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Abstract: In the ISM band multiple wireless technologies compete for a limited 
amount of spectrum, leading to interference and performance degradation. Reliable 
information on the spectrum occupation enables more optimal usage and can 
improve co-existence in the ISM band. In this paper, we study the robustness of the 
information obtained about the propagation environment when sensing with 
multiple, heterogeneous devices, at multiple diverse locations. More specifically, we 
look into the impact on the path loss estimation depending on the type, number and 
the location of the sensing devices. The analysis in this paper is done based on 
indoor measurements in the ISM band. Based on the presented measurements and 
analysis we conclude that analysis based on only one device type or in specific 
locations can lead to suboptimal or even incorrect estimation results. 
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1. Introduction 
The reliable detection of the presence of different wireless technologies is one the key 
enabling functionalities to improve the co-existence in the ISM band. Spectrum sensing is 
one of the most popular technologies to obtain this information. 
 In this paper the robustness of information obtained about the propagation environment 
using multiple, heterogeneous devices for spectrum sensing in multiple locations is studied. 
We used 6 different hardware platforms to capture the received power level while 
transmitting a controlled, constant 20 MHz wide OFDM signal modelled according to a 
repeated Wi-Fi packet transmission on WiFi channel 8. We use least squares regression to 
estimate the path loss environment and evaluate our results for the different hardware 
platforms guided by three questions: 

1. What is the influence of the number of measurement points used on the accuracy of 
the spectrum view? 

2. Should measurements in different locations be given a different weight when using 
them as input for building a path-loss model for the considered environment? 

3. How heterogeneous is the conclusion drawn with different hardware solutions and 
can different heterogeneous measurements be combined to create a more reliable 
view of the spectrum? 

 Our study is different from previous work since it compares a large number of different 
sensing platforms. Although there has been a lot of work experimentally investigating the 
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accuracy of sensing solutions, none of these studies experimentally compare the results of 
different sensing solutions or the impact of selecting specific distributed indoor locations to 
build a view on the spectrum environment. This work is a continuation of our previous 
work presented in [1], where the scope was limited to single-location sensing and no 
combination of multiple sensing measurements was investigated. 
 In [2] measurement data obtained in various outdoor locations is compared with 
various known path loss models, to verify how accurately each of those models predicts the 
propagation environment. Similarly, in [3] they study how feasible it is to use a database 
that is computed off-line to predict the propagation environment. To that extent, a pre-
computed database is compared with measurement results obtained using dedicated 
measurement equipment. In contrast, the goal of this study is not to compare various path 
loss models (in fact, we use a very simple one), but to compare different types of sensing 
hardware and to determine how grouping the different spectrum sensors based on their 
location impacts the spectrum observation quality. Also, it is studied how much 
measurements on different locations and from different devices are needed to get to a 
reliable interpretation of the environment.  
 The remainder of this paper is organized as follows: section 2 introduces the metrics 
and hardware that are used, the calibration step and the processing. Section 3 describes the 
measurement setup and measured results. In sections 4, 5 and 6 the impact of the type, 
number and location of the devices is investigated. Finally, section 7 concludes this paper 
and gives some recommendations for robust distributed sensing with heterogeneous 
devices. 

2. Methodology 
One of the main concerns of sensing based opportunistic spectrum access is the robustness 
of the sensing information against environmental influences (such as shadowing and 
fading) and the robustness for spatial extrapolation (use information gathered in one 
location to estimate the spectral environment in another location). In this paper we 
investigate the above concerns based on large-scale distributed spectrum sensing 
experiments. What is important in the setup of the experiment, is first to determine the 
metrics of interest that will be used to interpret the sensing data, the technical details of the 
different sensing solutions used, how to (pre-) calibrate the different sensing solutions and 
finally how to (post-) process the different data sets in order to be able to fairly compare 
their results. These aspects are discussed below. 

