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Abstract 

The use of Bluetooth technology as a technique to collect data about the movement of 

individuals is increasingly gaining attention. This paper explores the potential of sequence 

alignment methods to analyse data obtained from Bluetooth tracking. To this end, an 

empirical case study is elaborated which applies sequence alignment methods to examine 

the behavioural patterns of visitors tracked by Bluetooth at a huge trade fair in Belgium. The 

results and findings underline both the validity of Bluetooth tracking to collect data from 

visitors at mass events, as well as the ability of sequence alignment methods to extract 

insightful information from sequences within such data. 

 

1. Introduction 

This paper will use sequence alignment methods to analyse patterns within tracking data 

obtained from Bluetooth sensing. Although existing as a communication technology since 

the mid-nineties, Bluetooth has only recently been employed for the tracking of individual 

movement [1-7]. Despite its limited positional accuracy, Bluetooth tracking is a low-cost 

alternative for true location-aware technologies. A major advantage of this technique is that 

it allows for the distinction of tracked subjects at the individual level. This is because 

Bluetooth-enabled devices broadcast a unique MAC (48-bit physical address). Furthermore, 

due to its widespread standard integration in nowadays personal wearable devices such as 

cellphones, PDA’s and headsets, Bluetooth allows for unannounced tracking, i.e. tracking of 

subjects that are not aware of being tracked. It therefore offers researchers the valuable 

potential to conduct unbiased experiments and gather uninfluenced observations of a mass 

of individuals. 



In this paper, we consider the most common approach to employ Bluetooth technology as a 

tracking system. It consists of a number of Bluetooth access points, henceforth denoted as 

nodes, installed at fixed strategic locations throughout the area of interest. Each node 

continuously searches for nearby devices. Whenever a Bluetooth-enabled device enters the 

radio range of a node, its MAC address is logged, such that the presence of devices at nodes 

can be recorded along the time line. From these records, the trajectory of an individual may 

be approximated as the spatiotemporal sequence of node observations of the device (s)he is 

carrying. In addition to this basic tracking system, optional supplementary attributes may be 

logged such as the device class1 and its user-friendly name2, although these might demand 

additional lookup time. To date, most Bluetooth tracking projects documented in the 

literature have relied on this concept (e.g. [3-6]). On the other hand, apart from being robust 

and plain, the concept is attractive due to its easy and low-cost implementation which 

requires merely a number of Bluetooth dongles3, computational units and storage units. 

Furthermore, the approach is efficient in its passive data collection as it does not set up true 

connections with devices, and thereby avoids any interaction with the individuals being 

tracked. 

In the large body of research on movement behaviour, considerable work has been 

dedicated to the definition and extraction of patterns from movement data (e.g. [8-11]). 

Most of these approaches stem from a cross-pollination of GIScience, computational 

geometry, knowledge discovery in data bases, data mining, spatial cognition, and artificial 

intelligence [8, 12, 13]. However, much of these techniques may not be suitable to analyse 

Bluetooth tracking sequences. This is because Bluetooth tracking sequences may be 

incomplete or inconsistent due to data failure of the nodes (e.g. signal obstructions, data 

loss) and tracked devices (e.g. limited battery lives, disabled by the carrier) on the one hand, 

and due to the limited coverage of the study area in terms of node radio ranges on the other 

hand. REMO [14, 15], a generic geographic knowledge discovery approach to describe 

relative motion patterns through a matrix, for example, would not be a suitable formalism to 

represent and explore Bluetooth tracking sequences as it would require the location of each 

device to be known at regular time stamps. Another example is the Qualitative Trajectory 

Calculus [16, 17], which, despite its potential to handle incomplete information, is not 

eligible for handling Bluetooth sequences as it builds on higher level motion attributes such 

as motion azimuth and velocity. 

This paper will explore the potential of sequence alignment methods (SAM) for the 

extraction of patterns within Bluetooth tracking sequences. SAM is a relatively new 

technique in the research field focusing on movement patterns. In the next section, we will 

briefly highlight the basics of SAM as well as related background work. Then, in section 3, we 

will apply SAM to analyse Bluetooth tracking sequences gathered at a 5-day trade fair in 

Ghent (Belgium). Finally, conclusions are drawn in section 4. 

2. Sequence Alignment Methods 
                                                             
1
 The device class is a 3-byte value that describes a device by a hierarchical classification, e.g. Phone: 

Cellular, Computer: Laptop. 
2
 A user-friendly name is an arbitrary word or phrase most often configurable by the user.  

