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Abstract
In order to obtain a framework in which both non-holonomic mechanical
systems and non-holonomic mechanical systems with symmetry can be
described, we introduce in this paper the notion of a Lagrangian system on
a subbundle of a Lie algebroid.
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1. Introduction

It is well known that the geometric description of the Euler–Lagrange equations of a mechanical
system, derived from Hamilton’s principle, heavily relies on the intrinsic geometry of the
tangent bundle TQ of the configuration space Q. In the case that the Lagrangian L is invariant
under the action of a Lie group G, Hamilton’s principle can be reformulated into a reduced
variational principle that takes into account the symmetry properties of the system. The
advantage is that the reduced variational principle leads to equations defined on a reduced
space, i.e. equations depending on ‘fewer independent variables’. Thus, instead of considering
the Euler–Lagrange equations on the total space Q, we are interested in the reduced equations,
the so-called Lagrange–Poincaré2 equations, which are formulated on the Atiyah quotient
bundle TQ/G → Q/G (see e.g. [13]). It is clear that the geometry of such quotient bundles
now becomes of interest. Weinstein [24] has pushed ahead our understanding in this matter
by showing that the geometric structure which lies at the heart of the Lagrange–Poincaré
equations is essentially the same as the one of the Euler–Lagrange equations, namely that of a
Lie algebroid. Therefore, the geometry of ‘a Lagrangian system on a Lie algebroid’ unifies the
geometry of both standard Lagrangian systems and those where the symmetry properties are
taking into account. In the case of standard Lagrangian systems, the tangent bundle carries a
canonical Lie algebroid structure which is given by the usual Lie algebra of vector fields on Q.

1 Postdoctoral Fellow of the Fund for Scientific Research—Flanders (Belgium).
2 We use the terminology of [6, 7].
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For systems with symmetry, we make use of the so-called Atiyah algebroid structure on
TQ/G → Q/G to describe the evolution equations (see e.g. [6, 9]).

In this paper, we mainly deal with mechanical systems that are subject to some kinematical
constraints (i.e. depending on the velocity), also called non-holonomic constraints. The
governing equations for these models are the so-called Lagrange–d’Alembert equations. For
systems having additional symmetry properties, the equations of motion can be reduced
to the Lagrange–d’Alembert–Poincaré equations (a fairly complete list of references on non-
holonomic mechanics can be found in [2, 8]). The main purpose of this paper is to show that the
Lie algebroid structure constitutes a unifying geometric structure for describing simultaneously
both types of Lagrangian systems with non-holonomic constraints. Throughout this paper, we
will develop the basic geometric concepts and objects that are involved.

We believe that at this stage it is instructive to provide a local version of what will
follow (we assume that the reader is familiar with the concept of a Lie algebroid). We
recall the equations of motion for a non-holonomic mechanical system and take them as
the starting point for further generalization in the framework of Lie algebroids, eventually
leading to the equations describing a ‘non-holonomic Lagrangian system on a Lie algebroid’.
Let L ∈ C∞(TQ) be the Lagrangian of a non-holonomic system. The constraints are
assumed to define a subbundle of the tangent bundle: ι : D → TQ, i.e. locally we have
that ιkA(x)wA = vk where vk denote the components of i(w) wrt the standard basis {∂/∂xk}
and where wA are the components of w wrt some basis of D. A basis of the annihilator
space D0 is denoted by ωb = ωb

i dxi , i.e. ωb
i ι

i
A = 0,∀b,A. The Lagrange–d’Alembert

principle states that the equations of motion for such a non-holonomic system are determined
by δ

∫ b

a
L(xi(t), ẋi(t)) dt = 0, where the variations δxi should satisfy the constraint, i.e.

δx ∈ Dx(t) for each t ∈ [a, b], and moreover δx(a) = δx(b) = 0. The induced equations are
called the Lagrange–d’Alembert equations:


ωb

i ẋ
i = 0, ∀b

d

dt

(
∂L

∂ẋi

)
= ∂L

∂xi
+ λb(t)ω

b
i (t) ∈ D0

x(t),
(1)

for some functions λb(t). It is not hard to see that this system is equivalent to the system:


ẋi = ιiA(x(t))wA(t),

ιiA
d

dt

(
∂L

∂ẋi

)
= ιiA

∂L

∂xi
, ∀A.

(2)

We now repeat the above construction for systems on a Lie algebroid. Assume that a local
coordinate chart (U, (x, v)) of a Lie algebroid τ : V → M is given. Given a Lagrangian L on
V, the Lagrangian equations on the Lie algebroid are given by


ẋi = ρi

a(x)va,

d

dt

(
∂L

∂va

)
= ρi

a

∂L

∂xi
− Cc

abvb ∂L

∂vc
,

(3)

where ρi
a and Cc

ab are the structure functions of the Lie algebroid. We now assume that W
is a subbundle of V with injection i : W → V. We will use the observation of the previous
paragraph: by contracting the unconstrained Lagrangian equations with the components of the
injection ιaA of the constraint distribution into the tangent bundle, the non-holonomic equations
can be produced. Assuming that Lagrangian systems constrained to the subbundle W of a
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Lie algebroid V have a similar behaviour, we can now postulate that the constrained Lagrangian
equations are 



ẋi (t) = ρi
a(x(t))va(t),

v a(t) = iaA(x(t))wA(t),

iaA

(
d

dt

(
∂L

∂va

))
= iaA

(
ρi

a

∂L

∂xi
− Cc

abv b ∂L

∂vc

)
.

