Nonlinear Optics on the Silicon Platform
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Abstract: Silicon represents a mature, affordable platform for fabricating electronic and optical
signal processing devices. We discuss all-optical 170 Gbit/s switching, a 42 Gbit/s electro-optic

modulator, and proof-of-concept results for a surface plasmon polariton absorption modulator.
OCIS codes: (190.0190) Nonlinear optics, (130.0130) Integrated optics, (130.4815) Optical switching devices, 130.7405
Wavelength conversion devices, (130.4110) Modulators, 250.5403 Plasmonics

1. Introduction

Nonlinear effects in silicon support a large assortment of techniques for processing optical signals near wavelengths
of 1.55um at very high speed [1]. Especially the silicon-on-insulator (SOI) platform — typically a 220 nm thin sili-
con slab on top of a thick silicon oxide layer residing on a silicon substrate — allows strong field confinement in
high index-contrast waveguides, thereby enhancing the native 4 -nonlinear response of silicon. The technology
lends itself also to co-integrate electronic CMOS components [2], and to hybridly integrate active III-V [3] or Si/Ge
devices [4]. The use of silicon nanocrystals [5] or amorphous silicon [6], and the addition of organic materials
[7,8,9] (silicon-organic hybrid, SOH), of graphene [10,11], or of metallic structures [12,13] widens the scope even
more by providing what silicon misses: A TPA-free anda P-nonlinearity. In the following, we choose from the
diverse applications of silicon-based devices [14] three important examples that exploit nonlinear effects on the sili-
con platform: An all-optical switch, a high-speed electro-optic modulator, and a plasmonic absorption modulator.

2. All-optical switching with FWM and XPM in ®-nonlinear strip and SOH slot waveguides

The SOI waveguides under consideration are depicted in Fig. 1a,b. The large #-nonlinearity of silicon cannot be
fully exploited for fast all-optical switching due to the long lifetime and the loss of free carriers generated by two-
photon absorption (TPA) [7,8]. To avoid these limitations experienced with a strip waveguide covered with air only,
Fig. la(field lower left), we employ a highly nonlinear organic material [7,15] that does not suffer from TPA and
has a low refractive index. Such SOH systems combine the strengths of both materials resulting in extremely large
effective nonlinearities [7,9,15,8]. The SOH waveguides are silicon strips or vertical-slot SOI-structures (Fig. 1a,b)
with a cladding of #**-nonlinear organic material (DDMEBT [15]). The resulting SOH waveguide is described by a
complex nonlinearity (NL) parameter y. For maximum NL we need to optimize Re{}} = n; ko ! A9 g (effective area
AP vacuum wave number ko, nonlinear-index coefficient 7). Optimized horizontal-slot quasi-TM waveguides
were published recently [16]. TPA is quantified by a figure of merit FOMrpa = —Re{y} / (4nIm{p}) (=n2/(x A)
with spatially homogeneous cross-section, TPA coefficient o). For the structures in Fig. 1a,b we measured [8]: Lin-
ear loss O strip = 1dB/ mim, &gt = 1.5dB/ mm,; FOMTPA core 038, FOMTPAclad = 12, FOMTPA slot — 22, RC{}/}NL
incore = 307/ (Wm), Re{ NL in ctae = 108/(Wm), Re{#Int. in siot = 100/(Wm). For FOMrpa > 0.5, TPA can be neglected.

We demonstrated the high-speed capability of nonlinear SOH slot waveguides with a number of experiments.
Four-wave mixing (FWM) as in Fig. 2 demultiplexed a 170.8 Gbit/s OTDM signal to its four 42.7 Gbit/s tributaries
[15]. The same setup is used for wavelength conversion with retiming. By FWM, a 42.7 Gbit/s RZ-OOK data signal
at 1559 nm and a 42.7 GHz clock at 1550 nm generate a converted signal at 1541 nm with a quality factor of
0*=11.3 dB and on-chip powers for data (clock) of P, =11.3 dBm (21 dBm). We performed a similar experiment
with NRZ DPSK data at 56 Gbit/s using an SOH strip waveguide as in Fig. la(field plot lower right). Finally, we
demonstrated the transfer of 42.7 Gbit/s 33 % RZ-OOK PRBS data at 1541 nm to a CW carrier at 1544.5 nm via
cross-phase modulation (XPM). In all cases, no bit pattern dependence was to be seen.
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Fig. 2. Setup for FWM demultiplexer with 4 mm
long SOH slot waveguide, Fig. 1b. Output spectrum
before and after bandpass filter BP [15]. Tx: trans-
mitter; Rx: receiver; MLL: mode-locked laser

