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Abstract—Smart embedded objects such as sensors and 

actuators will become an important part of the Internet of 

Things. With recent technologies, it has now become possible 

to deploy a sensor network and interconnect it with IPv6 

Internet. However, several manual configuration steps are still 

needed to integrate a sensor network within an existing 

networking environment. In this paper we describe a novel 

self-organization solution to facilitate the deployment of sensor 

networks and enable the discovery, end-to-end connectivity 

and service usage of these newly deployed sensor nodes. The 

proposed approach makes use of embedded web service 

technology, i.e. the IETF Constrained Application Protocol 

(CoAP). Automatic hierarchical discovery of CoAP servers is 

one of the key features, resulting in a browsable hierarchy of 

CoAP servers, up to the level of the sensor resources, which 

can be accessed both over CoAP and HTTP and through the 

use of either DNS names or IPv6 addresses. To demonstrate 

the feasibility of our approach we have implemented the 

solution and deployed it on a test setup, which is publicly 

accessible to everyone. 

Keywords-CoAP; self-organization; Internet of Things; 

DNS; proxy; embedded web services; discovery 

I.  INTRODUCTION 

The ubiquitous Internet protocol technology is rapidly 
spreading to new domains where constrained embedded 
devices such as sensors and actuators play a prominent role. 
This expansion of the Internet is comparable in scale to the 
spread of the Internet in the ’90s and the resulting Internet is 
now commonly referred to as the Internet of Things (IoT). 
The integration of embedded devices into the Internet 
introduces new challenges, since many of the existing 
Internet technologies and protocols were not designed for 
this class of devices. These devices are typically optimized 
for low cost and power consumption and thus have very 
limited power, memory, and processing resources and have 
long sleep periods. The networks formed by these embedded 
devices are also constrained and have different 
characteristics than those typical in today’s Internet. These 
constrained networks have high packet loss, low throughput, 
frequent topology changes and small useful payload sizes. 

In the past few years, there were many efforts to enable 
the extension of the Internet technologies to constrained 
devices. Most of these efforts were focusing on the 
networking layer: IPv6 over Low-Power Wireless Personal 

Area Networks (RFC4919) [1], Transmission of IPv6 
Packets over IEEE 802.15.4 Networks (RFC4944) [2], IETF 
routing over low-power and lossy network (ROLL) [3] or the 
Zig-Bee adoption of IPv6 [4]. Only recently, work has 
started to allow integration at service level. The IETF 
Constrained RESTful Environments (CoRE) working group 
is in the process of realizing the Representational State 
Transfer (REST) architecture in a suitable form for the most 
constrained nodes and networks. To that end the Constrained 
Application Protocol (CoAP) was introduced, a specialized 
RESTful web transfer protocol for use with constrained 
networks and nodes [5]. CoAP realizes a subset of REST that 
is common with the Hypertext Transfer Protocol (HTTP), 
but is optimized for machine-to-machine (M2M) 
applications.  

With these technologies, it has now become possible to 
deploy a sensor network and interconnect it with IPv6 
Internet. Within the sensor network itself, the available 
protocols are largely self-organizing, requiring no human 
intervention. Also, if the IPv6 address of a sensor is known, 
its resources can be accessed using CoAP. Nevertheless, 
there are several gaps related to the automatic discovery of 
sensors, integration with current Internet standards such as 
DNS, user-friendly access to sensors from within a web 
browser or the fact that several manual configuration steps 
are still needed to integrate a sensor network within an 
existing networking environment. However, the advent of 
open standards for embedded web services on e.g. sensors 
and sensor gateways, offers new opportunities to tackle 
several of these challenges related to the deployment of 
sensor networks and the realization of global user-friendly 
connectivity and access to sensor resources by making use of 
embedded web services through the CoAP protocol. 

In this paper, we will describe novel self-configuration 
and bootstrapping mechanisms in order to facilitate the 
deployment of sensor networks and enable the discovery, 
end-to-end connectivity and service usage of newly deployed 
sensor nodes. The proposed approach makes use of CoAP 
and combines it with DNS in order to enable the use of user-
friendly fully qualified domain names (FQDN) for 
addressing sensor nodes. It includes the automatic discovery 
of sensors and sensor gateways and the translation of HTTP 
to CoAP, thus making the sensor resources globally 
discoverable and accessible from any Internet-connected 
client using either IPv6 addresses or DNS names both via 



 
Figure 1. An example of the CoRE resource discovery 

HTTP or CoAP. As such, the proposed approach provides a 
feasible and flexible solution to achieve hierarchical self-
organization with a minimum of pre-configuration. 