(4)

We can now write the above equations in terms of derivatives of the constrained Lagrangian,
defined by Lc(x

i, wA) = L
(
xi, v a = iaAwA

)
. Then, along the solution v = i ◦ w of (4), a

straightforward calculation leads to:

d

dt

(
∂Lc

∂wA

)
= d

dt

(
iaA

) ∂L

∂va
+ iaA

d

dt

(
∂L

∂va

)

= ∂iaA

∂xi
ẋi ∂L

∂va
+ iaA

(
ρi

a

∂L

∂xi
− Cc

abvb ∂L

∂vc

)
.

If we define λi
A = ρi

ai
a
A then, since ∂Lc/∂xi = ∂L/∂xi + (∂L/∂vc)

(
∂icB

/
∂xi

)
wB , it is clear

that the curve (x(t), w(t)) is a solution to the system:


ẋi = λi
A(x)wA,

d

dt

(
∂Lc

∂wA

)
= λi

A

∂Lc

∂xi
+ wB

(
Cc

bai
b
BiaA − λi

A

∂icB

∂xi
+ λi

B

∂icA

∂xi

)
∂L

∂vc
.

(5)

In the first part of this paper, we develop all geometric structures required to provide an
intrinsic formulation for this system of equations (5). In [14], Martı́nez presented a solid
geometrical framework for Weinstein’s systems on Lie algebroids. His approach is very
similar to the usual formalism for Euler–Lagrange equations. The important difference is,
however, that no longer a vector field is the main geometrical object, but rather a section of
a ‘prolongation bundle’ inducing a unique vector field on the Lie algebroid. In this paper we
extend the framework of Martı́nez to the above constrained systems (5). For that purpose,
we first define in section 2 an exterior derivative on a subbundle of a Lie algebroid. Next, we
develop the concept of prolongation bundles in section 3, eventually leading to all necessary
tools for an intrinsic description of (5) in section 4. In our formalism, the system (5) will be
regarded as a section of an appropriate prolongation bundle. With this section a vector field
is associated, whose integral curves are precisely the solution of (5). The second part of the
paper is devoted to examples from known dynamical systems that allow a formulation in terms
of the above equations (cf section 5). These examples only deal with autonomous systems
with linear constraints. Finally, we will discuss some of the advantages of our approach and
we will indicate some directions for future work.

2. Exterior derivatives

A Lie algebroid is a vector bundle τ : V → M with a real Lie algebra bracket on its set
of sections [·, ·]: Sec(τ ) × Sec(τ ) → Sec(τ ). Moreover there is a linear bundle map, the
so-called anchor map, ρ : V → TM (and its natural extension ρ : Sec(τ ) → X (M)) which is
related to the bracket in such a way that, for all s, r ∈ Sec(τ ), f ∈ C∞(M)

[s, f r] = f [s, r] + ρ(s)(f )r

is satisfied.
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Choose a basis {ea} for Sec(τ ) and denote the corresponding local coordinates on V by
(xi, v a). Then, the structure functions of the Lie algebroid are smooth functions ρi

a and Cc
ab

on M which satisfy ρ(ea) = ρi
a

∂
∂xi and [ea, eb] = Cc

abec. In Lie algebroid theory, the role of
differential forms is played by sections of exterior powers of the dual vector bundle, i.e. skew-
symmetric, C∞(M)-linear maps ω : Sec(τ ) × · · · × Sec(τ ) → C∞(M) (with k arguments)
will be called k-forms on Sec(τ ) and the set of all such forms will be denoted by

∧k
(τ ). The

defining properties of a Lie algebroid structure lead to the definition of an exterior derivative
on

∧
(τ ). Let ω ∈ ∧k

(τ ), then the (k + 1)-form dω is given by

dω(s1, . . . , sk+1) =
k+1∑
i=1

(−1)i−1ρ(si )(ω(s1, . . . , ŝi , . . . , sk+1))

+
∑

1�i<j�k+1

(−1)i+jω([si , sj ], s1, . . . , ŝi , . . . , ŝj , . . . , sk+1). (6)

The operator d has the property d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2, with k1 the degree
of ω1, and moreover d2 = 0. Locally, dxi = ρi

a ea and dec = − 1
2Cc

ab ea ∧ eb, where the set
{ea} stands for the basis of Sec(τ ∗) which is dual to {ea}. More details on the properties of
the exterior derivative can be found in [9, 13, 14].

Suppose now that a vector subbundle µ : W → M of τ is given. It is obvious that each
coordinate system (xi, wA) on W can be extended to a coordinate system (xi, vA = wA, vα) on
V. However, in what follows, it will be more convenient to consider the basis {ea} of Sec(τ )

to be a priori given. Then, the sections of an arbitrary basis {eA} of Sec(µ), can be written
as eA = iaA ea and the injection can be denoted by i : W → V; (xi, wA) �→ (

xi, v a = iaAwA
)
.

We will use λ for the restriction of ρ to W : λ = ρ ◦ i : W → TM; (xi, wA) �→ (
xi, ẋi =

λi
AwA = ρi

ai
a
AwA

)
.

Forms on Sec(τ ) can be pulled back to forms on Sec(µ). Indeed, if ω is a k-form then
i∗ω, defined by

i∗ω(W1, . . . ,Wk) = ω(iW1, . . . , iWk), Wi ∈ Sec(µ)

is a k-form on Sec(µ). By composing the exterior derivative d with i∗ we can define a mapping
from

∧k
(τ ) to

∧k+1
(µ), which is denoted by δ. Thus, if ω is a k-form on Sec(τ ), then

δω = i∗ dω, (7)

is a (k + 1)-form on Sec(µ). The operator δ satisfies the rule

δ(ω1 ∧ ω2) = δω1 ∧ i∗ω2 + (−1)k1 i∗ω1 ∧ δω2,

and could be called a derivative along i for this reason, but we will simply refer to δ as an
exterior derivative. Obviously, δ ◦ d = 0. In the above introduced coordinates,

δxi = ρi
ai

a
AeA = λi

AeA and δ ea = − 1
2Da

BCeB ∧ eC,

where Da
BC = Ca

bci
b
BicC .

