
Time-domain and frequency-domain modeling of

nonlinear optical components at the circuit-level using

a node-based approach

Martin Fiers1,4,∗, Thomas Van Vaerenbergh1,4, Ken Caluwaerts2, Dries Vande

Ginste3, Benjamin Schrauwen2, Joni Dambre2 and Peter Bienstman1,4

1Photonics Research Group (INTEC), Ghent University - imec,

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

2Electronics and Information Systems (ELIS), Ghent University,

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

3Electromagnetics Group (INTEC), Ghent University,

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

4Center for Nano- and Biophotonics (NB-Photonics), Ghent University,

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

∗Corresponding author: martin.fiers@intec.ugent.be

We present a tool that aids in the modeling of optical circuits, both in

the frequency and in the time domain. The tool is based on the definition

of a node, which can have both an instantaneous input-output relation, as

well as different state variables (e.g. temperature and carrier density) and

differential equations for these states. Furthermore, each node has access

to part of its input history, allowing the creation of delay lines or digital

filters. Additionally, a node can contain sub-nodes, allowing the creation of

hierarchical networks. This tool can be used in numerous applications such

as frequency-domain analysis of optical ring filters, time-domain analysis of

optical amplifiers, microdisks and microcavities. Although we mainly use this

tool to model optical circuits, it can also be used to model other classes of

dynamical systems, such as electrical circuits and neural networks. c© 2011

Optical Society of America

OCIS codes: 190.4390, 220.4830, 130.3120

1

1. Introduction

There is a variety of tools available to simulate the behaviour of optical components. Many

of these tools are limited to small networks of only a handful of components. To model these

components or small networks, different techniques are used, such as Finite Difference Time

Domain (FDTD) (e.g. MEEP [1, 2]), eigenmode expansion, Time Domain Traveling Wave

(TDTW) [3], Split Step Methods (SSM) [3] and Coupled Mode Theory (CMT). These tools

mostly differ in complexity and in the level to which they contain physical details. FDTD,

for example, is based on Maxwell’s equations and therefore is a full-wave optical solver. The

major drawback is that FDTD is computationally very expensive. On the other side, CMT

is an approximate description, but extremely elegant and fast, only needing a few variables

to describe a complex system. This is achieved by eliminating all spatial dependencies in the

physical problem.

In this software landscape, there are tools to design complex optical circuits consisting of

many components. For example, ASPIC [4] is used for calculating the steady-state response

of optical circuits, and VPI [5] is mainly used to study the time-domain evolution. PicWAVE

uses a time-domain travelling wave (TDTW) optical model [6], and RSoft Optsim uses SSM

[7]. There are also approaches that use Modified Node Analysis (MNA), such as OptiSPICE

[8, 9], which allows simulation of mixed electronical and optical circuits. All of these new

tools will become indispensible in the future when designing and optimizing large optical

circuits.

In this paper, we present a different node-based approach. The advantage of our approach

is that both time and frequency domain can be investigated in the same framework, and

that each component can be represented in a natural way using variables such as the optical

field, the temperature and the carrier density, without needing to be mapped on to voltage

or current such as in the MNA approach. It uses only a small set of variables per component,

similar to CMT, which means the simulations are extremely fast compared to other methods

such as FDTD, TDTW and SSM, with the drawback of losing accuracy. Also, we provide a

mechanism to eliminate instantaneous components from the network, reducing the amount

of components we need to simulate in time domain. Our tool, named CAPHE [10] can also be

used to simulate novel computational systems such as photonic reservoirs [11]. It is written

in C++ for optimal performance, with a Python front-end for ease of use and interfacing to

a large collection of scientific libraries.

The rest of the paper is structured as follows: first we define a component with its basic

properties such as the scatter matrix and the ODE equations. After that, we create a circuit

consisting of several nodes, and we explain how we can derive the total scatter matrix from

this. We then explain how scalable the software tool is, and how we can eliminate linear,

instantaneous nodes from the circuit. After that we compare the accuracy of the simplified

2

methods (used in this framework) with very accurate methods, and we conclude with an

illustration of how eliminating nodes can speed up simulations considerably in the time

domain.