3
 A Bluetooth receiver integrated into a USB stick. 



2.1. Background 

Having a tradition in bioinformatics to measure the distance between DNA strings or protein 

strands [18], SAM was first applied in social science by Abbott [19] to analyse career 

patterns. In turn, Abbott’s pioneer contribution has triggered an important body of SAM 

studies within sociology (see [20] for an overview). From then on, SAM has been considered 

a promising methodology to analyse the sequential aspects of human space-time activities, 

which is reflected, among others, through contributions by Wilson, [21-23], Joh et al. [24-

27], and Shoval et al. [28, 29].  

Within the abundant research on human activity and travelling behaviour, SAM is usually 

applied to data collected by means of questionnaires, activity-travel diaries and position-

aware devices. The application of SAM to data obtained from passive wireless tracking 

systems has, until present, not been scrutinised. An exception is the recent work of Choujaa 

and Dulay [30, 31] who consider activity sequences inferred from cellphone data. However, 

they employ SAM as a novel approach to predict gaps in the activity logs, rather than to 

analyse these logs. 

2.2. Methodology 

Sequence alignment is the process of equating two or more sequences of elements of a well-

defined universe using a set of eligible operations [18]. Sequence alignment methods (SAM) 

seek for optimal alignments by employing dynamic programming algorithms to either 

maximise a similarity measure, or to minimise a distance measure [23]. This distance 

measure is usually referred to as Levenshtein distance [32, 33] or biological distance [28, 34]. 

There exist two categories of SAM algorithms. Global alignment methods force the 

alignment to span the entire length of the sequences, while local alignment methods focus 

on the similar parts within sequences that may differ significantly overall [31]. 

The conventional operations eligible for a pairwise alignment, i.e. the alignment of two 

sequences, are identity, substitution, insertion, and deletion. As they always occur together, 

the latter two operations are known as indels and are accommodated by gaps in one of both 

sequences. Sequences are usually represented as a string of elements consisting of one or 

more characters. A pairwise alignment of two single-character strings ‘Bluetooth’ and 

‘Blåtand’
4
 is illustrated in Figure 1. A multiple alignment, i.e. an alignment of three or more 

sequences, is usually approximated by a procedure of multiple pairwise alignments, known 

as progressive alignment [35].  

 

                                                             
4
 Bluetooth is named after the Danish king Harald Blåtand (940 – 981 A.D.). 

B  l  u  e  t  o  o  t  h        � identity  

      � substitution  

       − indel B  l  å  −  t  a  n  d  −  

� � �  −  �  �  �  �  −  

Figure 1 – Pairwise alignment 



To determine whether an alignment is optimal, the operations have to be weighted by a 

priori defined similarity scores. Typically, some additive scoring scheme is adopted in which 

the identity operation represents the highest similarity and is thus given the highest score. 

Substitutions are mostly associated to zero scores and indels to penalties (negative scores). 

However, depending on the nature of sequenced elements, combination-specific 

substitution scores (or indel penalties) may be useful. For instance with respect to the 

alphabet characters in the example, from an etymological-linguistic point of view, the t-d 

substitution might be assigned a higher similarity score then the o-n substitution. Specific 

similarity values are usually described by a scoring matrix which contains all pairwise 

substitution scores. 

Contrary to traditional measures such as Euclidean, Manhattan, or Hamming distances, 

Levenshtein distances systematically capture the entire sequential dimension to assess the 

similarity among two sequences [28]. This is the principal advantage of SAM with respect to 

other methods. In addition, the alignment process allows for discovering hidden patterns 

buried within the dataset [21]. This is a particularly valuable characteristic within the context 

of this paper, given the frequent gaps in Bluetooth tracking logs. 

According to Shoval and Isaacson [28], two types of analysis can be conducted on the basis 

of SAM. The most common one is an analysis of clusters of similar sequences and/or 

representative sequences. Another possibility consists of detecting hypothetical behavioural 

patterns within the sequence data at hand. The former use of SAM will be considered in the 

next section of this paper. 

3. Case study 

In this case study we will apply sequence alignment methods to analyse the behavioural 

patterns of visitors tracked by means of Bluetooth at the Horeca Expo in Ghent (Belgium). 

