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Abstract— In this paper, a novel stochastic modeling strategy
is constructed that allows assessing parameter variability effects
induced by the manufacturing process of on-chip interconnects.
The strategy adopts a three-step approach. First, a very accurate
electromagnetic modeling technique yields the per unit length
(p.u.l.) transmission line parameters of the on-chip interconnect
structures. Second, parameterized macromodels of these p.u.l.
parameters are constructed. Third, a Stochastic Galerkin Method
is implemented to solve the pertinent stochastic telegrapher’s
equations. The new methodology is illustrated with meaningful
design examples, demonstrating its accuracy and efficiency. Im-
provements and advantages w.r.t. the state-of-the-art areclearly
highlighted.

Index Terms— On-chip interconnects, variability analysis, mul-
ticonductor transmission lines, Stochastic Galerkin Method

I. I NTRODUCTION

To meet the stringent design specifications, expressed in
terms of speed, bandwidth, noise margin, crosstalk, etc, on-
chip interconnect designers have to be aware of high-frequency
phenomena. Wave effects (start to) appear on-chip, skin-effect
is present, and in contrast to on-board interconnects, the semi-
conductors induce the so-called slow-wave effect [1]. On top
of that, given the further miniaturization of the interconnects,
designers have to deal with the adverse effects caused by
the manufacturing process, which introduces more and more
randomness. For example, the position and width of the lines
are no longer deterministically known, and also, the shape
of the cross-section is no longer rectangular. Due to over-
or underetching or electrolytic growth, the cross-sectionhas
a random, trapezoidal shape [2]. So, designers are facing a
difficult task, and to accomplish their goals they need to rely
on modeling tools that accurately capture all high-frequency
phenomena and allow to study variability effects.

In previous work, the influence of parameter variability ef-
fects on interconnects, and on-chip interconnects in particular,
has received some attention. In [3] and [4] the influence of
the cross-section was studied. Unfortunately, only a discrete
set of sampling points could be considered in acceptable
time. In [5] a Monte Carlo (MC) analysis of a single on-
chip line was performed, clearly illustrating the importance
of modeling tools that allow to study variability effects. A
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brute-force MC approach [6] is, however, not tractable when
dealing with multiconductor transmission lines (MTLs) in a
multidimensional parameter space, as will be shown here.
Compared to MC, a better stochastic modeling formalism
is described in [7] and [8] where the effect of parameter
uncertainty on MTLs, i.e. cables and on-board interconnects, is
studied. The adopted stochastic modeling method is based on
a polynomial chaos (PC) expansion with Galerkin projection,
also called the Stochastic Galerkin Method (SGM) [9]–[11].
On-chip interconnect design tools would also benefit a lot from
such a powerful stochastic modeling technique. It is however
not straightforward to immediately extend the techniques
described in [7] and [8] to on-chip interconnects, as [7] and[8]
rely on basic numerical or heuristic models for the per unit
length (p.u.l.) transmission line parameters of the interconnect
structures. In case of on-chip interconnects, and in particular
in the presence of semiconductors, accurate models are not
readily available.

In this paper, a stochastic modeling strategy for on-chip
interconnects is constructed, allowing to rapidly assess pa-
rameter variability effects. This is made possible by a three-
step approach. First, a two-dimensional (2-D) electromagnetic
modeling (EM) technique leads to a very accurate computation
of the p.u.l. parameters of the on-chip MTLs. Second, using a
combination of Vector Fitting (VF) [12]–[14] and barycen-
tric Lagrange interpolation [15] multivariate parameterized
macromodels of the p.u.l. parameters are constructed [16].
Third, thanks to this macromodeling step, an efficient SGM
can be implemented. At this point we want to underline
the benefits and novelty of this strategy w.r.t. the state-of-
the-art, and in particular w.r.t. [7] and [8]. The novelty is
twofold: (i) For the first time in literature, a variability analysis
of on-chip interconnects, described as MTLs, is presented.
It is clear that this application is of great importance to
the community, as these interconnects are greatly affected
by their manufacturing process. Using the method presented
in [7] and [8], as indicated above, only cable and on-board
interconnects can be dealt with; (ii) Also in contrast to what
is presented in [7] and [8], and again thanks to the construction
of the macromodels, the PC expansion of the p.u.l. parameters
does not introduce any additional error, leading to a stochastic
modeling technique with controllable accuracy, whilst being
very efficient in terms of CPU time. Additionally, and for the
first time, a compact formalism for the SGM for general MTLs
with an arbitrary number of random stochastic parameters
is presented in the appendix, allowing the readers to easily
implement the method and to tailor it to their own needs (on-
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board, on-chip, etc).
This paper is organized as follows. First, in Section II

some typical state-of-the-art on-chip interconnect examples
are presented, for which a variability analysis is becoming
imperative. Next, the stochastic modeling strategy is described
in Section III for the case of a single line with one stochastic
parameter. An extension to general MTLs with more than
one stochastic parameter is provided in Appendix A-I. In
Section IV, a variability analysis is performed for the examples
presented in Section II, demonstrating excellent accuracycom-
pared to a brute-force MC approach, and largely outperforming
it in terms of CPU time. Conclusions are summarized in
Section V.

II. A PPLICATION EXAMPLES

100µm

2 µm

β

30 µm

6.4 µm

2 µm

3 µm

3 µm

(a) Single IEM line

100µm

2 µm 2 µm

β β

ζ

30 µm

6.4 µm

2 µm

3 µm

3 µm

(b) Coupled IEM lines

Aluminum : σ = 3.77 · 107 S/m

SiO2 : ǫr = 3.9, tan δ = 0.001

Silicon : ǫr = 11.7, σ = 10S/m

Fig. 1: Cross-section of the IEM lines (not on scale).