Following this introduction we give an overview of the 
challenges facing sensor network deployment, discovery and 
access (Section II) and the upcoming solutions for the 
realization of embedded web services (Section III). In 
sections IV and V, we then introduce a solution based on 
CoAP and DNS for the hierarchical self-configuration of 
sensors and show how it can be accessed via HTTP. Our 
implementation and first test deployment is then described in 
Section VI. Finally we point to related works and compare 
them with ours and conclude in Sections VII and VIII. 

II. CHALLENGES IN SENSOR NETWORK DEPLOYMENT 

The deployment of sensor networks, including their 
integration in the Internet, is a multi-faceted problem. First 
of all, there is the deployment of the sensor network itself, 
starting with the provisioning of the hardware, followed by 
the actual installation and optimal placement of the sensing 
infrastructure [6]. Once installed and activated, it is up to the 
communication protocols to create a fully operational sensor 
network that is robust, energy efficient and capable of 
delivering the sensor data to the sinks or sensor gateways. 
Looking at the literature and standardization bodies (see 
Section I), it is clear that there have been many efforts to 
create such protocols, including MAC layer protocols, 
addressing, routing, data collection protocols, etc [7]. As 
such, sensor network self-configuration, i.e. the creation of 
an operational sensor network and communication inside the 
sensor network can be considered as a well-studied problem 
for which several solutions exist. 

The next aspect is connectivity with the IP-based 
Internet. On the one hand, sensor networks using proprietary 
networking solutions can be integrated with the Internet by 
deploying appropriate gateways that can do the translation 
from and to the sensor network. On the other hand, there is 
significant momentum for IP-based sensors and actuators as 
illustrated by the IETF work mentioned in Section I and 
several research papers. As such, the feasibility of integrating 
sensor networks with the Internet and enabling IP-based 
connectivity to sensors has been shown and made possible, 
for example in [8-11]. 

However, this is only the starting point. Next to the 
connectivity within the sensor network and the connectivity 
with the Internet, there are many other aspects related to the 
deployment of sensor networks. When a sensor subnet is 
connected to the Internet it needs to receive an address 
prefix, routing to the sensor network should be configured, 
ideally it should integrate with current Internet standards 
such as DNS, etc. Typically, manual interventions are still 
needed by an administrator. In addition, connectivity can be 
achieved, but knowing which sensors are present, 
discovering them and being able to use them in a user-
friendly way that does not require any technical skills (e.g. 
from a web browser) is an interesting challenge that has only 
begun to receive more attention from the research 
community recently. It is clear that there are still many open 
aspects and challenges. In this paper, we describe a novel 

solution that is capable of dealing with several of these 
challenges. To this end, we have taken a fresh approach, 
making use of embedded web services. 

III. THE ADVENT OF EMBEDDED WEB SERVICES 

Recent research on embedded web services is laying the 
ground for a better integration of sensor resources into the 
service web. Since the dominating web protocol HTTP is too 
complex, the IETC CoRE working group, formed in 2010, 
has designed a simpler web protocol - CoAP. It uses the 
same RESTful principles as HTTP, but it is much lighter so 
that it can be run on constrained devices [12-13]. As a result, 
CoAP has a much lower header overhead and parsing 
complexity than HTTP. It uses a 4-bytes binary header that 
may be followed by compact binary options and a payload. 
Optional reliability is supported within CoAP itself. 

The CoAP interaction model is similar to the 
client/server model of HTTP. A client can send a CoAP 
request, requesting an action (specified by a method code) on 
a resource (identified by a URI) on a server. The CoAP 
server processes the request and sends back a response 
containing a response code and payload. Unlike HTTP, 
CoAP deals with these interchanges asynchronously over a 
datagram-oriented transport such as UDP and thus it also 
supports multicast CoAP requests. 