To illustrate the above notions, we look at the case where W is a Lie subalgebroid of V. A
more general definition of a Lie subalgebroid W → N of V → M can be found in [10]. Here,
we will only consider the case that the base manifolds coincide. A Lie algebroid µ : W → M

(with anchor map λ and structure functions DC
AB) is a Lie subalgebroid of τ : V → M (with

anchor map ρ) if there exists a injective morphism i : W → V such that λ = ρ ◦ i and

i[W1,W2] = [i(W1), i(W2)], Wi ∈ Sec(µ). (8)

In coordinates the above expression reads

icCDC
AB = Dc

AB + λi
A

∂icB

∂xi
− λi

B

∂icA

∂xi
. (9)
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There are now three exterior derivatives around: d, δ and the exterior derivative dµ on the Lie
algebroid µ. The condition (8) can equivalently be written as

dµ ◦ i∗ = i∗ ◦ d = δ. (10)

Indeed, for functions on M it is obviously satisfied, while for 1-forms θ ∈ ∧1
(τ )

dµi∗θ(W1,W2) = λ(W1)θ(iW2) − λ(W2)θ(iW1) − θ(i[W1,W2]).

This is dθ(iW1, iW2) if and only if (8) is satisfied. The proof then follows from induction. It
is now also obvious that for Lie subalgebroids

dµ ◦ δ = i∗ ◦ d2 = (dµ)2 ◦ i∗ = 0.

3. Prolongation bundles

As stated in the introduction, an important role in our description will be played by the
so-called prolongation bundle associated with a Lie algebroid. Sections of such bundles
will eventually lead to the vector field on the Lie algebroid that generates the equations in
(5). Furthermore, these bundles allow a generalization of all intrinsic objects defined on the
tangent bundle needed to write down the standard Lagrange equations. We start with defining
the prolongation of an arbitrary bundle, and then continue with the introduction of all the
structures that lead to an intrinsic formulation of (5).

Let π : E → M be an arbitrary fibre bundle. The prolongation of π by an anchored
vector bundle τ : V → M is the (vector) bundle πρ : T ρE → E. Here, the total space T ρE is
the pullback manifold ρ∗TE = {(v, Xe) ∈ V × TE | ρ(v) = T π(Xe)}. The natural projections
of T ρE onto V and TE will be denoted by π2 and ρπ , respectively (see the diagram below).
On the other hand, the bundle projection πρ is given by τE ◦ ρ1, i.e. πρ(v, Xe) = e (see also
e.g. [9, 10, 14, 16]).

�

�
�

�
���

�
���

T ρE E

T E

�

�
�

�
���

�
�
��

V M

T M

�

�

�
τ

ρ τM

πρ

T π

ρπ
τE

π2 π

Suppose we fix a bundle adapted coordinate chart (U, (xi, yα)) about a point e ∈ E. It is
not difficult to see that {Xa,Yα}, with

Xa(e) =
(

ea(π(e)), ρi
a(x)

∂

∂xi

∣∣∣∣
e

)
and Yα(e) =

(
0(π(e)),

∂

∂yα

∣∣∣∣
e

)
, (11)

is a basis of Sec(πρ), induced by the basis {ea} of Sec(τ ) and the basis
{

∂
∂xi ,

∂
∂yα

}
of X (E).

The set VρE = {(0, Xe) ∈ T ρE} is called the bundle of vertical elements of T ρE. A basis
for the set of vertical sections Ver(πρ) is given by the {Yα}.
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Suppose now that τ : V → M is a Lie algebroid. The Lie algebroid structure on τ can be
naturally extended to a Lie algebroid structure on the prolongation bundle πρ : T ρE → E.
The anchor map of this Lie algebroid is ρπ : T ρE → TE, with

ρπ(Xa) = ρi
a

∂

∂xi
and ρπ(Yα) = ∂

∂yα

and the bracket is given by

[Xa,Xb] = Cc
abXc, [Xa,Yβ ] = 0, [Yα,Yβ] = 0

(for more details, see e.g. [9, 14]).
Let µ : W → M be a subbundle of τ . We will need three different prolongation bundles.

The first is the one where π is also τ : V → M , that is τρ : T ρV → V. The basis (11) will,
in this case, be denoted by {Xa,Va} and we will use {X a,Va} for the basis of Sec((τ ρ)∗) that
is dual to {Xa,Va}. Since τρ has a Lie algebroid structure, it also has an exterior derivative d,
locally characterized by the relations

dxi = ρi
aX a, dva = Va, dX c = − 1

2Cc
abX a∧X b and dVa = 0.

�

�
�

�
���

�
���

T ρV V

T V

�

�
�

�
���

�
�
��

V M

T M

�

�

�
τ

ρ

τρ

ρτ

τ

�

�
�

�
���

�
���

T ρW W

T W

�

�
�

�
���

�
�
��

V M

T M

�

�

�
τ

ρ

µρ

ρµ

µ

�

�
�

�
���

�
���

T λW W

T W

�

�
�

�
���

�
�
��

W M

T M

�

�

�
µ

λ

µλ

λµ

µ

The second prolongation of interest is µρ : T ρW → W. Again, µρ is a Lie algebroid
with a corresponding exterior derivative, denoted by d̃. If {X̃a, W̃A} stands for the basis (11)
in this situation, then

d̃xi = ρi
aX̃ a, d̃wA = W̃A, d̃X̃ c = − 1

2Cc
abX̃ a ∧ X̃ b and d̃W̃A = 0,

µρ is in fact a Lie subalgebroid of τρ (in the more general sense of [10], see also [9]).
Last but not the least, we will also need the prolongation µλ : T λW → W, which is

a vector subbundle of the Lie algebroid T ρW → W. Let {XA,WA} stand for the basis of
Sec(µλ), induced by the bases {eA} and

{
∂

∂xi ,
∂

∂wA

}
. Then, the injection is given by the map

I : T λW → T ρW; (w1, Xw2) �→ (i(w1),Xw2) which, locally, is of the form

I (XA) = iaAX̃a and I (WA) = W̃A.