There exist a large number of on-chip interconnect topolo-
gies, e.g., microstrip, co-planar waveguide, stripline. Here, we
consider Inverted Embedded Microstrip (IEM) lines, such as
the ones presented in Fig. 1. The IEM gains importance in
high-frequency IC-design [17], because it combines the ad-
vantages of classic microstrips (well-known modeling, smaller
on-chip area needed than co-planar waveguide topology, etc)
with the availability of a nearly ideal (non-broken) ground
plate. Of course, the stochastic modeling strategy presented in
Section III is applicable to any on-chip interconnect topology.

The particular IEM topology of Fig. 1 comprises a doped
Silicon substrate with a thickness of 30µm, a relative per-
mittivity ǫr = 11.7, and a conductivityσ = 10 S/m on

which an insulator is placed. This insulator is 11.4µm thick
SiO2 with a relative permittivityǫr = 3.9 and a loss tangent
tan δ = 0.001. On top of theSiO2 the top-plate ground
is found. This ground plate has a thickness of 3µm and
is Aluminum with a conductivityσ = 3.77 · 107 S/m. The
Aluminum interconnect is embedded in theSiO2 at a height
of 6.4 µm above the semiconductor. Due to the etching or
electrolytic growth process, the cross-sections of the lines
have a trapezoidal shape. This is indicated by the stochastic
parameterβ, i.e. the length of the bottom base of the trapezoid.
Here, the height and the length of the top side of the trapezoids
are fixed to 2µm. For the pair of coupled lines of Fig. 1(b),
there is a second stochastic parameter, i.e.ζ, the gap between
the lines. Due to nonperfect alignment this gap is random and
is considered to be independent from the parameterβ.

III. STOCHASTIC MODELING STRATEGY

A three-step approach is developed to accurately and effi-
ciently predict the effects of parameter variability. For clarity
and ease of annotation, this modeling strategy is described
below for the case of asingleline (with a reference conductor)
and with one stochastic parameter, such as the application
example shown in Fig. 1(a). A general framework for MTLs
with an arbitrary number of stochastic parameters is given in
Appendix A-I.

A. Two-dimensional (2-D) electromagnetic (EM) modeling

Consider a uniform transmission line where the axis of
invariance is thez-axis. The transmission line is composed
of one signal conductor and a reference conductor and one
geometrical parameterβ is random. In the Laplace domain —
using the complex variables = j2πf , wheref denotes the
frequency — the governing telegrapher’s equations, describing
this transmission line’s behavior, are:

d

dz
V (z, s, β) = −Z(s, β) I(z, s, β), (1)

d

dz
I(z, s, β) = −Y (s, β)V (z, s, β), (2)

whereV (z, s, β) and I(z, s, β), i.e. the voltage and current
along the line, are functions of the frequency and of the
distancez along the lines. They also depend on the stochastic
parameterβ. The p.u.l. impedance and admittance parameters
are denotedZ(s, β) and Y (s, β) respectively, and they both
depend on the frequency and on the stochastic parameter. To
very accurately compute these p.u.l. parameters a 2-D EM
modeling technique is adopted. As this technique has already
been abundantly detailed and validated in literature [18],[19],
here we only repeat the gist of it.

The 2-D EM technique assumes a quasi-TM behavior of the
fields. Given the small cross-section of on-chip interconnects,
this is a valid assumption. A careful definition of the circuit
currents, taking semiconductors into account, leads to a con-
cise complex capacitance and a complex inductance problem
formulation. By introducing a differential surface admittance
operator, these two problems are cast as boundary integral
equations (BIEs), which can be solved efficiently (no volume
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discretized is needed) and with high precision (skin effectand
slow-wave effect are accurately taken into account). Following
this procedure, accurate p.u.l. parameter data for a set of
frequency samples within in a very broad band, ranging from
DC till 100 GHz, and for a set of samples of the parameterβ
is obtained. Numerical results for the p.u.l. parameters ofthe
structures presented in Section II can be found in [4].

B. Parameterized macromodeling

Starting from this data, first, forV samples of the stochas-
tic parameterβ, denotedβv, v = 1, . . . , V , macromod-
elsZumm(s, βv) andY umm(s, βv) are constructed using Vec-
tor Fitting [12]. These are univariate macromodels, i.e. they
only depend on frequency. Second, as in [16], the univariate
macromodels are strung together by means of barycentric
Lagrange interpolation [15]. A proper choice of the barycentric
weights wv, v = 1, . . . , V , yields the following bivariate
macromodels:

Zmm(s, β) =

V
∑

v=1

wvZ
umm(s, βv)

V
∏

k = 1
k 6= v

(β − βk), (3)

Y mm(s, β) =
V
∑

v=1

wvY
umm(s, βv)

V
∏

k = 1
k 6= v

(β − βk). (4)

These parameterized macromodelsZmm(s, β) andY mm(s, β)
are rational w.r.t. to frequency and polynomial w.r.t. the
stochastic parameterβ.

By making use of adaptive sampling schemes [20] in the
construction of the macromodels, the number of calls to the
2-D EM solver described in Section III-A is limited, reducing
the CPU time. The accuracy of the macromodels (3) and (4)
w.r.t. the original p.u.l. parametersZ(s, β) and Y (s, β) can
be controlled by means of the number of poles in the Vector
Fitting step and by the number of samplesV . (Note that,
here, the same samplesβv, v = 1, . . . , V , are used for the
construction of bothZmm and Y mm, but this is not strictly
necessary.) Further computational details will be provided in
Section IV.

