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Abstract— In this paper, a novel stochastic modeling strategy brute-force MC approach [6] is, however, not tractable when
is constructed that allows assessing parameter variabilteffects dealing with multiconductor transmission lines (MTLs) in a
induced by the manufacturing process of on-chip interconnets. multidimensional parameter space, as will be shown here.

The strategy adopts a three-step approach. First, a very accate . . .
electromagnetic modeling technique yields the per unit legth Compared to MC, a better stochastic modeling formalism

(p.u.l.) transmission line parameters of the on-chip inteconnect S described in [7] and [8] where the effect of parameter
structures. Second, parameterized macromodels of theseyl. uncertainty on MTLs, i.e. cables and on-board intercormést
parameters are constructed. Third, a Stochastic Galerkin Method  studied. The adopted stochastic modeling method is based on
is implemented to solve the pertinent stochastic telegram’s a polynomial chaos (PC) expansion with Galerkin projection

equations. The new methodology is illustrated with meaniniyl - .
design examples, demonstrating its accuracy and efficiencim- /50 called the Stochastic Galerkin Method (SGM) [9]-{11].

provements and advantages w.r.t. the state-of-the-art arelearly ~On-chip interconnect design tools would also benefit a twnfr

highlighted. such a powerful stochastic modeling technique. It is howeve
Index Terms— On-chip interconnects, variability analysis, mul- N0t straightforward to immediately extend the techniques
ticonductor transmission lines, Stochastic Galerkin Mettod described in [7] and [8] to on-chip interconnects, as [7] [8]d

rely on basic numerical or heuristic models for the per unit
length (p.u.l.) transmission line parameters of the irdenect
structures. In case of on-chip interconnects, and in paatic

To meet the stringent design specifications, expressedjinthe presence of semiconductors, accurate models are not
terms of speed, bandwidth, noise margin, crosstalk, ete, QBadily available.
chip interconnect designers have to be aware of high-fretjue | this paper, a stochastic modeling strategy for on-chip
phenomena. Wave effects (start to) appear on-chip, skéutef jnterconnects is constructed, allowing to rapidly assess p
is present, and in contrast to on-board interconnects eire-s rameter variability effects. This is made possible by aghre
conductors induce the so-called slow-wave effect [1]. Om t&tep approach. First, a two-dimensional (2-D) electroretign
of that, giVen the further miniaturization of the intercmts, modeling (EM) technique leads to a very accurate Compurtatio
designers have to deal with the adverse effects caused dp¥he p.u.l. parameters of the on-chip MTLs. Second, using a
the manufacturing process, which introduces more and m@@§mbination of Vector Fitting (VF) [12]-[14] and barycen-
randomness. For example, the position and width of the lingk | agrange interpolation [15] multivariate parameted
are no longer deterministically known, and also, the shaggacromodels of the p.u.l. parameters are constructed [16].
of the cross-section is no longer rectangular. Due to ovefhjrd, thanks to this macromodeling step, an efficient SGM
or underetching or electrolytic growth, the cross-secti@s can pe implemented. At this point we want to underline
a random, trapezoidal shape [2]. So, designers are facingha penefits and novelty of this strategy w.r.t. the state-of
difficult task, and to accomplish their goals they need tg rethe-art, and in particular w.r.t. [7] and [8]. The novelty is
on modeling tools that accurately capture all high-freqyenqyofold: (i) For the first time in literature, a variabilitynalysis
phenomena and allow to study variability effects. of on-chip interconnects, described as MTLs, is presented.

In previous work, the influence of parameter variability efit js clear that this application is of great importance to
fects on interconnects, and on-chip interconnects in@éal, the community, as these interconnects are greatly affected
has received some attention. In [3] and [4] the influence gf; their manufacturing process. Using the method presented
the cross-section was studied. Unfortunately, only a discr j, [7] and [8], as indicated above, only cable and on-board
set of sampling points could be considered in acceptalyferconnects can be dealt with; (i) Also in contrast to wha
time. In [5] a Monte Carlo (MC) analysis of a single onis presented in [7] and [8], and again thanks to the constmict
chip line was performed, clearly illustrating the importan of the macromodels, the PC expansion of the p.u.l. parameter
of modeling tools that allow to study variability effects. Ajoes not introduce any additional error, leading to a ststiha
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board, on-chip, etc). which an insulator is placed. This insulator is 1Leh thick
This paper is organized as follows. First, in Section I$i05 with a relative permittivitye, = 3.9 and a loss tangent
some typical state-of-the-art on-chip interconnect edamptand = 0.001. On top of theSiO. the top-plate ground
are presented, for which a variability analysis is becominig found. This ground plate has a thickness ofu and
imperative. Next, the stochastic modeling strategy isulesd is Aluminum with a conductivitye = 3.77 - 107 S/m. The
in Section Il for the case of a single line with one stochastiAluminum interconnect is embedded in tB&), at a height
parameter. An extension to general MTLs with more thaof 6.4 um above the semiconductor. Due to the etching or
one stochastic parameter is provided in Appendix A-l. lalectrolytic growth process, the cross-sections of theslin
Section 1V, a variability analysis is performed for the exdes have a trapezoidal shape. This is indicated by the stochasti
presented in Section I, demonstrating excellent accutany- parametep, i.e. the length of the bottom base of the trapezoid.
pared to a brute-force MC approach, and largely outperiogmiHere, the height and the length of the top side of the traplszoi
it in terms of CPU time. Conclusions are summarized iare fixed to 2um. For the pair of coupled lines of Fig. 1(b),

Section V. there is a second stochastic parameter(i.¢he gap between
the lines. Due to nonperfect alignment this gap is random and
Il. APPLICATION EXAMPLES is considered to be independent from the paraméter
100 m

. [1l. STOCHASTIC MODELING STRATEGY
3 um . )
A three-step approach is developed to accurately and effi-

3 pm ciently predict the effects of parameter variability. Féarity

2 pm and ease of annotation, this modeling strategy is described
6.4 um below for the case of singleline (with a reference conductor)
K and with one stochastic parameter, such as the application
|30 pm example shown in Fig. 1(a). A general framework for MTLs

M :\[, with an arbitrary number of stochastic parameters is given i
Appendix A-l.