The Horeca Expo is the most important annual trade fair for the hotel and catering industry 

in Belgium, and it is particularly well-chosen as a setting for the examination of visitor 

movement patterns for several reasons. In the first place, the fair is a well-organised and 

controlled indoor event which is exclusively accessible for paying visitors, exhibitors and 

crew members. This strongly limits the potential interference and data noise due to all kinds 

of passers-by devices out of the study scope, which is, for instance, less evident in outdoor 

environments (e.g. [3, 7]). Secondly, we were allowed to passively track participants without 

their prior knowledge, such that the experiment is by no means biased in that sense. In 

addition, the daily variation and extent of additional smaller events that may cause 

temporary deviant behaviour of visitors during the fair is strongly limited. The data 

collection, preparation and results are discussed in depth in the remainder of this section. 

3.1. Data collection  

The data for this case study have been collected during the 21
st

 edition of the Horeca Expo 

(November 22-26, 2009). This edition has counted 53 146 visitors, most of them being 

professionals in the catering industry, for 607 exhibition stands. The Horeca Expo takes place 

at the Flanders Expo exhibition centre in Ghent (Belgium). The centre has eight exhibition 



halls over an area of about 56 000 m² (Figure 2). Each hall groups exhibition stands of a 

specific theme (e.g. hall 1: breweries, hall 5: kitchen contractors). 22 Bluetooth nodes, 

denoted A – T
5, have been discreetly installed throughout the entire site. The nodes are 

equipped with power class 2 Bluetooth dongles which are developed to cover a radio range 

of about 20m, although experiments have shown that this range may vary substantially, 

among others due to indoor reflections. Given this presumption, it follows that on the one 

hand the study area is not completely covered by all nodes, and on the other hand some 

node pairs have an overlap in their covered areas (Figure 2).  

 

Figure 2 – Schematic map of Flanders Expo with indication of entrances and exits for visitors (arrows), 

exhibition halls (H1-H8, black rectangles), and Bluetooth nodes (A-T, x-marks) with 20m radio range (black 

circles) 

The Bluetooth nodes continuously scan for nearby devices and log all discovered MAC 

addresses with the timestamp of discovery. Over the entire 5-day course of the fair, 14 498 

unique devices have been observed, most of which are mobile phones and the like (95%) 

(Figure 3). Although, at most 2%6 of the observed devices are not wearable (e.g. desktop 

computers), these will be detained for further analysis since their tracking logs are not 

expected to reflect visitor movements. 89% of all devices have been observed only on one 

day (Figure 4), which suggests a large majority of one-day participants. In terms of unique 

devices per day, the dataset consists of 20 148 device-days. A histogram of device-day 

duration, i.e. the duration between the first and last node observation of a device on a day, 

is depicted in Figure 5. Two notable remarks can be drawn. On the one hand, almost 20% of 

the device-days have been observed for less than fifteen minutes. This can be explained 

among others by a quick disabling of devices of persons entering the fair and by short 

Bluetooth-enabled episodes of devices of people who intentionally make use of the 

Bluetooth functionality. Since this case study aims to analyse visitor behavioural patterns, 

                                                             
5
 Node H has been left out as it is located out of the study area in this case study. 

6
 Including the devices for which the class is unknown. 



such fragmented device-day observations can be considered unrepresentative and have 

therefore been excluded. On the other hand, over 10% of the device-days have observations 

that covering over eight hours, which is about the daily opening duration of the fair. Since 

these devices most probably accrue to exhibitors, crew members and/or are non-wearable, 

they have been excluded as well. 

 

 

 

 

 

 

Figure 3 – Distribution of Bluetooth device classes across 

observed devices 

 

Figure 4 – Histogram of observed days per device 

 

 

Figure 5 - Histogram of device-day duration 

3.2. Data preparation 

For each remaining device-day we have determined the chronological sequence of node 

observations. To filter for noise in the data, subsequent observations by the same node that 

are less than one minute apart have been concatenated to one observation lasting over the 

entire interval. Some additional preparative steps have been taken to extract representative 

sequences for visitors and to exclude as much as possible the sequences of exhibitors, crew 

members and outlier sequences. The following restrictions have been imposed: 
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• The first and last observations in the sequence are observed at node P or R which are 

located near the visitor entrances and exits (Figure 2); 

• The time span of a sequence is within the official opening hour intervals of the fair, i.e. 

each day from 10:30 a.m. to 7:00 p.m.; 

• The time gaps in between two subsequent observations in the sequence have a 

maximum duration of 15 minutes; 

• The sequence contains observations of at least eight different nodes. 