In view of the discussion of the previous section, we can use I to introduce an ‘exterior
derivative’ δ, defined as in (7), which will map forms on Sec(µρ) to forms on Sec(µλ).
Locally,

δxi = λi
AXA, δwA = WA, δX̃ c = − 1

2Dc
ABXA∧XB and δW̃A = 0.
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A second important map T ρi : T ρW → T ρV is the linear bundle map over i : W → V,
given by T ρi(v, Xw) = (v, Twi(Xw)). Let an element Z ∈ T ρ

w W be given by Z =
XaX̃a(w) + WAW̃A(w), then

T ρi(Z) = XaXa(i(w)) +

(
ρi

bX
b ∂iaA

∂xi
wA + iaAWA

)
Va(i(w)).

Both prolongations τρ : T ρV → V and µλ : T λW → W carry further interesting canonical
objects. For example, there exists a naturally defined vertical lift V : τ ∗V → VρV ⊂ T ρV.
Indeed, for (a, v) ∈ τ ∗V, we can define first a vertical element vv

a ∈ TaV by means of its action
on functions f ∈ C∞(V),

vv
a(f ) = d

dt
f (a + tv)

∣∣∣∣
t=0

. (12)

Then, the element vV

a ∈ VρV is defined as
(
0, vv

a

)
. We have eV

a = Va . Evidently,
there exists a similar notion for the prolongation µλ, here the vertical lift is a map
V : µ∗W → VλW ⊂ T λW. Next, there are also two so-called vertical endomorphisms
Sτ = V ◦ j1 : Sec(τ ρ) → Ver(τ ρ), and Sµ = V ◦ j2 : Sec(µλ) → Ver(µλ), where j1 stands for
the projection (v2, Xv1) ∈ T ρV �→ (v1, v2), and j2 : T λW → µ∗W can be defined analogously.
In the above-introduced bases, Sτ = X a ⊗Va and Sµ = XA ⊗WA. Remark that, although the
projection j3 : T ρW → µ∗V can easily be defined, there exists no vertical endomorphism on
T ρW because there is no vertical lift which maps elements in µ∗V to VρW. Two final important
objects are the Liouville sections Cτ = vaVa ∈ Sec(τ ρ) and Cµ = wAWA ∈ Sec(µλ).

4. Lagrange equations on a subbundle of a Lie algebroid

In this section we formulate the equations for a non-holonomic system on a Lie algebroid. The
main purpose is to arrive at an equation that uniquely determines a vector field on W whose
integral curves are precisely the solutions to the constrained equations (5). We will only deal
with regular Lagrangians L ∈ C∞(V), i.e. we will assume that the matrix (∂2L/∂vα∂vβ) is
regular at every point.

Let us recall first briefly Martı́nez’s description of Lagrangian systems (3) on a
Lie algebroid. An important subclass of sections of the prolongation bundle τρ : T ρV → V
are the so-called pseudo-SODEs [16, 17], or simply SODEs in [9, 14]. They are sections � of τρ

such that τ 2 ◦ � = id (τ 2 is the projection (v, V ) ∈ T ρV �→ v ∈ V). Locally, a pseudo-SODE

is of the form

� = vaXa + f aVa.

It is not difficult to see that pseudo-SODEs are in a one-to-one correspondence with vector
fields X on V with the property that ρ(v) = T τ(X(v)). Keeping this in mind, by defining a
pseudo-SODE, one can give an intrinsic description of the equations (3). A regular Lagrangian
L defines a function

EL = ρτ (Cτ )L − L = va ∂L

∂va
(v) − L(v)

on V and a 1-form

θL = Sτ (dL) = ∂L

∂va
(v)X a (13)

on Sec(τ ρ). The dynamics are then given by a pseudo-SODE � of the prolongation τρ that
solves the equation

i� dθL = −dEL. (14)
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Solutions of the equations (3) are then nothing but integral curves of the associated vector field
ρτ (�) ∈ X (V).

For the constrained systems (5), we wish to preserve, as much as possible, the structure of
the equation (14). By analogy, it is clear that we should represent the dynamics by a section of
the prolongation bundle µλ : T λW → W. It is easy to see that pseudo-SODEs � on this bundle
have locally the form

� = wAXA + f AWA.

Crucial in (14) is the exterior derivative d of the prolongation τρ . Unfortunately, the
prolongation bundle µλ does not carry a Lie algebroid structure and therefore there is no
available exterior derivative. The next best thing is the above-introduced operator δ. As a
consequence, the analogues ẼL and θ̃L of the function EL and the 1-form θL to the constrained
case should be sought, respectively, among the functions on W and the 1-forms on Sec(µρ).
For ẼL we can simply take the restriction of EL to W. If we define the constrained Lagrangian
Lc ∈ C∞(W) as the restriction of L to W, Lc(w) = L(i(w)), then it is easy to see that ẼL can
also be given by

ẼL = λµ(Cµ)(Lc) − Lc = wA ∂Lc

∂wA
(w) − Lc(w) ∈ C∞(W).