Resource discovery is important for M2M interactions, 
and is supported in CoAP using the CoRE Link Format [14]. 
A well-known URI "/.well-known/core" is defined as a 
default entry-point for requesting the list of links about 
resources hosted by a server. Once the list of available 
resources is obtained from the server, the client can send 
further requests to obtain the value of a certain resource. The 
example in Fig. 1 shows a client requesting the list of the 
available resources on the server (GET /.well-known/core). 
The returned list showed that the server has, amongst others, 
a resource called /sensors/temp that would return back the 
temperature in degrees Celsius. The client then requested the 



 
Figure 2. Discovery of sensor nodes by the sensor gateway by sending a 
CoAP multicast GET request for /.well-known/serverInfo in the sensor 

network 
 

value of this resource (GET /sensors/temp) and got a reply 
back from the server (23.5C). 

IV. HIERARCHICAL SELF-CONFIGURATION SOLUTION 

BASED ON COAP 

By making use of the functionalities offered by CoAP, 
we have designed a hierarchical self-configuration solution 
that facilitates the deployment, discovery and resource access 
for sensor networks. In this section, we will present our 
approach in more detail.  

A. Assumptions 

In order to be able to design a self-configuration solution, 
one always has to make a few assumptions about certain 
aspects that have been preconfigured already. For example, 
in order for a new PC to auto-configure its globally routable 
IPv6 address, a router advertisement daemon has to be active 
in the network announcing the prefix of the network. Of 
course, the challenge is to restrict the required amount of 
pre-configuration involving humans as much as possible and 
to avoid these configuration steps at deployment time of the 
devices that dynamically join the network. 

1) The network that will be extended with sensors 
For our self-configuration solution, we assume the 

following basic network topology. An organization is 
connected via an Internet gateway, which also acts as DNS 
server, to the IPv6 Internet and has obtained a /48 IPv6 range 
and suffix for its domain names (e.g. “test.ibbt.be”). From 
this /48 range, a network administrator can assign subnets to 
different networks. For example, a /64 subnet is assigned to 
the LAN network behind the Internet GW (e.g. 
“iot.test.ibbt.be”). Now assume the organization wants to 
equip its building with sensors, which will be connected to 
the LAN network via one or more sensor gateways. The 
administrator reserves a pool of /64 subnets, domain name 
suffixes and sensor gateway names that can be assigned to 
newly deployed sensor networks. 

2) The sensor network 
Sensors should be considered as dumb devices that only 

have a minimal knowledge. For our self-configuration 
solution, we make the following assumptions. The sensor 
knows or will discover – via an address assignment protocol 
- its address in the sensor network. Typically, because of the 
limitations of a sensor device, these addresses are preferably 
small, e.g. only 16-bit for 6LoWPAN short addresses [15]. 
The complete IPv6 address of the sensor is not known, since 
it also depends on the sensor network the node will be 
deployed in. In the remainder of the paper, we will assume 
the use of 16-bit addresses for the sensors. Further, we 
assume the sensor knows its (or a) name. This name could be 
anything and could be for example a hardware identifier. A 
user-friendly name such as temperature_room1 would 
require user intervention and knowledge about the location 
where the sensor will be deployed. This can be done after 
deployment, where the automatically generated name can be 
replaced by a more meaningful name. Finally, the sensor 
runs a minimal CoAP server. Since the proposed solution 
makes use of CoAP, this is a strict requirement. Further, this 
minimal CoAP server should offer a well-known resource 

(/.well-known/serverInfo) that allows the retrieval of its 
name and address. No assumptions are made about the 
protocols inside the sensor network. These can be 
standardized or proprietary and it is the responsibility of the 
sensor gateway to translate from the IPv6 world to the sensor 
world. For the sensor gateway we also assume it will run a 
CoAP client and server and that it knows its global IPv6 
address in the LAN. 

B. The solution 

Based on the assumptions in Section A, we will now 
describe how newly deployed sensors can be discovered and 
made accessible to the outside world.  

1) Sensor discovery 
After deployment of the sensors, the sensor gateway can 

be triggered to send a multicast (ff02::1) CoAP GET request 
for the resource /.well-known/serverInfo as shown in Fig. 2. 
By doing so, the sensor gateway will be able to discover the 
(short) address and name of all sensor nodes present in the 
network. The sensor gateway could also be configured to 
periodically perform the multicast. This allows verifying 
whether already discovered sensors have disappeared. Of 
course, in this case the multicast frequency should be limited 
in order to limit the resulting energy consumption. As an 
alternative, which we are currently investigating, it is also 
possible to let the sensor nodes announce their presence to 
the gateway, once or periodically (push versus pull-based 
solution).  