2. Model

To design a complex circuit simulator, we first need to define the behaviour of one component.

A node consists of N ports, see Fig. 1. A linear instantaneous transmission between port sin,i

and sout,j is defined through the scatter matrix Sij . Two optional time-domain descriptions

States

Buffer

ODE

Nonlinear / non-instantaneous

Linear and instantaneous

Scatter matrix

Output

Fig. 1. Structure of a node with N ports. A linear and instantaneous node is

only described by a scatter matrix S. States (e.g. temperature and free carriers)

can be added. In this case the node becomes nonlinear.

can be added to enrich this component (see Fig. 1, bottom): First, one can add a buffer to

store the inputs sin,i at previous timesteps. This can be used if one wishes to model a delayed

waveguide or a digital filter. Second, we can add internal states to the node. This can be used

to describe the rate equations of, e.g., a laser or the complex amplitude of a resonator. We

use a set of ordinary differential equations (ODE) to describe the component in terms of its

internal variables. There is no restriction on the form of the equations, so highly nonlinear

components can be easily modeled. Because of these two additions, the output sout,i is now

a sum of the linear part and a term describing the nonlinear character of the component.

The main novelty of our framework is that the frequency-domain S-matrix for components

that only have a linear instantaneous transmission can be used to significantly speed up

time-domain simulations of networks with both instantaneous and non-instantaneous com-

ponents. In the next two sections, we give more insight into the frequency-and time-domain

characteristics of these nodes.

3

2.A. Steady-state equations

As previously mentioned, a linear instantaneous component can be described by a single

scatter matrix S, and a linear input-output relation: sout,i(t) =
∑

j Sijsin,j(t). Using this

relationship we can describe all linear phenomena in the frequency domain. For example, a

ring resonator can be modeled by combining a directional coupler and a waveguide. Both

have a very simple scatter matrix, but when combined, they create resonances at certain

frequencies. As these nodes contain no memory, we call them memoryless (ML) nodes.

2.B. Time-domain equations

We represent time-domain signals as complex amplitudes s(t), modulating a carrier frequency

ωc. The actual input at each port is then

E(t) = s(t)ejωct + c.c. (1)

Representing the signal by s(t) is beneficial from a numerical point of view, as we can now

integrate over s(t) which varies much slower than E(t). Obviously, as the bandwidth of the

input signal increases, we will need more samples per time unit to correctly simulate the

system.

For each component we can now optionally add time-domain equations which leads in its

most general form to an input-output relation of the following form:

sout,i(t) =
∑

j

Sijsin,j(t) + sext,i (2)

Here, sext,i is a generalized source term. E.g. for a continuous wave source, sext = A, where

A is the complex amplitude of the source. For a waveguide with delay τ , the simple relation

sout,i(t) = sext,i = Bsin,1−i(t − τ), for i ∈ [0, 1], holds. Here, B is the complex value which

determines the loss and phase change of the waveguide. Note that for this waveguide, there

is no longer an instantaneous behaviour, i.e. Sij is zero in (2).

Differential equations can be added to describe the evolution of some internal variables,

e.g., temperature and free carriers in a laser, as a function of time and inputs.

As soon as there is a source term present in (2), the component is not instantaneous

anymore. We call these nodes memory-containing (MC) nodes (Fig. 1, bottom), as opposed

to the the memoryless (ML) nodes. Depending on whether the delays in a waveguide are

important for a simulation, one can model them with delay (which makes it MC), or without

delay (as a ML component), the latter having the advantage that we can eliminate it from

the total network. This is explained in the next section.

4

3. Circuit scatter matrix

We use the node from Fig. 1 as a basic building block to create an optical circuit. From this

circuit, a total scatter matrix can be calculated in the frequency domain that describes the

transmission to and from ports in the network. This matrix can become very big. Hence, in

this section we also derive techniques to eliminate the ML nodes from the circuit. This is a

crucial feature in our approach, which reduces the number of variables needed in the time

domain, hence improving the simulation speed. To do this, we split the input/output vector

sin/out(t) into sin/out,MC(t) and sin/out,ML(t), the input and output, respectively, to MC and

ML nodes. For simplicity we will omit the time dependency in the following equations. The

size of this s-vector equals the total number of ports in the circuit.

