
AIOLOS: middleware for improving mobile application

performance through cyber foraging

Tim Verbelena, Pieter Simoensa,b, Filip De Turcka, Bart Dhoedta

aGhent University – IBBT, Department of Information Technology,
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium

bGhent University – IBBT, Ghent University College, Department INWE,
Valentin Vaerwyckweg 1, 9000 Gent, Belgium

Abstract

As the popularity of smartphones and tablets increases, the mobile platform
is becoming a very important target for application developers. Despite re-
cent advances in mobile hardware, most mobile devices fail to execute com-
plex multimedia applications (such as image processing) with an acceptable
level of user experience. Cyber foraging is a well-known computing tech-
nique to enhance the capabilities of mobile devices, where the mobile device
offloads parts of the application to a nearby discovered server in the network.

Although first introduced in 2001, cyber foraging is still not widely adopted
in current smartphone platforms or applications. In this respect, two major
challenges are to be tackled. First, a suitable adaptive decision engine is
needed to determine the optimal offloading decision, that takes into account
the potentially high and variable latency between the device and the server.
Second, an integrated cyber foraging platform with sufficient support for ap-
plication developers is not publicly available on popular mobile platforms
such as Android.

In this paper, we present AIOLOS, a mobile middleware framework for
cyber foraging on the Android platform. AIOLOS uses an estimation model
that takes into account server resources and network state to decide at run-
time whether or not a method call should be offloaded. We also introduce
developer tools to integrate the AIOLOS framework in the Android platform,
enabling easy development of cyber foraging enabled applications. A proto-
type implementation is presented and evaluated in detail by means of both
a chess application and a newly developed photo editor application.

Keywords: Distributed Systems, Cyber Foraging, Mobile Computing

Preprint submitted to Journal of Systems and Software June 1, 2012



1. Introduction

In the past decade, one has witnessed an increasing popularity of smart-
phones. According to Gartner this trend will continue, estimating an increase
of 57.7% on smartphone sales in 2011 [1]. Due to advances in mobile hard-
ware (e.g. display resolution and CPU power) and improved mobile network
connectivity, new and more advanced services can be offered on mobile de-
vices. The introduction of application markets on various mobile platforms
has eased the publishing of applications, resulting in a myriad of mobile appli-
cations such as social and messaging clients, location-based services, games
and many more. As applications and services become increasingly impor-
tant, one can also witness a shift from mobile devices to ecosystems, such
as Google’s Android [2], with people no longer only buying a device, but an
integrated combination of a device, a platform, applications and services.

Although the capabilities of mobile devices are increasing, they still can-
not match their desktop counterparts, especially for complex multimedia ap-
plications such as image and video processing, object or face recognition and
augmented reality applications. This encourages the use of cyber foraging to
augment the capabilities of the mobile device by outsourcing CPU intensive
parts of the application to remote servers [3]. These remote servers can be
personal machines residing in the LAN network, as well as virtual machines
in the cloud, where computing power is offered on demand [4], as shown in
Figure 1.

Figure 1: A mobile device’s capabilities are enhanced by offloading to a server available
either nearby or far away in the cloud.

2



Although considerate research effort has been spent on designing and
developing cyber foraging systems [5][6][7][8], this paradigm is still not widely
adopted in current smartphone application development. Two issues still
need to be addressed. First, an adaptive offloading strategy is needed that
copes with the limited bandwidth in wireless networks as well as with high
and variable network latencies in a WAN environment [9]. Second, none
of these cyber foraging systems are integrated in a mobile ecosystem, with
sufficient developer support to ease the development of cyber foraging enabled
applications. Only Cuckoo [10] does an effort offloading Android services and
provides tools to assist in the build process, but the developer still has to
define interfaces for computationally intensive parts and write both a local
and a remote service implementation.

To address those two issues, we present AIOLOS1: a cyber foraging frame-
work for Android. AIOLOS is built on OSGi [11], a module system and ser-
vice platform in Java, which enables transparent monitoring and mobile code.
For each method call the framework estimates the execution time for both
local and remote execution based on the argument size, and then chooses the
appropriate execution location. Afterwards, the estimation parameters are
updated, taking into account the new profiling data and changing network
parameters. In this way the system will optimize the application execution,
taking into account the device capabilities and the network connectivity,
without putting an additional burden on the application developer.

The second issue is addressed by integrating AIOLOS in the Android
platform and providing the developer support for creating cyber foraging
enabled applications. We present a plugin for the Eclipse IDE, the most
popular Android development environment, that allows the developer to an-
notate possible offloadable classes. At build time the plugin generates OSGi
bundles that publish the annotated classes as OSGi services, and an OSGi
runtime with the AIOLOS framework is embedded in the application.

To evaluate the AIOLOS framework we used the Eclipse plugin to enable
cyber foraging for an existing chess application on Android. We also devel-
oped a photo editing application to show the effectiveness of the estimation
model.

The remainder of this paper is structured as follows. Section 2 gives an
overview of related work on code migration and cyber foraging. Section 3

1aiolos is an ancient greek word meaning “quickly changing, adapting”

3



describes the algorithm for deciding when to offload and Section 4 shows how
we estimate performance from a history based profile. Section 5 describes
the architecture of our offloading middleware. In Section 6, we discuss imple-
mentation details of how AIOLOS is integrated in Android, and in Section 7
we present the programming model and developer tools to ease application
development. In Section 8 we evaluate the framework using relevant use case
scenarios. We conclude this paper in Section 9 and discuss the limitations
and open problems of our approach.

2. Related work

The idea of using remote servers, also called surrogates, to augment
the processing capabilities of mobile devices was first proposed by Satya-
narayanan [3] as cyber foraging. Early cyber foraging systems such as Spec-
tra [5] and Chroma [12] use a tactics based scheduler to pick methods to out-
source taking into account history-based resource predictions [13]. The most
important drawback of these first systems is that they rely on pre-installed
remote procedure calls, implying that all remoting has to be programmed by
the application developer. To facilitate application development the Vivendi
tactics description language and stub generator were proposed [14], where the
application developer declares a tactics file declaring remote operations, their
parameters and fidelities from which stubs are generated. With AIOLOS, the
developer marks offloadable methods using source code annotations, which
avoids the need for a complex language and syntax.