Fig. 3 shows the manual execution and the corresponding 
result of such a multicast CoAP request into the sensor 
network (using the usb-to-sensor network interface). The 
figure shows that sensor3 and sensor4 are present in the 
network, next to some other sensors (not visible in the 
figure). If the sensor gateway has obtained a subnet prefix 
and domain for the sensor network (see next paragraph), it 
can construct the complete IPv6 address and FQDN of the 
sensor. This information is then used to dynamically update 
the local DNS running at the sensor gateway (Note that the 
sensor gateway acts as resolver of DNS request for names in 
the sensor domain). As such, the sensor gateway has a list of 
all available sensors, which can be updated dynamically. 
When using periodic multicasting and when a sensor is no 
longer available, the information is removed from the local 
DNS. It is important to note that these updates to the DNS 
are restricted to the sensor gateway and stay within the 
administrative domain of the company. 

2) Sensor gateway discovery 
The same process can be repeated at a higher level in the 

network hierarchy assuming that the sensor gateway also 
runs a CoAP server. The Internet gateway can periodically 



 
Figure 3. Example of a multicast CoAP GET request for resource /.well-

known/serverInfo as executed by the sensor gateway 
 

 
Figure 4. Name resolution using dynamically configured DNS information 

 
Figure 5. Example of a client querying a sensor gateway for the FQDNs of 

all discovered sensors 
 

send CoAP multicast requests for /.well-known/serverInfo in 
the LAN network in order to discover all sensor gateways. 
The resource /.well-known/serverInfo of a sensor gateway 
will also contain, in addition to the address and name of the 
sensor gateway, the domain suffix of the sensor subnet and 
the IPv6 prefix of the sensor subnet. In a similar way, the 
Internet gateway will add the address and name of the 
discovered sensor gateways to its local DNS. In addition, the 
Internet gateway will dynamically install a route to the 
sensor subnet and will add the sensor gateway as the name 
server for the sensor network. In case the Internet gateway 
notices that the sensor gateway does not have a subnet 
prefix, domain suffix and name configured, the Internet 
gateway will take this information from its pool (see our 
assumptions) and send it as a CoAP POST request to the 
sensor gateway, which will update its configuration 
accordingly. 

This process can be repeated for different levels in the 
networking hierarchy up to the highest level, which, in our 
simple example, is the Internet gateway. Now, everyone in 
the Internet can resolve the FQDN of every discovered 
sensor and forward packets to this sensor. This is shown in 
Fig. 4, where the discovered sensor information consisting of 
the name “sensor3” and 16-bit address “3” has been used to 
create an IPv6 address and FQDN, which are dynamically 
added to the DNS on the sensor gateway. 

This means that all sensors are now globally reachable 
with minimal effort and end-to-end communication is now 
possible. Using the same principles, one can introduce 
additional levels of indirection in order to enhance scalability 
or realize more complex setups. At this point, CoAP can be 
used to e.g. update the name of the sensor or retrieve any 
other information such as measurements. 

3) Discovery through hierarchy of linked CoAP servers 
To further facilitate the discovery of sensors, we have 

introduced new CoAP resources for making available all 
discovered CoAP servers. As such, the sensor gateways and 
Internet gateway in our example will themselves run a CoAP 
server offering the following CoAP resources: 

• /.well-known/servers: returns a list of all FQDNs 
for all discovered sensors 

• /.well-known/servers/address: returns a list of all 
IPv6 addresses for all discovered sensors 

• /.well-known/servers/coap: returns CoAP links to 
all discovered CoAP servers, using the CoRE Link 
Format (actually linking different CoAP servers 
together) 

When a client wants to discover available sensors and 
make use of the services offered by sensor nodes, it now only 
has to know one anchor point for the entire domain of the 
organization (in a similar way a domain has a well-known 
name server). In our example, this is the Internet gateway, 
which could be assigned an easy to remember name such as 
coap.iot.test.ibbt.be. From that point on, a client can simply 
take the following actions: 

• Send a CoAP request for the resource /.well-
known/servers on the Internet gateway 

• Per sensor gateway, the client can send a CoAP 
request to /.well-known/servers in order to find all 
sensors in the attached sensor subnet (see Fig. 5) 

• Per sensor, the client can now use CoAP to retrieve 
sensor information 

By applying this mechanism and creating a hierarchy of 
linked CoAP servers, any client can easily discover and use 
any sensor without a lot of network overhead. In 



 
Figure 6. Complete self-organization process, sensor discovery and resource access 

 

combination with the automatic creation of FQDN names for 
sensors and their addition to a DNS system, this creates a 
flexible discovery mechanism and user-friendly access to 
sensors for humans. The whole process is almost fully 
automated, minimizing human intervention. 