It is important to already underline here that thanks to
this macromodeling step, and in contrast to [7] and [8], an
accurate and efficient stochastic modeling technique can be
implemented now for on-chip interconnects, for which no
empirical models of the p.u.l. parameters exist. This is the-
oretically described in the next sections and also numerically
validated in Section IV.

C. Stochastic Galerkin Method (SGM)

In this paper, to solve the stochastic telegrapher’s equa-
tions (1) and (2), an SGM is adopted, applying Galerkin
projection to a Polynomial Chaos (PC) expansion of these
differential equations [9], [10]. Let us assume that the stochas-
tic parameterβ is a Gaussian random variable with a mean
valueµβ and a normalized standard deviationσβ . Introducing

another Gaussian random variableξ with zero mean and unit
variance,β can be then written as

β = µβ(1 + σβξ). (5)

This assumption is not a restriction, it merely leads to a
Hermite Polynomial Chaos (hPC) expansion (see further).
Obviously, other PC expansions, for non-Gaussian distribu-
tions of β, can be constructed as well. An overview of the
generalizedPC is found in [11].

As a first step, an hPC expansion of the (macromodels of
the) p.u.l. parameters is performed:

Zmm(s, β) =

K
∑

k=0

Zk(s)φk(ξ), (6)

Y mm(s, β) =

K
∑

k=0

Yk(s)φk(ξ), (7)

whereφk(ξ) indicates the stochastic Hermite polynomial of
degreek [21]. These polynomials are orthogonal w.r.t. the
weighting function

W (ξ) =
1√
2π

e−
1
2 ξ

2

, (8)

as follows:

< φk(ξ), φm(ξ) >= k! δkm, (9)

whereδkm is the Kronecker delta and where the inner product
< f(ξ), g(ξ) > is defined as

< f(ξ), g(ξ) >=

∫ +∞

−∞

f(ξ) g(ξ)W (ξ) dξ. (10)

Hence, the expansion coefficientsZk(s) and Yk(s), k =
0, . . . ,K, in (6) and (7) are given by:

Zk(s) =< Zmm(s, β), φk(ξ) > / k!, (11)

Yk(s) =< Y mm(s, β), φk(ξ) > / k!. (12)

Second, the unknown voltage and current along the line are
expanded in a similar way:

V (z, s, β) =

K
∑

k=0

Vk(z, s)φk(ξ), (13)

I(z, s, β) =

K
∑

k=0

Ik(z, s)φk(ξ). (14)

Third, the expansions (6), (7), (13), and (14) are substituted
into the telegrapher’s equations (1) and (2):

d

dz

K
∑

k=0

Vk(z, s)φk(ξ) = −
K
∑

k=0

K
∑

l=0

Zk(s)Il(z, s)φk(ξ)φl(ξ),

(15)

d

dz

K
∑

k=0

Ik(z, s)φk(ξ) = −
K
∑

k=0

K
∑

l=0

Yk(s)Vl(z, s)φk(ξ)φl(ξ).

(16)
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Fourth, a Galerkin projection is applied, meaning that (15)
and (16) are weighted with the same set ofK + 1 polyno-
mials φm(ξ), m = 0, . . . , K, using the inner product (10).
Taking the orthogonality (9) into account, this leads to:

∀m = 0, . . . , K,

d

dz
Vm(z, s) = −

K
∑

k=0

K
∑

l=0

αklmZk(s)Il(z, s), (17)

d

dz
Im(z, s) = −

K
∑

k=0

K
∑

l=0

αklmYk(s)Vl(z, s), (18)

with

αklm =< φk(ξ)φl(ξ), φm(ξ) > /m!. (19)

Together, (17) and (18) form a matrix ordinary differential
equation (ODE) in the2(K + 1) unknown expansion coef-
ficients Vk(z, s) and Ik(z, s), k = 0, . . . , K. Thanks to the
SGM, the equation does no longer depend on the stochastic
parameterβ.

Fifth, this ODE is solved. Thereto, pertinent boundary
conditions (BCs) must be constructed. These BCs evolve from
the terminations at the ends of the lines. In Appendix A-I, a
framework for general BCs, also allowing stochastic variation
of the terminations, is outlined in detail, together with the
solution technique of general ODEs forMTLs. Here, we
merely sketch the solution technique for the single line with
a finite lengthL, the presence of a deterministic Thévenin
generator — composed of a voltage sourceEN (s) and an
impedanceZN (s) — at the near end of the line (z = 0), and
a deterministic load impedanceZF (s) at the far end of the
line (z = L), which leads to the following BCs:

V (0, s) = EN (s)− ZN(s) I(0, s), (20)

V (L, s) = ZF (s) I(L, s). (21)

Application of the hPC expansion with Galerkin weighting
to (20) and (21) yields a new set of2(K + 1) boundary
conditions, allowing to solve (17) and (18) for the2(K + 1)
unknown expansion coefficientsVk(z, s) and Ik(z, s), k =
0, . . . , K. Substitution of these coefficients into (13) and (14)
again, finally yields the desired voltageV (z, s, β) and cur-
rent I(z, s, β) along the line, as a function of the stochastic
parameterβ. As demonstrated in Section IV, this allows to
efficiently compute any desired stochastic quantity or function,
such as the stochastic moments or the probability density
function (PDF) of the voltage at the load, using standard
analytical or numerical techniques [22].