Later systems make use of mobile code, where the system partitions the
software at runtime and migrates code to the server, with minimal interfer-
ence from the developer. Several systems exist, offloading either at a class,
method or software component level.

Gu et al. [15] present an adaptive offloading framework for offloading Java
classes, using a fuzzy control model. Ou et al. [16] also use class outsourcing,
in combination with a (k+1) partitioning algorithm. Because applications
typically consist of hundreds to thousands of classes, extensive monitoring
and computation is needed to identify classes to offload, making this approach
less suited to adopt at runtime.

MAUI [7] uses extensive profiling to decide to offload method calls on the
Microsoft .Net runtime environment. The goal is to optimize the energy us-
age, and an Integer Linear Programming (ILP) approach is used to optimize

4



the deployment. The goal of our approach is to optimize the execution time,
and ILP is not used as it is too time consuming to solve for each method call.

The Scavenger cyber foraging system [6] outsources Python methods with
a scheduler using history-based profiling. Similar to AIOLOS, Scavenger
requires the application developer to annotate methods that are candidates
for remote execution. Based on these annotations, the system takes into
account the size or the value of the input parameters of the method call to
estimate the execution time at runtime (e.g. an image processing filter will
take longer on a larger image). Scavenger however does not support callbacks
and assumes a constant network latency which is statically defined per device,
whereas in AIOLOS, the network latency is estimated from previous remote
method calls.

Zhang et al. [17] propose a mobile code framework where platform inde-
pendent software components – called weblets – can be outsourced to the
cloud based on a Bayesian learning scheduler. Giurgiu et al. [18] and Verbe-
len et al. [19] use OSGi components to build a graph model of the software
and use graph cutting algorithms to distribute these components. Han et
al. [20] present a flow-based algorithm to partition software components,
which is evaluated by simulation. The drawback of these component based
approaches is that a software component will not continuously generate the
same load, potentially leading to instable partitionings.

Kemp et al. [10] present Cuckoo, an offloading framework for Android that
is able to offload Android services. An extra build step is introduced to make
an existing Android application capable of offloading its service components.
However, it is still up to the developer to choose what to execute remotely.
The approach also does not support callbacks from the offloaded code.

As surrogates for remote execution, Goyal et al. [21] propose the usage of
virtual machine technology. Because the deployment of virtual machines in a
cloud can lead to high WAN latencies, Su et al. present Slingshot [22], where
the VMs are co-located with the wireless access point. Satyanarayanan et
al. [9] also place the surrogates, called “cloudlets”, in the physical proximity
of the mobile user. Chun et al. [23] use virtualization to create a clone of
the mobile device platform to be able to migrate parts of mobile applications
without modification.

In this paper we describe AIOLOS, a cyber foraging framework that com-
bines the approaches at both component and method level. On the one hand
software components are used as unit of deployment to offload, which keeps
the overhead to monitor at runtime low as applications only consist of tens

5



of components. On the other hand, offloading decisions are made for each
method offered by the components and the framework will select methods to
offload. The execution time of method calls is estimated based on the size
of their arguments, also taking callbacks into account. The network char-
acteristics are estimated from the duration of previously monitored remote
method calls, using a random sample consensus algorithm.

To facilitate the development of cyber foraging enabled applications, we
provide developer tools that integrate the AIOLOS framework in Android
applications. The developer only has to annotate offloadable classes, and an
extra build step will refactor the source code and incorporate AIOLOS in the
application, which makes it easy to use AIOLOS in new as well as in existing
Android applications.

3. Decision algorithm for offloading method calls

When a method of an annotated class is called, a decision has to be
made whether to execute the method call locally or on a discovered remote
surrogate. The two most important objectives to optimize are execution
time [6] and energy [7]. We present two decision models that can be used in
AIOLOS to optimize each of these objectives.

3.1. Optimize execution time

When optimizing the execution time, the optimal decision is to call the
remote instance when the remote execution time is smaller than the local
execution time, or as depicted in Figure 2 if Tremote < Tlocal.

In the following discussion we assume that callback methods do not need
much CPU resources nor send much data compared to the other service
methods. This assumption holds if callback functions are just handling small
intermediate updates of the GUI. Figure 2 shows an example offloading sce-
nario, where A performs a remote call of B. If C is called by B, it is preferable
to also execute this component on the server, because the cost of the call-
back from C to A is assumed small. If the callback method takes large input
arguments, it could be preferable to also keep C local. However, this solution
can only be found using a graph cutting algorithm, which causes significant
overhead to calculate before every service method call [8].

To estimate the local execution time Tlocal, a history based profile is main-
tained for each service method, as described in Section 4. To estimate the

6



A

client

B

client

local execution remote execution

C

client

A

client

B

server

C

server

1

2
3

4
5

6
7

8

910

11

1
2

3
4

5
6

7
8

9
10

11

T
lo

c
a
l

T
re

m
o
te

Figure 2: Time needed for local execution Tlocal (on the left) and for remote execution
Tremote (on the right).

remote execution time Tremote more information is needed. First, we intro-
duce the speedup factor α of the processing time of the remote method calls,
as the server’s CPU is likely to be faster than the processor of the mobile
device (2, 4, 8 and 10 in Figure 2). Two parameters β and γ represent the
network bandwidth and latency, and are used to estimate the network round
trip time as a linear function of the bytes sent for the remote call and call-
backs (1,11 and 5,7 in Figure 2). The processing time of the callback (6 in
Figure 2) remains the same, as a callback is always executed locally. The
formula to estimate T̂remote thus becomes:

T̂remote =
1

α
×

∑

i∈RM

(T̂CPU,locali) +
1

β
× (A+R) + γ

+
∑

j∈CM

(T̂CPU,localj +
1

β
× (Aj +Rj) + γ)

With RM the collection of remotely executed methods, the estimated
local processing times T̂CPU,locali are summed and divided by the speedup
factor α. The network time of the remote method call is estimated using β,
γ and the argument size A and estimated return size R. Finally, CM defines
the collection of callbacks, for which the local processing time is added, as
well as an additional estimated round trip time. Parameters α, β and γ
are determined using history information of local and remote executions, as
described in Section 4.

