
Facilitating sensor deployment, discovery and resource access using embedded web

services

Isam Ishaq, Jeroen Hoebeke, Jen Rossey, Eli De Poorter, Ingrid Moerman, Piet Demeester
Department of Information Technology (INTEC)

Ghent University – IBBT
Ghent, Belgium

{isam.ishaq, jeroen.hoebeke, jen.rossey, eli.depoorter, ingrid.moerman, piet.demeester}@intec.ugent.be

Abstract—Smart embedded objects such as sensors and

actuators will become an important part of the Internet of

Things. With recent technologies, it has now become possible

to deploy a sensor network and interconnect it with IPv6

Internet. However, several manual configuration steps are still

needed to integrate a sensor network within an existing

networking environment. In this paper we describe a novel

self-organization solution to facilitate the deployment of sensor

networks and enable the discovery, end-to-end connectivity

and service usage of these newly deployed sensor nodes. The

proposed approach makes use of embedded web service

technology, i.e. the IETF Constrained Application Protocol

(CoAP). Automatic hierarchical discovery of CoAP servers is

one of the key features, resulting in a browsable hierarchy of

CoAP servers, up to the level of the sensor resources, which

can be accessed both over CoAP and HTTP and through the

use of either DNS names or IPv6 addresses. To demonstrate

the feasibility of our approach we have implemented the

solution and deployed it on a test setup, which is publicly

accessible to everyone.

Keywords-CoAP; self-organization; Internet of Things;

DNS; proxy; embedded web services; discovery

I. INTRODUCTION

The ubiquitous Internet protocol technology is rapidly
spreading to new domains where constrained embedded
devices such as sensors and actuators play a prominent role.
This expansion of the Internet is comparable in scale to the
spread of the Internet in the ’90s and the resulting Internet is
now commonly referred to as the Internet of Things (IoT).
The integration of embedded devices into the Internet
introduces new challenges, since many of the existing
Internet technologies and protocols were not designed for
this class of devices. These devices are typically optimized
for low cost and power consumption and thus have very
limited power, memory, and processing resources and have
long sleep periods. The networks formed by these embedded
devices are also constrained and have different
characteristics than those typical in today’s Internet. These
constrained networks have high packet loss, low throughput,
frequent topology changes and small useful payload sizes.

In the past few years, there were many efforts to enable
the extension of the Internet technologies to constrained
devices. Most of these efforts were focusing on the
networking layer: IPv6 over Low-Power Wireless Personal

Area Networks (RFC4919) [1], Transmission of IPv6
Packets over IEEE 802.15.4 Networks (RFC4944) [2], IETF
routing over low-power and lossy network (ROLL) [3] or the
Zig-Bee adoption of IPv6 [4]. Only recently, work has
started to allow integration at service level. The IETF
Constrained RESTful Environments (CoRE) working group
is in the process of realizing the Representational State
Transfer (REST) architecture in a suitable form for the most
constrained nodes and networks. To that end the Constrained
Application Protocol (CoAP) was introduced, a specialized
RESTful web transfer protocol for use with constrained
networks and nodes [5]. CoAP realizes a subset of REST that
is common with the Hypertext Transfer Protocol (HTTP),
but is optimized for machine-to-machine (M2M)
applications.

With these technologies, it has now become possible to
deploy a sensor network and interconnect it with IPv6
Internet. Within the sensor network itself, the available
protocols are largely self-organizing, requiring no human
intervention. Also, if the IPv6 address of a sensor is known,
its resources can be accessed using CoAP. Nevertheless,
there are several gaps related to the automatic discovery of
sensors, integration with current Internet standards such as
DNS, user-friendly access to sensors from within a web
browser or the fact that several manual configuration steps
are still needed to integrate a sensor network within an
existing networking environment. However, the advent of
open standards for embedded web services on e.g. sensors
and sensor gateways, offers new opportunities to tackle
several of these challenges related to the deployment of
sensor networks and the realization of global user-friendly
connectivity and access to sensor resources by making use of
embedded web services through the CoAP protocol.