2.1 – Metrics 

We use our measurement data to estimate the path loss exponent α and offset β of the well-
known path loss model: 
 PL(d) [dB] = 20 α log10 (d) + β  
where d is distance between Tx and Rx in meter and PL is the path loss in dB. From the 
measurements we have path loss estimates for known distances so we are looking for α and 
β that provide the best match to this dataset. We test a least squares regression and robust fit 
algorithm to determine α and β coefficients. The least squares regression will attribute an 
equal weight to each set of inputs and the outcome will be α and β which will result in the 
minimum mean squared error over the complete set of inputs. Since least squares can be 
biased and drawn towards outliers we additionally fit the model using robust regression. 
The robust regression will iteratively attribute weights in such a way to reduce the impact 
of outliers. 

We use the mean squared error (MSE) of the measurement points as a metric to 
judge the performance of a specific solution. There are two scenarios we use for reference: 
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the homogenous device reference and the heterogeneous device reference. In the 
homogeneous reference scenario, we compute the MSE to the regression based on the 
measurements of only one device (devRef). For the heterogeneous reference we compute 
the MSE to the regression based on the measurements of all devices (allRef). The 
heterogeneous reference is thus treated as a ground truth. 

The general approach for all evaluations is that we use regression to estimate the 
path loss exponent α and the offset β using only a subset of the measurement points. This 
comes down to estimating the global path loss model with a set of local measurements. To 
assess the goodness of fit of this estimation, we compare it to the two references (devRef 
and allRef) described above. The difference between the estimated path loss model and the 
references is measured by the MSE. The MSE is directly related to the quality of the 
estimated path loss model, which eventually can serve as an indication of how suitable the 
corresponding estimation is in terms of distributed sensing. 

2.2 – Hardware used 

A range of six heterogeneous devices were used in the experiment, from low-cost 
commercial-off-the-shelf devices, to more sophisticated custom implementations. The 
following is a list of the devices used: 

• Metageek Wi-Spy 2.4x with Kismet Spec-tools for Linux OS [4] 
• Crossbow/Memsic TelosB [5][6] with CC2420 transceiver [7] and TinyOS 

application [8] 
• Fluke Airmagnet Spectrum XT [9]  
• Ettus Research USRP 2.0 [10] with XCVR 2450 daughterboard and Iris [11] 
• VESNA sensor node [12] 
• Imec sensing engine [13][16] 

Rohde & Schwarz lab equipment (SMIQ06 & AMIQ02 [17]) is used to generate the 
test signals. 

2.3 – Calibration 

To calibrate the devices, each device was connected to a signal generator via a cable and 
power splitters. We transmitted the test signal also used in the experiments at different 
power levels and used these measurements to compute the offset on measurement levels 
reported by the different devices. Apart from this “automatic” calibration we also did a 
manual calibration based on the real measurements (e.g. to account for the antenna effects). 
We detected a constant offset for the Airmagnet and one of the Telos devices, which were 
manually adjusted. Furthermore one of the measurement points of the WiSpy sensor was 
obviously a false measurement and, thus, removed. 

2.4 – Processing 

Although each device has its own proprietary output format a conversion step was done 
ensuring all results are stored using a common data format [15][14] that was created as part 
of the CREW project and is based on the IEEE 1900.6 standard [14]. The common data 
format contains the relevant parameters of the sensing device, time and location 
information and measurement results. This enables the usage of common scripts for data 
processing and reduces the risk of introducing errors.  

Since not all devices did an equal amount of measurements we compute the average 
received signal strength for all available device and location combinations. By using the 
average we attribute an equal weight to each device, whereas when we would use all 
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available results without averaging the device with the largest amount of measurements 
would contribute more to overall result. 

3. Measurements 

3.1 – Measurement Setup 

The experimental setup is shown in Figure 1, where 23 measurement locations and one 
transmit location were chosen within an indoor cafeteria on the premises of imec, Leuven, 
Belgium. The transmitter was set up to transmit a constant 20 MHz wide OFDM signal 
modelled according to a repeated Wi-Fi packet transmission on WiFi channel 8 
(2.447GHz), with a power of 3dBm. Each platform then performed spectrum 
measurements, a minimum of thirty seconds in length, at each location. Background ISM 
traffic devices were switched off throughout the duration of the experiment. Measurements 
were performed in an asynchronous manner, however due to the constant nature of the 
transmit signal and the statistical nature of the readings we assume the results to be the 
same as if all measurements had been synchronised. The set up includes a mixture of both 
line-of-sight (LOS) and non-line-of-sight (NLOS).  