7



3.2. Optimize energy

When optimizing the energy usage, the method should be offloaded if
energy would be saved by remote execution. As stated by [24], a simple
decision model is to offload if the energy consumed by sending and receiving
bytes to and from the server is smaller than the energy saved by offloading
the computation, thus to offload when

Êsaved = ECPU ×
∑

i∈RM

(T̂CPU,locali)− ETR × A− ERCV ×R

−
∑

j∈CM

(ERCV × Aj + ETR ×Rj)

> 0

In this case, the decision will depend on the energy model of the mobile
device, where ECPU denotes the energy consumed per time unit by the CPU,
and ETR and ERCV respectively denote the energy cost for transmitting and
receiving a byte. However, it is difficult to estimate these parameters, which
are hard to measure using only software tools, and depend on the hardware
and the hardware state [17]. Therefore, in the remainder of this paper we
focus on optimizing execution time.

4. Parameter estimation using history based profiles

4.1. Estimating Tlocal and R

To estimate the remote execution time with the formula presented in
Section 3, first the local execution time Tlocal and the return size R of the
method need to be estimated. This is done using a history based profile,
which can be built at runtime, or can be provided from previous sessions. In
[13] it is shown that depending on the application, the load can be accurately
predicted from history logs, especially when application specific knowledge
about the input parameters is available. In this work, we assume to have no
a priori knowledge on the application, and the only parameter we can use to
predict the execution time of a method is the size of the input parameters.

For each method call that is executed locally, the framework records the
size of the arguments, the size of the returned result and the local execution
time. The next time the method is called, the local execution time and
the size of the result are estimated by looking up the closest data points

8



(with respect to argument size) in the history based profile, and by linearly
interpolating between these values. To limit the size of the profile and to
speed up data lookup in the profile, close data points are clustered in buckets,
for which only an average value is kept, as described in [6].

When the argument size of the method does not relate to the execution
time, we will end up with a profile containing average execution times for
each argument size, which will converge to the same value for each argument
size: the average execution time of the method.

4.2. Estimating α, β and γ

Parameters α, β and γ can be determined using history information of
local and remote executions. The speedup factor α is the ratio of the process-
ing time of local executions and the processing time of the method call on the
server. Parameters β and γ can be estimated as the measured bandwidth and
latency of the network. In previous work [13] [7] the network characteristics
were estimated using a moving average of the network transfer time. The
main disadvantage is that a single outlier measurement, although averaged,
can quickly reduce the quality of the predicted network transfer time.

In order to reduce the effect of outlier measurements, we estimate the
parameters α, β and γ from k previous remote method calls using a ran-
dom sample consensus (RANSAC) algorithm [25], which is commonly used
in computer vision, but is also useful in other estimation problems. The al-
gorithm will pick a subset of the input data as hypothetical inliers, and fit
a model to those. All other data is then fitted to this model, and if data-
points fit the model well, they are added to the inlier subset. Finally, the
model is re-estimated using all of the found inlier data points, and the error
of the model to the inliers is calculated. This proces is repeated a number of
iterations and the model with the smallest error is returned.

The input data to estimate α is the ratio of the (estimated) local pro-
cessing time and the (measured) remote processing time of the last k remote
method calls. In each iteration, the algorithm randomly selects one ratio
value and the absolute difference with the other values is calculated. The
other values for which this difference is beneath a predefined threshold are
marked as inliers, and the resulting α is the average of this inlier set.

To estimate β and γ, for each of the last k offloaded method calls the
time needed for sending (A + R) bytes is calculated as the difference of the
remote time measured at the mobile device and the execution time measured
at the server. Iteratively two points are randomly picked and a line is fitted

9



through these points. All other points are classified as inliers if the error to
the line is beneath a certain threshold (i.e. 10%). Finally, a linear regression
is calculated over the set of inliers. This enables robust estimation of the
model parameters without errors caused by outliers.

5. AIOLOS architecture

First, relevant background information on the Android platform and its
components is provided, and the use of OSGi is motivated. Next, the archi-
tecture of the AIOLOS cyber foraging framework is presented.

5.1. Android

Android is an open source platform developed by the Open Handset Al-
liance targeted at smartphones, tablets and other devices with limited re-
sources. Android applications are written in Java and compiled to Dalvik
bytecodes, which run on the Dalvik Virtual Machine. Android applica-
tions are composed of different components: Activities, Services, Content
Providers and Broadcast Receivers.

An Activity provides the basic interaction logic with the user, containing
a user interface and offering some basic computing capabilities. An Android
Service is a component that runs in the background, mainly used for long-
running background processes, e.g. playing music or fetching data without
blocking the user interface. Other components can bind to a Service and
communicate with the Service through inter process communication (IPC).
Content Providers are used for managing a shared set of application data.
Finally, Broadcast Receivers are small components that respond to system-
wide broadcast announcements e.g. an announcement that the battery is
low.

5.2. OSGi

OSGi [11] is a service oriented module management system in Java al-
lowing to dynamically load and unload software modules – called bundles –
at runtime. OSGi bundles can expose a service interface by registering an
implementation of this interface with the OSGi service registry. When a bun-
dle wants to call another service, it queries the service registry for available
implementations. The portability of Java enables the execution of the same
code on different platforms and architectures, facilitating remote execution

10



Bundle 3

Bundle 1

Bundle 2

P
ro

x
y
 2

P
ro

x
y
 1

P
ro

x
y
 2

P
ro

x
y
 1

ProxyManager ProxyManager

Deployment

Manager
Deployment

Manager

Offloading

Logic

Bundle

Monitor

Bundle

Monitor

R
-O

S
G

i

R
-O

S
G

i

Client
Server

Bundle 1

Bundle 2

s1

s2

s1

s2

s1s1

s2 s2

Discovery Discovery

Figure 3: Overview of the offloading middleware. The Proxy Manager creates proxies
for the registered services (s1 and s2) of the application bundles. These proxies can
switch between local and remote method execution and monitor all method calls. The
Bundle Monitor aggregates this monitor information to build profiles of all methods called.
This information is used by the Offloading Logic to instruct the Deployment Manager to
outsource bundles, or to update the proxy policies when to offload.

and code migration. Because OSGi was first designed for embedded devices,
it is also lightweight.