The construction of θL in (13) can, however, not directly be translated to µρ . Indeed, although
d̃Lc is a well-defined 1-form on Sec(µρ), there exists no vertical endomorphism on Sec(µρ).
On the other hand, we can also start from δLc, which is a 1-form on Sec(µλ), but its image
under the vertical endomorphism Sµ of µλ gives us a 1-form

θLc
= Sµ(δLc) = ∂Lc

∂wA
(w)XA = iaA

∂L

∂va
(i(w))XA

on Sec(µλ) and not on Sec(µρ), as required. Having found no direct construction on µρ , it
seems appropriate to take one more step backwards (wrt the diagrams of the previous section).
We will use a suitable restriction of θL to µρ .

Definition 1. The Poincaré–Cartan 1-form θ̃L is defined as the 1-form (T ρi)∗(θL) on
Sec(µρ), i.e.

θ̃L(w)(v,W) = θL(i(w))(T ρi(v,W)),

or, locally, θ̃L = ∂L

∂va
(i(w))X̃ a .

The energy function ẼL is the restriction of EL to W.

From the coordinate expressions it is easy to see that θLc
= I ∗(θ̃L), i.e.

θLc
(w1)(w2,W) = θ̃L(w1)(I (w2,W)).

We now have all the ingredients for a coordinate free description of (5).

Definition 2. A Lagrangian system on µλ : T λW → W is a pseudo-SODE � ∈ Sec(µλ) that
solves the equation

i�δθ̃L = −δẼL. (15)

It can easily be checked that (15) gives indeed the correct equations (5). First, one can calculate
that

δθ̃L =
(
λi

AibB
∂2L

∂xi∂vb
+ λi

AibB
∂icC

∂xi
wC ∂2L

∂vb∂vc
− 1

2
Dc

AB

∂L

∂vc

)
XA ∧ XB − ibBiaA

∂2L

∂va∂vb
XA ∧ WB
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and

δẼL =
(

wCiaC
∂L2

∂xi∂va
+ wBwCibC

∂iaB

∂xi

∂L2

∂va∂vb
− ∂L

∂xi

)
λi

AXA + wAiaAibB
∂L2

∂va∂vb
WB.

The coefficients f A of � should therefore satisfy

∂2L

∂va∂xi
iaBλi

AwA +
∂2L

∂va∂vb

(
wAwCiaBλi

C

∂ibA

∂xi
+ iaBibAf A

)
− ∂L

∂xi
λi

B − ∂L

∂vc
Dc

BAwA = 0. (16)

The dynamics are given by the equations of the integral curves of X = λµ(�) = wAλi
A

∂
∂xi +

f A ∂
∂wA , i.e. they are solutions of{

ẋi = λi
A(x)wA,

ẇA = f A(x,w).
(17)

Along such solutions, we find that

d

dt

(
∂Lc

∂wA

)
=

(
∂2L

∂va∂xi
iaA +

∂L

∂va

∂iaA

∂xi

)
λi

BwB +
∂2L

∂va∂vb

(
wBwCiaAλi

C

∂ibB

∂xi
+ ibBiaAf B

)
and

∂Lc

∂xi
= ∂L

∂xi
+

∂L

∂va

∂iaA

∂xi
wA.

After plugging this information into (16), (17) becomes exactly (5)


ẋi = λi
A(x)wA,

d

dt

(
∂Lc

∂wA

)
= λi

A

∂Lc

∂xi
+ wB

(
Dc

BA − λi
A

∂icB

∂xi
+ λi

B

∂icA

∂xi

)
∂L

∂vc
.

(18)

5. Examples

The main example of this section shows that non-holonomic mechanical systems with
symmetry admit a formulation in the above framework after reduction. The first two examples
are straightforward.

5.1. Lagrangian systems on Lie algebroids

If µ : W → M is exactly the Lie algebroid τ : V → M , then iab = δa
b and Lc = L. The

equations (18) are then exactly (3). Examples of such systems can be found e.g. in rigid body
dynamics (see e.g. [14] for a worked-out example about the heavy top), control theory [15] or
Lagrangian systems with symmetry on principal fibre bundles [6, 24].

5.2. Lagrangian equations on Lie subalgebroids

With the help of (9), it is easy to see that in this case,
(
Dc

BA − λi
A

∂icB
∂xi + λi

B

∂icA
∂xi

)
∂L
∂vc = DC

BA
∂Lc

∂wC .
Equations (18) then become exactly equations (3) for the constrained Lagrangian Lc on the
Lie algebroid µ : W → M . This is also clear from expression (15). Indeed, in this case
µλ : T λW → W inherits the Lie algebroid structure form µ and has also an exterior derivative
dµ which acts on functions and forms in the following way:

dµxi = λi
AXA, dµwA = WA, dµXC = − 1

2DC
ABXA∧XB and dµWA = 0.
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Obviously δELc
= dµELc

. Moreover, due to (9),

δθ̃L = δ

(
∂L

∂va

)
∧ I ∗ (

X̃ a
)

+ I ∗
(

∂L

∂va

)
δ(X̃ a)

= dµ

(
∂L

∂va

)
∧ iaAXA − 1

2

∂L

∂va
Da

ABXA ∧ XB

= dµ

(
∂L

∂va

)
∧ iaAXA − 1

2

∂L

∂va
iaCDC

ABXA ∧ XB

= dµ

(
∂L

∂va

)
∧ iaAXA − 1

2

∂Lc

∂wC
DC

ABXA ∧ XB = dµθLc
.

Therefore (15) is indeed i�dµθLc
= −dµELc

.

5.3. Non-holonomic systems

In the introduction we have already defined the Lagrange–d’Alembert equations describing
a non-holonomic mechanical system. We will use similar notations. Suppose Q is the
configuration space of a mechanical system that is subject to some kinematic (linear)
constraints. If the constraint distribution is m-dimensional, then, due to the regularity condition
of D, we can express m velocities ṡα defined by ẋi = (ṙI , ṡα), up to a renumbering, in terms
of the others

ṡα = −Aα
I (x)ṙI .

