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Abstract 

Objective: This study has been specifically designed to investigate very low frequency neuronal 

oscillations (VLFO, <0.5 Hz) during resting states and during goal-directed tasks of graded difficulty 

levels, quantify the changes that the slow waves undergo in these conditions and compare them with 

those for higher frequency bands (namely delta, theta and alpha).  

Methods: To this end we developed a multistage signal processing methodology comprising blind 

source separation coupled with a neural network based feature extraction and classification method. 

Results: Changes in the amplitude and phase of brain sources estimates in the VLF band between rest 

and task were enhanced with increased task difficulty, but remained lower than those experienced in 

higher frequency bands. The slow wave variations were also significantly correlated with task 

performance measures, and hence with the level of task-directed attention. 

Conclusions: These findings suggest that besides their prominent sensitivity to external stimulation, 

VLFOs also contribute to the cortical ongoing background activity which may not be specifically 

related to task-specific attention and performance. 

Significance: Our work provides important insight into the association between VLF brain activity and 

conventional EEG frequency bands, and presents a novel framework for assessing neural activity 

during various mental conditions and psychiatric states.  

 

 

Highlights 

• We present a novel approach for exploring the functional relationship between very low frequency 

EEG oscillations (VLFO, <0.5 Hz) recorded at rest and those following the transition to goal-

directed tasks of graded difficulty levels. 

• We show that slow waves (i) are attenuated but not extinguished following a rest to task transition, 

and (ii) are sensitive to variations in cognitive load; (iii) the rest-to-task changes in the slow wave 

band correlate with performance measures and (iv) the changes are lower than those in higher 

frequency bands, tentatively suggesting the VLFOs’ contribution to the cortical ongoing 

background activity. 

• We present a new signal processing methodology for quantifying changes in band-limited EEG 

activity – this method, developed to gain insight into the neurophysiological role of the slow 

waves, could be explored with respect to altered functioning of brain oscillators in psychiatric and 

neurobehavioural disorders such as schizophrenia and ADHD. 
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1. Introduction 

 

The brain is believed to be a highly-distributed, self-organising system with different modules linked 

dynamically by synchronous oscillations (Varela et al., 2001; Buzsáki and Draguhn, 2004; Penttonen 

and Buzsáki, 2003). Transient assemblies comprising many neurons act in parallel in order to produce 

coherent perceptions, evaluations and behaviour depending on the task to resolve. These assemblies 

have a dynamic topography emerging as structures oscillating at multiple frequencies (delta 0.5–4 Hz; 

theta 4–8 Hz; alpha 8–12 Hz; beta 13–20 Hz and gamma 25–100 Hz), each associated with different 

aspects of cognition and brain states (Bear et al., 2001). A large body of literature has attempted to 

characterize the functional and clinical correlates of these relatively fast oscillations. Başar’s 

empirically based theory of oscillatory neural assemblies (Başar, 1998:1999) suggests that these 

oscillations reflect the brain’s information processing, each representing multiple functions selectively 

distributed in the brain; their activity and interactions are coordinated in cognition (Karakaş et al., 

2000). Furthermore, these oscillators interact with each other and work together at various levels of 

synchrony; they can temporally co-exist in the same or different neural structures, and slower 

oscillators appear to group and modulate faster ones (Buzsáki and Draguhn, 2004; Balduzzi et al., 

2008; He et al., 2008).  

 

In addition, in recent years some studies have also demonstrated that neuronal oscillators go above and 

beyond the conventional EEG band (0.5<f<50 Hz) and potentially span frequencies from 

approximately 0.01 Hz to 600 Hz (Buzsáki and Draguhn, 2004). Particularly, very low frequency 

oscillations (VLFOs, <0.5 Hz) have been recorded in the EEG of preterm neonates, during epileptic 

seizure activity (Vanhatalo et al., 2005), in attention deficit hyperactivity disorder (ADHD) (Helps et 

al. 2008, 2009, 2010), and during sleep stages (Steriade et al., 1993; Vanhatalo et al., 2004).  These 

VLFOs, first observed by Biswal et al. (1995) within the motor cortex in functional magnetic 

resonance imaging (fMRI) blood oxygenation level dependent (BOLD) signals during rest, appear to 

be intrinsically generated by the brain, are most prominent during rest and may allow temporal 

synchronisation to promote communication across diverse brain networks (Buzsáki and Draguhn, 

2004; Fransson, 2005, 2006). It is proposed that these slow waves represent an intrinsic continuous 

process which is required to maintain self-awareness (Fransson, 2006), as well as awareness of our 

surroundings and of the passage of time (Fox and Raichle, 2007; Balduzzi et al., 2008). Moreover, 

brain imaging studies have shown that very slow fluctuations observed during the course of a task are 

smaller than those during rest (Fox and Raichle, 2005; Fox and Raichle, 2007; Sonuga-Barke and 

Castellanos, 2007). This suggests that they are, to some extent, being attenuated during task in order to 

allow goal-directed active processing to dominate. However, the so-called default-mode interference 

(DMI) hypothesis posits that this is not always the case – sometimes these oscillations may re-emerge 

during task, and if they did so, they compete and interfere with goal-directed processing and impair 
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task performance by inducing periodic attentional lapses (Sonuga-Barke and Castellanos, 2007). 

Moreover, VLFOs are thought to contribute to inter-trial variability in evoked responses and behaviour 

(Fox et al., 2007; Fox and Raichle, 2007; Monto et al., 2008; Demanuele et al., 2010). 

 

Despite the mounting empirical evidence and promising theoretical models (Laufs et al., 2003; Fox et 

al., 2006; Fox and Raichle, 2007; Leistner et al. 2007; Monto et al., 2008;), the mechanism of these 

slow rhythms remains as yet unclear, and more work is required to unravel the origin of this neural 

activity, its specific function, and the best way to assess and quantify it (Balduzzi, 2008, Rothenberger, 

2009). To this end, we here present a focused study which has been specifically designed to explore 

the slow waves in the EEG under varying levels of attentional requirements. We set out to explore the 

functional relationship between the slow waves recorded during rest and those following the transition 

to goal-directed tasks of graded difficulty levels, and their plausible link with goal-directed attention. 

To gain perspective into the novel slow waves findings, we contrast them with those obtained for more 

conventional frequency bands, namely delta, theta and alpha oscillations.  

 

Hence, throughout the study and in keeping with the literature previously discussed, the brain is 

conceptualised as a system comprising a number of band-limited sources or oscillators (Karakaş et al., 

2000; Buzsáki and Draguhn, 2004). At rest, the system is in its most basic, spontaneous and “default-

mode” state. Stimulus-based tasks load the brain and tax the underlying oscillators eliciting a 

definitive standard evoked response in the EEG, namely the P300 (Polich, 2007). This event-related 

potential (ERP) has been associated with task-relevant attention and memory, and is highly sensitive 

to cognitive load (Karakaş et al., 2000; Herrmann and Knight, 2001; Datta et al., 2007; Polich, 2007; 

Smallwood et al., 2007). Its amplitude reflects the probability and task-relevance of a stimulus while 

its latency indicates the duration of stimulus evaluation (Polich, 2007). Consequently, these P300 

parameters provide a useful index of the effect of varying the level of cognitive load on the brain. 