The biggest hindrance for the straightforward use of OSGi in this context,
is the fact that the developer has to build his application as a collection of
OSGi bundles, which is not trivial, especially not on the Android platform.
To cope with this issue, we present extra tools for the Eclipse IDE in Sec-
tion 7 that convert a standard Android application into an OSGi enabled
application, with a minimum of effort for the application developer.

5.3. AIOLOS architecture

The architecture of the AIOLOS framework is shown in Figure 3. Both
the client and the server run an OSGi container with AIOLOS bundles and
application bundles. R-OSGi [26] is used for remote method invocations
across OSGi platforms.

Each application bundle’s service interface contains a number of service
methods, which will be monitored and profiled at runtime by the framework.
Using this method profile AIOLOS decides for each method call whether it
will be executed locally or remotely.

11



The middleware is composed of the following OSGi bundles:

1. The Proxy Manager is responsible for creating and managing prox-
ies for each application bundle’s services. By proxying each registered
service, the middleware can on the one hand decide to forward a ser-
vice call to a remote service implementation rather than to the local
one, and on the other hand gather monitoring information of all ser-
vice calls. In order to proxy services, the Proxy Manager uses Service
Hooks, introduced in version 4.2 of the OSGi specification [11]. When
an application bundle registers a service with the OSGi framework, the
Proxy Manager gets a callback through the Listener Hook, and gener-
ates a proxy for this service which will also register the service with the
OSGi service registry. When a bundle looks up the service in the OSGi
service registry, the Proxy Manager can hook in using the Find Hook
and return the service registered by the proxy, hiding the original ser-
vice implementation. In this way, all monitoring and remote execution
happens transparently to all application bundles. This also allows to
handle errors transparently, for example when the network connection
is lost during remote execution, a time-out is detected by the proxy
and the method can be executed locally.

2. The Bundle Monitor gathers monitor information of all application
bundles. When a service method is called, the Bundle Monitor gets
notified by the involved proxy and captures the size of the input argu-
ments, the size of the return value and the execution time of the method
call. Using this information, an execution profile for each method is
constructed, which is used to identify candidate methods for remote
execution by the Offloading Logic bundle.

3. The Offloading Logic implements the algorithm to decide whether to
offload a method or not. This component periodically checks whether
the estimated execution times match the actual monitored values pro-
vided by the Bundle Monitor, and if necessary parameters α, β and γ
are recalculated as described in Section 4. The Offloading Logic will
also instruct the Deployment Manager to copy bundles to the server
when methods are identified that would benefit from offloading, in case
the associated bundles are not available at the server yet. Because of
the component based architecture of AIOLOS, this bundle can be eas-
ily replaced by a bundle implementing another decision strategy, e.g.
for optimizing energy.

12



4. The Deployment Manager can migrate bundles to remote servers
by sending the bytecodes to the server and installing the bundle and
its dependencies there on the OSGi runtime.

6. AIOLOS and Android integration

To integrate AIOLOS and Android, an OSGi container has to be de-
ployed on the Android platform. One solution, proposed and implemented
by ProSyst [27], is to create an Android OSGi container application, which
can be executed as a regular Android app. Developers code their applica-
tion as a number of OSGi bundles, which can be deployed and started in
the OSGi container. However, there are a number of drawbacks to this ap-
proach. First, a clear separation remains between Android applications and
OSGi applications, as the OSGi container has to be started first before one
can access the OSGi applications. Second, this forces the developer to create
OSGi bundles instead of a regular Android application, and to rely on an
SDK provided by ProSyst to access Android internals.

Therefore, we choose to embed an OSGi container within the Android
application, and only package offloadable components as OSGi bundles as
depicted in Figure 4. In order to let the Android application communicate
with the bundles, the bundle’s services can be looked up in the OSGi con-
tainer. The Android application can also register callback services with the

App 

Bundle 1

OSGi Runtime

Android

App

App 

Bundle 2

AIOLOS 

Application .apk

Figure 4: An OSGi container is embedded within the Android application. Offloadable
parts of the Android application are packaged as OSGi bundles and deployed in the em-
bedded OSGi container where the AIOLOS framework handles the cyber foraging func-
tionalities. The Android application can lookup services through the OSGi runtime, and
can also register callback services with the OSGi runtime.

13



OSGi runtime, so the OSGi bundles are able to make callbacks. In order that
the offloadable components can be executed both on the Android device and
on a remote server, the code is compiled in both the Dalvik bytecode format
and the regular Java bytecode format.

The resulting application acts as a regular Android application, and no
additional SDK is needed. However, a considerate burden is put on the appli-
cation developer when he wants to develop an AIOLOS enabled application.
The following steps are required to convert a regular Android application to
an offloadable application:

1. Identify parts of the application suitable to offload.

2. Create a separate OSGi project for each offloadable part.

3. Identify and create service interfaces that will act as access points to
the bundle.

4. Identify possible callback interfaces that allow the bundle to perform
certain callbacks to the rest of the application.

5. Write the necessary OSGi code that manages the lifecycle of the bundle.
This includes correct initialization of the bundle, registration of the
bundle’s services, searching for dependent services, etc.

6. Build and package each OSGi bundle, including a correct bundle man-
ifest describing the OSGi bundle and its dependencies.

7. Include all the resulting OSGi bundles as resources in the Android
project.

8. Embed an OSGi runtime in the Android application, that manages all
the generated OSGi bundles, together with the AIOLOS framework
bundles.

This task can be tedious and error prone, and requires a lot of knowledge
about the OSGi specification and APIs. To simplify this process, we de-
veloped a plugin for the Eclipse IDE that automates these steps as much as
possible and reduces the task of the application developer to step 1: identify-
ing offloadable parts of the application using annotations which is discussed
in Section 7.