Let ι : D → TQ, then it is given by (sα, rI , ṙI ) �→ (
sα, rI , ṙI , ṡα = −Aα

I ṙI
)
. Before

continuing, we wish to make the following remark: in some geometrical models that treat
non-holonomic systems it is sometimes further assumed that there exists a bundle structure
of the configuration space Q over some manifold N such that D is the horizontal distribution
H ⊂ TQ of a connection on Q → N (this can always be done locally). This additional
assumption is not necessary for our purposes. The purpose of this section is to show that the
equations for non-holonomic mechanical systems that can be found in e.g. [2], fit into the
framework presented above.

We can take V to be TQ, equipped with the natural Lie algebroid structure: the anchor map
ρ is the identity and the Lie algebroid bracket is the usual Lie bracket of vector fields. Then
τρ is nothing but TTQ → TQ. The subbundle W is precisely the distribution D, i.e. i = ι.
Likewise, µρ becomes simply T W → W. The Poincaré–Cartan 1-form θ̃L is, in this case, the
pullback of the usual Poincaré–Cartan form θL = ∂L

∂ṙI drI + ∂L
∂ṡα dsα for L by the injection i,

i.e. it is a a differential form on W which formally looks similar, but where the coefficients
should be evaluated along the constraints. Since λ = i, the last prolongation bundle µi

(on which the dynamics � and the fundamental form δθ̃L are defined) is the distribution
T iW = W ×i T W → W of T W. This distribution, appears also in e.g. [1] (where it is denoted
by H ), but its structure as a prolongation bundle was not recognized before. Equations (18)
(with λI

J = δI
J and λα

J = −Aα
J ) are of course the required Lagrange–d’Alembert equations


ṡα = −Aα

I ṙI ,

d

dt

(
∂Lc

∂ṙI

)
= ∂Lc

∂rI
− Aα

I

∂Lc

∂sα
− ṙJ Bα

IJ

∂L

∂ṡα
,

(19)

where

Bα
IJ = ∂Aα

I

∂rJ
− ∂Aα

J

∂rI
+ A

β

I

∂Aα
J

∂sβ
− A

β

J

∂Aα
I

∂sβ
.

The standard way to obtain the equations (19) goes by taking (2) as starting point, and following
the same procedure that has led us to (5) in the introduction (see also equations (5.2.7) in [2]).
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5.4. The reduction of non-holonomic systems with symmetry

In this example, we will call the configuration space of the mechanical system Q and the
Lagrangian l. We further assume that l is invariant under the (tangent lift of the) action of a
Lie group G and that πG : Q → Q/G has the structure of a principle fibre bundle. We will
first introduce the Lie algebroid structure of interest. It is assumed that the reader is familiar
with the natural constructions associated with a principal fibre bundle [11].

Let g̃ = (Q × g)/G → Q/G be the associated Lie algebra bundle (for a definition
see e.g. [13], it is a Lie algebroid structure with vanishing anchor map and structure
functions the structure constants of the Lie algebra g). Suppose that A : TQ → g is a
principal connection on πG with horizontal distribution H. Then TQ = H ⊕ V πG, where
V πG = {

(V πG)q = Tq

(
π−1

G
([q])

)∣∣q ∈ Q
}

is the vertical distribution. It is shown e.g. in
[6, 13] that the connection induces a vector bundle isomorphism αA between TQ/G and
T (Q/G) ⊕ g̃ by means of

αA([vq]) = T πG(vq) ⊕ [q · A(vq)], vq ∈ TqQ.

Here, [q · ξ ] stands for the equivalence class of (q, ξ) ∈ Q × g, i.e. (q, ξ) ∼ (qg,Adg−1 · ξ)

for all g ∈ G. Remark that αA(H/G) = T (Q/G) and αA(V πG/G) = g̃. In the
notations from the previous sections, M = Q/G. The Lie algebroid is then defined by
τ : V = T Q/G  T (Q/G) ⊕ g̃ → Q/G, where the bracket is taken to be the Lie
bracket restricted to right invariant vector fields on Q. The anchor map ρ : V → TM of the
Lie algebroid is nothing but the projection onto T (Q/G). The Lie algebroid bracket can be
given by

[X1 ⊕ s1, X2 ⊕ s2] = [X1, X2] ⊕ (∇X1 s2 − ∇X2 s1 − ω(X1, X2) + [s1, s2]
)

(20)

with Xi ∈ X (M), si ∈ Sec(g̃). ∇ denotes the covariant derivative on g̃ → M associated with
the connection A and ω is its curvature.

Recall that a local trivialization of the principal fibre bundle πG induces a bundle-adapted
coordinate chart on every associated bundle of πG. In particular, if eα is a basis for the Lie
algebra g, then a basis for the set of local sections of g̃ are defined by eα(x) = [ψ−1(x, e) · eα]
where x ∈ U ⊂ M = Q/G and ψ : π−1

G (U) → U × G is such a local trivialization
of πG. Suppose (xi, vα) are coordinates on g̃ wrt this basis. Then, V has coordinates
(xi, va = (ẋi , vα)). Using this coordinate system, the coefficients of the Lie bracket [s1, s2]
on g̃ are exactly the structure constants C

γ

αβ of g. Furthermore, the connection coefficients

of the covariant derivative ∇ on g̃ → Q/G associated with A take the form �
β

iα = Cβ
αγ A

γ

i .
Finally, the coefficients of the g̃-valued 2-form ω on M are

ωα
ij = ∂Aα

j

∂xi
− ∂Aα

i

∂xj
+ Cα

βγ A
β

j A
γ

i .