In this paper, we will describe novel self-configuration
and bootstrapping mechanisms in order to facilitate the
deployment of sensor networks and enable the discovery,
end-to-end connectivity and service usage of newly deployed
sensor nodes. The proposed approach makes use of CoAP
and combines it with DNS in order to enable the use of user-
friendly fully qualified domain names (FQDN) for
addressing sensor nodes. It includes the automatic discovery
of sensors and sensor gateways and the translation of HTTP
to CoAP, thus making the sensor resources globally
discoverable and accessible from any Internet-connected
client using either IPv6 addresses or DNS names both via

Figure 1. An example of the CoRE resource discovery

HTTP or CoAP. As such, the proposed approach provides a
feasible and flexible solution to achieve hierarchical self-
organization with a minimum of pre-configuration.

Following this introduction we give an overview of the
challenges facing sensor network deployment, discovery and
access (Section II) and the upcoming solutions for the
realization of embedded web services (Section III). In
sections IV and V, we then introduce a solution based on
CoAP and DNS for the hierarchical self-configuration of
sensors and show how it can be accessed via HTTP. Our
implementation and first test deployment is then described in
Section VI. Finally we point to related works and compare
them with ours and conclude in Sections VII and VIII.

II. CHALLENGES IN SENSOR NETWORK DEPLOYMENT

The deployment of sensor networks, including their
integration in the Internet, is a multi-faceted problem. First
of all, there is the deployment of the sensor network itself,
starting with the provisioning of the hardware, followed by
the actual installation and optimal placement of the sensing
infrastructure [6]. Once installed and activated, it is up to the
communication protocols to create a fully operational sensor
network that is robust, energy efficient and capable of
delivering the sensor data to the sinks or sensor gateways.
Looking at the literature and standardization bodies (see
Section I), it is clear that there have been many efforts to
create such protocols, including MAC layer protocols,
addressing, routing, data collection protocols, etc [7]. As
such, sensor network self-configuration, i.e. the creation of
an operational sensor network and communication inside the
sensor network can be considered as a well-studied problem
for which several solutions exist.

The next aspect is connectivity with the IP-based
Internet. On the one hand, sensor networks using proprietary
networking solutions can be integrated with the Internet by
deploying appropriate gateways that can do the translation
from and to the sensor network. On the other hand, there is
significant momentum for IP-based sensors and actuators as
illustrated by the IETF work mentioned in Section I and
several research papers. As such, the feasibility of integrating
sensor networks with the Internet and enabling IP-based
connectivity to sensors has been shown and made possible,
for example in [8-11].

However, this is only the starting point. Next to the
connectivity within the sensor network and the connectivity
with the Internet, there are many other aspects related to the
deployment of sensor networks. When a sensor subnet is
connected to the Internet it needs to receive an address
prefix, routing to the sensor network should be configured,
ideally it should integrate with current Internet standards
such as DNS, etc. Typically, manual interventions are still
needed by an administrator. In addition, connectivity can be
achieved, but knowing which sensors are present,
discovering them and being able to use them in a user-
friendly way that does not require any technical skills (e.g.
from a web browser) is an interesting challenge that has only
begun to receive more attention from the research
community recently. It is clear that there are still many open
aspects and challenges. In this paper, we describe a novel

solution that is capable of dealing with several of these
challenges. To this end, we have taken a fresh approach,
making use of embedded web services.

III. THE ADVENT OF EMBEDDED WEB SERVICES

Recent research on embedded web services is laying the
ground for a better integration of sensor resources into the
service web. Since the dominating web protocol HTTP is too
complex, the IETC CoRE working group, formed in 2010,
has designed a simpler web protocol - CoAP. It uses the
same RESTful principles as HTTP, but it is much lighter so
that it can be run on constrained devices [12-13]. As a result,
CoAP has a much lower header overhead and parsing
complexity than HTTP. It uses a 4-bytes binary header that
may be followed by compact binary options and a payload.
Optional reliability is supported within CoAP itself.

The CoAP interaction model is similar to the
client/server model of HTTP. A client can send a CoAP
request, requesting an action (specified by a method code) on
a resource (identified by a URI) on a server. The CoAP
server processes the request and sends back a response
containing a response code and payload. Unlike HTTP,
CoAP deals with these interchanges asynchronously over a
datagram-oriented transport such as UDP and thus it also
supports multicast CoAP requests.