7. Development tools for AIOLOS

In order to identify offloadable parts of the application, the developer
can use Java Annotations to indicate classes that should act as services for

14



offloadable components. There are a few rules the class must adhere to in
order to enable cyber foraging.

1. The class needs a no-argument constructor to be present, either explic-
itly or implicitly, to enable the framework to create class instances.

2. All arguments and return values used in the public class methods should
be serializable, to be able to send these values over the network.

3. The class should not have dependencies to the Android APIs, as these
are platform specific and are likely not present on the surrogate.

4. At this moment only stateless services are supported for offloading, so
all state needed should be passed as a method argument.

When one of these rules is violated, the build tool will show an error or
warning message indicating the problem, if possible hinting the developer
how to fix the issue (e.g. by indicating which argument type should be made
serializable).

An example offloadable class is given in Listing 1. The Worker class has
one stateless public method doWork. In order to work the Return class should
be serializable.

@Off loadable
public class Worker {

public Return doWork ( ) {
// do something

}
}

Listing 1: Code snippet of a class annotated @Offloadable.

When the builder finds an annotated class that adheres to the rules, a
service interface is extracted from this class. This service interface is then
registered with the OSGi runtime at startup, and an implementation object
is bound to this interface. The extracted service interface and its implemen-
tation are given in Listing 2.

public interface WorkerService {
public Return doWork ( ) ;

}

public class Worker implements WorkerService {
public Return doWork ( ) {

// do something
}

15



}

Listing 2: After refactoring a service interface is extracted from the offloadable class.

Next, all method calls to the offloadable class are automatically refac-
tored. Instead of invoking the method on a known reference to this object,
first a reference will be looked up in the OSGi registry. Suppose for exam-
ple that the application contains a button that executes the onWork method
when the button is clicked, a sample onClick method is given in Listing 3.

// method c a l l e d when c l i c k e d on but ton
public void onCl ick ( ) {

Worker w = new Worker ( ) ;
Return r = w. doWork ( ) ;
// p r i n t r e s u l t on screen

}

Listing 3: Code snippet of a button onClick method calling the offloadable class.

Listing 4 shows the refactored onClick method. A reference to an imple-
mentation of the WorkerService interface is looked up in the OSGi registry.
The OSGi runtime is wrapped in a singleton class so that the object is ac-
cessible from anywhere in the application.

public void onCl ick ( ) {
WorkerService w = null ;
w = OSGiRuntime . ge t In s tance ( ) . l ookupServ i ce (WorkerService .

class . getName ( ) ) ;
Return r = w. doWork ( ) ;
// p r i n t r e s u l t on screen

}

Listing 4: Refactored method call to the offloadable class. The reference is looked up with
the OSGi Runtime.

Because the offloadable class has to be executable on a surrogate, it can-
not contain dependencies to classes of the Android APIs, as these are specific
to the Android OS, and hence indeed not executable at the surrogate. This
type of calls are often system calls to the mobile device hardware. However,
dependencies of the offloadable class can still invoke system calls. If this
is the case, a callback service interface is extracted and registered with the
OSGi runtime. As the system calls can only be executed on the device itself,
this callback service cannot be outsourced.

Next, for each offloadable class an OSGi bundle is formed based on the
class dependency graph. Classes depending on a single offloadable class are

16



added to the OSGi bundle of the offloadable class. Classes that are shared
between multiple bundles are put in a separate OSGi bundle. An example is
shown in Figure 5, where a dependency graph of an application’s classes is
given. Classes A, G and J are dependent on the Android SDK, and therefore
are put in the Android application part that cannot be outsourced. Classes
C and H are marked as offloadable, thus two application bundles will be
formed. Because classes D and E are only dependent on C, they will be
placed in the application bundle with C. The same goes for I that is put in
the application bundle with H. Classes B and F are shared between multiple
bundles and the Android dependent code, and therefore these bundles are
put in a shared bundle. Lastly the tool discovers a dependency of H to J,
which on its turn depends on the Android SDK. This means that J is marked
as a callback class from which a callback service is formed.

The build process starts with generating a bundle activator class for each
OSGi bundle, that manages the lifecycle of the bundle and registers the bun-
dle’s services with the OSGi runtime at startup. From the class dependency
graph also a correct bundle manifest is created, describing the resulting OSGi
bundle and its dependencies.

Finally, code is added to launch a Felix [28] OSGi runtime and AIOLOS
framework together with the generated OSGi bundles, and to set up all
service registrations when the Android application is started. The remain-

A

{Android SDK}

G

C

B

H

D

E

J

I

F

@Offloadable

@Offloadable

Android

App

Bundle

App Bundle 1

App Bundle 2

Shared

Figure 5: Bundles are formed from the class dependency graph. Classes C and H are
marked as offloadable by the developer, and will form application bundles with the classes
that only depend on them. Classes A, G and J depend on the Android SDK and will
be put in the Android application bundle that cannot be offloaded. Moreover J will be
marked as a callback class from which a callback service is formed. Classes B and F are
shared between the different bundles and are packaged as a shared bundle.

17



ing Android application code is built and bundled with the OSGi runtime,
AIOLOS and the generated bundles in an Android package (.apk) file that
can be installed on the Android device.

8. Evaluation results

We evaluate the effectiveness of mobile offloading using two example ap-
plications, shown in Figure 6. The first one is Honza’s Chess, an existing
open source chess game developed for Android [29]. The second application
is a photo editor application that enables the user to perform several im-
age filters such as blur, sharpening or histogram equalization on his photos.
When the user clicks an image, he first sees a preview window enabling him
to adjust the filter parameters. When the parameters are correctly set, the
image filter is performed on the whole image.

Both applications are developed as regular Android applications and can
also run as such. By using the annotations and Eclipse IDE tool presented
in Section 7 these applications are integrated in the AIOLOS framework
enabling to offload certain operations.