D. Observations

Before numerically validating the proposed modeling strat-
egy, outlined in Sections III-A, III-B, and III-C, the following
three interesting observations are put forward, which can be
considered as clear improvements w.r.t. the state-of-the-art:

1) An accurate variability analysis for uniform transmis-
sion lines, leveraging the SGM or any other stochastic
modeling technique, can only be carried out if the p.u.l.
parameters as a function of the frequency and as a

function of the stochastic parameters are very accurately
known (see also remark 3) below). Whereas the tech-
niques in [7] and [8] are based on simplified models
for the p.u.l. parameters of cables and on-board traces,
here, the 2-D EM modeling technique of Section III-
A is employed, allowing such a variability analysis of
on-chip interconnects.

2) For the single line, the computation of the inner prod-
ucts (11) and (12) is necessary to expand the scalar
p.u.l. parameters (6) and (7). In general, the computation
of the expansion coefficients of the p.u.l. parameters
require the weighting of these p.u.l. parameters with
the proper polynomials, necessitating the evaluation of
multidimensional integrals (A-8). Traditionally, numer-
ical integration schemes, employing Gauss-Hermite cu-
batures [21], are required. Here, however, thanks to the
macromodeling step, p.u.l. parameters are obtained that
are analytically known as a function of frequency and
as a function of the stochastic parameters (see (3), (4),
and (A-3)). This allows efficient, closed-form integra-
tions, drastically reducing the setup time of the SGM.
This is also numerically illustrated in Section IV.

3) In standard PC techniques, expansions such as (6)
and (7), can be considered as aprojection of the
p.u.l. parameters onto a vector space of polynomials.
In Section III-C, this vector spacePK is spanned by
the set of chosen polynomialsφk, k = 0, . . . , K, of
degree at mostK. Usually, such a projection introduces
a loss of accuracy that is determined by the number
of terms K + 1 used in the truncated series. Here,
however, the macromodels also exhibit a polynomial
behavior as a function of the stochastic parameter(s). By
choosing the maximum degreeV −1 in (3) and (4) equal
toK, the macromodels already reside inPK , making (6)
and (7) exact! Thus, the expansion can be considered as
a change of basis, rather than a projection.

The above advantages come, of course, at a cost, namely
the construction of the macromodels. It is important to state
that rapid multivariate parameterized macromodeling tech-
niques [23], [24] are being developed, also allowing a control-
lable accuracy. Furthermore, these macromodels are computed
offline and stored (CPU times are provided in Section IV).
Once available, they can also be employed for any other
type of PC expansion (other thenHermitePC), for sensitivity
analysis, and for optimization purposes.

IV. VARIABILITY ANALYSIS OF IEM LINES

In this section the stochastic modeling strategy of SectionIII
is validated and its efficiency is demonstrated, using the
application examples of Section II. All computations have
been performed on a Dell Precision M4500 laptop with an
Intel(R) Core(TM) i7 X940 CPU running at 2.13 GHz and
8 GB of RAM.

A. Single IEM line

We consider the single IEM line shown in Fig. 1(a). The
macromodels for the p.u.l. parameters are computed offline.To
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obtain a relative error of0.1%, thanks to the adaptive sampling
technique, only 29 frequency samples are needed to construct
the univariate macromodelsZumm(s, βv) and Y umm(s, βv),
v = 1, . . . , V , and this forV = 4 values of the stochastic
parameterβ. Hence,29 × 4 = 116 calls to the 2-D EM
solver are required, each sample taking 1.16 s. The macro-
model building time itself takes about 6 s. So, in total, to
constructZmm(s, β) andY umm(s, β), 140 s are needed. The
results of this macromodeling step were already shown in [5],
where they were used to implement a tractable MC analysis.

A variability analysis is now performed. The IEM line
of Fig. 1(a) is given a finite lengthL = 1 mm. It is
driven by a Thévenin voltage source producing a sine wave
with frequencyf , amplitudeEN (s ≡ j2πf), and with an
internal impedanceZN = 1Ω. It is terminated by a load
impedanceZF = (j 2πf CL + 1/RL)

−1, with CL = 1 pF
andRL = 1 kΩ. To analyze the possible adverse effects of
the manufacturing process, the parameterβ is assumed to be
a Gaussian random variable with a mean valueµβ = 2 µm
and a normalized standard deviationσβ = 10%, and the SGM
computation is performed. Also, as a reference, a brute-force
MC analysis is carried out, using 50000β-samples. As a
result, amongst others, the output voltageV (L, s, β) at the
load is computed as a function of the stochastic parameterβ.
In Fig. 2(a), a bode plot of the magnitude of the transfer
function H(s, β) = V (L, s, β)/E(s) is shown, for a broad
frequency band up to 100 GHz. Fig. 2(b) zooms in on
the resonance around 7 GHz. The full black line indicates
the meanµ|H| of this output characteristic and the dashed
lines show the±3σ|H| deviations from this meanµ|H|, both
computed using the novel technique. The gray lines on Fig. 2
correspond to 100 samples of the MC run; the circles (◦) and
squares (�) indicate the meanµ|H| and the±3σ|H| deviations,
resp., computed using the 50000 samples of the MC run. (For
clarity, the circles and squares are not shown on Fig. 2(a).)
It can be observed that the novel technique and the MC run
are in perfect agreement, validating the presented stochastic
modeling strategy. The computation times are indicated in
Table I. The setup time refers to the time that is needed in
the SGM to construct the matrix ODE (17) and (18) and
the corresponding boundary conditions. The solution time
denotes the time needed to solve this equation for 250 fre-
quency samples. For the technique proposed in this work, a
significant speed-up factor of 32 w.r.t. the MC approach is
observed. By means of a simple computation concerning the
setup time, the importance of the macromodeling step can
be clearly illustrated. Without the macromodels, the MC run
would require250× 50000 calls to the 2-D EM solver, each
one requiring 1.16 s. Hence, computing all samples would
take approximately 168 days. Also the setup time for the
SGM, now being only 0.02 s, would become unacceptably
long. Indeed, we need to compute the coefficientsZk(s) (11)
andYk(s) (12),k = 0, . . . ,K. For 250 frequency samples and
with K = 3, this requires the computation of2 × 250× 4 =
2000 integrals of the type (10). Without the macromodels,
no analytical expressions are available and these integrals
need to be computed numerically, e.g., using a Gauss-Hermite
cubature. When leveraging merely a five-points quadrature

rule, this already requires 10000 evaluations of the integrands,
and hence, 10000 calls to the 2-D EM solver, each call taking
1.16 s. So, the setup time would become larger than three
hours.