Resource discovery is important for M2M interactions,
and is supported in CoAP using the CoRE Link Format [14].
A well-known URI "/.well-known/core" is defined as a
default entry-point for requesting the list of links about
resources hosted by a server. Once the list of available
resources is obtained from the server, the client can send
further requests to obtain the value of a certain resource. The
example in Fig. 1 shows a client requesting the list of the
available resources on the server (GET /.well-known/core).
The returned list showed that the server has, amongst others,
a resource called /sensors/temp that would return back the
temperature in degrees Celsius. The client then requested the

Figure 2. Discovery of sensor nodes by the sensor gateway by sending a
CoAP multicast GET request for /.well-known/serverInfo in the sensor

network

value of this resource (GET /sensors/temp) and got a reply
back from the server (23.5C).

IV. HIERARCHICAL SELF-CONFIGURATION SOLUTION

BASED ON COAP

By making use of the functionalities offered by CoAP,
we have designed a hierarchical self-configuration solution
that facilitates the deployment, discovery and resource access
for sensor networks. In this section, we will present our
approach in more detail.

A. Assumptions

In order to be able to design a self-configuration solution,
one always has to make a few assumptions about certain
aspects that have been preconfigured already. For example,
in order for a new PC to auto-configure its globally routable
IPv6 address, a router advertisement daemon has to be active
in the network announcing the prefix of the network. Of
course, the challenge is to restrict the required amount of
pre-configuration involving humans as much as possible and
to avoid these configuration steps at deployment time of the
devices that dynamically join the network.

1) The network that will be extended with sensors
For our self-configuration solution, we assume the

following basic network topology. An organization is
connected via an Internet gateway, which also acts as DNS
server, to the IPv6 Internet and has obtained a /48 IPv6 range
and suffix for its domain names (e.g. “test.ibbt.be”). From
this /48 range, a network administrator can assign subnets to
different networks. For example, a /64 subnet is assigned to
the LAN network behind the Internet GW (e.g.
“iot.test.ibbt.be”). Now assume the organization wants to
equip its building with sensors, which will be connected to
the LAN network via one or more sensor gateways. The
administrator reserves a pool of /64 subnets, domain name
suffixes and sensor gateway names that can be assigned to
newly deployed sensor networks.

2) The sensor network
Sensors should be considered as dumb devices that only

have a minimal knowledge. For our self-configuration
solution, we make the following assumptions. The sensor
knows or will discover – via an address assignment protocol
- its address in the sensor network. Typically, because of the
limitations of a sensor device, these addresses are preferably
small, e.g. only 16-bit for 6LoWPAN short addresses [15].
The complete IPv6 address of the sensor is not known, since
it also depends on the sensor network the node will be
deployed in. In the remainder of the paper, we will assume
the use of 16-bit addresses for the sensors. Further, we
assume the sensor knows its (or a) name. This name could be
anything and could be for example a hardware identifier. A
user-friendly name such as temperature_room1 would
require user intervention and knowledge about the location
where the sensor will be deployed. This can be done after
deployment, where the automatically generated name can be
replaced by a more meaningful name. Finally, the sensor
runs a minimal CoAP server. Since the proposed solution
makes use of CoAP, this is a strict requirement. Further, this
minimal CoAP server should offer a well-known resource

(/.well-known/serverInfo) that allows the retrieval of its
name and address. No assumptions are made about the
protocols inside the sensor network. These can be
standardized or proprietary and it is the responsibility of the
sensor gateway to translate from the IPv6 world to the sensor
world. For the sensor gateway we also assume it will run a
CoAP client and server and that it knows its global IPv6
address in the LAN.

B. The solution

Based on the assumptions in Section A, we will now
describe how newly deployed sensors can be discovered and
made accessible to the outside world.

1) Sensor discovery
After deployment of the sensors, the sensor gateway can

be triggered to send a multicast (ff02::1) CoAP GET request
for the resource /.well-known/serverInfo as shown in Fig. 2.
By doing so, the sensor gateway will be able to discover the
(short) address and name of all sensor nodes present in the
network. The sensor gateway could also be configured to
periodically perform the multicast. This allows verifying
whether already discovered sensors have disappeared. Of
course, in this case the multicast frequency should be limited
in order to limit the resulting energy consumption. As an
alternative, which we are currently investigating, it is also
possible to let the sensor nodes announce their presence to
the gateway, once or periodically (push versus pull-based
solution).