To show the effectiveness of mobile offloading, we have conducted experi-
ments on two Android devices: a Motorola Milestone, powered by a 600 MHz
ARM Cortex A8 processor running Android 2.2, and an LG Optimus 2x,
powered by a dual-core 1 GHz ARM Cortex A9 processor connected to a
WiFi access point. To offload parts of the application, we used a quad core
server clocked at 2.4 GHz deployed close to the mobile access point in the

(a) Honza’s Chess (b) Photo Editor

Figure 6: Two Android applications running with the AIOLOS framework. On the left
Honza’s Chess [29] and on the right a Photo Editor application.

18



LAN network, as well as a 2.6 GHz quad core server deployed in the Amazon
EC2 Cloud.

8.1. Estimation accuracy

To evaluate the estimation accuracy we compare three methods for esti-
mating the parameters α, β and γ. The first method is a moving average
(MA) method where for each remote method call a new value is measured
for α, β and γ as new = p × (measured) + (1 − p) × (old), with p = 0.75
for α and γ and p = 0.875 for β, as proposed in [30]. The advantage of this
method is that the estimated value quickly adapts to context changes, but
the disadvantage is that outlier measurements have a bad effect on the esti-
mation accuracy. The other two methods use the measurements of the latest
k remote method calls. The linear least squares (LLS) method calculates
the average over the k values of measured speedup factors α and a linear
least squares fit results in β and γ. The RANSAC method is the approach
presented in Section 4.

The three methods are compared in the following experiment using the
photo editor application on the LG Optimus 2x. We execute randomly a
sharpen filter, a color filter or a histogram equalization operation on a gener-
ated image with a width and height randomly selected between 100 and 1500
pixels. First we execute 100 operations locally in order to have some history
to estimate the local execution time. Next, 200 method calls are executed
remotely on the server in the LAN network. After each method call the mea-
sured remote execution time is compared to the estimated execution time
and the parameters α, β and γ are updated. The 0.1 to 0.9 percentiles of
the relative error for each of the three strategies, using a history of k = 5, 10
and 15 for the LLS and RANSAC methods are shown in Figure 7.

Although the LLS method uses more history for estimation, it performs
worse than the MA method. This is because an outlier measurement only
affects one estimation in the MA method, while it affects k estimations in
the LLS method. The RANSAC method outperforms the MA method, as it
tries to remove the effect of outliers in the measurements. When the amount
of history k increases, the RANSAC method becomes better, but the gain
becomes smaller as k increases: when increasing k from 10 to 15 the gain is
negligible.

Our experiments show that the RANSAC algorithm with k = 10 pro-
duces estimations within 10% of the measured values in 80% of the cases,
and adapting to a new context after five method calls. Figure 8 shows the

19



(a) k=5 (b) k=10

(c) k=15

Figure 7: The 0.1 to 0.9 percentiles of the relative error of the estimated remote execution
time using a moving average (MA), a least linear squares (LLS) and a RANSAC estimation
strategy. The LLS and RANSAC use a history of k = 5, 10 and 15 calls. RANSAC offers
the best results for larger history k.

estimated execution time versus the measured execution time for the blur
operation as a function of the argument size. The outliers present in the
actual execution times do not influence the estimation parameters, as they
are filtered out by the random sample consensus algorithm. As the argument
size increases, there is more spread in the values because of the increase in
network traffic.

Next, we also evaluate how the estimators react to a changing context.
Therefore, we conduct the same experiment, but we limit the bandwidth
using TC and Netem [31] on the Linux server. First we limit the bandwidth
to 10 Mbit/s and at a certain moment in time, we reduce the available
bandwidth to 5 Mbit/s, which could reflect a change in network conditions
(e.g. a switch from WiFi to 3G). Figure 9 shows how parameter β changes
over time for the three methods. Because the MA method only uses the latest
measurement, it already adapts to 5 Mbit/s after one method call. The LLS

20



Figure 8: Estimated versus the actual monitored execution time of a blur operation on
images of different size, using the RANSAC algorithm with k = 10.

approach uses all of k measurements, and thus will need k method calls before
adapting to the new bandwidth. The RANSAC method will choose the value
with most inliers, and thus will need k/2 method calls before adapting.

Table 1 shows the different values for parameters α, β and γ when offload-
ing to a remote server in the LAN network or to the cloud from the Motorola
Milestone and the LG Optimus 2x. The values for parameter α show that the
server in the cloud is around 25% faster than the one in the LAN network,
and the Optimus 2x is around 3 times faster than the Milestone. The values
for parameters β and γ are about the same for both devices and strongly
depend on the server location.

21



Table 1: Values of the parameters α, β and γ for both the Motorola Milestone and the
LG Optimus 2x when offloading to a server in the LAN network and to the Amazon EC2
cloud.

α β (Mbit/s) γ (ms)

LG Optimus 2x
LAN 3.35035 14.50 21.7
Cloud 4.04153 6.284 469.2

Motorola Milestone
LAN 11.1052 12.05 3.5
Cloud 14.1115 6.509 416.5

(a) k=5

(b) k=10

(c) k=15

Figure 9: The ability to adapt to a bandwidth change in time using a moving average
(MA), a least linear squares (LLS) and a RANSAC estimation strategy. The LLS and
RANSAC use a history of k = 5, 10 and 15 calls. The MA approach adapts after one
method call, the LLS and RANSAC need respectively k and k/2 method calls before the
bandwidth change is taken into account.

22



8.2. Honza’s Chess

For the chess application, we annotated the class that calculates the next
move of the AI player. The AI algorithm conducts a tree search to find
the best move. To limit the calculation time we thresholded the maximum
depth of the search tree. We executed the first 8 moves of a chess game and
compared the execution time of the AI algorithm executed on both devices
locally, as well as offloaded to the nearby server and the cloud.