 

In order to achieve this variable cognitive load, we implemented an experimental framework 

comprising two paradigms, namely, a sustained attention to response task (SART), also known as Go 

No-go paradigm (Datta et al., 2007), and a three-stimulus oddball (OB) task (Comerchero and Polich, 

1999).  The Go No-go task requires the participant to respond to one stimulus type (Go) and withhold 

a response to an infrequent stimulus (No-go) appearing in an unpredictable manner. As the name 

indicates, it assesses self-directed attention to the task at hand. The rhythmic nature of the task is 

designed to establish a relatively automatic, task-driven, prepotent response (Datta et al., 2007; 

Smallwood et al., 2007). This task has also been used to assess ERP markers of inhibition (e.g. Nogo 

N2; Falkenstein et al., 1999) and response preparation (Shibasaki et al., 1980). Meanwhile, the three-

stimulus oddball paradigm involves the recognition of an infrequent target stimulus from a sequence 

of more frequently occurring standard stimuli. The third stimulus is the infrequent non-target 
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‘distractor’ that does not require a response but is there to disrupt the attentional system (Katayama 

and Polich, 1996; Comerchero and Polich, 1998; Hagen et al., 2006). This task is more complex than 

the SART, and engages a number of important resources including attention allocation, short term 

memory and response selection (Karakaş et al., 2000). Furthermore, the difficulty level of this 

paradigm can be adjusted by varying the perceptual discrimination difficulty between the target and 

standard stimuli (Comerchero and Polich, 1998; Hagen et al., 2006, Polich, 2007). In this study we 

utilized these three paradigms to create three task conditions, where the cognitive load would be varied 

in a graduated manner (higher loading implies greater task difficulty) from the easy and repetitive 

SART, to the more demanding OB Easy task, and finally to the most demanding OB Hard task. Each 

of the three task conditions were separated by a resting (no load) period. 

 

Consistent with the study objectives, we propose the following data analysis procedure comprising:  

(a) Preliminary analysis of the evoked potentials within task blocks. 

ERP component measures (mainly the P300 amplitude and latency) are first used to assess the level of 

cognitive load placed on the brain, as well as to monitor the participants’ performance during task 

execution (Herrmann and Knight, 2001).  Behavioural data, such as reaction times, error rates and 

percentage of false alarms are also used to test this.  

 

(b) Analysis and comparison of the EEG in default mode (i.e. during rest sessions) and during task 

execution.  

Independent component analysis (ICA) is employed to isolate neurophysiologically meaningful 

components from the task and rest recordings separately. ICA (in its basic form) is a blind source 

separation (BSS) technique that extracts statistically independent and spatially distinct components 

(ICs) from a set of measured (mixed) signals, without using any additional information about the 

underlying (unknown) sources (James and Hesse, 2005; Ziehe and Müller, 1998; Demanuele et al., 

2009). The extracted band-limited rest and task ICs are then filtered in four (slow, delta, theta and 

alpha) frequency bands, and their amplitude and phase features compared by means of a neural 

network methodology. 

 

The new multistage signal processing methodology is made up of the following stages, as described in 

Section 2 and illustrated in Figure 1:  

Stage (I). The application of BSS for denoising the data and extracting estimates of the underlying 

brain sources of interest (termed as independent components) during rest and task conditions. 

Stage (II). Derivation of a set of features which describe the amplitude and phase of the independent 

components in different frequency bands. 

Stage (III). Classification of band-limited features based on a neural network approach for pattern 

recognition, using the neuroscale algorithm and Gaussian mixture models (GMMs).  
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Stage (IV). Further testing and analysis of: (a) classification results (derived from the GMMs’ 

posterior probabilities); (b) test data; (c) correlation with behavioural data for assessing the link 

between rest-task variations of the band-limited brain activity and attention. 

 

This analysis method provides us with a framework to objectively quantify the changes in band-

limited EEG activity under different levels of cognitive load. 

 

2. Materials and Methods 

2.1 Participants 

The study was approved by the ethics committee of the School of Psychology at the University of 

Southampton in compliance with the University’s ethics policy and the ethical standards laid down in 

the 1991 Declaration of Helsinki. Twenty-three healthy adult controls (age: 28.87 ± 4.67; 11 males, 12 

females; post-graduate education level) were recruited and written informed consent was obtained. 

Before the EEG recording took place, the Barkley Adult ADHD rating scales and demographics data 

(re: epileptic seizures incidents, head injuries, vision or hearing problems, and the participants’ use of 

medication or psychoactive substances) were collected for every participant.  The former is an ADHD 

self-reporting scale which contains 18 questions derived from the 18 ADHD symptom criteria for both 

inattention and hyperactivity/impulsivity factors reported in the DSM-IV. All participants scored in 

the normal range on this questionnaire. Moreover, none of the participants were taking any 

medication, none suffered from any head injuries or pathologies, and all had normal or corrected-to-

normal vision.  

 

2.2 EEG Recordings 

The scalp direct current (DC) EEG was recorded from DC to 70 Hz using a Neuroscan SynAmps2 70-

channel EEG system, sampling at 250 Hz. Participants were fitted with an electrode cap (Easycap; 

Hersching, Germany) and EEG was recorded from 66 equidistant Ag/AgCl electrodes, with a nose 

reference.  The electrooculograph was recorded using electrodes above and below the left and right 

eye. Impedance for all electrodes was kept below 5 kΩ. A high chloride, abrasive electrolyte gel was 

used to achieve a DC-stable skin-gel contact in order to ensure stable operation of the Ag/AgCl 

electrodes (Vanhatalo et al., 2005). 

 

2.3 Experimental Paradigms 

The Go No-go Task 

The Go No-go task consisted of two 10-minute task blocks separated by a 6-minute rest block. During 

this task single, randomised digits from 1 to 9 were presented on the computer screen at a regular, 

invariant rate. Participants were asked to use the index finger of their preferred hand to press a single 

button for each digit as it appears with the exception of the digit 3, as in the work by Datta et al. 
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(2007). Stimuli were presented with a visual angle of 3.05º,  every 1.2 seconds for a 250 ms duration, 

implying a total of 500 stimuli per task block, amongst which 60 (i.e. 12%) were No-go stimuli. 

During the rest block participants were asked to look at the computer screen in a relaxed manner while 

focusing on a fixation cross at the centre of the screen in order to avoid extraneous movement. 

 

The Three-Stimulus Oddball Task 

Participants were asked to complete a 22-minute three-stimulus oddball visual task, consisting of two 

8-minute task blocks separated by a 6-minute rest block. In this task, the target stimulus (probability of 

occurrence of 0.12) was a blue circle 4 cm in diameter (visual angle of 3.81º), and the distractor 

stimulus (probability of occurrence of 0.12) was a 16 cm2 square with a black and white checkerboard 

pattern (1 cm checks, visual angle of 3.81º). As for the target, the standard stimulus was a blue circle 

(probability of occurrence of 0.76), the diameter of which was systematically altered from 2.8 cm 

(visual angle of 2.67º) for the Easy to 3.6 cm (visual angle of 3.44º) for the Hard task conditions. This 

was done in order to grade the perceptual discrimination difficulty, and increase error rates and 

response time across task conditions, as in the work by Comerchero and Polich (1999). The stimuli 

were presented once every 1.2 seconds for a 250 ms duration, (i.e. 400 stimuli per task block).  Stimuli 

presentations were randomised and condition order counterbalanced across participants. Participants 

were given a practice block consisting of 15 stimuli before each condition. As for the Go No-go task, 

during the rest block participants were asked to focus at the fixation cross at the centre of the screen. 

 

The order of the two tasks was counterbalanced across participants. Throughout the recordings 

participants were seated on a comfortable chair in a quiet room free from distractions and with the 

LCD screen standing 60 cm away. They were asked to avoid unnecessary head movements and to 

respond to the task at hand ‘as quickly and as accurately as possible’. After the first task participants 

were allowed to take a break until they felt ready to continue with the experiment. The length of the 

experiment recordings was specifically chosen to accommodate the long-period slow waves. 

 

2.4 Preliminary data analysis 

EEG data recorded at 250 Hz was low pass filtered offline at 16 Hz, downsampled offline to a 

sampling frequency of 100 Hz, and detrended to remove VLF DC shifts. Gross artifact laden channels, 

arising mainly from faulty electrodes in the electrode-cap, were replaced by the average of their 

neighbouring channels and the overall dataset was re-referenced to the average of all the channels. 