In Fig. 3 the probability density function (PDF) and the
cumulative distribution function (CDF) of|H(s, β)| for f =
7 GHz are shown. The full and the dashed line indicate the
PDF and the CDF computed using the novel technique, the
circles (◦) and squares (�) are computed using the 50000 sam-
ples from the MC run. Apart from the excellent agreement,
it is also observed that such results can clearly quantify the
influence of the stochastic parameterβ, and hence the effect of
the manufacturing process on the behavior of the interconnect.
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Fig. 2: Bode plot of the magnitude of the transfer func-
tion H(s, β) for the single IEM line. Full black line:
mean µ|H| computed using the novel technique; Dashed
black line:±3σ|H|-variations computed using the novel tech-
nique; Gray lines: 100 samples from the MC run; Circles
(◦): meanµ|H| computed using MC technique; Squares (�):

±3σ|H|-variations computed using MC technique.

B. Coupled IEM lines

Let us now shift our attention to the pair of coupled
IEM lines of Fig. 1(b). In a similar way, macromodels for
the p.u.l. parameters are constructed. These are now2 × 2
matricesZ(s, β, ζ) andY(s, β, ζ), depending on the frequency
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Technique CPU time [s] Speed-up factor
setup solve total

Novel approach 0.02 0.11 0.13 32
Monte Carlo 4.13

TABLE I: Comparison between the efficiency of the proposed
approach and an MC analysis for the single IEM line.
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Fig. 3: PDF and CDF of the magnitude of the transfer
functionH(s, β) at 7 GHz for the single IEM line. Full black
line: PDF computed using the novel technique; Dashed black
line: CDF computed using the novel technique; Circles (◦):
PDF computed using the MC technique; Squares (�): CDF

computed using the MC technique.

and on the two stochastic parametersβ andζ. First, univariate
rational models are created using VF for a set of sampling
values of the two stochastic parameters. Second, the uni-
variate models are strung together via barycentric Lagrange
interpolation. The general expressions for the multivariate
macromodels can be found in Section A-I-B of the appendix.
To obtain a relative error of0.1%, the total time to construct
the macromodels is about 30 minutes. This comprises 684 calls
to the EM solver (19 frequency samples, 6 samples for the
parameterβ and 6 samples for the parameterζ), each sample
taking 2.64 s, and about 15 s for the construction of the
macromodels themselves.

Consider a source-line-load configuration where the length
of the two IEM lines isL = 1 mm. The far endz = L of
each line is terminated by a capacitive loadZF,1 = ZF,2 =
(j 2πf CL + 1/RL)

−1, with CL = 1 pF andRL = 1 kΩ.
The first line is an active line. It is driven at the near
end z = 0 by a Thévenin voltage source producing a sine
wave with frequencyf , amplitudeEN,1(s ≡ j2πf), and
with an internal impedanceZN,1 = 1Ω. The second line
is the victim line. At its near end, it is terminated by a
low impedanceZN,2 = 1Ω. Again, a variability analysis is
performed, using the novel modeling strategy and an MC run.
The stochastic parameters are considered to be independent
Gaussian random variables. The baseβ has a mean valueµβ =
2 µm and a normalized standard deviationσβ = 10%. The
gap ζ has a mean valueµζ = 3 µm and a normalized
standard deviationσζ = 8%. 250 frequency samples are
calculated and for the MC run 50000(β, ζ)-samples are used.
The two output parameters that we observe here are the
output voltagesV1(L, s, β, ζ) and V2(L, s, β, ζ) at the loads
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(b) Detail of Fig. 4(a) around 7 GHz, clearly illustrating
the effect of the stochastic parametersβ andζ

Fig. 4: Bode plot of the magnitude of the transfer func-
tion H(s, β, ζ) for the coupled IEM lines. The same legend

as in Fig. 2 is used.

of the active and the victim line, respectively. We construct a
transfer functionH(s, β, ζ) = V1(L, s, β, ζ)/E(s) and a for-
ward crosstalk functionFX(s, β, ζ) = V2(L, s, β, ζ)/E(s).
Bode plots of the magnitude of both functions are shown in
Figs. 4(a) and 5(a) up to 100 GHz and magnifications of the
resonance around 7 GHz are shown in Figs. 4(b) and 5(b). As
before, the full black lines indicate the meansµ|H| andµ|FX|,
and the dashed lines show the±3σ|H| and±3σ|FX| deviations
from these means, all computed using the novel approach. The
gray lines on the figures correspond to 100 samples of the MC
run; the circles (◦) and squares (�) indicate the means and
the±3σ-deviations, resp., computed using the 50000 samples
of the MC run. From Figs. 4 and 5 an excellent agreement
between the MC analysis and the novel technique is observed.
Comparison of CPU times between the two techniques are
shown in Table II. A substantial speed-up factor of 228 is
obtained. A similar reasoning as given in Section IV-A would
lead again to the conclusion that the setup time without
leveraging the macromodels becomes unacceptably long. The
PDF and the CDF of the transfer function and of the forward
crosstalk at 7 GHz are presented in Figs. 6 and 7. Apart from
the excellent agreement, it is again noticed that such graphs
present valuable information for designers, allowing themto
rapidly assess the behavior of the interconnect.