The basis {eα} for Sec(g̃) induces a basis
{
ei = ∂

∂xi ⊕ 0, eα = 0 ⊕ eα

}
for Sec(τ ). With

respect to this basis, the Lie algebroid bracket (20) is given by

[ei, ej ] = −ω
γ

ij eγ , [ei, eα] = �
γ

iαeγ , [eα, eβ ] = C
γ

αβeγ .

This Lie algebroid structure on τ : T Q/G  TM ⊕ g̃ → M is the so-called Atiyah algebroid
(see also [9, 13]).

Suppose now that the system is subject to some linear constraints D ⊂ TQ. In contrast
with the previous example, there is a natural fibration of Q available, Q → M = Q/G, so
it makes sense to compare D with the vertical subspace V πG of this fibration, rather than
to assume that D is the horizontal distribution of a connection on some fibre bundle. We
will follow here the approach of [7], although there are many other [3, 4, 5, 8]. In [7]
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two additional assumptions were made. First, we suppose that TqQ = Dq + (V πG)q . This
assumption means, among others, that S = {Sq = Dq ∩ (V πG)q |q ∈ Q} is a subbundle of
TQ,D and V πG. Further, we will also assume that D (and therefore also S) is G-invariant. In
[6] it is proved that there exists always a G-invariant metric on Q, which we now assume to
be fixed. Let Hq be the orthogonal complement of Sq in Dq (with respect to this metric), then
D = H ⊕ S, while TQ = H ⊕ V πG. Further, if U is the orthogonal complement of S in V πG,
then TQ = H ⊕ S ⊕ U . Due to the above assumptions, all three distributions are G-invariant
and thus TQ/G = H/G ⊕ S/G ⊕ U/G. Let A : TQ → g be the principal connection whose
horizontal subspace at q is exactly Hq . We now use this connection to consider the above
decomposition of TQ/G in the isomorphic bundle TM ⊕ g̃, i.e. we have

TM ⊕ 0 = αA(H/G),

0 ⊕ g̃ = αA(V πG/G) = αA(S/G) ⊕ αA(U/G) = 0 ⊕ s̃ ⊕ ũ,

αA(D/G) = TM ⊕ s̃.

Analogously to the reduction of non-constrained systems with symmetry, the Lagrange–
d’Alembert principle which describes the equations of motion on Q, can be reduced to a
‘variational principle’ on a reduced space (cf [7]). This new principle generates the reduced
equations, the so-called Lagrange–d’Alembert–Poincaré equations. We now show that these
equations are Lagrange equations on a subbundle of a Lie algebroid. Using the above notations
we now define µ : W = D/G  TM ⊕ s̃ → M and this bundle is the required subbundle of
the Atiyah algebroid τ : V = TQ/G  TM ⊕ g̃ → M . Choose a basis {eI } of Sec(s̃) and
denote eI = eα

I eα . Let (xi, wI ) be coordinates on s, then i : W → V has components i
j

k = δ
j

k ,
i
j

I = 0, iαi = 0 and iαJ = eα
J . Moreover, the components for λ : W → TM are λi

j = δi
j , λ

i
J = 0.

Let L ∈ C∞(V) be the reduced Lagrangian, i.e. L([vq]) = l(vq). If Lc is the restriction
of L to D/G, then the Lagrange–d’Alembert–Poincaré equations are



d

dt

∂Lc

∂wI
= − ∂L

∂vβ

(
D

β

IJ wJ − �
β

jI ẋ
j − ∂e

β

I

∂xj
ẋj

)
,

d

dt

∂Lc

∂ẋi
− ∂Lc

∂xi
= − ∂L

∂vβ

(
�

β

iJ wJ − ω
β

ij ẋ
j +

∂e
β

J

∂xi
wJ

)
,

(21)

with D
β

IJ = C
β

γδe
γ

I eδ
J and �

β

jI = �
β

jαeα
I (see also equations (5.8.45–47) in [2] and (4.11–4.14)

in [7]). In [2, 5, 7, 8] one can find examples considered in full detail of non-holonomic systems
with symmetry, for instance the snakeboard and the vertically rolling disk.

5.5. Normal extremals in Lagrangian systems on Lie algebroids

The last example can be found in the theory of geometric optimal control theory. We first briefly
recall some general concepts from control theory. In control theory one studies dynamical
systems that can be steered by external devices (typically representing a human input to the
system). In dynamical systems theory, such systems are typically represented by a differential
equation of the following type:

ẋ(t) = f (x(t), u(t)),

where x ∈ R
n represents the configuration of the system and where u ∈ R

k represents the
control functions. It should be clear that the dynamics of the system is completely determined
(up to the initial condition) by the control u(t). A geometric framework for studying control
theory is that of an anchored bundle, i.e. we assume that the configuration space is a manifold M
and that the control space R

k is the k-dimensional fibre of a bundle V over M, with projection τ .
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The analogue of the map f is a bundle map ρ from V to TM, fibred over the identity. An
admissible curve is a curve v(t) in V such that d/dt (τ (v(t))) = ρ(v(t)). It is not difficult
to see that in a local coordinate system this condition has the precise structure a control
differential equation. Assume that a Lagrangian function L ∈ C∞(V) is given. In optimal
control theory one studies the following variational problem: ‘among all admissible curves
v defined over the interval [t0, t1] and such that τ(v(t0)) = x0 and τ(v(t1)) = x1 for fixed
endpoints x0, x1 ∈ M , which one minimizes a cost functional

∫
L(v(t)) dt ?’. The maximum

principle [20] gives necessary conditions for admissible curves to be minimizing. Locally
they are given as follows: an admissible curve v(t) = (xi(t), va(t)) is minimizing if there
is (1) a curve pi(t) in T ∗M along xi(t) and a constant real number p0 = 0,−1 such that
(p0, p1(t), . . . , pn(t)) �= 0 ∀t and (2) the following Hamiltonian system is satisfied at all time
t, with H(xi, va, pi) = piρ

i(xj , va) + p0L(xi, va) a function on T ∗M × V:

ẋi (t) = ∂H

∂pi

= ρi(xj (t), va(t)),

ṗi(t) = −∂H

∂xi
= −pj

∂ρj

∂xi
− p0

∂L

∂xi

0 = ∂H

∂va
= pi

∂ρi

∂va
+ p0

∂L

∂va
.