Twenty-five out of the 66 channels were then selected for the subsequent analysis, their position 

corresponding to the electrode locations of the International 10-20 System. 

 

Every recording (i.e. one participant, one task block), was first decomposed by the temporal 

decorrelation source separation (TDSEP) ICA algorithm (Ziehe and Müller, 1998), artifactual 
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components (such as ocular and muscle artifacts) were removed, and the resultant ICs were projected 

back onto the measurement space in order to investigate the coherent average of the P300 responses 

for various stimuli and task conditions. Analysis of performance measures, namely reaction times 

(RT), error rates and false alarms, was also carried out for both tasks. Reaction times were obtained 

from the logged button-press box responses.  This was done in order to assess whether the required 

task environments (with variable difficulty levels) were successfully created by the task protocols, and 

to determine how well participants carried out each experiment. 

 

2.5 Comparison of brain activity during Rest and Task: A Multistage System 

The experimental procedure led to three task-environments: (a) Go No-go and Rest (simplest); (b) OB 

Easy and Rest; (c) OB Hard and Rest (hardest), as previously explained. Here we describe in detail the 

multistage signal processing methodology shown in Figure 1. For illustration purposes, we first 

demonstrate each stage on a subset of EEG recordings of ten participants during the OB Hard task 

environment (i.e. OB Hard – Rest).   

 

Stage (I). The application of BSS for denoising the data and extracting estimates of the underlying 

brain sources of interest (termed as independent components) during rest and task conditions.  

(a) ICA procedure 

The 8-minute OB Hard recordings were divided into 4-minute segments (1st 4 minutes: 0-4 minutes, 

2
nd

 4 minutes: 4-8 minutes, and an overlapping segment: 2-6 minutes). For the Rest period, a 4-minute 

segment (1-5 minutes into the 6-minute rest block) was considered. This length was chosen to 

accommodate an adequate number of low frequency cycles, including infraslow (<0.1 Hz) oscillations. 

TDSEP algorithm – a specific ICA algorithm that achieves source separation by minimising temporal 

cross-correlations between the output signals – was employed on each segment (Ziehe and Müller, 

1998). TDSEP was chosen since, unlike higher order statistics based methods such as FastICA 

(Hyvärinen, 1999), it exploits the strong temporal structure inherent in ERP signals.  Figure 2 (a),(i) 

shows 5 of the 25 Task ICs of one participant during task execution; note the clear eye blink 

component (IC9), a low frequency component (IC11) and the strongest event related (ER) ICs (IC 2, 

23 and 24) with central and parietal spatial distributions typical of the P300 complex. Meanwhile, the 

Rest ICs in Figure 2 (a),(ii) show most power in the frontal regions and in occipital regions (visual 

processing of fixation point, and alpha power associated with relaxation and absence of task-

engagement).  

 

(b) Separation of the task ICs into ER-ICs (related to task processing) and Background-ICs (reflecting 

ongoing brain activity)  

Implementation of ICA on data recorded during task sessions renders three types of ICs: ER (task-

related) ICs such as those associated with the P300-response, ICs constituting the background brain 

activity (Task-background ICs) and artifacts. This grouping is commonly done by visual inspection of 
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the topographies and time series of the components. Here we apply the method proposed in 

Demanuele et al., (2009) where task ICs are hierarchically clustered based on their coherent average, 

as illustrated in Figure 2 (b). This procedure allows us to group together ICs with similar morphology 

in a more objective manner.  

 

Meanwhile, the Rest ICs do not exhibit a specific response and should represent the activity of the 

brain in default mode, i.e. in the absence of stimulation. However, visual inspection of the Rest ICs 

after the removal of obvious artifactual components showed that three types of components were 

manifested in each recording, mainly: ICs with a slow and low-delta time-signature, those with an 

intermediate (high-delta and theta) frequency content, and those with a dominant alpha frequency 

content. Therefore, for better understanding of brain activity during the resting state, the Rest ICs were 

ordered based on their frequency content. For each IC, the ratio of power in the slow and low-delta 

frequency band (0<f<1 Hz) to the total power in (0<f<fs/2 Hz) was found and the ICs were grouped 

accordingly, as shown in Supplementary Figure S1. Note that this grouping procedure is suboptimal 

and is only done to aid in the interpretation of results in later stages.  

 

Stage (I) was repeated for each participant in order to form a databank of Task-ER, Task-Background 

(Bgd) and Rest ICs, (this essentially forms a training databank with 3 classes). Across the ten 

participants, TDSEP and hierarchical clustering procedures rendered a databank of 371 Task-ER and 

316 Task-Background ICs after hierarchical clustering. A total of 230 ICs were extracted from the 

Rest period. Note that artifactual ICs, such as eye-blinks and eye movements, were immediately 

eliminated based on their morphology and topography.  

 

Next, we needed to assess the differences between the three classes (Task-ER, Task-Background and 

Rest) as a function of frequency to gain insight into how the presence or absence of stimulation (i.e. 

external loading) was affecting the brain’s oscillators.  

 

Stage (II). Derivation of a set of features which describe the amplitude and phase of the ICs in 

different frequency bands. 

(a) The databank ICs  filtered in the frequency bands of interest 

The ICs were filtered in four frequency bands: slow (0<f≤0.5 Hz), delta (0.5<f≤4 Hz), theta 

(4<f≤8 Hz) and alpha (8<f≤12 Hz) band, and for each band-limited IC the instantaneous amplitude and 

phase were obtained using the Hilbert transform (Le Van Quyen et al., 2001; Demanuele et al., 2009).  

(b) A set of features extracted for each filtered IC  

In order to characterise the changes in the instantaneous amplitude or phase of the ICs at one particular 

frequency band, these time series were individually parameterised with p=12
th
 order auto-regressive 

(AR) models (Hayes, 1996).  
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Stage (III). Classification of band-limited features based on a neural network approach for pattern 

recognition  

(a) A distance measure between the AR model parameters 

The AR models capture the structure of the amplitude and phase time series for each IC across the 4-

minute segment considered. The distance between ICs (i.e. the degree of similarity between the ICs 

belonging to one class and dissimilarity between ICs of different classes) was estimated by evaluating 

the Itakura-Saito Distance (ID) (Itakura, 1975) between two given sets of AR parameters for each pair 

of ICs amplitude or phase time series (Kong et al., 1995; Estrada et al., 2005). 

An example of the symmetric ID matrix between the parameters of the AR models for the 

instantaneous amplitude of the ICs in the slow wave band during the Oddball Hard task environment is 

illustrated Figure 2 (c). The ID between the ICs features pertaining to the same class should be close to 

zero (blue); whilst that between different classes should be higher (tending towards red). Here, note 

the difference in the ID of the three classes, where ER class contains parameters corresponding to ICs 

1:371, the Background (Bgd) contains parameters of ICs 372:687 whereas the parameters of ICs 

688:917 form the Rest Class. It is already evident that there is overlap between the Rest class with 

both the Background and ER classes: the features of the Rest ICs with a slow morphology overlap 

with the Background class (hence the continuation from the Background into the Rest for 687:805), 

whilst the features of the Rest ICs with a higher frequency morphology (806:971) overlap with the ER 

class. 