Note that, in this paper, to make the hPC expansions of the
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(b) Blow-up of Fig. 4(a) around 7 GHz, clearly illustrating
the effect of the stochastic parametersβ andζ

Fig. 5: Bode plot of the magnitude of the forward
crosstalkFX(s, β, ζ) for the coupled IEM lines. The same

legend as in Fig. 2 is used.

Technique CPU time [s] Speed-up factor
setup solve total

Novel approach 0.23 8.09 8.31 228
Monte Carlo 1895.72

TABLE II: Comparison between the efficiency of the proposed
approach and a Monte Carlo analysis for the coupled IEM

lines.

p.u.l. parameters exact, as explained in Sections III and A-
I, the so-calledtensor productapproach is adopted, making
sure that the macromodels are elements of the pertinent vector
space spanned by the Hermite polynomials. Other approaches,
such astotal degree, hyperbolic cross, and Smolyak, have
also been proposed [25], limiting the number of terms in
the expansions, and hence reducing both the accuracy and
the computational cost. The trade-off between precision and
efficiency following such schemes in the case of on-chip
interconnect modeling, is a topic for further investigation.

V. CONCLUSIONS

Designers of on-chip interconnects are facing a challenging
task. Due to the randomness introduced by the manufacturing
process, position and widths of these lines are no longer
deterministically known and their cross-sections have random
trapezoidal shapes. Therefore, in this paper a novel stochastic
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Fig. 6: PDF and CDF of the magnitude of the transfer
function H(s, β, ζ) at 7 GHz for the pair of coupled IEM

lines. The same legend as in Fig. 3 is used.
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Fig. 7: PDF and CDF of the magnitude of the forward
crosstalkFX(s, β, ζ) at 7 GHz for the pair of coupled IEM

lines. The same legend as in Fig. 3 is used.

modeling strategy for the variability analysis of on-chip inter-
connects was presented. The strategy consists of a three-step
approach. First, an accurate computation of the pertinent p.u.l.
parameters using a powerful 2-D EM solver is performed.
Second, parameterized macromodels of these p.u.l. parameters
are constructed. These macromodels are rational as a function
of frequency and polynomial as a function of the stochastic
parameters. Third, a Stochastic Galerkin Method is adopted
to solve the stochastic telegrapher’s equations. The strategy
has been applied to the variability analysis of single and
coupled IEM lines. Compared to Monte Carlo runs, the novel
method shows excellent agreement and superior efficiency.
The improvements and advantages w.r.t. the state-of-the-art
in stochastic modeling of multiconductor transmission lines
were clearly outlined, the most important being that, for the
first time in literature, such modeling ofon-chipinterconnects
is now made possible.

In the present paper, no random variations along thez-axis
were taken into account. It would however be possible to in-
clude surface roughness effects, adding to the losses alongthis
z-direction, by incorporating a pertinent correction factor —
such as the one proposed by Hammerstad and Bekkadal [26]
— in the p.u.l. resistance. Extension to sensitivity and param-
eter variability studies of full 3-D structures, such as coupled
vias in package and board plane structures [27], is currently
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under investigation.

A-I. A PPENDIX

In this appendix, we generalize the formulation of Sec-
tion III to multiconductor transmission lines (MTL) with an
arbitrary number of stochastic parameters. A technique to
solve the resulting matrix ODE is also described.

A. Description of the interconnect

Consider an MTL consisting ofN coupled uniform signal
lines and a reference conductor. The axis of invariance is thez-
axis. There areB stochastic parametersβ(b), b = 1, . . . , B,
that influence the MTL’s behavior as follows:

β(b) = µβ(b)(1 + σβ(b)ξb) , b = 1, . . . , B, (A-1)

where ξb, b = 1, . . . , B, are independent Gaussian random
variables with zero mean and unit variance. TheB-vector
containing all these variable is denotedξ = [ξ1 · · · ξB ]

T . The
mean and normalized standard deviation of the parametersβ(b)

are denotedµβ(b) and σβ(b) respectively. In the Laplace
domain, using the complex variables = j2πf , where f
denotes the frequency, the telegrapher’s equations, describing
the MTL’s behavior, are:

d

dz

[

V(z, s,β)
I(z, s,β)

]

= −
[

0 Z(s,β)
Y(s,β) 0

]

·
[

V(z, s,β)
I(z, s,β)

]

, (A-2)

where theN -vectorsV = [V1 · · · VN ]T andI = [I1 · · · IN ]T

contain the voltages and currents along theN uniform coupled
lines. These voltages and currents are functions of the fre-
quency and of the distancez along the lines. They also depend
on all stochastic parameters, as indicated by the setβ =
{β(b)}Bb=1. The N × N -matricesZ(s,β) and Y(s,β) are
the p.u.l. impedance and admittance matrix, which can be
computed using the 2-D EM solver described in Section III-A.