The latter condition says that the function va �→ H(xi(t), pi(t), va) on the fibres of V attains a
local maximum at the point va = va(t). A coordinate free version for this theorem was proven
by Sussmann in [23]. However, for the sake of simplicity, we continue to work in a local
coordinate system. It is very interesting to note that there are two kinds of solutions: those
admissible curves for which there is a pi(t) satisfying the conditions with p0 < 0 and those
for which p0 = 0. The latter are called abnormal extremals since in this case the conditions
from the maximum principle do not depend on the cost function (see also [12, 18, 19]). If
p0 < 0, then the solutions are called normal extremals.

We now assume that the bundle V has the structure of a Lie algebroid, and that the map
ρ is the anchor map. We will show that the above conditions from the maximum principle
for normal admissible curves can be rewritten as the solutions to Lagrangian systems on
Lie algebroids with constraints. For that purpose we consider the equation expressing the
maximality condition:

0 = ∂H

∂va
(xi(t), va(t), pi(t)) = pi(t)ρ

i
a(x

j (t)) − ∂L

∂va
(xj (t), vb(t)).

Since we assumed that the Lagrangian is regular, we can consider the inverse of FL =
∂L/∂va : V → V∗, which gives us the following condition on the control curve:

va(t) = (FL−1)a
(
xj (t), pi(t)ρ

i
a(x

j (t))
)
. (22)

If we substitute this in the Hamiltonian equations from the maximum principle, we obtain after
some straightforward calculations (and taking into account the structure equations of the Lie
algebroid V) that (xi(t), va(t)) is a solution to the Lagrangian equations on the Lie algebroid:


ẋi = ρi

a(x)va,

d

dt

(
∂L

∂va

)
= ρi

a

∂L

∂xi
− Cc

abvb ∂L

∂vc
.

(23)

This system is in general not equivalent with the Hamiltonian system from the maximum
principle. The condition that va is in the image of FL−1 has to be taken into account. In
the specific case that FL−1 is a linear map, this is precisely saying that v(t) is contained in
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a linear subbundle W, i.e. v(t) ∈ W = Im(FL−1 ◦ i(T ∗M)). Solutions of the systems (22)
and (23) are in fact special solutions of the system (4). So, normal extremals are solutions of
a Lagrangian system on a subbundle of a Lie algebroid. However, the equations of motion
for the normal extremals are not equivalent to the non-holonomic equations of motion. The
normal extremals have to satisfy stronger conditions (23).

A sufficient condition for the image of FL−1 to be a linear subbundle W of V is the
condition that L is a Lagrangian of mechanical type, i.e. when L = T − τ ∗V , where T
is the kinetic energy associated with a metric on V and where V is a potential function
defined on M. A typical example of a mechanical system on a Lie algebroid is the spinning
top (cf [14]).

6. Conclusions and outlook

In this contribution we have dealt with systems on Lie algebroids that are subject to some
constraints. We obtained an intrinsic description of the dynamics of the systems in terms of a
section of a prolongation bundle. Our approach unifies models for both Lagrange–d’Alembert
equations and Lagrange–d’Alembert–Poincaré equations.

Such a simultaneous description can be very handy in many applications. For example,
in [6] it is shown that the so-called ‘Lagrange–Poincaré bundles’ form the ideal platform on
which the reduction process of (unconstrained) Lagrange–Poincaré equations can be repeated.
Knowing that such bundles are in fact Lie algebroids, we hope that Lie algebroid theory (and
in particular the description of such systems as sections of a prolongation Lie algebroid) will
play an important role in future developments of the process called ‘Lagrangian reduction by
stages’. Due to the observations in this paper, it has become clear that, if we want to find
a geometric formalism for successive reduction of non-holonomic systems, we will need to
explore the geometry of (the prolongation of ) Lagrange–Poincaré subbundles.

Also in the case of non-holonomic systems (example 3), the above-developed theory
leads to interesting new insights. Indeed, the biggest difference between our approach and
many others is that the fundamental form δθ̃L and the dynamics � are not a differential form
or a vector field on W, but a form and a section of the prolongation bundle T iW → W. A
framework that seems to be closely related to ours is [21, 22] (although their set-up is more
general since also time-dependent systems were included). In those papers, two fundamental
2-forms on T W have been considered. It would be of interest to explore the relations between
those two forms on the one hand and δθ̃L on the other. Further, we intend to find out how our
operator δ fits in the approach of [21, 22].

Another path for future developments is that of an appropriate framework for studying
Hamiltonian equations on a subbundle of a Lie algebroid. Hamiltonian systems on Lie
algebroids were already considered in e.g. [9, 15]. If τ ∗ : V → M and µ∗ : W∗ → M are
the duals of τ and µ, then the main object of a Hamiltonian description for constraint systems
will be a section of the prolongation bundle (µ∗)λ : T λW∗ → W∗. Similar to before, the,
not unrelated, bundles (τ ∗)ρ , (τ ∗)λ and (µ∗)ρ will also come into the picture. In the special
example of systems with symmetry, we should be able to relate the first equation in (21), in a
Hamiltonian formulation, to the momentum equation (for a recent survey see [2]).

Acknowledgments

We are indebted to Frans Cantrijn, Eduardo Martı́nez and Willy Sarlet for useful discussions.



A Lie algebroid framework for non-holonomic systems 1111

References
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