 

(b) A nonlinear transformation of this P-dimensional space (p+1=P) onto a 2-D feature space 

At this stage there is a P-dimensional space representing the ICs in the three classes; P =13 (set of 

features based on 12th order AR models and ID method). The next step was to perform a nonlinear 

transformation of this P-dimensional space into a 2-D space for better visualisation of the natural 

divisions already apparent in the data. This was implemented through a neural network approach 

known as the supervised Neuroscale algorithm. Neuroscale is a clustering process which performs a 

dimension-reducing, nonlinear transformation of the original input data (Lowe, 1993; Lowe and 

Tipping, 1996; Nabney, 2004). The supervised version of this algorithm (Low and Tipping, 

1996:1997) allows for the inclusion of subjective knowledge, regarding the expected relative 

differences between the classes, to be included in the training process. This is done by means of a 

distance matrix s shown in Figure 2 (d), and a parameter α which varies from 0 (unsupervised) to 1 

(completely supervised); see Appendix for more information. 

 

Figure 2 (e) shows an example of the supervised neuroscale algorithm 2-D output (trained using the 

number of basis functions centres k = 80 (chosen by trial and error) and α = 0.5), and based on the ID 

matrix of Figure 2 (c) and the s matrix in Figure 2 (d). This result shows the ICs slow wave amplitude 
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features occupy specific locations in the 2-D space, with the ER and Background classes being very 

well separated, whilst the Rest class overlaps with both task classes. This demonstrates that although 

the neuroscale clustering process can separate the three classes, both the features and the classifier 

itself are not perfect, which leads to misclassification of a number of input data points. Moreover, the 

classes themselves naturally possess overlapping traits. For this reason, the PDF space formed by the 

three classes must be characterised in order to be able track the probability of classification per class, 

i.e. the probability of each data point (in this 2-D space) belonging to each of the three classes. This 

was done via Gaussian mixture models (GMMs) (Bishop, 1995; Nabney, 2004). 

 

(c) GMMs derived to track the probability of classification of the ICs in each of the three classes 

based on one particular set of features.  

In this step, a set of GMMs were obtained in order to define the distributions of the neuroscale output 

(see Appendix for more information). Figure 2 (f) shows the contour plots for these GMMs. The 

posterior probabilities obtained by each GMM, namely PA, PB and Pmix, were normalised such that 

together they added up to one, as illustrated in Figure 3. 

 

Stage (IV). Further testing and analysis 

Given the GMM posterior probabilities (Figure 3), the statistical error for the classification based on a 

particular set of features could then be derived by considering the maximum class posterior probability 

for each data point representing one IC. For example, for the first data point (representing IC1) PA was 

0.82, PB was 0.08 and Pmix was 0.1, thus it was classified as belonging to process A, i.e. it was an ER 

task IC.  The interpretation (for class A only) is given in Table 1 (Linn, 2004).  

 

The sensitivity of classification for class A was then defined as 

 
A ASensitivity = 1- FNR ,class class 

 (1) 

where FNRclass A is the false negative rate for class A given by 

           
 A

number of ICs that belong to class A misclassified as class B or C
FNR  = 

total number of ICs that belong to class A
class

. (2) 

 

These indices for each class were portrayed in a confusion map. In the normalised map of Figure 4 the 

diagonals show the sensitivity of classification for each class. The off-diagonal terms of the first 

column represent the number of ICs that belonged to A but were classified as either B (1
st
 off-diagonal 

term) or C (2nd off-diagonal term), each divided by the total number of ICs that belonged to A. Hence, 

the colour bar in this figure portrays the fraction of correctly (diagonal) or incorrectly (off-diagonal) 

classified ICs from the total number of ICs in one class (read column-wise). This decision was based 

on the maximum posterior probabilities across the three classes (from Figure 3). Therefore, a 

confusion map summarises the variations that the independent components’ amplitude or phase 
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undergo in one frequency band of interest during the three states (Task-ER, Task-Background and 

Rest). 

 

Since Neuroscale and GMMs provide a generative model of the training data points onto a 2-D feature 

space (rather than a simple mapping), a new batch of recordings can be treated as a test dataset (Low 

and Tipping, 1996; Nabney, 2004); their features (obtained by following Stages (I) and (II)) can be 

projected onto the output of the training system (from Stage (III)) and the classification probabilities 

derived accordingly (Stage (IV)).  

 

2.6 Datasets for the Overall Results 

This multistage methodology was employed on the data of 20 out of the 23 participants in this study. 

The data from two participants were unusable due to poor quality EEG recordings (these datasets 

contained gross artifact laden channels, the poor quality of which persisted even after ICA artifact 

removal, hence the data was deemed unreliable), whilst one participant was unable to perform the 

tasks correctly (obtaining a 78.5% and 88% error rate during Go No-go and the OB Hard task 

respectively, and reported impatience and anxiety during the rest periods). Such performance would 

create outliers in the otherwise normal population and could potentially skew the final results; thus this 

participant’s data was excluded from the analysis. For each of the three task environments, the 

remaining 20 participants were split into a training dataset (14 participants) and a test dataset (6 

participants). The participants were divided in this way to ensure that the training set was 

comparatively larger that the test set, an approach suggested to both ensure model robustness and give 

good generalizability to new data (Hastie et al., 2009). For more information regarding this dataset 

refer to Appendix. 

 

3. Results 

3.1 Performance Measures 

For the SART, the error rates were derived from the number of false alarms, i.e. button presses to No-

go responses; the number of misses to Go’s was negligible.  Across task blocks and participants the 

overall average RT and error rates were (441±58) ms and (mean: 25.4 %, range: [4.6 48.2]) % 

respectively.  

For the OB Task, the mean RT, percentage error rate: misses to targets, and percentage of false alarms: 

hits to standard stimuli (since none of the participants responded to distractors) were computed for the 

Easy and Hard task blocks consecutively. Since the data were not normally distributed a Wilcoxon 

signed-rank test was used for comparison between the Easy and Hard task conditions. Results show 

that for the Easy task condition RTs were significantly shorter, and error rates and percentage of false 

alarms significantly smaller in comparison to the Hard task condition (Supplementary Table 1). 
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3.2 P300 Responses 

Preliminary analysis investigated the P300 responses during the three task environments for the 20 

participants. TDSEP ICA successfully extracted components associated with the three types of P300 

responses – these were ICs whose coherent average showed a clear peak around 300ms after stimulus 

onset, and whose topography was associated with that expected for P300 responses elicited by the task 

at hand, as shown in Figure 5(a). A robust P300 with a central distribution was elicited during the 

SART, as shown in (i); during the OB task, P300s with a frontal topography were elicited in response 

to distractor stimuli, as shown in (ii); target stimuli generated P300s with a parietal focus, as shown 

in (iii).   

 

For the SART, the No-go responses exhibited significantly higher amplitudes (measured by 

considering the largest positive-going peak relative to the pre-stimulus baseline within a latency 

window of 300 to 600 ms), and longer peak latencies (measured from the time of stimulus onset) on 

centro-parietal channels than the go responses, (e.g. Pz amplitude: 7.68±2.95 vs 4.01±1.57 µV, 

t(1,19)=4.54,  p-value=0.0014; latency: 450±43 vs 361±11 ms,  t(1,19)=6.18, p-value <0.001). The 

grand coherent average responses across the 20 participants, and across both task blocks for channels 

Fz, Cz and Pz, are illustrated in Figure 5 (b).  

 

For the OB Task, the group P300 responses elicited by the target, distractor and standard stimuli 

during the Easy and Hard task conditions for channels Pz and Fz are illustrated in Figure 5 (c). During 

the Easy task, the P300 elicited by the target, had a significantly higher amplitude in centro-parietal 

areas (Pz: 8.85±3.67 vs 5.95±3.24 µV, t(1,19)=5.31, p-value<0.001) and significantly shorter latency 

(Pz: 481±49.78 vs 517±57.55 ms, t(1,19)=-2.61, p-value=0.0287) in comparison to the Hard task 

condition. Meanwhile, the more frontal P300 component elicited by the distractor stimuli, showed 

significantly higher amplitude during the Hard task (Fz: 5.10±2.40 vs 2.79±1.79, t(1,19)=5.49, p-

value<0.001), whereas its latency varied very little across the two conditions (p-value>0.1). No 

significant difference was found for P300 amplitude or latency elicited by the frequently occurring 

standard stimuli in both task conditions.  