4) Summary 
In Fig. 6, we summarize the entire self-organization 

process, discovery of sensors and access to resources. For 
simplicity, resolving of DNS names, as already illustrated in 
Fig. 4, is ignored. Also note that the CoAP servers, indicated 
between [], can be either DNS name or IPv6 address. 
Further, the order of discovery, first sensors and then sensor 
gateways, can be the other way around. 

V. ENABLING HTTP ACCESS 

The proposed sensor resource self-configuration solution 
described in the previous section enables access to sensors 
using DNS names and IPv6 addresses using CoAP. However 
many clients do not have a CoAP implementation and will 
therefore not be able to benefit from this proposed solution. 
On the other hand all web client implementations have a web 
browser that supports HTTP. Since CoAP is following the 
same RESTful principles as HTTP, both protocols can be 
nicely mapped to each other and thus making the sensor 
resources accessible via HTTP. To achieve this mapping, 
HTTP-CoAP proxy functionality is required. In addition, to 
enable real browsable discovery of and access to sensor 
resources, we have foreseen a translation mechanism to 
create HTML pages from responses in the CoRE Link 
Format. Both mechanisms are explained in the following 
subsections. 

A.  HTTP-CoAP proxy functionality 

To enable HTTP access in our solution, the sensor 
gateway and the Internet gateway were extended in such a 
way to not only act as CoAP servers, but also as HTTP-
CoAP proxies capable of translating HTTP messages to 
CoAP messages and vice versa. Clients can access these 
gateways via their favorite web browser using HTTP 
requests. The gateways map the requests to CoAP and send 
the requests to the sensors. Once the sensor replies using 
CoAP, the reply is sent back to the client using HTTP and 
the client remains unaware of the fact that CoAP was used to 
retrieve the reply from the sensor. 

The implemented proxy application on the gateways can 
act in two modes: transparent and non-transparent. In the 
non-transparent mode the client should construct the HTTP 
request in the following format: 
http://gw_name:8080/sensor_name/resource. Of course, the 
respective IPv6 addresses can be used instead of the names 
in the above format. The gateway then translates this request 
into the following CoAP request and sends it to the 
respective sensor: coap://sensor_name/resource. It is clear 
that in this non-transparent mode, the client must explicitly 
be aware of the proxy and use it as part of the URI.  

In the transparent mode the client remains unaware of the 
presence of the proxy functionality on the gateway and 
constructs the HTTP request in the following format: 
http://sensor_name:8080/resource. For this proxy to work 
properly in transparent mode, the proxy has to be on the path 
between the client and the sensor in order to be able to 
intercept the HTTP request (and TCP connection) and map it 
into the appropriate CoAP request. In our example, the 
transparent proxy functionality for accessing the sensors 



 
 

Figure 8. Publicly reachable testbed at IBBT 
 

 
Figure 7. CoRE Link Format rewriting.  

On top, the result of a CoAP request in CoRE Link Format.  
Below, the automatically created HTML page. 

 

resides only on the sensor gateways. When the HTTP request 
for the sensor enters, the proxy will behave as the end point 
of the TCP connection and will handle the TCP connection. 
In the background, a translation to CoAP takes place and the 
request is sent to the sensor. For the user it seems as if he 
connects directly to the sensor using HTTP/TCP, but in 
reality the sensor gateway transparently handles the 
connection and translates it to CoAP. As such, in transparent 
mode, the user does not have to be aware of a proxy that it 
needs to use. 