Fig. 3 shows the manual execution and the corresponding
result of such a multicast CoAP request into the sensor
network (using the usb-to-sensor network interface). The
figure shows that sensor3 and sensor4 are present in the
network, next to some other sensors (not visible in the
figure). If the sensor gateway has obtained a subnet prefix
and domain for the sensor network (see next paragraph), it
can construct the complete IPv6 address and FQDN of the
sensor. This information is then used to dynamically update
the local DNS running at the sensor gateway (Note that the
sensor gateway acts as resolver of DNS request for names in
the sensor domain). As such, the sensor gateway has a list of
all available sensors, which can be updated dynamically.
When using periodic multicasting and when a sensor is no
longer available, the information is removed from the local
DNS. It is important to note that these updates to the DNS
are restricted to the sensor gateway and stay within the
administrative domain of the company.

2) Sensor gateway discovery
The same process can be repeated at a higher level in the

network hierarchy assuming that the sensor gateway also
runs a CoAP server. The Internet gateway can periodically

Figure 3. Example of a multicast CoAP GET request for resource /.well-

known/serverInfo as executed by the sensor gateway

Figure 4. Name resolution using dynamically configured DNS information

Figure 5. Example of a client querying a sensor gateway for the FQDNs of

all discovered sensors

send CoAP multicast requests for /.well-known/serverInfo in
the LAN network in order to discover all sensor gateways.
The resource /.well-known/serverInfo of a sensor gateway
will also contain, in addition to the address and name of the
sensor gateway, the domain suffix of the sensor subnet and
the IPv6 prefix of the sensor subnet. In a similar way, the
Internet gateway will add the address and name of the
discovered sensor gateways to its local DNS. In addition, the
Internet gateway will dynamically install a route to the
sensor subnet and will add the sensor gateway as the name
server for the sensor network. In case the Internet gateway
notices that the sensor gateway does not have a subnet
prefix, domain suffix and name configured, the Internet
gateway will take this information from its pool (see our
assumptions) and send it as a CoAP POST request to the
sensor gateway, which will update its configuration
accordingly.

This process can be repeated for different levels in the
networking hierarchy up to the highest level, which, in our
simple example, is the Internet gateway. Now, everyone in
the Internet can resolve the FQDN of every discovered
sensor and forward packets to this sensor. This is shown in
Fig. 4, where the discovered sensor information consisting of
the name “sensor3” and 16-bit address “3” has been used to
create an IPv6 address and FQDN, which are dynamically
added to the DNS on the sensor gateway.

This means that all sensors are now globally reachable
with minimal effort and end-to-end communication is now
possible. Using the same principles, one can introduce
additional levels of indirection in order to enhance scalability
or realize more complex setups. At this point, CoAP can be
used to e.g. update the name of the sensor or retrieve any
other information such as measurements.

3) Discovery through hierarchy of linked CoAP servers
To further facilitate the discovery of sensors, we have

introduced new CoAP resources for making available all
discovered CoAP servers. As such, the sensor gateways and
Internet gateway in our example will themselves run a CoAP
server offering the following CoAP resources:

• /.well-known/servers: returns a list of all FQDNs
for all discovered sensors

• /.well-known/servers/address: returns a list of all
IPv6 addresses for all discovered sensors

• /.well-known/servers/coap: returns CoAP links to
all discovered CoAP servers, using the CoRE Link
Format (actually linking different CoAP servers
together)

When a client wants to discover available sensors and
make use of the services offered by sensor nodes, it now only
has to know one anchor point for the entire domain of the
organization (in a similar way a domain has a well-known
name server). In our example, this is the Internet gateway,
which could be assigned an easy to remember name such as
coap.iot.test.ibbt.be. From that point on, a client can simply
take the following actions:

• Send a CoAP request for the resource /.well-
known/servers on the Internet gateway

• Per sensor gateway, the client can send a CoAP
request to /.well-known/servers in order to find all
sensors in the attached sensor subnet (see Fig. 5)

• Per sensor, the client can now use CoAP to retrieve
sensor information

By applying this mechanism and creating a hierarchy of
linked CoAP servers, any client can easily discover and use
any sensor without a lot of network overhead. In

Figure 6. Complete self-organization process, sensor discovery and resource access

combination with the automatic creation of FQDN names for
sensors and their addition to a DNS system, this creates a
flexible discovery mechanism and user-friendly access to
sensors for humans. The whole process is almost fully
automated, minimizing human intervention.