 

3.3 Multistage System Analysis Results: Training Data  

Figure 6 (a) shows an example of the classification results based on the ICs amplitude features when 

filtered in the slow wave band during the OB Hard task environment for the training databank. Note 

the clear distinction between the ER and Background ICs features and the overlap between Rest and 

Task classes. Figure 6 (b)-(d) then shows training data classification results based on delta, theta and 

alpha features respectively for selected task environments (similar patterns were obtained for all three 

task environments; for more results see Supplementary Figure S2).  
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The sensitivity of classification for the training databank for the three task environments when using 

the characteristics of the amplitude or phase of the ICs in the four frequency bands is illustrated in 

Figure 7(a) and (b), first column. The slow waves experience the highest level of overlap (lowest 

sensitivity) between the rest and task classes, whilst achieving the highest separation for the Task-ER 

and Task-Background classes in comparison to the other oscillators.  Moreover, for the slow wave 

band the sensitivity of classification for the Rest improves as the task difficulty increases from SART 

to OB Hard, (Slow wave amplitude features: SART – 31.1%, OB Easy – 38.3%, OB Hard – 43.6%; 

Slow wave phase features: SART – 32.4%, OB Easy – 42.1%, OB Hard – 46.1%).  

 

Finally, in order to get an overall picture of how the four oscillators were changing together during rest 

and task, the AR models of the amplitude of the four f-bands were concatenated and used in the 

classification method. The results shown in Supplementary Figure S3 demonstrate a high sensitivity of 

classification for the three classes even for the easiest of the three task environments (SART).  

 

3.4 Multistage System Analysis Results: Test Data  

As previously explained, the test databank containing the ICs features of the remaining 6 participants 

was then mapped onto the 2-D feature space provided by the neuroscale output for the corresponding 

training databank (i.e. for a particular task environment and frequency band). The PDFs of the 2-D 

output mapping were then characterised by projection onto the three corresponding training GMMs. 

Test data results for the sensitivity of classification are summarised in Figure 7(a) and (b), second 

column.  

3.5 Slow Waves Power 

Classification results demonstrate that by using only the slow wave amplitude or phase features one 

can distinguish between three distinct types of brain activity. Hence, the slow waves experience 

considerable change with a switch from task to rest. To further characterise these changes, the slow 

wave power (the sum of the amplitude squared) was calculated for the Task ICs (ER and Background 

taken together) and the Rest ICs when filtered in the slow wave band, for all 20 participants and 

separately for each task environment. The average slow wave power during task was always lower in 

comparison to that during rest: 58.6% reduction (p-value<0.0001, z=4.46) exhibited during the SART, 

46.2% reduction for OB Easy (p-value<0.0001, z=6.35) and 35.9% reduction for the OB Hard task 

environment (p-value<0.0001, z=5.92). An unbalanced two-way ANOVA with paradigm (SART, OB 

Easy, OB Hard) as one factor and condition (Rest, Task) as another factor showed significant main 

effect of factors (p-values<0.0001), as well as significant interaction between the two (p-

value=0.0389). Post-hoc (Bonferroni correction) comparison analysis revealed that the attenuation 



C. Demanuele et al., 2012 

 

 

15 

 

effect was higher for the SART in comparison with the OB Easy and OB Hard tasks, whilst the 

difference between OB Easy and OB Hard power did not reach statistical significance.  

3.6 Investigating the Relationship between Classification Results and Behavioural Data 

The sensitivity values of the classification results obtained from the training data, based on band-

limited IC features for different task environments, were correlated with behavioural data, namely 

reaction time and error rates. This was done in order to assess whether the difference between the three 

brain states could be linked with performance throughout the course of the task. Recall that a high 

sensitivity of classification indicates that the relative change in the amplitude or phase features 

between ICs related to task processing (ER), the Background ICs during task and those during Rest, is 

significant enough for them to be classified separately. Significant correlation results are shown in 

Figure 8. Note that the training dataset has been used for this purpose, since its classification results 

were more robust, and more data points were available for computing the correlation coefficients and 

p-values.  

4. Discussion  

In this work we present a new experimental framework and a multistage signal processing 

methodology for investigating the measurable effects of the intrinsic slow waves (f ≤0.5 Hz) in brain 

activity during periods of quiet wakefulness, and whilst performing goal-directed tasks of various 

difficulty levels. This study explored the functional relationship between slow waves recorded at rest 

and those following the transition to task-specific attention and performance. In these experiments, the 

brain was conceptualised as a system comprising a number of oscillators of varying frequencies 

(Rothenberger, 2009), onto which a graded load was imposed to yield a proportional output response – 

the P300. Here we set out to address the following questions: (i) What are the core differences 

between the slow waves recorded at rest and those undergoing cognitive load during task-specific 

attention? (ii) How are the slow waves affected by different levels of cognitive load and therefore 

requirements on task-related attention? Furthermore, we have also considered higher, more 

conventional frequency bands, namely delta, theta and alpha, for comparison with the slow waves. 

 

ERPs and performance measures 

The experimental protocols adopted by the current study successfully elicited typical P300 responses, 

the amplitude and latency of which were sensitive to manipulations of cognitive load.  The robust Go 

No-go P300’s shown in Figure 5(b) and the performance measures indicate a good level of attention 

throughout the course of this task for most participants. As expected, the No-go stimuli, with 12% 

probability of occurrence, evoked significantly larger P300 amplitudes in central and centro-parietal 

brain regions, a result that is in keeping with the literature (Katayama and Polich, 1996; Polich, 2007). 
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During the oddball task, significantly longer reaction times, and significantly higher error and false 

alarm rates were observed during the Hard task condition (when the target was similar to the standard 

stimulus) in comparison to the Easy condition. This is because small standard-target perceptual 

differences demand more stimulus processing as previously shown in the literature (Comerchero and 

Polich, 1999; Hagen et al. 2006). Moreover, the OB P300 responses of Figure 5 (c) show a clear P300 

subcomponent (termed as the P3b) elicited by the target at the parietal channel Pz, with a significantly 

higher amplitude and shorter latency for the Easy task condition. This supports earlier works which 

show that increased task difficulty recruits more sensory and working memory functions, yields longer 

stimulus evaluation time, and results in amplitude reduction and longer peak latency for the P3b – this 

subcomponent represents the executive control function, focused attention (Bledowski et al., 2004; 

Polich, 2007). Increased task difficulty also appears to engage frontal attentional mechanisms more 

strongly, producing a large frontal/central P300 component (also termed the P3a subcomponent of the 

P300) when a distracting stimulus interrupts attentional control (Comerchero and Polich, 1998; Hagen 

et al., 2006). This is shown in Figure 5 (c), where the frontal P3a component at channel Fz has 

significantly higher amplitude for the Hard task condition. The latter suggests that under higher 

cognitive load (increased task-related attention) the distractor captured attention more readily than in 

the Easy task, where less overall attention was required to differentiate the target from the standard 

stimulus, thus enhancing P3a responses.  These results substantiate the findings by Comerchero and 

Polich (1999), and Hagen et al. (2006), and confirm the successful manipulation of graded task 

difficulty in the experimental protocol, as well as proper task execution throughout. 