 

Further, the observation sequences that respect the above restrictions have been 

transcoded to single-character sequences to facilitate sequence alignment. To this end, a 

temporal unit of 3 minutes has been postulated as being the minimum duration for visiting a 

certain location within the fair. Hence, the observation sequences have been divided into 

3-minute episodes, each of which has been allocated a character according to the following 

rules: 

• If more than 50% of an episode is covered by observations of the same node, the node’s 

character is allocated to the episode; 

• If more than 50% of an episode is covered by observations of two nodes, the character 

of the node which observations cover the greater share is allocated to the episode; 

• If an interval has observations of three or more nodes, a character V is allocated to the 

interval; 

• In all other cases a gap character (-) is assigned.  

 

Figure 6 presents some of the resulting sequences. The interpretation of sequence 

characters is as follows. A node character represents a visiting event in the neighbourhood 

of the corresponding node; a V character represents a travelling episode, i.e. a visitor 

travelling through the fair (e.g. in between two visiting events); and gaps represent the 

unknown information. Note that SAM are – more than any other methodology – able to 

handle gaps which are interpreted as indel operations (section 2.2). Given the above 

constraints and the strategic dispersion of nodes across the study area (Figure 2), it is 

probable that visitors remain near to the node of their last observation during gaps. As the 

interpretation of gaps and V episodes may depend on neighbouring characters, sequences 

consisting for more than 50% of gaps or V episodes have been excluded. 

 



 
Figure 6 - Extract of transcoded Bluetooth sequences 

 

3.3. Sequence alignment 

The area covered by a node’s radio range contains multiple fair stands which hampers the 

analysis of visiting patterns at the stand-level. Therefore, we will rely on the thematic 

grouping of stands within the exhibition halls (see section 3.1) to define the mutual similarity 

of sequence characters. Node character episodes of nodes within the same hall can be 

interpreted more similar than those of nodes in different halls. Figure 7 displays the 

considered scoring matrix. An exact character match (identity) is assigned a similarity score 

of 10 (maximal similarity). A mismatch (substitution) is given a similarity score of 7 in the 

case of characters of nodes in the same hall, and 0 (maximal dissimilarity) otherwise. An 

exception has been made for the substitutions A-K, A-M, J-M, B-L, B-P, and L-P which have 

been allotted lower similarity scores due to the greater distances between the 

corresponding nodes. Also, alternative scores apply for the identity and substitution of V 

characters in order to lower the priority of matching V episodes in the alignment process. To 

this end, the identity value for V characters is set to 3 and the substitution value with respect 

to all other characters to 1 (not to 0 as V characters are related to at least three different 

nodes, see section 3.2). Finally, separate indel penalties have been considered for gap 

openings and for gap extensions; respectively -5 and -3. 

 

 A B C D E F G I J K L M N O P Q R S T V 

A 10 0 0 0 0 0 0 0 7 5 0 3 0 0 0 0 0 0 0 1 

B 0 10 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 0 1 

C 0 0 10 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 1 

D 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 1 

E 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 7 0 0 0 1 

F 0 0 0 0 0 10 0 0 0 0 0 0 7 0 0 0 0 0 0 1 

G 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 1 

I 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 7 1 

J 7 0 0 0 0 0 0 0 10 5 0 0 0 0 0 0 0 0 0 1 

K 5 0 0 0 0 0 0 0 5 10 0 7 0 0 0 0 0 0 0 1 

L 0 5 0 0 0 0 0 0 0 0 10 0 0 0 5 0 0 0 0 1 

M 3 0 0 0 0 0 0 0 0 7 0 10 0 0 0 0 0 0 0 1 

N 0 0 0 0 0 7 0 0 0 0 0 0 10 0 0 0 0 0 0 1 

O 0 0 7 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 

P 0 5 0 0 0 0 0 0 0 0 5 0 0 0 10 0 0 0 0 1 

Q 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 10 0 0 0 1 

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 



S 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 

T 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 10 1 

V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 

Figure 7 – Sequence alignment scoring matrix 

510 sequences were found to validate the restrictions imposed by the data preparation 

(section 3.2). Using the yet specified similarity scores and penalties, a multiple alignment of 

these sequences has been generated within the ClustalTXY software package [23] by means 

of a progressive alignment procedure which consists of (i) a pairwise alignment of all 

sequence pairs (i.e. 129 795 pairs) using a local alignment algorithm (Smith-Waterman [36]), 

(ii) a neighbour-joining process (Saitou-Nei [37]), and (iii) a multiple alignment using a global 

alignment algorithm (Needleman-Wunsch [38]). The neighbour-joining process aims to 

structure the sequence data by joining similar sequences on the basis of their pairwise 

alignment score such that a guide tree is derived which determines the optimal order for 

adding sequences to the multiple alignment by proceeding from the leaves to the root of the 

tree. 