B. CoRE Link Format to HTML 

In addition to the mapping between HTTP and CoAP, the 
proxy implementation on the gateway performs automatic 
rewriting of response in the CoRE Link format into HTML, 
so that it can be interpreted directly by the web browser and 
easily understood by humans. Every resource in a response 
in the CoRE Link Format, such as </sensors/temp> is 
rewritten by the proxy into an HTML link. When the original 
request made use of a proxy, the HTTP URI will consist of 
the proxy address or name, followed by the address or name 
of the actual CoAP server on which the resource resides and 
the resource itself. When the original request did not make 
use of a proxy or transparent proxying is possible, the HTTP 
URI will only contain the actual CoAP server on which the 
resource is located followed by the resource. In Fig. 7 an 
example is shown of how the CoRE Link Format is 
automatically rewritten into an HTML page. On top, the 
result of the CoAP request in CoRE Link Format is shown. 
Below, the HTML page that has been automatically created 
by the HTTP-CoAP proxy is shown. 

VI. IMPLEMENTATION AND DEPLOYMENT 

Together, the mechanism described in Sections IV and V, 
realize a hierarchical self-configuration solution based on 
CoAP. Automatically discovered CoAP servers, up to the 
sensor level, are linked together into a browsable hierarchy 
that can be accessed either via CoAP or HTTP, offering 
global access to sensor resources in a human-friendly way 
through the use of names. The described solutions have been 
implemented and deployed on a publicly reachable testbed 
(IPv6 only), of which the details are shown in Fig. 8. Anyone 
that is connected to the Internet using IPv6, is able to access 

the resources, either over CoAP or HTTP (port 8080).  
The implementation consists of two parts, the 

implementation running on the sensors nodes and the 
implementation on the gateways. The implementation on the 
gateways has been realized in Click Router, a C++ based 
modular framework that can be used to realize any network 
packet processing functionality [16]. It consists of several 
modules such as the CoAP protocol, a CoAP server backend 



capable of offering resources, CoAP server discovery, 
HTTP-CoAP proxying, USB sensor communication… These 
modules can be combined in several ways by creating a 
configuration file. As such, using the same code base, one 
can realize the following configurations: a) a stand-alone 
socket-based CoAP client making use of IPv6/UDP sockets 
for network communication b) a stand-alone packet-based 
CoAP client that processes and generates complete network 
packets (including Ethernet/IPv6/UDP headers) offering full 
control over the communication which is interesting for the 
realization of the gateway functionality c) a CoAP sensor 
gateway with sensor discovery, DNS and (non-)transparent 
proxy functionality d) a CoAP internet gateway with sensor 
gateway discovery, DNS and non-transparent proxy 
functionality. 

The CoAP client/server protocol and the CoAP resources 
on the sensors have been implemented using the IDRA 
framework [17]. IDRA is a network architecture and 
application platform developed for TinyOS and written in 
nesC. The designed solution (including MAC, AODV 
routing and CoAP) has a footprint of 37092 bytes in ROM 
and 5923 bytes in RAM.  

VII. RELATED WORK 

In this section we will discuss other work focusing on the 
automatic discovery of sensors, realization of end-to-end 
access and integration with DNS. Our solution is a network-
based solution, meaning that we want to achieve global end-
to-end access to sensor resources in a way that requires 
minimal to no human intervention. At the same time, we 
want to comply with current Web Standards by offering 
access using DNS and HTTP and we want to foresee means 
for the automatic discovery of sensors within a domain, since 
global access alone is not enough. Users should be able to 
find out which sensors are available.  

Some solutions focus on the discovery of sensors and 
sensor data by publishing or collecting information about the 
sensors and measurements in databases that can be accessed 
by other applications and services. For example, Pachube 
[18] allows sensor data to be pushed to a central database, 
where it can be used by others to create applications. No 
direct access to sensors is allowed. The OGC SWE 
framework [19] defines web service interfaces for accessing 
sensor data, controlling sensors and alerting, functionalities 
comparable to the ones offered by CoAP. Reference [20] 
presents the OSIRIS Sensor Web Discovery Framework, 
which makes use of registries that are being build and which 
are capable of handling the dynamic properties of sensors. 
Similarly, a web crawler could periodically scan the Web of 
Things for sensors and downloading meta-data via their 
RESTful interfaces. This information can be stored, e.g. as 
RDF triples, after which the information can be searched, 
reasoned upon or linked with other open data [21]. 