 

Classification results 

Classification results from our multistage system showed consistent variations between the 

independent components during ER and Background task activity, and during Rest for all four 

oscillators (Figure 7). Particularly, using only the slow wave amplitude or phase features one can 

distinguish between the three distinct types of brain activity, and the sensitivity of classification is 

enhanced for higher task difficulty (from SART to Oddball Hard). Moreover, both the amplitude and 

phase of the ER and Background task ICs were very different in the slow wave band (Figure 6 (a)) – 

this could be due to the different morphology of these two types of task ICs. Meanwhile, the 

substantial overlap between rest and task classes in the slow wave band, in comparison to that 

observed for higher frequencies such as theta and alpha, is consistent with the VLF theoretical models 

and fMRI BOLD imaging studies on the slow waves (Fox et al. 2006; Fransson, 2006; Fox and 

Raichle, 2007; Sonuga Barke and Castellanos, 2007; Deco, 2011), which suggest that despite 

experiencing changes during different brain states the slow waves persist across these states. The slow 

wave mechanism that is affecting the brain sources and/or that is being affected by the different 

loadings during task does not operate in a binary fashion, i.e. it is not naturally turned “on” and “off” 

following a rest-to-task transition. Rather the ongoing slow wave activity might be causing the resting 
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brain to operate at the edge of bifurcation, awaiting the next cognitive act (Deco, 2011). Furthermore, 

the rest-to-task separation of the slow wave features, although low, might be reflecting the different 

VLFOs’ relationships such as those exhibited by task positive and task negative networks (Fox et al., 

2005).  

 

Although, as expected, the test data sensitivity values were lower than those obtained for the training 

data (Figure 7), the two sets of results are comparable; for example, using the slow wave features, the 

ER and Background classes can be separated with the highest sensitivity in comparison to the other 

oscillators. Moreover, the test data also demonstrates a rise in the slow wave sensitivity (i.e. in the 

percentage of correct classification) for the Rest class as the task difficulty level is increased. This 

implies that the amplitude and phase in the slow wave band are undergoing enhanced changes between 

rest and task with increased cognitive load, which demonstrates their sensitivity to external stimulation 

albeit their persistent activity throughout.  

 

Meanwhile, the distinctive separability between rest and task for the higher, more conventional 

frequency bands (shown in Figure 6(b)-(d) and Figure 7), particularly the alpha f-band, comes as no 

surprise and has been well acknowledged in the literature (Herrmann and Knight, 2001; Ben-Simon et 

al., 2008). The alpha oscillator is believed to act as a “stand-by” state or a “self-resonance” system that 

allows the brain to return more rapidly to goal-oriented cognitive functioning if and when required 

(Herrmann and Knight, 2001). When the primary visual cortex receives no or little input, it oscillates 

predominantly in the alpha range at a relatively high amplitude. In fact, as seen from these 

experiments, the most prominent activity in the EEG at rest is the ongoing alpha oscillatory 

component, which is thought to reflect cortical idling. This activity is desynchronised by the presence 

of stimulation and the total alpha power is decreased (Herrmann and Knight, 2001). Furthermore, 

stimulation resets the randomly distributed phase of the alpha waves, leading to increased phase-

locked alpha activity. This explains the very high sensitivity of classification for the Rest class during 

all task environments, for both amplitude and phase ICs features in the alpha f-band.  

 

Slow wave power and the putative link to attention 

The slow waves in the resting brain exhibit attenuation in their power during task execution as 

predicted by the DMI hypothesis. Consistent with early fMRI evidence, the DMI hypothesis also 

predicts greater rest-task attenuation with increasing task difficulty or cognitive load. For example, 

using a visual detection task, Singh and Fawcett (2008) demonstrated a linear increase in the 

deactivation of DMN regions with increasing task difficulty. McKiernan et al., (2006) also found that 

corresponding increases in task-related deactivation of DMN regions and task difficulty were 

associated with reductions in a measure of mind-wandering.  In the current study, the SART was 

found to elicit greater task-related attenuation of VLFOs when compared with either the Easy or Hard 
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OB task conditions, which were not found to differ significantly in terms of the degree to which VLF 

power was attenuated during the transition to task-related attention. This finding could indicate that 

the SART might have been more taxing for the brain than initially intended (as a simple, repetitive 

task). These two tasks may also recruit different executive functions to different degrees (e.g. attention 

during the oddball task but inhibition during SART), which makes their comparison harder. Moreover, 

a higher task-induced deactivation (demonstrated as a local decrease in blood flow during an active 

task relative to a “resting” baseline) observed with increased task difficulty (McKiernan et al., 2006; 

Singh and Fawcett 2008), might not necessarily implicate a greater reduction in VLF EEG power, 

since BOLD and EEG signals are not one-to-one representations of neural activity. Also, it has 

recently been shown that some types of slow EEG activity correlate positively with increasing task 

load (Michels et al., 2010). Future research should replicate these findings with a greater range of 

attention-demanding tasks and task conditions.    

 

Furthermore, the level of cognitive attention (assessed by means of performance measures, namely 

reaction time and error rates) exhibited significant correlations with the changes that the slow waves 

underwent between rest and task (assessed through the sensitivity of classification based on the slow 

wave features) showing a significant link between these slow electrical oscillators and cognitive 

attention (Figure 8). In the slow wave band, significant correlations were found for the Oddball task 

and not for the SART. This correlation tentatively suggests that the better the participants’ 

performance (i.e. the lower the reaction time and error rates) the greater was the difference in the slow 

wave band between, for instance, the Task-ER and the other (Task-Background and Rest) brain 

activity, hence the higher the sensitivity of classification. We remark that although the Oddball Hard 

task slow waves amplitude features provide good classification performance, the negative-correlation 

with behavioral data did not reach statistical significance, despite showing the same trend (e.g. RT vs 

Correct ER: R =-0.43, p-value=0.09; Error Rate vs Correct ER: R =-0.46, p-value=0.1). It is important 

to note here that the main aim of this study has been to investigate the slow waves, and despite the 

long recordings that have been used to obtain the classification results (which makes them robust), the 

number of participants (and hence the number of available performance data points) is small to 

perform reliable statistics on. Moreover, the work has been performed on a normal, adult population. 

This implies that the interpretation of these correlation results needs to be made with caution, and the 

whole procedure merits further investigation using a case-control design in a population with higher 

levels of behavioral variability such as ADHD. Such data would provide useful information about the 

relationship between brain electrical oscillations and behaviour, a link that has been explored in the 

works by Fox et al. (2007), Monto et al., (2008) and Helps et al. (2008), and is fundamental for 

advances in the assessment of child psychiatric disorders (Rothenberger, 2009).  
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Slow waves origin and function 

In past decades, other studies have looked at DC-EEG activity from the perspective of slow and 

sustained negative DC potential shifts. These slow shifts have been recorded over the scalp during a 

variety of cognitive (Lang et al., 1992) and motor (Lang et al., 1988) tasks. For example, they have 

been shown to contain task specific patterns, their scalp distributions reflect differences in cortical 

areas activated during tasks, and they are sensitive to task characteristics such as stimulus modality 

(e.g. visual/auditory, Lang et al., 1992), and type of movement (e.g. sequential/simultaneous finger 

movements, Lang et al., 1988). In the latter study, the amplitude of the slow Bereitschaftspotential on 

central midline regions preceding the voluntary initiation of a motor task has been shown to increase 

with task difficulty. Thus, these large slow potential shifts (which do not necessarily show regular 

periodicity) may share some characteristics of the VLFOs described in this work (as suggested also in 

the review by Vanhatalo et al., 2005). Whilst it is thought that these scalp-recorded DC potential shifts 

reflect depolarization of layers I and II of atypical dendrites of vertically oriented pyramidal cells 

(Lang et al., 1992), the origin of the VLFOs remain as yet unclear. Some literature proposes that 

VLFOs may arise from periodic increasing and decreasing of the neurons’ firing (say every 10 

seconds) in the midbrain reticular formation (Balduzzi et al., 2008). Another possibility is that neurons 

slowly modulate their level of activity because of intrinsic variations in ionic pumps, neurotransmitter 

transporters and glial cells (Balduzzi et al., 2008; He et al., 2008). Meanwhile, these oscillations may 

be essential for the development and organization of neuronal systems (Fox et al., 2006); alternatively 

they could be emerging from the network(s) itself rather than from the individual neurons (He et al., 

2008). Furthermore, VLFOs may represent dynamic modulations in the internal brain representation, 

providing a basis onto which perception and behaviour occur, and hence determining our response to 

the outside world. Since this intrinsic brain activity is observed in both goal-oriented tasks and rest, it 

may represent continuous processes which are vital for maintaining a coherent neuronal representation 

of the ‘self’ (Fransson, 2006).  Our work, in keeping with the evidence in the literature (Laufs et al., 

2003; Leistner et al. 2007; Monto et al., 2008) promotes the view that the slow waves, spontaneous or 

evoked, are real neuronal responses.  

