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Abstract: In the ISM band multiple wireless technologies cetepfor a limited
amount of spectrum, leading to interference andopmance degradation. Reliable
information on the spectrum occupation enables mmpémal usage and can
improve co-existence in the ISM band. In this paper study the robustness of the
information obtained about the propagation envirenmwhen sensing with
multiple, heterogeneous devices, at multiple diedogations. More specifically, we
look into the impact on the path loss estimatiopeseling on the type, number and
the location of the sensing devices. The analysishis paper is done based on
indoor measurements in the ISM band. Based on itheepted measurements and
analysis we conclude that analysis based on oné device type or in specific
locations can lead to suboptimal or even incorestimation results.
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1. Introduction

The reliable detection of the presence of differeireless technologies is one the key
enabling functionalities to improve the co-existeme the ISM band. Spectrum sensing is
one of the most popular technologies to obtainitifmation.

In this paper the robustness of information oldiabout the propagation environment
using multiple, heterogeneous devices for specsensing in multiple locations is studied.
We used 6 different hardware platforms to capture teceived power level while
transmitting a controlled, constant 20 MHz wide QW Bignal modelled according to a
repeated Wi-Fi packet transmission on WiFi chatthalNe use least squares regression to
estimate the path loss environment and evaluatereaults for the different hardware
platforms guided by three questions:

1. What is the influence of the number of measurgmeints used on the accuracy of

the spectrum view?

2. Should measurements in different locations erga different weight when using
them as input for building a path-loss model fa& tlonsidered environment?

3. How heterogeneous is the conclusion drawn wiffierdnt hardware solutions and
can different heterogeneous measurements be cothbonereate a more reliable
view of the spectrum?

Our study is different from previous work sinceampares a large number of different

sensing platforms. Although there has been a lavark experimentally investigating the
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accuracy of sensing solutions, none of these stuskperimentally compare the results of
different sensing solutions or the impact of sétecspecific distributed indoor locations to

build a view on the spectrum environment. This wiwka continuation of our previous

work presented in [1], where the scope was limitedsingle-location sensing and no
combination of multiple sensing measurements wassiingated.

In [2] measurement data obtained in various outdocations is compared with
various known path loss models, to verify how aately each of those models predicts the
propagation environment. Similarly, in [3] they dyuhow feasible it is to use a database
that is computed off-line to predict the propagatenvironment. To that extent, a pre-
computed database is compared with measurementtsresiotained using dedicated
measurement equipment. In contrast, the goal efgtudy is not to compare various path
loss models (in fact, we use a very simple onel tdbicompare different types of sensing
hardware and to determine how grouping the diffesgectrum sensors based on their
location impacts the spectrum observation qual#yso, it is studied how much
measurements on different locations and from differdevices are needed to get to a
reliable interpretation of the environment.

The remainder of this paper is organized as fdlosection 2 introduces the metrics
and hardware that are used, the calibration stdglteprocessing. Section 3 describes the
measurement setup and measured results. In sedtjohsand 6 the impact of the type,
number and location of the devices is investigakdally, section 7 concludes this paper
and gives some recommendations for robust disgtbwtensing with heterogeneous
devices.

2. Methodology

One of the main concerns of sensing based oppstitispectrum access is the robustness
of the sensing information against environmentdluences (such as shadowing and
fading) and the robustness for spatial extrapatafjose information gathered in one
location to estimate the spectral environment iotlaer location). In this paper we
investigate the above concerns based on large-sdsieibuted spectrum sensing
experiments. What is important in the setup of ékperiment, is first to determine the
metrics of interest that will be used to interghet sensing data, the technical details of the
different sensing solutions used, how to (pre-jocate the different sensing solutions and
finally how to (post-) process the different da&dssin order to be able to fairly compare
their results. These aspects are discussed below.

