate this mechanism, but such studies are out of the scope of this paper. 

CONCLUSION 

A novel and straightforward method based on transfer reactions with highly active 

compounds allowed for the one-pot stabilisation and functionalisation of polymers prepared 

by NMP. The controlled addition of transfer agents such as thiols, radical sources and CBr4 

during NMP replaced the labile nitroxide end-group with respectively a hydrogen, a radical 

initiator fragment or a bromine through a chain transfer reaction in an almost quantitative 

manner. Furthermore, the universality of the strategy was demonstrated with different 

monomers such as styrene (S), isobornyl acrylate (iBA) or methyl methacrylate (MMA) as 

well as various initiating systems and nitroxides (TEMPO and SG1). 

1-dodecanethiol and thiophenol performed very well as transfer agents for all 

monomers studied, as well as for wide molar mass and conversion ranges. Their use clearly 

improved the thermal stability of the final products. The use of radical sources showed to 

be appropriate for the removal of the nitroxide end group only in the case where high 

conversion is attained for the NMP reaction. This was necessary in order to prevent the 

formation of oligomers. It is also envisioned that the use of functional initiators could 

provide functional polymers. 

CBr4 was successfully used to synthesise bromine terminated polymers in a one-pot 

approach. Chain extension experiments by ATRP proved the high degree of 

functionalisation of the macroinitiators. This switch from NMP to ATRP could provide a 

simple route towards block copolymers that could not be synthesised exclusively by one of 

these methods. 
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