 

The multistage system 

Lastly, although most of the stages in our multistage system are based on standard signal processing 

methods which have been around for years, at first glance the whole procedure may seem overly 

laborious and complicated. Hence, it is important to outline the main reasons why we opted for this 

particular experimental set-up and data analysis methods, and the potential benefits of such an 

approach. First, VLF brain activity is notoriously difficult to study; one must ensure that the 

observations made arise from neuronal activity and are not due to other physiological (respiratory, 

cardiac and vasomotion) processes (Vanhatalo et al., 2003; Voipio et al., 2003, Auer, 2008), and/or 

arise from inherent properties in the data (such as the 1/f spectral trend of the EEG; Demanuele et al., 
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2007), or from the data analysis procedure itself. Hence both the analysis and interpretation of slow 

signals related to cognitive tasks needs to be done with caution. One way to ensure this is to adopt an 

experimental set-up that enables us to compare the VLF EEG under different levels of stimulation, 

whilst keeping everything else constant (same participants and same analysis methods). Other 

paradigms such as working memory tasks which manipulate memory load (Pyka et al., 2009), and 

simple choice reaction time attention tasks (Helps et al., 2009:2010) could also be implemented and 

the oscillations contrasted with the same methodology. It would be interesting to include experimental 

tasks with more frequent sampling (i.e. short inter-stimulus intervals) to facilitate a near continuous 

performance measure of attention which might be examined concurrently with EEG recordings. 

Further, the two experimental paradigms employed in the current study, the SART and OB task, 

allowed participants to make errors of omission and commission, and included multiple stimulus types 

with differing performance requirements. To examine the association between these VLF brain 

oscillations and performance measures of attention (such as RT variability) more precisely, future 

research should also include tasks which do not involve multiple stimuli and do not allow participants 

to omit or make incorrect responses.  

 

Second, a straightforward approach for investigating this VLF activity is to specifically analyse the 

raw data in the frequency range below 0.5 Hz by standard Fourier-domain based methods (Bruns, 

2004). However, this approach proves to be very long and cumbersome to apply on multi-dimensional 

systems because the dense (high number of electrodes) and noisy nature of the recordings makes the 

interpretation of the results highly subjective. Denoising and demixing by proper filtering methods 

and/or by BSS techniques is definitely helpful. Moreover, BSS yields independent components which 

represent estimates of the underlying sources, hence enabling us to work on a sphere of influence 

between the scalp recordings and the true signal generators. The extracted components must then be 

subjectively identified as being artifactual, linked to the task at hand, or as mainly contributing to the 

background neuronal activity – hierarchical clustering based on their coherent average is one way to 

objectively achieve this grouping. 

 

Third, the classification stages in our method, based on amplitude and phase features that describe the 

ICs, provide an objective method to deal with the comparative nature of the experimental set-up. The 

resulting confusion maps directly quantify the changes in one frequency band between two (or more) 

task conditions (e.g. ER, background and rest), hence enabling direct comparisons across paradigms 

and across frequency bands. In the case of the slow waves, this helps to put the results in perspective 

of the more common higher-frequency findings in the EEG literature, hence aiding their interpretation. 

It is worth noting here that direct comparison of the slow waves with higher frequency bands is not 

very straightforward; for example, the 1/f intrinsic nature of the EEG power spectrum implies that the 

slow wave band will always contain higher power in comparison to other frequency bands (see 
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Demanuele et al. 2007 for a method that tackles this). Furthermore, since evidence in the literature 

suggests that this spontaneous VLF activity might act as a ‘baseline’ that underlies brain activity 

elicited by the task (Fox and Raichle, 2007; Balduzzi et al., 2008; Monto et al., 2008; Demanuele et 

al., 2010), it may not be revealed as ‘oscillations’ in the classical sense of having peaks in the power 

spectra of the EEG channels per se, or as separate independent components following the demixing 

procedure. Using more sophisticated methods, such as the one presented here, could help unravel what 

might otherwise be obscured in the data, and could potentially lead to more insightful findings. 

Finally, the classification performance in different frequency bands could be used to compare band-

limited brain activity to performance measures (as attempted here), and/or to more subjective 

measures such as participants’ reports on their level of attention or mood. This could be of 

considerable interest in studies involving clinical and control groups. 

 

Conclusion 

The current set of results and related methodology represent a novel approach to the analysis of 

VLFOs and provide new and important insight into the association between slow wave brain activity 

and conventional EEG frequency bands, demonstrating very clearly that VLF EEG oscillations are not 

physiological noise or a passive electrical phenomenon but real responses in the functioning brain. In 

keeping with recent models of VLF resting state brain activity, we show that VLFOs are attenuated 

but not extinguished following a transition from rest to task, and that they are modulated by variations 

in cognitive load (Sonuga-Barke & Castellanos, 2007). Future work should attempt to clarify where in 

the brain these changes in VLF EEG are most prominent (e.g. Broyd et al., 2011). Furthermore, this 

novel experimental framework and signal processing methodology should also be explored with 

respect to altered functioning of brain oscillators in psychiatric and neurobehavioural disorders such as 

schizophrenia and ADHD (Broyd et al., 2009).  

 

Supplementary Material 

Supplementary material related to this article can be found online at: specify link. 
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Legends  

 

 

 
Fig. 1 – The multistage signal processing methodology developed for assessing variations in band-

limited oscillators in the EEG at varying levels of cognitive load, as well as their behavioural 

implications. 
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Fig. 2 – Analysis stages. (a) TDSEP-ICA decomposition (results of 1 participant shown as an 

example): Five of the 25 ICs and their spatial distribution extracted by TDSEP-ICA during (i) task and 

(ii) rest. (b) Hierarchical Clustering: dendrogram built on the coherent averages of the task ICs 

(selected traces shown): blue cluster corresponds to the background ICs, the red and green clusters and 

the individual branches correspond to the large ER-ICs, with the exception of IC9 (eye blinks), 

(Demanuele et al., 2009). (c) Scaled image of the ID between the AR models of the ICs slow wave 
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instantaneous amplitude for the Oddball Hard task environment. Note that points 1:371 represent the 

ER class, 372:687 the Background class and 688:917 the Rest class. (d) Scaled image of the distance 

matrix s (i.e. the distance metric defined for each pair of points in the whole dataset) used in 

supervised neuroscale as a means of introducing subjective information in the training process. (e) The 

2-D output from supervised neuroscale (α = 0.5, number of basis functions centres = 80) based on the 

ID matrix (c) and s-matrix (d). Blue represents ER ICs features, red the Background features and black 

the Rest features; the axes scales are arbitrary. (f) The three GMMs derived for the 2-D neuroscale 

output. Note the distinct ER (modelling the blue points in (e)) and Background (modelling the red 

points) GMMs; the Rest GMM (modelling the black points) overlaps with both, but still occupies a 

partially-distinct space. 