 
Figure 1: Experimental set-up and location group 

3.2 – Measurement Results 

As discussed in section 2.1 we test both a least squares and robust fit to estimate the path 
loss exponent α and offset β based on the results from the measurements described in 
section 3. This results in an α of 2.32 and 2.29 and β of 46.4 and 46.8 for the least squares 
and robust fit respectively. The value of the path loss exponent α is close to 2 for both 
methods, indicating that path loss behaviour close to free space propagation. Figure 2 
shows the result of both fitting algorithms and the input points. We find that the impact of 
the type of regression, for these measurement results is very limited and hence we choose to 
select least squares fitted curve as the allRef, for the remainder of this paper.  
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Figure 2: least squares and robust fit 

 
Figure 3: Least squares regression for individual 

devices

4. Heterogeneity of the devices 
To compare different devices we start by computing a least squares fit solely based on the 
measurements from one device (devRef). These results are shown in Figure 3. As can be 
seen in the figure most devices display very similar behaviour, with the exception of the 
USRP. As the calibration, discussed in section 2.3, was done by connecting a cable directly 
to Rx and hence without the antenna, one possible reason for this deviant behaviour is 
different antenna properties. Further investigation is needed to fully clarify this observation. 
 We show the MSE between the estimated path loss curve and the average 
measurement result for all locations in Table 1 (first column). Additionally we also provide 
the MSE compared to the average measurements for all devices at all locations (allRef) in 
Table 1 (second column). This provides us with a metric to evaluate how close the 
estimation from one single device (on all locations) approximates our allRef. The results in 
Table 1 confirm what was already visible in Figure 3: the path loss estimation based solely 
on the USRP will lead to a significant error. The second observation is that the imec and 
VESNA devices produce the most consistent results, illustrated by low MSE compared to 
devREF.  

Table 1: Mean Squared Error per device 

MSE Device Name 
Compared to devRef Compared to allRef 

allRef  19.9883 
Airmagnet 31.8376 20.7657 

USRP 33.9482 28.8005 
imec 14.8554 21.5957 
Telos 28.5254 20.1824 

WiSpy 25.9246 23.2951 
VESNA 15.6993 20.4692 

5. Number of devices 
In this section we investigate how many sensing devices are needed in an area to have good 
estimate about the wireless environment in this area. To answer this question we estimate 

the path loss model with the least square error approach for each device based on a 

selected number of locations and calculate the MSE compared to devRef and allRef. In 
order to eliminate the influence of one specific location we have performed the analysis of 
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all possible combinations for every number of selected locations and took mean over the 
MSE. 

5.1 – Homogenous device analysis 

The resulting MSE for each number of locations is shown in Figure 4. As expected, when 
23 locations are used for fitting, the error is always 0 as this is what we defined as devRef. 
This analysis provides insights on the consistency of the individual device results, using of 

3 or 4 locations form imec sensing agent or VESNA gives similar results as using 6 locations 

of USRP, Airmagnet or WiSpy. We can also see that there are not many differences if we 

take 9 devices or more. 

 

 
Figure 4: Homogenous device reference 

 
Figure 5: Heterogeneous device reference

5.2 – Heterogeneous device analysis 

To compare different devices we amongst each other we conduct a similar analysis, only 
this time we calculate the MSE compared to the path loss estimation based on all devices, 
allRef instead of using devRef. In Figure 5 we see that imec sensing agent and VESNA 
node are able in this case to predict a path loss model close to allRef and the results are 
comparable to the previous analysis. For all devices we see a steep curve that flattens out 
fast when the number of devices increases, from this we can learn that, for this set up, using 
more than 9 devices will not help you to obtain a significantly better estimate of the path 
loss model. It is also very clear on Figure 5 that the USRP (and WiSpy to a lesser extent), 
even when using measurements from all locations, will not get close to allRef, which is 
consistent with the results from section 4. As a conclusion we can say that the MSE 

compared to both devRef and allRef reduces rapidly with increasing number of locations 

and that there is limit above which adding extra locations will not reduce the 

measurement error anymore.  