 

3.4. Results 

Three results are obtained from the threefold sequence alignment process described in 

section 3.3: (i) a square matrix with pairwise alignment scores, (ii) a neighbour-joining guide 

tree, and (iii) a multiple alignment. The alignment matrix is the most raw and low-level result 

which will not be further considered as the information it contains is captured by the other 

results.  

 

The guide tree (ii) obtained from the neighbour-joining process (section 3.3) is shown in 

Figure 8. It totals 509 hierarchical clusters of similar sequences. The clusters observed in this 

guide tree may assist in the determination of a typology of different visitor behavioural 

patterns. The number of members in a cluster can thus be considered an indicator for the 

importance of the corresponding behavioural pattern. Sequences in smaller clusters, 

however, tend to have more elements in common. In SAM literature regarding activity 

patterns, it is usually considered up to the analyst to determine the number and 

interpretation of clusters in the guide tree. This can be facilitated by means of the multiple 

alignment (iii). To enable a visual exploration of patterns in the multiple alignment, we have 

sorted the aligned sequences according to the leave order of the guide tree. In addition, the 

node characters in the multiple alignment have been colour coded according to the 

exhibition hall where they are located. A fragment of this representation is displayed in 

Figure 8. It illustrates a clear pattern of related sequences with predominant episodes at the 

exhibition halls 8, 7 and 1 (see further cluster 1.1). 

 

Within the guide tree, three major clusters (Figure 8, 1-3) can be observed at the top of the 

hierarchy. At this level, the aligned sequences hardly share common characteristics, if at all. 

On the basis of visual supervision of the sorted and colour coded multiple alignment (Figure 

9) an exhaustive subdivision has been made into 21 non-overlapping subclusters (Figure 8, 

1.1-3.8). For each subcluster the number of members and the shared pattern has been 

summarised in Table 1. In addition, the subcluster median and average sequences have been 



listed in Table 2. The median and average sequences are representative sequences of a 

cluster [23]. In analogy to the homonymous descriptive statistics, these sequences 

respectively minimise the sum Levenshtein distances and the sum of squared Levenshtein 

distances to all other members of the cluster.  

 

 
Figure 8 – Multiple alignment guide tree with clusters and subclusters labeled at their root node 

 



 
Figure 9 – Extract of the sorted and colour coded multiple alignment (colour legend: ���� hall 1, ���� hall 2, ���� hall 3, 

���� hall 4, ���� hall 5, ���� hall 6, ���� hall 7, ���� hall 8) 

Cluster Members Common pattern Legend 

1.1 47                      

1.2 17   predominant episode 

1.3 17   frequent episode 

1.4 18   occasional episode 

1.5 29                 disjunction of episodes 

1.6 19  1 – 8 exhibition halls 

1.7 49  A – T Bluetooth nodes 

1.8 17    

2.1 38  

2.2 15  

2.3 44  

2.4 14  

2.5 34  

3.1 26  

3.2 26  

3.3 5  

3.4 22  

3.5 19  

3.6 7  

3.7 38  

3.8 9  

Table 1 – Number of members and common patterns per cluster. Pattern episodes are colour coded to hall 

location and annotated with hall numbers or node characters. Hollow episode symbols represent episodes at 

one of the eight exhibition halls. 

The results in Table 1 and Table 2 reveal some interesting aspects about the behaviour of 

Horeca Expo visitors. First of all, they reflect a large heterogeneity of visiting patterns in 

terms of visit duration, the number of visited locations, and in particular the order of visiting 
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these. Notwithstanding that the fair can be entered and left from only two locations, the 

variety of tracking sequences emphasizes the lack of one or a few dominant spatiotemporal 

behavioural patterns of Horeca Expo visitors. Inferences can be made concerning the 

attractiveness of locations, although these might be misleading since not all exhibition halls 

have been equally covered by Bluetooth nodes (e.g. hall 6). The abundant hall 1 episodes 

reflect that the main hall is also the most important one in terms of visits, as could be 

expected given its size and central location. More than that, it can be observed that most 

sequences visit the main hall more than once, whereas other halls are usually visited once at 

most. 12 of the 21 common cluster patterns in Table 1 feature two disjoint episodes at hall 

1, whereas none of them features repetitive visits of other halls (except for hall 7 in cluster 

2.1). Thus, people most often tend to benefit maximally from their visit by passing as much 

locations as possible, thereby avoiding revisiting halls, which is inevitable for the main hall. 