 

 

 
Fig. 3 – Normalised posterior probabilities for the 3 GMMs such that the probability for each data 

point adds up to one across the 3 classes. 
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Fig. 4 – Confusion map for the classification based on slow wave amplitude ICs features. Diagonal 

values show the sensitivity of classification whereas the off-diagonal terms (column-wise) show the 

fraction of misclassified ICs for each class. 
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Fig. 5 – Event related potentials. (a) Three types of P300 responses (normalised amplitudes) extracted 

by TDSEP-ICA during the two tasks: (i) P300 with a central topography elicited during SART; (ii) 

P300 response with a frontal focus elicited by distractor stimuli; (iii) and P300 for target stimuli with a 

parietal focus, for the Oddball task. (b) Grand coherent average across the 20 participants and across 

the two task blocks, showing robust P300 responses during SART. (c) P300 responses during Oddball 

Easy and Hard task conditions for one parietal (strong target P300 response) and one frontal (strong 

distractor P300 response) channel. Standard stimuli P300s are shown in blue, distractors in cyan, 

targets in red; the solid and dotted curves correspond to the OB easy and hard tasks respectively. 
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Fig. 6 – Training data classification results based on (a) Slow Wave Amplitude features and (b) Delta f-

Band Amplitude features of the ICs for the Oddball Hard task environment; (c) Theta f-Band Phase 
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features and (d) Alpha f-Band Amplitude features of the ICs for the Oddball Easy task environment. 1
st
 

column: GMM contour plots for the Neuroscale output. 2nd column: Confusion map showing 

sensitivity of classification on the diagonal (derived from the GMMs posterior probabilities for the 

three classes as explained in text).  

 

 

 

 

 

 
Fig. 7 – Sensitivity of classification for the training and test datasets, for the three task conditions 

based on: (a) the amplitude and (b) the phase features of the band-limited ICs. 
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Fig. 8 – Sensitivity of classification based on (a) the slow wave amplitude or phase features, and (b) 

delta, theta and alpha bands amplitude or phase features, is negatively correlated with behavioural data 

(p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C. Demanuele et al., 2012 

 

 

34 

 

Appendix 

 

The Itakura-Saito Distance 

For classification purposes, the distance between ICs (i.e. the degree of similarity between the ICs 

belonging to one class and dissimilarity between ICs of different classes) needed to be estimated. Note 

that the Euclidean distance between the auto regressive (AR) models is not an appropriate measure 

because the AR parameters of two separate time series may be heavily correlated and this could 

potentially lead to artificial similarity. A measure that quantifies the similarity between the signals 

being modelled, rather than the similarities between the pairs of model parameters alone, is required; 

for this reason the Itakura-Saito Distance was employed in this work (Itakura, 1975; Estrada et al., 

2005). 

 

Neuroscale algorithm 

We made use of the supervised version of neuroscale algorithm developed by Low and Tipping 

(1996:1997), since this allows for the inclusion of subjective knowledge in the training process, which 

could, at varying degrees, affect the objective topology generated by the spatial input data. Here the 

distance being used for training δij is defined as  

 ( )1 *

ij ij ijd s= − +δ α α , (1) 

*

ijd is the Itakura-Saito distance matrix and sij is another distance metric, where the distance between 

points in the same class is set to zero, while that between points in different classes is non-zero 

(Nabney, 2004). Our study entails three main classes. Based on prior knowledge regarding the ICs 

morphology and type of brain activity in the three conditions, the distance between ER and 

Background was assigned to one (since these two classes, though different, both represent task 

activity), distance between Background and Rest was 2 whereas that between ER and Rest was set to 3 

(since brain activity during rest was expected to differ more from event-related than from background 

activity during task), as shown in Figure 2 (d). Note that these numbers for matrix s have been chosen 

to indicate expected relative differences between the three classes. The parameter α varies from 0 – 

the original, objective, unsupervised method based solely on the distribution of the original data, to 1 – 

the completely supervised method that is no longer explicitly dependent on the data distribution. A 

value of α = 0.5 was chosen since it struck a balance between objective and subjective approaches, 

hence maintaining the spatial topology of the original data whilst improving the visualisation of the 

feature (Lowe and Tipping, 1996). 

 

Gaussian Mixture Models 

A set of GMMs (Nabney, 2004) were obtained in order to define the distributions of the 2-D 

neuroscale output, which indicated that the task ER and Background classes were separable whereas 

the Rest had some overlap with both. Therefore, the assumption used here was that the task ER and 

Background data could be confidently labelled as process A and B respectively, whereas from the Rest 

data there could be unlabelled points that belonged to either labelled sets. Therefore, the structure was 

first set up and the two GMMs of the labelled data were trained. Then these GMMs, derived from the 

two definite (strong) processes, were used to train a new GMM for the unlabelled data.  

 

Datasets for the Overall Results 

For the Go No-go task, 5 minute data segments were considered, namely the first 5 minutes, the 

second 5 minutes and an overlap (2.5-7.5 minutes) for each task block.  Since the protocol remained 

the same throughout the task, the ICs extracted from the two task blocks were grouped together.  For 
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the rest condition, ICs were extracted from a 5 minute data segment (0.5 – 5.5 minutes into the rest 

block). This was carried out for every participant.  

For the oddball task, TDSEP and hierarchical clustering were applied to three 4-minute segments (1st 4 

minutes, 2
nd 

4 minutes and an overlap - i.e. 2 to 6 minutes) consecutively, for the Easy and the Hard 

task blocks separately, and for every participant. The Rest ICs were extracted from a 4-minute 

segment (1-5 minutes into the rest block). Note that both the Easy and Hard task environments shared 

the same rest period, hence their databanks contained the same Rest ICs.   

For each task, the ICs of 14 participants were grouped together, forming the training databank. The 

ICs of the remaining 6 participants formed the test databank.  
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Supplementary Material 

Supplementary Table 1 – Median and range of RT, % Error Rate and % False Alarms (w.r.t. standard 

stimuli) across participants for the OB Easy and Hard task conditions. Wilcoxon signed-rank test statistics 

show statistically significant behavioural measures for the two conditions. 

 Oddball Easy Oddball Hard Easy vs Hard 

RT(ms) Median 

Range  

581.21 

[480.75   712.87] 

675.27 

[571.69   908.44] 

 p < 0.0001 

z = -3.92 

Error Rate 

(%) 

Median 

Range 

0 

[0  16.67] 

31.25 

[6.25  66.67] 

p < 0.0001 

z = -3.92 

False Alarms 

(%) 

Median 

Range 

0 

[0 1.97] 

1.48 

[0 10.2] 

p < 0.0001 

z = -3.52 
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Supplementary figures 

 

Fig. S1 – Ordering of Rest ICs based on their frequency content: (a) When the ratio of power in the (0<f<1 Hz) band to 

the power from 0-fs/2 was greater than 0.95, the ICs were marked as slow ICs. For power ratios between 0.7 and 0.95 

the ICs had an intermediate frequency content. When the power ratio was less than 0.7 the ICs had a predominantly 

high (alpha) frequency content; (b) An example of each type of IC and their power spectral density.  
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Fig. S2 – Training data classification results based on (a) Slow Wave Phase features of the ICs for the Oddball Easy 

task environment; (b) Delta f-Band Amplitude features of the ICs for the Oddball Easy task environment; (c) Theta f-

Band Phase features of the ICs for the Oddball Hard task environment; (d) Alpha f-Band Phase features of the ICs for 

the Oddball Easy task environment.1
st
 column: GMM contour plots for the Neuroscale output. 2

nd
 column: Confusion 

map showing sensitivity of classification on the diagonal (derived from the GMMs posterior probabilities for the three 

classes as explained in the main text).  
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Fig. S3 – Training data classification results based on All f-Bands Amplitude features of the ICs for the SART task 

environment: (a) GMM contour plots for the Neuroscale output, (b) Posterior probabilities from the GMMs of the three 

classes, (c) Confusion map showing sensitivity of classification on the diagonal. 