4) Summary
In Fig. 6, we summarize the entire self-organization

process, discovery of sensors and access to resources. For
simplicity, resolving of DNS names, as already illustrated in
Fig. 4, is ignored. Also note that the CoAP servers, indicated
between [], can be either DNS name or IPv6 address.
Further, the order of discovery, first sensors and then sensor
gateways, can be the other way around.

V. ENABLING HTTP ACCESS

The proposed sensor resource self-configuration solution
described in the previous section enables access to sensors
using DNS names and IPv6 addresses using CoAP. However
many clients do not have a CoAP implementation and will
therefore not be able to benefit from this proposed solution.
On the other hand all web client implementations have a web
browser that supports HTTP. Since CoAP is following the
same RESTful principles as HTTP, both protocols can be
nicely mapped to each other and thus making the sensor
resources accessible via HTTP. To achieve this mapping,
HTTP-CoAP proxy functionality is required. In addition, to
enable real browsable discovery of and access to sensor
resources, we have foreseen a translation mechanism to
create HTML pages from responses in the CoRE Link
Format. Both mechanisms are explained in the following
subsections.

A. HTTP-CoAP proxy functionality

To enable HTTP access in our solution, the sensor
gateway and the Internet gateway were extended in such a
way to not only act as CoAP servers, but also as HTTP-
CoAP proxies capable of translating HTTP messages to
CoAP messages and vice versa. Clients can access these
gateways via their favorite web browser using HTTP
requests. The gateways map the requests to CoAP and send
the requests to the sensors. Once the sensor replies using
CoAP, the reply is sent back to the client using HTTP and
the client remains unaware of the fact that CoAP was used to
retrieve the reply from the sensor.

The implemented proxy application on the gateways can
act in two modes: transparent and non-transparent. In the
non-transparent mode the client should construct the HTTP
request in the following format:
http://gw_name:8080/sensor_name/resource. Of course, the
respective IPv6 addresses can be used instead of the names
in the above format. The gateway then translates this request
into the following CoAP request and sends it to the
respective sensor: coap://sensor_name/resource. It is clear
that in this non-transparent mode, the client must explicitly
be aware of the proxy and use it as part of the URI.

In the transparent mode the client remains unaware of the
presence of the proxy functionality on the gateway and
constructs the HTTP request in the following format:
http://sensor_name:8080/resource. For this proxy to work
properly in transparent mode, the proxy has to be on the path
between the client and the sensor in order to be able to
intercept the HTTP request (and TCP connection) and map it
into the appropriate CoAP request. In our example, the
transparent proxy functionality for accessing the sensors

Figure 8. Publicly reachable testbed at IBBT

Figure 7. CoRE Link Format rewriting.

On top, the result of a CoAP request in CoRE Link Format.
Below, the automatically created HTML page.

resides only on the sensor gateways. When the HTTP request
for the sensor enters, the proxy will behave as the end point
of the TCP connection and will handle the TCP connection.
In the background, a translation to CoAP takes place and the
request is sent to the sensor. For the user it seems as if he
connects directly to the sensor using HTTP/TCP, but in
reality the sensor gateway transparently handles the
connection and translates it to CoAP. As such, in transparent
mode, the user does not have to be aware of a proxy that it
needs to use.

B. CoRE Link Format to HTML

In addition to the mapping between HTTP and CoAP, the
proxy implementation on the gateway performs automatic
rewriting of response in the CoRE Link format into HTML,
so that it can be interpreted directly by the web browser and
easily understood by humans. Every resource in a response
in the CoRE Link Format, such as </sensors/temp> is
rewritten by the proxy into an HTML link. When the original
request made use of a proxy, the HTTP URI will consist of
the proxy address or name, followed by the address or name
of the actual CoAP server on which the resource resides and
the resource itself. When the original request did not make
use of a proxy or transparent proxying is possible, the HTTP
URI will only contain the actual CoAP server on which the
resource is located followed by the resource. In Fig. 7 an
example is shown of how the CoRE Link Format is
automatically rewritten into an HTML page. On top, the
result of the CoAP request in CoRE Link Format is shown.
Below, the HTML page that has been automatically created
by the HTTP-CoAP proxy is shown.