We can describe the way the different components are connected as follows:

(

sin,MC

sin,ML

)

= Ctot

(

sout,MC

sout,ML

)

=

(

CMC,MC CMC,ML

CML,MC CML,ML

)(

sout,MC

sout,ML

)

. (3)

Here, Ctot,ij is a binary connection matrix which only contains a 1 if port i is connected to

port j. As a consequence, Ctot is symmetric and contains at most 1 element per row and at

most 1 element per column, with zeros on the diagonal.

The behaviour of each of the individual nodes can be described by the following equations:

sout,ML = SML,MLsin,ML (4)

sout,MC = SMC,MCsin,MC + sext,MC , (5)

in which we define the scatter matrices SML,ML and SMC,MC . These are block diagnal ma-

trices, with each block representing the scatter matrix from a ML resp. MC node. The

second term in equation (5), sext,MC , is the generalized source term described earlier, see

also equation (2).

With all equations above we can derive the input at the active ports, given only sext,MC .

This is done as follows: replace sout,ML in equation (3) using (4). Solve this system for sin,MC .

This gives

sin,MC =
(

CMC,MC +CMC,MLSML,ML (I−CML,MLSML,ML)
−1

CML,MC

)

sout,MC = Csout,MC

(6)

We then substitute (5) in the equation above. This yields

sin,MC = (I−CSMC,MC)
−1

Csext = Ssext (7)

We have now successfully eliminated the memoryless nodes and end up with a smaller

scatter matrix S of the network.

5

Note that the matrix inversion in (6) is of a special type: CML,ML only permutes the

elements of SML,ML, and SML,ML is a block diagonal matrix. The resulting matrix I −
CML,MLSML,ML is therefore sparse. However, the resulting matrix after inversion is not

always sparse. This depends on the topology of the original network and on the individual

scatter matrices of the ML nodes.

The final ingredient in our model are the internal states, which are stored in the total

variable vector a(t).
da(t)

dt
= f(a, sin, t) (8)

This ordinary differential equation (ODE) can now be solved easily as we can evaluate f as

follows: at each timestep we loop over all MC to calculate sext. Then we can calculate sin

from equation (7). With this, we can evaluate fk(a, sin, t) =
dak(t)
dt

.

4. Optimizations in the frequency domain

In equation (6) and (7) we need to solve a system of equations. For example, in equation (7)

we need to solve

(I−CSMC,MC)X = C (9)

forX. This can be done by first doing a LU factorization, followed by forward and backward

substitution to find X. A similar reasoning is done for the inversion in (6). Solving a system

is almost always preferred above matrix inversion in terms of speed and stability. Optionally,

since these matrices are sparse, we can use KLU to solve this system very efficiently [12–14].

To benchmark the speed-up, we consider the use case of a Coupled Resonator Optical

Waveguide (CROW). A CROW is a sequence of optical rings, see Fig. 2. Each section is

made of a directional coupler (with coupling values κi) and two waveguides, which then

couples to the next section. This structure is used for creating optical filters.

...

0 1

2 3

0 1

0 1

Fig. 2. A Coupled Resonator Optical Waveguide (CROW). Each section is

subdivided in a directional coupler and two waveguides. Port numbers are

shown in the left.

6

The directional coupler and the waveguide are ML components with four resp. two ports.

This means there are eight ports per CROW section. By increasing the number of sections,

we find out what network size our framework can handle in the frequency domain. This

is shown in Fig. 3, where we compare the time spent by different matrix strategies as a

function of the ML ports. As can be seen in the figure, a large number of CROW sections

can easily be handled. This proves the technique is useful for analyzing very complex systems

in steady-state regime.

0

10

20

30

40

50

T
im

e
 t
o

 c
a

lc
u

la
te

 S
-m

a
tr

ix
 (

s
)

Number of CROW sections (rings)

KLU

Bottleneck:

(see eq(6))Bottleneck:

memory: (>2 Gb RAM) + time

Bottleneck:

memory + time (>50s)
LAPACK

MKL, 2 threads

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 3. Calculating the frequency response of a passive network. Using KLU, a

sparse matrix solver suited for circuit matrices, we can easily calculate scatter

matrices of very large networks.