Merely one cluster (2.2) seems to represent an exhaustive visit to the fair, i.e. calling at all 

exhibition halls. However, given that only shared episodes have been listed in Table 1, many 

other clusters may encompass such visits as well (e.g. see Table 2, Figure 9). 

 

Other inferences can be made regarding the chronology of hall visits. Most sequences 

consist to a considerable extent of logically structured chains of subsequent episodes at 

neighbouring locations. The common patterns of clusters 1.1, 1.3, 1.7, 2.2-3.3, and 3.4-3.8 

consist entirely of such chains. The most frequently combined exhibition halls are halls 1-2, 

2-4, and 1-7 (in both directions). When considering the Flanders Expo map, the first two 

combinations seem straightforward for visitors entering the fair at node R (Figure 2). The 

third combination, on the other hand, is particularly reasonable for visitors who have 

reached the end of the main hall (and its adjacent halls) and want to make the bridge to hall 

8. When looking into more detail, such combinations may give insights into the importance 

of different connections. The concatenation of D and Q episodes, for instance, underlines 

the significance of the direct passage which connects both halls (Figure 2). Finally, 

concerning the time passed beyond visiting exhibition halls, it can be observed that visitors 

tend to spend more time at the entrance than at the exit (e.g. see Table 2, Figure 6, Figure 

9). This can be explained by typical entrance activities such as registering, informing and 

depositing luggage in a cloakroom, which do not or to a lesser temporal extent apply for 

visitors leaving the fair. 

 

Median and average sequence 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

2.1 

2.2 

2.3 

2.4 



2.5 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

Table 2 - Median (top) and average (bottom) sequence per cluster (colour legend: ���� hall 1, ���� hall 2, ���� hall 3, 

���� hall 4, ���� hall 5, ���� hall 6, ���� hall 7, ���� hall 8)  



4. Conclusions 

In this paper, we have explored the potential of sequence alignment methods to analyse 

data obtained from tracking individuals by means of Bluetooth. After a brief introduction on 

Bluetooth tracking and sequence alignment methods (SAM), an experimental case study has 

been presented on the sequence alignment analysis of spatiotemporal patterns of visitors 

tracked by Bluetooth nodes at the Horeca Expo fair in Belgium. The contribution of this work 

is original since, until present, SAM has not been applied to analyse Bluetooth tracking data. 

The importance of this study also relates to the growing attention payed to Bluetooth as a 

novel technology to track people at mass events. We have shown that, provided that the 

necessary steps have been taken to filter raw Bluetooth tracking data, SAM can be 

successfully adopted to analyse Bluetooth tracking sequences. The results of the case study 

have revealed some important and plausible insights about the behaviour of visitors at the 

Horeca Expo. In particular, the study has disclosed the existence of a large variety of visiting 

patterns especially with respect the number of and order of visited locations. 

Notwithstanding this considerable heterogeneity, we have demonstrated the ability of SAM 

to detect and extract the sequential structures hidden in the tracking data. The vast majority 

of tracking sequences respects a reasonable chronological concatenation of visited locations, 

which in turn confirms the ability of, in essence, simple Bluetooth tracking systems to 

capture the spatiotemporal behaviour of large crowds of individuals at a mass event. The 

results of our study may be insightful to the planners and organisers of such events in 

keeping track of and exploring the behaviour of participants over the course of an event. 

Despite the above contributions, some aspects still limit the potential of sequence alignment 

methods for the analysis of tracking data. Unlike the structure of nucleotides in a strand of 

DNA, spatiotemporal sequences within tracking data might differ very much amongst 

tracked individuals, both with respect to sequence composition as with respect to the 

number of elements (duration). In sequence alignment, the latter aspect may cause a large 

number of gaps, for which there is yet no consensus on their interpretation [35]. Shoval and 

Isaacson [28] recognize the lack of a solid method to assess the reliability of alignments, as 

well as the lack of knowledge on the impact of the spatial and temporal scale on the results. 

Other issues relate to the shortcoming of SAM as an exact science, or to quote Morrison 

[18]: “The basic problem with sequence alignment is that it seems to be more an art than a 

science”. For example, there is no consensus method or standard calibration procedure for 

the setting of sequence alignment parameters such as indel penalties. Regarding tracking 

data, even common practices are lacking in this respect. Future progress on these issues will 

enable more refined analysis configurations and support stronger and more detailed 

interpretations of alignment results. 
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