VI. IMPLEMENTATION AND DEPLOYMENT

Together, the mechanism described in Sections IV and V,
realize a hierarchical self-configuration solution based on
CoAP. Automatically discovered CoAP servers, up to the
sensor level, are linked together into a browsable hierarchy
that can be accessed either via CoAP or HTTP, offering
global access to sensor resources in a human-friendly way
through the use of names. The described solutions have been
implemented and deployed on a publicly reachable testbed
(IPv6 only), of which the details are shown in Fig. 8. Anyone
that is connected to the Internet using IPv6, is able to access

the resources, either over CoAP or HTTP (port 8080).
The implementation consists of two parts, the

implementation running on the sensors nodes and the
implementation on the gateways. The implementation on the
gateways has been realized in Click Router, a C++ based
modular framework that can be used to realize any network
packet processing functionality [16]. It consists of several
modules such as the CoAP protocol, a CoAP server backend

capable of offering resources, CoAP server discovery,
HTTP-CoAP proxying, USB sensor communication… These
modules can be combined in several ways by creating a
configuration file. As such, using the same code base, one
can realize the following configurations: a) a stand-alone
socket-based CoAP client making use of IPv6/UDP sockets
for network communication b) a stand-alone packet-based
CoAP client that processes and generates complete network
packets (including Ethernet/IPv6/UDP headers) offering full
control over the communication which is interesting for the
realization of the gateway functionality c) a CoAP sensor
gateway with sensor discovery, DNS and (non-)transparent
proxy functionality d) a CoAP internet gateway with sensor
gateway discovery, DNS and non-transparent proxy
functionality.

The CoAP client/server protocol and the CoAP resources
on the sensors have been implemented using the IDRA
framework [17]. IDRA is a network architecture and
application platform developed for TinyOS and written in
nesC. The designed solution (including MAC, AODV
routing and CoAP) has a footprint of 37092 bytes in ROM
and 5923 bytes in RAM.

VII. RELATED WORK

In this section we will discuss other work focusing on the
automatic discovery of sensors, realization of end-to-end
access and integration with DNS. Our solution is a network-
based solution, meaning that we want to achieve global end-
to-end access to sensor resources in a way that requires
minimal to no human intervention. At the same time, we
want to comply with current Web Standards by offering
access using DNS and HTTP and we want to foresee means
for the automatic discovery of sensors within a domain, since
global access alone is not enough. Users should be able to
find out which sensors are available.

Some solutions focus on the discovery of sensors and
sensor data by publishing or collecting information about the
sensors and measurements in databases that can be accessed
by other applications and services. For example, Pachube
[18] allows sensor data to be pushed to a central database,
where it can be used by others to create applications. No
direct access to sensors is allowed. The OGC SWE
framework [19] defines web service interfaces for accessing
sensor data, controlling sensors and alerting, functionalities
comparable to the ones offered by CoAP. Reference [20]
presents the OSIRIS Sensor Web Discovery Framework,
which makes use of registries that are being build and which
are capable of handling the dynamic properties of sensors.
Similarly, a web crawler could periodically scan the Web of
Things for sensors and downloading meta-data via their
RESTful interfaces. This information can be stored, e.g. as
RDF triples, after which the information can be searched,
reasoned upon or linked with other open data [21].

These solutions aim for the realization of a Semantic
Web of Things or Sensor Web, which enables data producers
and users to publish and access sensor information via web-
and standards based interface (see [22] for more details on
Sensor Web). This goes already one step beyond our
solution, since it focuses on the service part, skipping the

deployment steps and ignoring the networking part. For
example, aspects such as naming, automatic routing to
sensor subnets, facilitating the deployment of sensor
networks… are not considered, although very important. Our
solution provides an answer to these problems, can be seen
as a building block for the realization of the Semantic Web
of Things and is therefore quite different, but
complementary.