4.A. Robustness and accuracy in the time domain.

This section describes two algorithms for integrating the ODE and compares the results to

rigorous FDTD simulations.

The first integration scheme is a simple forward Euler with fixed time step dt, the second

one is an advanced stepping routine based on Bulirch-Stoer [16]. The latter uses an adaptive

stepsize, to guarantee accuracy and stability. As example network, we use a system of two

coupled photonic crystal cavities. The model equations for this system are:

daj
dt

=

[

i (ω0 + δωj)−
1

τ

]

aj + dsj;0,+ + dsj;1,+, (10)

sj;1,− = exp(iφ)sj;0,+ + daj, (11)

sj;0,− = exp(iφ)sl;1,+ + daj, (12)

7

a1 2a

Pin Pout

(a) Fixed steps (b) Adaptive stepsize

Fig. 4. Two integration routines. Left: Forward Euler integration. With larger

timesteps, the accuracy decreases. Right: Using adaptive stepsize and an ad-

vanced stepper routine, the solver automatically uses the optimal dt in order

to maintain a desired accuracy (e.g. during switch on, the dt is reduced). Same

parameters used as in [15].

for j = 1, 2. Here d = iexp(iφ/2)/
√
τ , where τ is the lifetime of the cavity and φ repre-

sents the phase that depends on the waveguide length and the resonator mirror reflection

properties. The nonlinear frequency shift is δωj = −|aj|2/(P0τ
2), with P0 the ‘characteris-

tic nonlinear power’ of the cavity. In these equations |aj|2 is the energy in the cavity mode.

|sj;k,+|2 (resp. |sj;k,−|2) represents the power flowing in (resp. out) port k (for k = 0, 1) of cav-

ity j (for j = 1, 2). Port 1 of cavity 1 is connected with port 0 of cavity 2. Thus, |s1;0,+|2 ≡ Pin

is the input power, |s2;1,−|2 ≡ Pout is the transmitted power. We assume no input from the

right, s2;1,+ = 0. This system will exhibit self-pulsation under certain assumptions, as studied

in [15].

In [15] we also showed that the waveforms from the simulation are almost identical to

the waveforms from a full-wave FDTD simulation modeling the same system. The difference

in simulation time motivates the use of this simulator: It takes 10 hours to simulate this

oscillation in 2D FDTD, versus a few milliseconds with CMT, with only a slight sacrifice in

accuracy. The equations governing this system are highly nonlinear, yet the numerics remain

very stable. Furthermore, using adaptive stepsize, one is assured that the most important

details of the simulation are taken into consideration, with an automatic choice of discretiza-

tion steps. Whereas for a fixed stepsize algorithm, like forward Euler, accuracy over the whole

8

simulation domain can only be obtained by choosing a very small stepsize (Fig. 4(b)), this is

not the case for the adaptive stepsize algorithm: during switch on and switch off, there are

a lot of discretization steps, while in between the adaptive stepsize solution can follow the

reference solution with fewer discretization steps (Fig. 4(b)).

5. Improving the simulation speed in the time domain

If a network contains both ML and MC nodes, one can eliminate the ML nodes prior to

starting the time domain simulation. The speed of the time domain simulation depends

on the size of the scatter matrix after eliminating the ML nodes. We demonstrate this by

modeling a large network of interconnected nodes. The topology is a regular 2D grid of

Semiconductor Optical Amplifiers (SOA). Each SOA is connected to its neirest neighbours,

in a structure called a swirl topology [17], see Fig. 5(a). To connect the SOAs, we used a

combination of splitters and waveguides. We compare two systems. In the first system the

ML nodes behave as MC nodes, in the second system we first eliminate all ML nodes. In

the first case, we need to calculate the light propagation in each splitter and waveguide

separately, which means the simulation will take longer, and consume more memory, as in

the second case. This is illustrated in Fig. 5(b).