The experiment was repeated 10 times and the average execution times
are shown in Figure 10. Offloading to the server in the LAN network always
performs best. Offloading to the cloud also outperforms local execution on
the Milestone, but the Optimus 2x can sometimes be slightly faster. The
reason the cloud execution is 1.5 to 2 seconds slower than the server in the
LAN network, is that the Chess implementation also performs screen updates
giving the user feedback about intermediate best found solutions, resulting in
callbacks during remote execution. These callbacks involve a communication
over a relatively high delay WAN network, thereby contributing to the remote
execution time. On average, offloading to the LAN network leads to a 80 to
90% increase in performance, and offloading to the Amazon EC2 Cloud offers

Figure 10: Execution time of the Chess AI algorithm for different chess moves for local
execution on both the Motorola Milestone and the LG Optimus 2x, as well as remote
execution on a remote server deployed in the LAN network and one deployed in the
Amazon EC2 Cloud. Error bars are omitted as standard deviations are too small to be
visible.

23



a 20 to 65% benefit, depending on the device and thus in this case AIOLOS
will always choose to offload.

One can also see a high fluctuation in the local execution times, while the
remote execution times remain more or less constant. This is due to the fact
that for local execution the task is CPU bound, and the calculation time will
depend on the number of possible moves to consider. As the machines at
the server side are much faster, here the task becomes data bound, and the
amount of data sent over the network will determine the execution time. Also
note that if the player wants to increase the difficulty, he would increase the
calculation depth threshold, resulting in higher calculation times and even
more gain of offloading.

In this application, the execution time will depend on the pieces on the
chess board, rather than the argument size. Therefore, AIOLOS will not
be able to accurately predict the local execution time, but rather return an
average execution time. However, for this use case this is sufficient to take
the correct decision and to offload the method.

8.3. Photo Editor

For the Photo Editor application, all image filters are annotated for pos-
sible remote execution. We performed an experiment using the sharpening
filter, which is one of the more complex implemented filters. Again we mea-
sure the local execution time on both mobile devices and the remote exe-
cution time when offloaded to a server in the LAN network and one in the
cloud. The sharpening filter is executed 30 times on three different image
sizes: 500×500, 1000×1000 and 1500×1500 pixels. The images are raw RGB
images, thus a large amount of data has to be sent back and forth in the case
of remote execution.

The average execution times are shown in Figure 11, together with the
error bars indicating the standard deviation. For the Milestone, remote ex-
ecution is always more beneficial than local execution. For the 1500×1500
image, we omitted the bar for the Milestone, as the execution time is over 30
seconds. The Optimus 2x is faster than execution on the cloud, but benefits
from remote execution on the server in the LAN network as the image size
gets higher (e.g. for the 1500×1500 remote execution is 23% faster). In this
case, as AIOLOS uses the input size of the method call to estimate local
and remote execution time, the method call will only be offloaded when the
image size is large enough to offer a significant gain when executed remotely.

24



Figure 11: Execution time of a sharpening filter on a 500×500, 1000×1000 and 1500×1500
RGB image for local execution on both the Motorola Milestone and the LG Optimus 2x,
as well as remote execution on a remote server deployed in the LAN network and one
deployed in the Amazon EC2 Cloud. In the case of the 1500x1500 image local execution
on the Milestone is omitted for the clarity of the figure and was more than 30s.

Also note that the standard deviation increases with the latency to the
remote server. In order to make the application more suitable for (cloud)
offloading, one could try to lower the data communication, e.g. by sending
the JPEG images instead of the raw images.

8.4. AIOLOS overhead

The dominant overhead of AIOLOS is introduced when the application
starts up for the first time. Depending on the application, three to five
seconds are added to the startup time, measured on the LG Optimus 2x,
to initialize the OSGi framework and to install and setup all the framework
and application bundles. Each method call of an offloadable method passes
through a proxy, which will record the execution time and calculate the size
of the arguments and return value. This causes a few additional milliseconds
of overhead per method call, which is negligible in the presented use cases.
A history based profile of previous local method calls is maintained for each
offloadable method, and the size can be limited by a predefined threshold.
For the photo editor application 20 to 30 local method calls were already
sufficient to accurately predict the local execution time.

25



8.5. Development tools

The development tools described in Section 7 greatly simplify the devel-
opment process. We only had to add six annotations to the photo editor
application, and one to the chess application, from which all components
are generated automatically. After preprocessing, the tools add 574 lines of
code to the photo editor application, and 332 to the chess application, which
accounts for the extraction of service interfaces, the registering and lookup
of services and the initialization of the OSGi framework. Each project is also
split up into different subprojects for each generated bundle, and the Felix
OSGi runtime and AIOLOS framework bundles are automatically added to
the project. The application developer needs no knowledge about the OSGi
specification and programming model, as this is handled transparently by
the development tools.

9. Conclusion

In this paper we presented AIOLOS, a cyber foraging framework for An-
droid, built on the OSGi module system and service platform. Given a num-
ber of candidate methods for offloading provided by the application devel-
oper, AIOLOS decides which of these methods should be executed remotely
in view of the current context, and migrates the code at runtime to a dis-
covered server. For each method call, AIOLOS decides whether the call is
better executed remotely or locally, using a history based estimation model
of the network and the processing speed of the remote server.

In order to transparently develop cyber foraging enabled applications, we
provide the necessary tools that allow application developers to benefit from
the AIOLOS framework only by annotating their existing Android applica-
tions.

To show the effectiveness of our approach, we annotated two Android
applications for AIOLOS: Honza’s Chess, an existing open source chess game,
and an in-house developed photo editor application. Using these applications
we show the benefits from cyber foraging by offloading to a server in the LAN
network, as well as to a server deployed in the Amazon EC2 Cloud. For the
specified use cases offloading offers gains of 20 to 90% in execution time
depending on the mobile device capabilities, the network connectivity and
the input parameters of the method calls. AIOLOS is able to estimate the
remote execution time upfront with a relative precision of 10% for 80% of
the method calls, using a random sample consensus algorithm. It was shown

26



that this algorithm outperforms methods based on moving averages and least
linear square fits.

As future work we plan to support stateful offloading, which introduces
the need for correct data synchronization. In this aspect we can also in-
vestigate operations on data shared between multiple users in collaborative
scenarios. Another research direction is to apply cyber foraging for energy
saving. Here we can reuse our approach, but an accurate energy model of
the mobile device is needed.

10. Acknowledgement

Tim Verbelen is funded by Ph.D grant of the Fund for Scientific Research,
Flanders (FWO-V).