When focusing now more on the networking aspect
(discovery followed by integration in DNS and automatic
routing to sensor subnets), few related work is found. In [23],
a solution is presented where a lightweight mDNS-SD
implementation is running on a sensor platform. As such,
sensor nodes can announce their services and update
resource records in a DNS. However, this solution does not
include other aspects such as the discovery and self-
organization at higher hierarchical levels or the automatic
configuration of routing to the subnet. Further, if RESTful
web services want to be offered on top of the discovery, both
an mDNS-SD and CoAP implementation are needed,
increasing the code footprint. Taking a RESTful approach to
tackle both problems mitigates this problem. In [24], a
solution is presented for the integration of sensors and
actuators in the Future Internet in a plug and play manner.
Sensor nodes can register with gateways that provide an
open interface to access raw or abstracted sensor data. At a
higher level, a Sensor Address Server maintains a list of all
registered gateways. This solution provides hierarchical
levels, but does not comply with existing Internet standards
nor foresees direct sensor resource access using IPv6.
Finally, in [25], a zero-configuration IPv6/6LoWPAN-based
system architecture is described. It foresees an API to access
services following REST principles. A central unit can make
use of this API to auto-discover the functionality offered by
the sensor node or the service can be advertised in a way
similar to mDNS. This approach uses embedded web
services (not CoAP), but does not achieve the level of auto-
configuration from our solution, i.e. multiple self-organizing
hierarchical levels automatically linked with each other,
resulting in a browsable discovery system that allows the
discovery of and access to sensor resources. Also DNS
aspects or automatic routing to sensor subnets, crucial in the
actual roll-out of the network, are not considered.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have described a novel self-organization
solution to facilitate the deployment of sensor networks and
enable the discovery, end-to-end connectivity and service
usage of newly deployed sensor nodes. The proposed
approach makes use of embedded web service technology,
i.e. the IETF CoAP protocol. By combining it with DNS and
foreseeing HTTP-CoAP proxy functionality, it complies with
current Internet standards. Automatic hierarchical discovery
of CoAP servers is one of the key features, resulting in a
browsable hierarchy of CoAP servers, up to the level of the
sensor resources. By creating a hierarchy of linked CoAP
servers, scalability can be addressed. As such, the proposed
approach provides a feasible and flexible solution to achieve
hierarchical self-organization with a minimum of pre-

configuration. The solution is based on a minimal number of
assumptions regarding the pre-configuration. With some
additional improvements and the development of
management tools, it provides a valuable contribution to
facilitate the deployment of and access to sensor networks.

The fact that embedded web services are used is a strong
point, since it will facilitate integration with other services
and applications. By complementing the solution with the
appropriate firewalling and access policies, any level of
sensor access can be made possible. The implementation and
proper functioning of the solution has been demonstrated
through the deployment on a publicly accessible test setup.
In the future, a detailed analysis of the overhead of the
presented solution will take place, together with a
comparison between the pull-based approach presented here
and a push-based approach where sensors announce their
presence to the sensor gateway. This push-based approach
has been implemented already and the evaluation of both
solutions is currently ongoing using real-life wireless sensor
network testbed, namely w-iLab.t [26]. This evaluation will
give us further insights about the strengths and limitations of
the proposed approach in a large-scale, real-life environment.
Next to this the scalability and external accessibility will be
further explored and tested and issues such as the security of
the presented solution will be investigated e.g. through the
use of DTLS. In addition, it will be investigated to what
extend any manual configuration that is still required can be
avoided and how management tools based on embedded web
service technology can bring the self-organization,
configuration and management of sensor networks to a next
level.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union's Seventh Framework Programme
(FP7/2007-2013) under grant agreement n°258885
(SPITFIRE project) and from the IBBT ICON project
GreenWeCan.

REFERENCES
[1] N. Kushalnagar, G. Montenegro, and C. Schumacher, IPv6 over Low-

Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals, IETF RFC 4919, Aug.
2007.

[2] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission
of IPv6 Packets over IEEE 802.15.4 Networks, IETF RFC 4944,
Sept. 2007.

[3] Routing Over Low power and Lossy networks (roll)
http://datatracker.ietf.org/wg/roll/

[4] ZigBee Alliance Plans Further Integration of Internet Protocol
Standards https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf

[5] Z. Shelby, B. Frank, and D. Sturek, Constrained Application Protocol
(CoAP), draft-ietf-core-coap-07, work in progress, July 2011.