These solutions aim for the realization of a Semantic 
Web of Things or Sensor Web, which enables data producers 
and users to publish and access sensor information via web- 
and standards based interface (see [22] for more details on 
Sensor Web). This goes already one step beyond our 
solution, since it focuses on the service part, skipping the 

deployment steps and ignoring the networking part. For 
example, aspects such as naming, automatic routing to 
sensor subnets, facilitating the deployment of sensor 
networks… are not considered, although very important. Our 
solution provides an answer to these problems, can be seen 
as a building block for the realization of the Semantic Web 
of Things and is therefore quite different, but 
complementary. 

When focusing now more on the networking aspect 
(discovery followed by integration in DNS and automatic 
routing to sensor subnets), few related work is found. In [23], 
a solution is presented where a lightweight mDNS-SD 
implementation is running on a sensor platform. As such, 
sensor nodes can announce their services and update 
resource records in a DNS. However, this solution does not 
include other aspects such as the discovery and self-
organization at higher hierarchical levels or the automatic 
configuration of routing to the subnet. Further, if RESTful 
web services want to be offered on top of the discovery, both 
an mDNS-SD and CoAP implementation are needed, 
increasing the code footprint. Taking a RESTful approach to 
tackle both problems mitigates this problem. In [24], a 
solution is presented for the integration of sensors and 
actuators in the Future Internet in a plug and play manner. 
Sensor nodes can register with gateways that provide an 
open interface to access raw or abstracted sensor data. At a 
higher level, a Sensor Address Server maintains a list of all 
registered gateways. This solution provides hierarchical 
levels, but does not comply with existing Internet standards 
nor foresees direct sensor resource access using IPv6. 
Finally, in [25], a zero-configuration IPv6/6LoWPAN-based 
system architecture is described. It foresees an API to access 
services following REST principles. A central unit can make 
use of this API to auto-discover the functionality offered by 
the sensor node or the service can be advertised in a way 
similar to mDNS. This approach uses embedded web 
services (not CoAP), but does not achieve the level of auto-
configuration from our solution, i.e. multiple self-organizing 
hierarchical levels automatically linked with each other, 
resulting in a browsable discovery system that allows the 
discovery of and access to sensor resources. Also DNS 
aspects or automatic routing to sensor subnets, crucial in the 
actual roll-out of the network, are not considered. 

VIII. CONCLUSIONS AND OUTLOOK 

In this paper we have described a novel self-organization 
solution to facilitate the deployment of sensor networks and 
enable the discovery, end-to-end connectivity and service 
usage of newly deployed sensor nodes. The proposed 
approach makes use of embedded web service technology, 
i.e. the IETF CoAP protocol. By combining it with DNS and 
foreseeing HTTP-CoAP proxy functionality, it complies with 
current Internet standards. Automatic hierarchical discovery 
of CoAP servers is one of the key features, resulting in a 
browsable hierarchy of CoAP servers, up to the level of the 
sensor resources. By creating a hierarchy of linked CoAP 
servers, scalability can be addressed. As such, the proposed 
approach provides a feasible and flexible solution to achieve 
hierarchical self-organization with a minimum of pre-



configuration. The solution is based on a minimal number of 
assumptions regarding the pre-configuration. With some 
additional improvements and the development of 
management tools, it provides a valuable contribution to 
facilitate the deployment of and access to sensor networks. 

The fact that embedded web services are used is a strong 
point, since it will facilitate integration with other services 
and applications. By complementing the solution with the 
appropriate firewalling and access policies, any level of 
sensor access can be made possible. The implementation and 
proper functioning of the solution has been demonstrated 
through the deployment on a publicly accessible test setup. 
In the future, a detailed analysis of the overhead of the 
presented solution will take place, together with a 
comparison between the pull-based approach presented here 
and a push-based approach where sensors announce their 
presence to the sensor gateway. This push-based approach 
has been implemented already and the evaluation of both 
solutions is currently ongoing using  real-life wireless sensor 
network testbed, namely w-iLab.t [26]. This evaluation will 
give us further insights about the strengths and limitations of 
the proposed approach in a large-scale, real-life environment. 
Next to this the scalability and external accessibility will be 
further explored and tested and issues such as the security of 
the presented solution will be investigated e.g. through the 
use of DTLS. In addition, it will be investigated to what 
extend any manual configuration that is still required can be 
avoided and how management tools based on embedded web 
service technology can bring the self-organization, 
configuration and management of sensor networks to a next 
level. 
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