

Phytoextraction of Phosphorus for Ecological Restoration Application of Soil Additives

Stephanie SCHELFHOUT¹, Tom DU PRÉ¹, An DE SCHRIJVER², Kris VERHEYEN², Geert HAESAERT¹, Sara DE BOLLE³& Jan MERTENS¹

¹Dpt. Plant Production, Fac. Applied Bioscience Engineering, University College Ghent

²Forest and Nature Lab, Fac. Bioscience Engineering, Ghent University

³Dpt. Soil Management, Fac. Bioscience Engineering, Ghent University

Contact: stephanie.schelfhout@hogent.be

Introduction

Depleting soil nutrients for restoration of species-rich natural habitats in Western Europe on abandonned agricultural fields is crucial:

Common farming practices include excessive P addition,

Methods

Pot experiment with *Lolium perenne* in a growth chamber:

Soil P chronosequence (space for time) with 3 comparable soils with different P levels relevant for 3 stages in the extraction process

- leading to high soil P concentrations^a
- High soil P concentration is a bottleneck for restoring biodiversity in grasslands^b, heathlands^c, forests^d and wetlands^e
- Target soil Olsen P (NaHCO₃ extractable P) on species-rich Nardus grassland (type 6230): 10 mg P kg⁻¹ dry soil

Current restoration methods:

- Topsoil removal is very expensive and can have negative side effects by removing also the soil biota and CEC
- Cutting and removing: decrease of P slows down due to plant growth limitation by other nutrients than P

New potential technique: Phytoextraction of P = P-mining

- In the selective fertilization is a selective fertilization (no P)
- Soil P decreases during first years^f but this might stagnate

Field experiment on 5 sites (2011-2018)

	HIGH P	MID P	LOW P
Olsen P (mg kg⁻¹ dry soil)	110	65	35
Oxalate P (mg kg ⁻¹ dry soil)	328	140	42
Total P (mg kg ⁻¹ dry soil)	650	330	170

4 treatments in order to make P more plant-available
AMF = 1 g pot⁻¹ Arbuscular Mycorrhizal Fungi

(INOQ Agri: 220 AMF units per cm³ substrate; Species: *Glomus etuniatum, G. Intraradices, G. claroideum*)

Hu1 = 7 ml pot⁻¹ Humic substances

(Humifirst®, elevated dose equivalent to 7000 I ha⁻¹)

Hu2 = 0.05 ml pot⁻¹ Humic substances (Humifirst®, recommended dose equivalent to 50 l ha⁻¹)

PSB = 70 ml pot⁻¹ **Phosphate Solubilizing Bacteria** (*Bacillus brevis*, *B. polymyxa*, *Pseudomonas putida*)

Monthly harvest of aboveground biomass (n=4)

Chemical analysis P-concentration in DM

P extracted = P-concentration in DM * Biomass

Chemical analysis Olsen P in soil: initial and at 123 days (3th harvest) Ratio (%) between P extracted (mg P pot⁻¹) and amount of Olsen P (mg P pot⁻¹)

Is it possible to increase the phytoextraction of P by adding soil additives during different moments in the extraction process?

Is P extraction at a later stage of the process still attainable?

Results

1. P extracted during four months

Figure 1: mg P extracted per pot. Significant differences between treatements (ANOVA) are indicated with letters and '*'.

2. Change in soil P

Table: Olsen P (mg P kg⁻¹ dry soil) at 123 days (third harvest). Significant differences between treatments are indicated with letters.

TREATMENT	HIGH P	MID P	LOW P
Zero	116.3 ± 3.9 a	57.9 ± 2.4	25.24 ± 2.9 ab
AMF	108.5 ± 2.4 b	57.3 ± 4.1	23.11 ± 3.6 b
Hu1	107.4 ± 5.5 b	56.4 ± 2.5	25.67 ± 2.4 ab
Hu2	107.6 ± 7.5 b	55.84 ± 2.5	23.64 ± 1.2 b
PSB	112.6 ± 4.4 ab	58.74 ± 2.9	28.64 ± 4.0 a
Initial Olsen P	- 110	65	35

3. P extracted versus initial Olsen P

Figure 2: Ratio of extracted P with DM versus initial Olsen P.

Significant differences between treatments are indicated with letters and '*'.

4. Nutrient limitation: the vegetation N/P ratio^g

P-limitation: N/P > 16 In all treatments of the Mid P and Low P soils Very pronounced (> 30) in the zero, Hu2 and AMF treatments

Conclusions

Some treatments affects the P extraction depending on the soil P level. P extraction is not enhanced by most treatments in the High P soil. Only the PSB treatment raised the P extraction slightly. P extraction is significantly increased in the Low P and Mid P soils by addition of humic substances in huge doses (Hu1).
 The extraction of P in later stages of the process is much lower than in the initial stages despite the selective fertilization. Limitation by P in the Mid and Low P soils was very pronounced. The time needed to reach the target soil P is possible much longer than first estimations suggested^h.
 The BCF suggest that extracted P is about 10-15% of the Olsen P stock. The phytoextraction of P will slow down with soil P level decreasing in time.
 Validation of these results in the field is necessary, the field experiment is currently ongoing.

References: ^aSattari, S. Z. *et al.* (2012). Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. *PNAS*, *109*(16), 6348–6353 ^bCeulemans, T. *et al.* (2011). A trait-based analysis of the role of phosphorus vs. nitrogen enrichment in plant species loss across North-west European grasslands. Journal of Applied Ecology, *48*, 1155–1163 ^cAerts, R. *et al.* (1995). The potential for heathland restoration on formerly arable land at a site in Drenthe, The Netherlands. *Journal of Applied Ecology*, *32*(4) ^dBaeten, L. *et al.* (2010). Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs. Plant Ecology, *212*(5), 901–909 ^eWassen, M. J. *et al.* (2005). Endangered plants persist under phosphorus limitation. Nature, *437*(7058), *547–550* ^fKoopmans, G. F. *et al.* (2004). Phosphorus availability for plant uptake in a phosphorus-enriched noncalcareous sandy soil. Journal of Environmental Quality, *33*(3), 965–975 ^gKoerselman, W. & Meuleman, A. F. M. (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. *Journal of Applied Ecology*, *33*(6), 1441–1450 ^hvan Eekeren, N. et al. (2007). Natuurherstel in grasland door klaver en kalibemesting. De Levende Natuur, 108(1), 27–30