B. Parameterized macromodeling of the p.u.l. parameters

Multivariate macromodels forZ(s,β) and Y(s,β) are
constructed. These models are rational along the dimension
describing frequency and polynomial in theB other dimen-
sions that correspond to theB stochastic parameters. So, each
element of the p.u.l. impedance matrix or admittance matrix,
is modeled as follows:

Xij(s,β) ≈ Xmm
ij (s,β)

=

V (1)
∑

v(1)=1

· · ·
V (B)
∑

v(B)=1

w
(1)

v(1) · · ·w(B)

v(B) Xumm
ij (s, β

(1)

v(1) , . . . , β
(B)

v(B))

×
V (1)
∏

k(1) = 1

k(1) 6= v(1)

(

β(1) − β
(1)

k(1)

)

· · ·
V (B)
∏

k(B) = 1

k(B) 6= v(B)

(

β(B) − β
(B)

k(B)

)

, (A-3)

with i = 1, . . . , N , j = 1, . . . , N , and whereXij stands
for Zij and Yij . The univariate modelsXumm

ij are rational
functions of s, and are obtained through VF in a set of

sampling values{β(1)

v(1) , . . . , β
(B)

v(B)}, v(b) = 1, . . . , V (b), b =

1, . . . , B. Hence, for each stochastic parameterβ(b), V (b)

such sampling values are used and, thus,
∏B

b=1 V
(b) univariate

models are required to construct the macromodels (A-3).
Although it is not strictly required for the remainder of the
formalism described below, here, there is opted to use the
same set of sampling values for all elements of the p.u.l.
matrixX (X stands forY andZ). The univariate macromodels
are strung together by means of barycentric Lagrange inter-
polation, yielding pertinent weight coefficientsw(b)

v(b) , v(b) =

1, . . . , V (b), b = 1, . . . , B.

C. Stochastic Galerkin Method (SGM)

As we have considered a Gaussian distribution of the
stochastic parameters, all elements of the macromodeled p.u.l.
matrices are now expanded as follows:

Xmm
ij (s,β) =

K
∑

k=0

Xij,k(s)ϕk(ξ), (A-4)

i = 1, . . . , N, j = 1, . . . , N,

where ϕk(ξ) is the k-th element of a set ofmultivariate
Hermite polynomials. This set is constructed by the ten-
sor product of theB sets of univariate Hermite polyno-

mials {φl(ξb)}V
(b)−1

l=0 , b = 1, . . . , B. Hence,K = −1 +
∏B

b=1 V
(b), and this set ofK + 1 multivariate polynomials

spans theB-dimensional vector spacePV of polynomials of
degree at mostV = max{V (b) − 1}Bb=1, in which all macro-
models (A-3) reside. The elements in this set are orthogonal
w.r.t. the inner product

< f(ξ), g(ξ) >=

∫

RB

f(ξ) g(ξ)W (ξ) dξ, (A-5)

with weighting function

W (ξ) =
1

B
√
2π

e−
1
2 ξ

T

·ξ, (A-6)

as follows:

< ϕk(ξ), ϕm(ξ) >= δkm < ϕm(ξ), ϕm(ξ) >, (A-7)

whereδkm is the Kronecker delta. Therefore, the expansion
coefficients in (A-4) are given by

Xij,k(s) =
< Xij(s,β), ϕk(ξ) >

< ϕk(ξ), ϕk(ξ) >
. (A-8)

Note that the expansion (A-4) is not an approximation for
the macromodeled elements of the p.u.l. matrices, it is exact.
Indeed, as stated above, given the polynomial interpolation (A-
3), for a fixed frequency, the macromodel already resides
in PV , making the expansion procedure merely a change of
basis. So, the barycentric Lagrange interpolation is a conve-
nient choice that yields certain advantages, as previouslydis-
cussed in Section III-D. However, this choice is not necessary.
Other interpolation or approximation schemes could have been
adopted during the construction of the macromodels, making
the expansion (A-4) a projection ontoPV .
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Similar as for the elements of the p.u.l. matrices, the
unknown voltages and currents are now also projected onto
the spacePV :

Vi(z, s,β) =

K
∑

k=0

Vi,k(z, s)ϕk(ξ), (A-9)

Ii(z, s,β) =

K
∑

k=0

Ii,k(z, s)ϕk(ξ), (A-10)

i = 1, . . . , N.

Inserting (A-4), (A-9), and (A-10) into (A-2), yields the
following expressions for the2N(K+1) unknown expansion
coefficientsVi,k andIi,k, i = 1, . . . , N , k = 0, . . . ,K, for the
voltages and the currents along the MTL:

d

dz

K
∑

k=0

Vi,k(z, s)ϕk(ξ)

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Zij,k(s)Ij,l(z, s)ϕk(ξ)ϕl(ξ), (A-11)

d

dz

K
∑

k=0

Ii,k(z, s)ϕk(ξ)

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Yij,k(s)Vj,l(z, s)ϕk(ξ)ϕl(ξ), (A-12)

i = 1, . . . , N.

A Galerkin projection is now adopted by weighting (A-11)
and (A-12) with the same set of Hermite polynomials, using
the inner product (A-5):

d

dz

K
∑

k=0

Vi,k(z, s) < ϕk(ξ), ϕm(ξ) >

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Zij,k(s)Ij,l(z, s) < ϕk(ξ)ϕl(ξ), ϕm(ξ) >,

(A-13)

d

dz

K
∑

k=0

Ii,k(z, s) < ϕk(ξ), ϕm(ξ) >

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Yij,k(s)Vj,l(z, s) < ϕk(ξ)ϕl(ξ), ϕm(ξ) >,

(A-14)

i = 1, . . . , N, m = 0, . . . ,K.