2.1 — Metrics

We use our measurement data to estimate the pgleigponent and offsef} of the well-
known path loss model:
PL(d) [dB] = 20a log10 (d) +3

where d is distance between Tx and Rx in meterRinds the path loss in dB. From the
measurements we have path loss estimates for kdstances so we are looking fland
B that provide the best match to this dataset. Weatéeast squares regression and robust fit
algorithm to determine. andp coefficients. The least squares regression witibatte an
equal weight to each set of inputs and the outceitide a andp which will result in the
minimum mean squared error over the complete satmfts. Since least squares can be
biased and drawn towards outliers we additionatlftfhle model using robust regression.
The robust regression will iteratively attributeighgs in such a way to reduce the impact
of outliers.

We use the mean squared error (MSE) of the measumtepoints as a metric to
judge the performance of a specific solution. Theeetwo scenarios we use for reference:
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the homogenous device reference and the heterogendevice reference. In the
homogeneous reference scenario, we compute the tdSke regression based on the
measurements of only one device (devRef). For #Herbgeneous reference we compute
the MSE to the regression based on the measurenoénddl devices (allRef). The
heterogeneous reference is thus treated as a goauihd

The general approach for all evaluations is thatuase regression to estimate the
path loss exponent and the offsep using only a subset of the measurement points Thi
comes down to estimating the global path loss madtél a set of local measurements. To
assess the goodness of fit of this estimation, evepare it to the two references (devRef
and allRef) described above. The difference betwieerestimated path loss model and the
references is measured by the MSE. The MSE is ttlireelated to the quality of the
estimated path loss model, which eventually camesas an indication of how suitable the
corresponding estimation is in terms of distributedsing.

2.2 — Hardware used

A range of six heterogeneous devices were usedhén eixperiment, from low-cost
commercial-off-the-shelf devices, to more soph&Bd custom implementations. The
following is a list of the devices used:
* Metageek Wi-Spy 2.4x with Kismet Spec-tools forinOS [4]
* Crossbow/Memsic TelosB [5][6] with CC2420 transegiv[7] and TinyOS
application [8]
* Fluke Airmagnet Spectrum XT [9]
» Ettus Research USRP 2.0 [10] with XCVR 2450 dautpoi@rd and Iris [11]
* VESNA sensor node [12]
* Imec sensing engine [13][16]
Rohde & Schwarz lab equipment (SMIQ06 & AMIQO2 [Lig used to generate the
test signals.

2.3 — Calibration

To calibrate the devices, each device was conndot@dsignal generator via a cable and
power splitters. We transmitted the test signab alsed in the experiments at different
power levels and used these measurements to corniputeffset on measurement levels
reported by the different devices. Apart from tlasitomatic” calibration we also did a

manual calibration based on the real measuremermgst¢ account for the antenna effects).
We detected a constant offset for the Airmagnet@mal of the Telos devices, which were
manually adjusted. Furthermore one of the measurepmnts of the WiSpy sensor was
obviously a false measurement and, thus, removed.

2.4 — Processing

Although each device has its own proprietary oufiputnat a conversion step was done
ensuring all results are stored using a commonfdataat [15][14] that was created as part
of the CREW project and is based on the IEEE 1968@a6dard [14]. The common data
format contains the relevant parameters of the isgnslevice, time and location
information and measurement results. This enalbllesusage of common scripts for data
processing and reduces the risk of introducingrerro

Since not all devices did an equal amount of megsents we compute the average
received signal strength for all available devioe éocation combinations. By using the
average we attribute an equal weight to each dewvitereas when we would use all
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available results without averaging the device with largest amount of measurements
would contribute more to overall result.

3. Measurements
3.1 — Measurement Setup

The experimental setup is shown in Figure 1, wig3emeasurement locations and one
transmit location were chosen within an indoor ta&afa on the premises of imec, Leuven,
Belgium. The transmitter was set up to transmibastant 20 MHz wide OFDM signal
modelled according to a repeated Wi-Fi packet trassion on WiFi channel 8
(2.447GHz), with a power of 3dBm. Each platform ntheerformed spectrum
measurements, a minimum of thirty seconds in lengtteach location. Background ISM
traffic devices were switched off throughout theadion of the experiment. Measurements
were performed in an asynchronous manner, howewertd the constant nature of the
transmit signal and the statistical nature of taadmgs we assume the results to be the
same as if all measurements had been synchroriibedset up includes a mixture of both
line-of-sight (LOS) and non-line-of-sight (NLOS).
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Figure 1: Experimental set-up and location group
3.2 — Measurement Results