[6] Carnot Institute, White paper: Smart Networked Objects and Internet
of Things, http://www.instituts-carnot.eu/files/AiCarnot-
White_Paper-
Smart_Networked_Objects_and_Internet_of_Things.pdf

[7] J. Zheng and A. Jamalipour, Wireless Sensor Networks – A
Networking Perspective, Wiley, 2009.

[8] J. Hui and D. Culler, “IP is dead, long live IP for wireless sensor
networks,” Proc. 6th ACM Conference on Embedded Network Sensor
Systems, pp. 15-28, 2008, doi:10.1145/1460412.1460415.

[9] M. Chen, S. Mao, Y. Xiao, M. Li, and V. Leung, “IPSA: A Novel
Architecture Design for Integrating IP and Sensor Networks,”
International Journal of Sensor Networks (IJSNet), Vol. 5, No. 1,
2009, pp. 48- 57, DOI: 10.1504/IJSNET.2009.023315.

[10] S. Duquennoy, N. Wirstom, N. Tsiftes, and A. Dunkels, “Leveraging
IP for Sensor Network Deployment,” Proc. workshop on Extending
the Internet to Low power and Lossy Networks, 2011.

[11] J-P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP
– The Next Internet, ISBN 978-0123751652, Morgan Kaufmann,
2010.

[12] D. Yazar and A. Dunkels, “Efficient Application Integration in IP-
Based Sensor Networks,” Proc. First ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, 2009,
doi:10.1145/1810279.1810289.

[13] W. Colitti, K. Steenhaut and N. De Caro, “Integrating Wireless
Sensor Networks with the Web,” Proc. workshop on Extending the
Internet to Low power and Lossy Networks, 2011.

[14] Z. Shelby, CoRE Link Format, draft-ietf-core-link-format-07, work in
progress, July 2011.

[15] Z. Shelby and C. Bormann, 6LoWPAN – The Wireless Embedded
Internet, Chapter 3, ISBN 978-0-470-74799-5, Wiley, 2009.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti and M. F. Kaashoek. “The
Click modular router,” ACM Transactions on Computer Systems
18(3), pp. 263-297, 2000, doi:10.1145/354871.354874.

[17] E. De Poorter, E. Troubleyn, I. Moerman and P. Demeester, “IDRA: a
Flexible System Architecture for Next-Generation Wireless Sensor
Networks,” Wireless Networks, 17(6), pp. 1423-1440, 2011, doi:
10.1007/s11276-011-0356-5

[18] Pachube, http://www.pachube.com.

[19] M. Botts, G. Percivall, C. Reed, and J. Davidson, OGC White Paper -
OGC Sensor Web Enablement: Overview And High Level
Architecture, Open Geospatial Consortium Inc, 2007.

[20] S. Jirka, A. Broring, and C. Stasch, “Discovery Mechanisms for
Sensor Web,” Sensors, 9(4), pp. 2661-2681, 2009,
doi:10.3390/s90402661.

[21] D. Pfisterer et al., “SPITFIRE: Towards a Semantic Web of Things,”
IEEE Communications Magazine Special Issue on the Internet of
Things, pp. 40-48, Nov. 2011.

[22] T. Foerster, D. Nüst, A. Bröring, and S. Jirka, “Discovering the
Sensor Web through Mobile Applications,” Proc. 8th International
Symposium on Location-Based Services, 2011.

[23] Å. Östmark, J. Eliasson, P. Lindgren, A. van Halteren, and L.
Meppelink, “An Infrastructure for Service Oriented Sensor
Networks,” Journal of Computers, 1(5), pp. 20-29, 2006,
doi:10.4304/jcp.1.5.20-29.

[24] J. Schneider, A. Klein, C. Mannweiler, and H. D. Schotten, “An
efficient architecture for the integration of sensor and actuator
networks into the future internet,” Advances in Radio Science, 9, pp.
231-235, 2011, doi:10.5194/ars-9-231-2011.

[25] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a Zero-
Configuration Wireless Sensor Network Architecture for Smart
Buildings,” Proc. First ACM Workshop On Embedded Sensing
Systems For Energy-Efficiency In Buildings, 2009,
doi:10.1145/1810279.1810287.

[26] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P.
Demeester, “The w-iLab.t testbed,” Proc. of the International
Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TridentCom '10), pp.
145–154, Berlin, Germany, May 2010.