External input

(a) (b)

Fig. 5. Left: Topology used to simulate a complex system with ML and MC

nodes. Each circle represents a SOA. Splitters are not shown. Right: The sim-

ulation time and memory usage increases linearly with the number of SOAs.

Clearly there is an advantage by eliminating the ML nodes, both in terms of

speed and memory usage.

9

The total simulation time is mainly determined by the evaluation of the ODEs of the

individual SOAs and the matrix multiplication from equation (7). There is a clear benefit

of eliminating the ML nodes: the simulation speed is approximately halved as shown in

Fig. 5(a) (top). The calculation time for evaluating the ODEs is the same for both systems.

The memory usage is shown in the bottom graph of Fig. 5(a): It is a sum of the memory

allocated in C++ and in Python. The offset is due to initialization overhead in Python.

For all simulations, we used a buffer that stores 500 timesteps. Because we eliminated the

ML nodes, the memory requirements are greatly reduced. Since we use sparse matrices,

calculation time and memory requirements scale linearly as a function of the network size.

6. Conclusion

In this paper, we demonstrated a framework that enables modeling of optical circuits both

in the time and in the frequency domain. It is suited for calculating the steady state charac-

teristics of very large networks, and to model highly nonlinear systems in the time domain

after eliminating linear instantaneous components. By eliminating these components, we re-

duce the effective size of the network, and the time-domain simulation is speeded up. The

tool is very general and the internal variables can be expressed naturally depending on the

application domain, which makes it attractive for other dynamical systems such as electrical

circuits and neural networks.

7. Acknowledgements

This work is supported by the interuniversity attraction pole (IAP) Photonics@be of the

Belgian Science Policy Office and the ERC NaResCo Starting grant. M. Fiers acknowledges

the Special Research Fund of Ghent University. T. Van Vaerenbergh and K. Caluwaerts are

supported by the Flemish Research Foundation (FWO-Vlaanderen) for a PhD Grant.

References

1. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson,

“MEEP: A flexible free-software package for electromagnetic simulations by the FDTD

method,” Computer Physics Communications 181, 687–702 (2010).

2. E. Lambert, M. Fiers, S. Nizamov, M. Tassaert, and W. Bogaerts, “Python bindings for

the open source electromagnetic simulator meep,” Computing in Science and Engineering

(2010).

3. G. Agrawal, Nonlinear Fiber Optics, Third Edition (Optics and Photonics) (2007).

4. “http://www.aspicdesign.com/” .

5. “http://www.vpiphotonics.com/optical_systems.php” .

6. “http://www.photond.com/products/picwave.htm” .

10

7. “http://www.rsoftdesign.com/products.php?sub=System+and+Network&itm=

OptSim” .

8. P. Gunupudi, T. Smy, J. Klein, and Z. Jakubczyk, “Self-consistent simulation of opto-

electronic circuits using a modified nodal analysis formulation,” Advanced Packaging,

IEEE Transactions on 33, 979 –993 (2010).

9. T. Smy, P. Gunupudi, S. Mcgarry, and W. N. Ye, “Circuit-level transient simulation of

configurable ring resonators using physical models,” America 28, 1534–1543 (2011).

10. “http://photonics.intec.ugent.be/research/topics.asp?ID=138” .

11. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, and

J. Van Campenhout, “Toward optical signal processing using photonic reservoir comput-

ing,” Optics Express 16, 11182–11192 (2008).

12. T. A. Davis and E. P. Natarajan, “Algorithm 8xx: Klu, a direct sparse solver for circuit

simulation problems,” .

13. T. A. Davis, Direct methods for sparse linear systems (2006).

14. K. Stanley, “Klu: a clark kent sparse lu factorization algorithm for circuit matrices.”

(2004 SIAM Conference on Parallel Processing for Scientific Computing (PP04), 2004).

15. B. Maes, M. Fiers, and P. Bienstman, “Self-pulsing and chaos in series of coupled non-

linear micro-cavities,” Physical Review B11 7911 (200911).

16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes:

The art of scientific computing,” (2007).

17. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel

reservoir computing using optical amplifiers,” IEEE Transactions on Neural Networks

22, 1469–1481 (2011).

11