References

[1] Gartner Group, 2011 press releases,
http://www.gartner.com/it/page.jsp?id=1622614.

[2] M. Butler, Android: Changing the mobile landscape, IEEE Pervasive
Computing 10 (2011) 4–7.

[3] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE
Personal Communications 8 (2001) 10–17.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud com-
puting and emerging IT platforms: Vision, hype, and reality for deliver-
ing computing as the 5th utility, Future Generation Computer Systems
25 (6) (2009) 599–616.

[5] J. Flinn, S. Park, M. Satyanarayanan, Balancing performance, energy,
and quality in pervasive computing, in: ICDCS ’02: Proceedings of
the 22nd International Conference on Distributed Computing Systems
(ICDCS’02), IEEE Computer Society, 2002, pp. 217–226.

[6] M. D. Kristensen, N. O. Bouvin, Scheduling and development support in
the scavenger cyber foraging system, Pervasive and Mobile Computing
6 (6) (2010) 677–692, special Issue PerCom 2010.

27



[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, P. Bahl, Maui: making smartphones last longer with code
offload, in: MobiSys ’10: Proceedings of the 8th international conference
on Mobile systems, applications, and services, ACM, 2010, pp. 49–62.

[8] T. Verbelen, T. Stevens, P. Simoens, F. De Turck, B. Dhoedt, Dynamic
deployment and quality adaptation for mobile augmented reality appli-
cations, J. Syst. Softw. 84 (2011) 1871–1882.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-
based cloudlets in mobile computing, IEEE Pervasive Computing 8 (4)
(2009) 14–23.

[10] R. Kemp, N. Palmer, T. Kielmann, H. Bal, Cuckoo: a Computation
Offloading Framework for Smartphones, in: ICST Conference on Mobile
Computing, Applications and Services, MobiCASE, 2010.

[11] The OSGi Alliance, OSGi Service Platform, Core Specification, Release
4, Version 4.2, aQute, 2009.

[12] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, H.-I. Yang,
The case for cyber foraging, in: EW 10: Proceedings of the 10th work-
shop on ACM SIGOPS European workshop, ACM, 2002, pp. 87–92.

[13] D. Narayanan, M. Satyanarayanan, Predictive resource management for
wearable computing, in: Proceedings of the 1st international conference
on Mobile systems, applications and services, MobiSys ’03, ACM, 2003,
pp. 113–128.

[14] R. K. Balan, D. Gergle, M. Satyanarayanan, J. Herbsleb, Simplifying
cyber foraging for mobile devices, in: Proceedings of the 5th interna-
tional conference on Mobile systems, applications and services, MobiSys
’07, ACM, 2007, pp. 272–285.

[15] X. Gu, A. Messer, I. Greenberg, D. Milojicic, K. Nahrstedt, Adaptive
offloading for pervasive computing, IEEE Pervasive Computing 3 (3)
(2004) 66–73.

[16] S. Ou, K. Yang, J. Zhang, An effective offloading middleware for perva-
sive services on mobile devices, Pervasive and Mobile Computing 3 (4)
(2007) 362–385.

28



[17] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, L. Yang,
Accurate online power estimation and automatic battery behavior based
power model generation for smartphones, in: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, CODES/ISSS ’10, ACM, 2010, pp. 105–114.

[18] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, G. Alonso, Calling the cloud:
enabling mobile phones as interfaces to cloud applications, in: Proceed-
ings of the 10th ACM/IFIP/USENIX International Conference on Mid-
dleware, Middleware ’09, Springer-Verlag New York, Inc., 2009, pp. 5:1–
5:20.

[19] T. Verbelen, R. Hens, T. Stevens, F. De Turck, B. Dhoedt, Adaptive
online deployment for resource constrained mobile smart clients, in: Mo-
bile Wireless Middleware, Operating Systems, and Applications, Vol. 48,
Springer Berlin Heidelberg, 2010, pp. 115–128.

[20] S. Han, S. Zhang, J. Cao, Y. Wen, Y. Zhang, A resource aware software
partitioning algorithm based on mobility constraints in pervasive grid
environments, Future Generation Computer Systems 24 (6) (2008) 512–
529.

[21] S. Goyal, J. Carter, A lightweight secure cyber foraging infrastructure
for resource-constrained devices, in: WMCSA ’04: Proceedings of the
Sixth IEEE Workshop on Mobile Computing Systems and Applications,
IEEE Computer Society, 2004, pp. 186–195.

[22] Y.-Y. Su, J. Flinn, Slingshot: deploying stateful services in wireless
hotspots, in: MobiSys ’05: Proceedings of the 3rd international con-
ference on Mobile systems, applications, and services, ACM, 2005, pp.
79–92.

[23] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, Clonecloud: Boosting
mobile device applications through cloud clone execution, Tech. Rep.
arXiv:1009.3088 (2010).

[24] K. Kumar, Y.-H. Lu, Cloud computing for mobile users: Can offloading
computation save energy?, Computer 43 (4) (2010) 51 –56.

[25] M. A. Fischler, R. C. Bolles, Readings in computer vision: issues, prob-
lems, principles, and paradigms, Morgan Kaufmann Publishers Inc.,

29



1987, Ch. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography, pp. 726–740.

[26] J. S. Rellermeyer, G. Alonso, T. Roscoe, R-osgi: distributed applications
through software modularization, in: Middleware ’07: Proceedings of
the International Conference on Middleware, Springer-Verlag New York,
Inc., 2007, pp. 1–20.

[27] ProSyst mBS Mobile for Android, http://www.prosyst.com.

[28] Apache Felix, http://felix.apache.org/site/index.html.

[29] Honza’s Chess, http://honzovysachy.sourceforge.net.

[30] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
K. R. Walker, Agile application-aware adaptation for mobility, in: Pro-
ceedings of the sixteenth ACM symposium on Operating systems prin-
ciples, SOSP ’97, ACM, 1997, pp. 276–287.

[31] S. Hemminger, Network Emulation with NetEm, in: Linux Conf Au,
2005.
URL http://developer.osdl.org/shemminger/netem/LCA2005 paper.pdf

30