Fig. 1. Silicon waveguides (height 220 nm) with air or organic cover and electric field magni-
tudes [8]. (a) Si strip, width 360...400 nm, quasi-TE mode, SiO»air cladding, Si core nonlin-
earity (lower left), and quasi-TM mode, strong cover nonlinearity (lower right). (b) Quasi-TE
Si slot waveguide, rail widths 220 nm, slot width 160...200 nm, cladding/slot nonlinearity

3. Electro-optic modulator with )fz)-nonlinear SOH slot waveguide

The CMOS-compatible SOH approach for optical modulators exploits the properties of a #”-nonlinear organic ma-
terial which covers a slot waveguide, Fig.1b and Fig. 3a. A metallic travelling-wave transmission line connects the
modulator voltage to the electro-optic active slot region. It must be both optically transparent and electrically highly
conductive, so we induce a highly conductive electron accumulation layer by an external DC “gate” voltage V. As
opposed to doping, the electron mobility in this case is not impaired by impurity scattering. Using a first-generation
device at a data rate of 42.7 Gbit/s, widely open eye diagrams were recorded [17], Fig. 4. The measured frequency
response suggests that significantly larger data rates are feasible. Compared to a recently published similarly fast pn-

junction modulator [18], our device is more broadband (> 60 nm) and more sensitive (V=9 Vmm @ 1 kHz).
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Fig. 3. SOH modulator, rail (slot) widths 240 nm (120 nm),
length 1.7 mm, slot filled with organic material [17] (M1,
chromophores dispersed in amorphous polycarbonate, APC).
Electro-optic coefficient with optimum in situ poling
ri3="70 pm/V. (a) Silicon strips connect optical region with
metal electrodes. A positive gate voltage Vg bends the bands
(Ecyr: conduction, valence band, and Fermi energy; ¢: ele-
mentary charge) resulting in a highly conductive electron
accumulation layer. (b) Waveguide cross-section and electric
optical field magnitude with equivalent circuit (C: slot capaci-
tance; R: strip resistance). [Reprint from [17] © 2011 OSA]
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Fig. 4. SOH modulator (simplified realization compared to Fig.3a) and experimental
results. (upper row) Setup with 42.7 Gbit/s pulse pattern generator (PPG) and delay
interferometer (DI) for phase-to-amplitude conversion. (lower row) Phase modula-
tion index 7 for various gate electric field strengths e and sinusoidal modulation
voltages with 1 V amplitude and frequencies fn = 1 kHz... 60 GHz. For large ||
the SI strips become more conductive due to an electron accumulation (hole inver-
sion) layer for &ue> 0.025 Vinm (Egie <—0.025 V/nm). Transmission of electrical
waveguide (voltage ratio |Sy|, ==). For &ue=0.135V/nm and fha=1kHz
(60 GHz) we found V,L =9 Vmm (58 Vmm) corresponding to ¥, =53 V (34 V).
Flat response for f. > 2 GHz, suggesting that data rates could be extended well
beyond the 42.7 Gbit/s limit of our equipment. [Reprinted from [17] © 2011 OSA]

4. Surface plasmon polariton absorption modulator

To reduce the modulator footprint even further, an electrically controlied ultra-compact surface plasmon polariton
(SPP) absorption modulator (SPPAM) was investigated. The device can be as short as 10 um, depending on the re-
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Fig. 5 Surface plasmon polariton (SPP) absorption modulator (SPPAM). With a directional
coupler, light is coupled from a silicon nanowire into an active plasmonic section, consisting
of stacked layers of silver (Ag), indium tin oxide (ITO, 10 nm), and SiO». The SPP absorption
coefficient is modulated by a voltage U between the silver electrodes. fnsets: The photonic
mode (a) in the silicon nanowire excites via a hybrid mode (b) in the directional coupler an
SPP (c). Inset (d) shows the electric field £,, the magnetic field ., and the time-averaged
Poynting vector ( S;) in the active plasmonic region, demonstrating the strong SPP confine-
ment in the ITO layer. The modulator length is L = 10 pm. [Reprint from [19] © 2011 OSA]

quired extinction ratio (ER) and the acceptable loss. The absorption modulator Fig. 5 comprises a stack of metal /
insulator / metal-oxide / metal layers, which supports a strongly confined SPP in the 1.55 pm wavelength region.
The absorption is modulated by electrically changing the free carrier density in the intermediate metal-oxide layer. A
three-layer prototype was designed, and the concept is supported by proof-of-principle experiments, Fig. 6.
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Fig, 6. Measured (m) and predicted (—-) extinction
ratio (ER) at kHz-frequencies as a function of the
applied modulation field. An ER of 1dB is ob-
tained with an electric field of 100 V/ um. Such a
field strength can be easily achieved in the struc-
ture Fig. 5, and is far below the dielectric strength
in the order of 10° V/um for materials like SiO,
and Si;Ny. [Reprint from [19] © 2011 OSA]
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