As discussed in section 2.1 we test both a leasireq and robust fit to estimate the path
loss exponentt and offsetp based on the results from the measurements dedcib
section 3. This results in anof 2.32 and 2.29 andl of 46.4 and 46.8 for the least squares
and robust fit respectively. The value of the plaiks exponent is close to 2 for both
methods, indicating that path loss behaviour clusdree space propagation. Figure 2
shows the result of both fitting algorithms and ihgut points. We find that the impact of
the type of regression, for these measurementtsasulery limited and hence we choose to
select least squares fitted curve as the allRethimremainder of this paper.

Copyright © 2012 The authors www. FutureNetworkSummit.eu/2012 Page 4 of 9




Location nr 1

15 10 313
" 2

17918 521 23 Location nr 1
14 8 7

15 10 313
166124 19 20 22 11 2

a8 7

17918 5 21 23
166124 19 20 22

@
azi)

85/

=3
o

80

_q
2]

75

70+ =

Path Loss (dB)
~
o
%
Path Loss (dB)

@
@

65/

airmagnet

* usp

~- imec
Telos

& WiSpy 1
VESNA
allRef

@
=]

60

o
o

- Measurement - 550
LS
+  Robust

o
S

50 st
10’
Distance (m)

10’
Distance (m)

Figure 2: least squares and robust fit Figure 3: Least squares regression for individual

devices

4. Heterogeneity of the devices

To compare different devices we start by compuérigast squares fit solely based on the
measurements from one device (devRef). These seardt shown in Figure 3. As can be
seen in the figure most devices display very simb@haviour, with the exception of the
USRP. As the calibration, discussed in section\2&% done by connecting a cable directly
to Rx and hence without the antenna, one possdadson for this deviant behaviour is
different antenna properties. Further investigaisoneeded to fully clarify this observation.
We show the MSE between the estimated path losgecand the average
measurement result for all locations in Table ds{fcolumn). Additionally we also provide
the MSE compared to the average measurementsl fde\ates at all locations (allRef) in
Table 1 (second column). This provides us with arimeo evaluate how close the
estimation from one single device (on all locatjomgproximates our allRef. The results in
Table 1 confirm what was already visible in Fig@Brehe path loss estimation based solely
on the USRP will lead to a significant error. Tlee@nd observation is that the imec and

VESNA devices produce the most consistent resiliisfrated by low MSE compared to
devREF.

Table 1: Mean Squared Error per device

Device Name MSE
Compared to devRef Compared to allRef

allRef 19.9883
Airmagnet 31.8376 20.7657
USRP 33.9482 28.8005

imec 14.8554 21.5957

Telos 28.5254 20.1824

WiSpy 25.9246 23.2951

VESNA 15.6993 20.4692

5. Number of devices

In this section we investigate how many sensingaésvare needed in an area to have good
estimate about the wireless environment in thisa.am@ answer this question we estimate

the path loss model with the least square error approach for each device based on a
selected number of locations and calculate the MSE compared to devRef and allRef. In
order to eliminate the influence of one specificatoon we have performed the analysis of
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all possible combinations for every number of sel@édocations and took mean over the
MSE.

5.1 — Homogenous device analysis

The resulting MSE for each number of locationshieven in Figure 4. As expected, when
23 locations are used for fitting, the error is@w 0 as this is what we defined as devRef.
This analysis provides insights on the consistency of the individual device results, using of

3 or 4 locations form imec sensing agent or VESNA gives similar results as using 6 locations

of USRP, Airmagnet or WiSpy. We can also see that there are not many differences if we
take 9 devices or more.
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Figure 4: Homogenous device reference Figure 5: Heterogeneous device reference
5.2 — Heterogeneous device analysis