With (A-7) and introducing the notation

Z̃ij,ml(s) =
K
∑

k=0

Zij,k(s)
< ϕk(ξ)ϕl(ξ), ϕm(ξ) >

< ϕm(ξ), ϕm(ξ) >
,

(A-15)

Ỹij,ml(s) =

K
∑

k=0

Yij,k(s)
< ϕk(ξ)ϕl(ξ), ϕm(ξ)

< ϕm(ξ), ϕm(ξ) >
,

(A-16)

i = 1, . . . , N, j = 1, . . . , N, k = 0, . . . ,K, m = 0, . . . ,K,

(A-13) and (A-14) are recast as

d

dz
Vi,m(z, s) = −

N
∑

j=1

K
∑

l=0

Z̃ij,ml(s)Ij,l(z, s), (A-17)

d

dz
Ii,m(z, s) = −

N
∑

j=1

K
∑

l=0

Ỹij,ml(s)Vj,l(z, s), (A-18)

i = 1, . . . , N, m = 0, . . . ,K.

The elements (A-15) and (A-16) are now organized into
new (N(K + 1) × N(K + 1))-matrices Z̃ and Ỹ, which
can be considered asaugmented p.u.l. matrices. By also
properly organizing the unknown expansion coefficients in
N(K + 1)-vectors Ṽ and Ĩ, an augmented version of the
original telegrapher’s equations (A-2) is obtained, as follows:

d

dz

[

Ṽ(z, s)

Ĩ(z, s)

]

= −
[

0 Z̃(s)

Ỹ(s) 0

]

·
[

Ṽ(z, s)

Ĩ(z, s)

]

.

(A-19)

Note that, thanks to the SGM, these new equations do no
longer depend on the stochastic parametersβ. As such, (A-
19) can be considered as the pertinent telegrapher’s equations
for a deterministic MTL consisting ofN(K + 1) signal lines,
allowing to solve them with classical methods as described
next.

D. Boundary conditions (BCs)

Consider now a uniform MTL, as described in Section A-
I-A, with a finite length L. The telegrapher’s equations
can only be solved when proper boundary conditions (BCs)
are imposed. These BCs are determined by the2N ter-
minations of theN lines, which are here, for simplicity,
Thévenin voltages sources. At the near end of the lines, i.e. at
z = 0, these Thévenin voltage sources comprise a voltage
sourceEN,i(s,β) in series with an impedanceZN,i(s,β),
i = 1, . . . , N . At the far endz = L, they comprise a voltage
sourceEF,i(s,β) in series with an impedanceZF,i(s,β),
i = 1, . . . , N . So, these terminations can also be of stochastic
nature, which is again indicated by their dependency onβ.

Denoting the voltages and currents at the near end of the
lines with theN -vectorsVN (s,β) = V(z = 0, s,β) and
IN (s,β) = I(z = 0, s,β) respectively and similarly at the
far end,VF (s,β) = V(z = L, s,β) and IF (s,β) = I(z =
L, s,β), it is readily seen that the boundary conditions are

VN (s,β) = EN(s,β)− ZN (s,β) · IN (s,β), (A-20)

VF (s,β) = EF (s,β) + ZF (s,β) · IF (s,β), (A-21)

where theN -vectorsEN andEF contain the voltage sources
and where the matricesZN and ZF are diagonal matrices,
containing the impedances. Obviously, other terminations,
yielding full matricesZN andZF , are equally possible.

The hPC expansion is now also applied to the BCs (A-
20) and (A-21). The voltages and impedances are projected
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ontoPV :

EX,i(s,β) =
K
∑

k=0

EX,i,k(s)ϕk(ξ), (A-22)

ZX,i(s,β) =
K
∑

k=0

ZX,i,k(s)ϕk(ξ), (A-23)

i = 1, . . . , N,

whereX now stands forN andF . Introducing (A-22) and (A-
23) into (A-20) and (A-21) and applying Galerkin weighting
again, yields the followingaugmentedBCs:

ṼN (s) = ẼN (s)− Z̃N (s)ĨN (s), (A-24)

ṼF (s) = ẼF (s) + Z̃F (s)ĨF (s), (A-25)

where theN(K + 1)-vectors ṼX , ĨX , and ẼX (X is N
andF ) contain the expansion coefficients of the voltages and
currents along the lines and the voltages sources, respectively.
TheN(K+1)×N(K+1)-matricesZ̃X contain the expansion
coefficients of the impedances. Similar as for the augmented
telegrapher’s equations (A-19), the augmented BCs (A-24)
and (A-25) can be considered as the pertinent BCs of a
deterministic MTL consisting ofN(K + 1) signal lines.

E. Solution of the augmented telegrapher’s equations and BCs

Given the above interpretations in terms ofaugmentedequa-
tions and BCs, the set of equations (A-19), (A-24), and (A-25),
can now be solved as any other set of telegrapher’s equations
with BCs, pertaining to a deterministic system [28]. From (A-
19), it is readily seen that

[

ṼF

ĨF

]

= T̃ ·
[

ṼN

ĨN

]

(A-26)

where the transfer matrix̃T is given by

T̃ =

[

T̃V V T̃V I

T̃IV T̃II

]

= e

−







0 Z̃

Ỹ 0






L
. (A-27)

The BCs (A-24) and (A-25) are combined with (A-26) into
one matrix equation:













T̃V V T̃V I −1 0

T̃IV T̃II 0 −1

1 Z̃N 0 0

0 0 1 −Z̃F













·









ṼN

ĨN

ṼF

ĨF









=









0
0

ẼN

ẼF









,

(A-28)

where1 is theN(K + 1)×N(K + 1) identity matrix.
From the matrix system (A-28) the unknown expansion

coefficients ṼN , ĨN , ṼF , and ĨF can be determined us-
ing direct or iterative schemes [29]. Substitution of these
coefficients into (A-9) and (A-10) forz = 0 and z = L
finally yields the voltages and currents at the2N terminals
of the MTL as a function of frequency and as a function
of the stochastic parametersβ. Using standard analytical or
numerical techniques [22], any desired stochastic quantity or
function, such as moments or PDFs, can now be computed.
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