6. Heterogeneity of locations 
In this part we combine locations in different manners in order to discover the common 
characteristics and minimize the influence caused by the randomness of individual 
locations. We refer to a specific combination of locations as a location group. We used 2 

ways to perform the division into location groups, illustrated in Figure 1: 
• Clear line-of-sight to Tx (LOS group: all locations inTOP section + locations 15 and 

16) or none line-of-sight to Tx (NLOS group: all locations in the DOWN section 

expect locations 15 and 16) 
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• Based on the mesh topology of the locations we group points on horizontal (H1-

H5) and vertical (V1-V4) lines. We will further refer to this ‘line location’ 

.  In each of the following 2 parts, the performance of every location group is 

presented, followed by comparison and explanation. 

6.1 – LOS vs NLOS 

The resulting path loss curves estimated based on LOS and NLOS locations are shown in 

Figure 6 and the estimated path loss exponent and path loss offset are listed in Table 2. 
We can see from Table 2 that compared to LOS model, NLOS has a smaller slope but 

higher offset. The high offset in NLOS estimation is typically caused by the shadow effect. 

For the same reason, around shadow, the increment of path loss caused by distance can 

be compensated by the decreasing amount of shadowing, hence the path loss exponent 

appears to be smaller than only LOS estimation. 

 
Figure 6: LOS vs  NLOS pathloss estimation 

 
Figure 7: Line groups pathloss estimation 

6.2 – Line location group 

The estimation results for different line location groups are shown in Figure 7 and 

Table 2. There are 3 groups that have a path loss component significantly different from 

the other ones and our reference calculated in section 4, namely H4, H5 and V1. For H4 

and H5 the reason is to be found in the simple path loss estimation model that is used. The 

H4 and H5 groups contain both LOS and NLOS locations which, in combination with the 

simple path loss model, leads to unrealistic estimations of the path loss exponent. The 
highest path loss exponent estimation comes from group V1, which might be caused by the 
fact the saturation effects for the locations closest to the transmitter (i.e. under estimating 
the received power level), but further investigation is required to validate this. In summary, 
shadowing effects can be very disturbing, the selection of locations should avoid the border 
of the shadow. 

Table 2: Location heterogeneity overview 

 PL exponent PL offset MSE 
LOS vs NLOS 

LOS 2.229 46.25 1.14 
NLOS 1.259 59.57 10.84 

Line Location Group 
H1 2.458 43.35 2.91 
H2 2.509 42.82 2.92 
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H3 1.731 53.56 1.33 
H4 3.751 34.52 14.06 
H5 -5.643 132.84 290.50 
V1 3.82 32.71 10.59 
V2 2.316 47.54 1.25 
V3 2.639 43.71 0.65 
V4 2.062 48.47 0.506 

7. Conclusions 
In this paper we present results from path loss measurements in the ISM band in an indoor 
environment with heterogeneous devices. Most devices give similar overall results in terms 
of estimation of path loss exponent and offset estimation. However not all devices display 
the same consistency for all locations. This behaviour is confirmed in section 5 where we 
see that the amount of devices needed to obtain a reliable estimate depends on the device 
type. Futhermore, some devices do not even achieve an estimation close to the overall 
reference when all available measurement points for that device are used. Finally we see 
that, when the device locations are not selected carefully, the path loss and offset estimation 
can be very far from overall result. In summary we conclude that analysis based on only 
one device type or in specific locations could lead to misleading conclusions. 

In future work we are planning to perform similar analysis with heterogeneous 
devices mixed together and calibrate the devices including antenna in an anechoic chamber. 
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