To compare different devices we amongst each atleeconduct a similar analysis, only
this time we calculate the MSE compared to the pzgth estimation based on all devices,
allRef instead of using devRef. In Figure 5 we B®&d imec sensing agent and VESNA
node are able in this case to predict a path losdehclose to allRef and the results are
comparable to the previous analysis. For all devige see a steep curve that flattens out
fast when the number of devices increases, fromwii can learn that, for this set up, using
more than 9 devices will not help you to obtainignicantly better estimate of the path
loss model. It is also very clear on Figure 5 that USRP (and WiSpy to a lesser extent),
even when using measurements from all location,net get close to allRef, which is
consistent with the results from section A. a conclusion we can say that the MSE
compared to both devRef and allRef reduces rapidly with increasing number of locations
and that there is limit above which adding extra locations will not reduce the
measurement error anymore.

6. Heterogeneity of locations

In this part we combine locations in different marmin order to discover the common
characteristics and minimize the influence causgdthe randomness of individual
locations. We refer to a specific combination afdtions as a location grouple used 2
ways to perform the division into location groups, illustrated in Figure 1
* Clear line-of-sight to Tx (LOS group: all locations inTOP section + locations 15 and
16) or none line-of-sight to Tx (NLOS group: all locations in the DOWN section
expect locations 15 and 16)
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* Based on the mesh topology of the locations we group points on horizontal (H1-
H5) and vertical (V1-V4) lines. We will further refer to this ‘line location’
In each of the following 2 parts, the performance of every location group is
presented, followed by comparison and explanation.

6.1 - LOS vs NLOS

The resulting path loss curves estimated based on LOS and NLOS locations are shown in
Figure 6 and the estimated path loss exponent and path loss offset are listed in Table 2
We can see from Table 2that compared to LOS model, NLOS has a smaller slope but
higher offset. The high offset in NLOS estimation is typically caused by the shadow effect.
For the same reason, around shadow, the increment of path loss caused by distance can
be compensated by the decreasing amount of shadowing, hence the path loss exponent
appears to be smaller than only LOS estimation.
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Figure 7: Line groups pathloss estimation

6.2 — Line location group

The estimation results for different line location groups are shown in Figure 7and
Table 2 There are 3 groups that have a path loss component significantly different from
the other ones and our reference calculated in section 4, namely H4, H5 and V1. For H4
and H5 the reason is to be found in the simple path loss estimation model that is used. The
H4 and H5 groups contain both LOS and NLOS locations which, in combination with the
simple path loss model, leads to unrealistic estimations of the path loss exponent. The
highest path loss exponent estimation comes fraum¥ 1, which might be caused by the
fact the saturation effects for the locations cbge the transmitter (i.e. under estimating
the received power level), but further investigatie required to validate this. In summary,
shadowing effects can be very disturbing, the siele®f locations should avoid the border
of the shadow.

Table 2: Location heterogeneity overview

PL exponent PL offset MSE
LOS vs NLOS
LOS 2.229 46.25 1.14
NLOS 1.259 59.57 10.84
Line Location Group
H1 2.458 43.35 291
H2 2.509 42.82 2.92
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H3 1.731 53.56 1.33
H4 3.751 34.52 14.06
H5 -5.643 132.84 290.50
V1 3.82 32.71 10.59
V2 2.316 47.54 1.25
V3 2.639 43.71 0.65
V4 2.062 48.47 0.506

7. Conclusions

In this paper we present results from path losssoreanents in the ISM band in an indoor
environment with heterogeneous devices. Most dewjoee similar overall results in terms
of estimation of path loss exponent and offsetesion. However not all devices display
the same consistency for all locations. This behavis confirmed in section 5 where we
see that the amount of devices needed to obtagtiable estimate depends on the device
type. Futhermore, some devices do not even aclaevestimation close to the overall
reference when all available measurement pointghiatr device are used. Finally we see
that, when the device locations are not selectesfuddy, the path loss and offset estimation
can be very far from overall result. In summary eemclude that analysis based on only
one device type or in specific locations could leadisleading conclusions.

In future work we are planning to perform similanadysis with heterogeneous
devices mixed together and calibrate the devicgsdimg antenna in an anechoic chamber.
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