(a) Single IEM line

100 pum A. Two-dimensional (2-D) electromagnetic (EM) modeling
"3 um Consider a uniform transmission line where the axis of
13 m invariance is thez-axis. The transmission line is composed
ﬁ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 2 um of one signal conductor and a reference conductor and one
— a N geometrical parametet is random. In the Laplace domain —
p A 6.4 um using the complex variable = 527 f, where f denotes the
‘/\/_\J frequency — the governing telegrapher’s equations, deiscyi
_|30km this transmission line’s behavior, are:

el | 4V (25, 8) = —2(5,8) I(z, 5. ), (1)

(b) Coupled IEM lines dé
I Aluminum : o =3.77- 107 $/m EI(Z,S,ﬂ) =-Y(s,8)V(z,s,8), 2
810z : er = 3.9, tand = 0.001 where V(z,s, ) and I(z, s, 3), i.e. the voltage and current
Silicon : €, = 11.7, ¢ = 10S/m along the line, are functions of the frequency and of the

distancez along the lines. They also depend on the stochastic
Fig. 1: Cross-section of the IEM lines (not on scale). parametefs. The p.u.l. impedance and admittance parameters
are denotedZ(s, 3) andY (s, §) respectively, and they both
There exist a large number of on-chip interconnect topoldepend on the frequency and on the stochastic parameter. To
gies, e.g., microstrip, co-planar waveguide, striplinerd4 we very accurately compute these p.u.l. parameters a 2-D EM
consider Inverted Embedded Microstrip (IEM) lines, such asodeling technique is adopted. As this technique has ajread
the ones presented in Fig. 1. The IEM gains importance lreen abundantly detailed and validated in literature [fis],
high-frequency IC-design [17], because it combines the adere we only repeat the gist of it.
vantages of classic microstrips (well-known modeling, Bena  The 2-D EM technique assumes a quasi-TM behavior of the
on-chip area needed than co-planar waveguide topology, dtelds. Given the small cross-section of on-chip intercamse
with the availability of a nearly ideal (non-broken) groundhis is a valid assumption. A careful definition of the citcui
plate. Of course, the stochastic modeling strategy predent currents, taking semiconductors into account, leads tona co
Section Il is applicable to any on-chip interconnect taugl.  cise complex capacitance and a complex inductance problem
The particular IEM topology of Fig. 1 comprises a dopetbrmulation. By introducing a differential surface adraiite
Silicon substrate with a thickness of 30n, a relative per- operator, these two problems are cast as boundary integral
mittivity ¢, = 11.7, and a conductivityco = 10 S/m on equations (BIEs), which can be solved efficiently (no volume
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discretized is needed) and with high precision (skin effext another Gaussian random varialglevith zero mean and unit
slow-wave effect are accurately taken into account). loilg variance,5 can be then written as

this procedure, accurate p.u.l. parameter data for a set of

frequency samples within in a very broad band, ranging from B = pp(l+opg). (5)
DC till 100 GHz, and for a set of samples of the paramgter
is obtained. Numerical results for the p.u.l. parameterthef
structures presented in Section Il can be found in [4].

This assumption is not a restriction, it merely leads to a
Hermite Polynomial Chaos (hPC) expansion (see further).
Obviously, other PC expansions, for non-Gaussian distribu
tions of 3, can be constructed as well. An overview of the
generalizedPC is found in [11].

As a first step, an hPC expansion of the (macromodels of
Starting from this data, first, fov’ samples of the stochas-the) p.u.I. parameters is performed:

B. Parameterized macromodeling

tic parameters, denoted3,, v = 1,...,V, macromod-
els Zumm (s 3,) andY"™™ (s, 3,) are constructed using Vec- o
tor Fitting [12]. These are univariate macromodels, i.@yth 4 sz )91 (€ (6)
only depend on frequency. Second, as in [16], the univariate
macromodels are strung together by means of barycentric ymm (g ZY Yo )
Lagrange interpolation [15]. A proper choice of the baryden k()0
weights w,, v = 1,...,V, yields the following bivariate
macromodels: where ¢, (£) indicates the stochastic Hermite polynomial of
v degreek [21]. These polynomials are orthogonal w.r.t. the
me Zw Zumm ﬂv) H (ﬂ _ Bk)v (3) Welghtlng function
k=1 1 1.2
v W(¢) = 28 8
kt (&) Vo 8)
ymm (s Zw (s, B) [[ (B—8k).  (4)  as follows:
k=1
k#v < Pk (8); Pm (&) >= Kl o, )

These parameterized macromodg(8™ (s, ) andY ™™ (s, 8)  wheresy,,, is the Kronecker delta and where the inner product
are rational w.r.t. to frequency and polynomial w.r.t. the- £(€),g(€) > is defined as

stochastic parametet.
By making use of adaptive sampling schemes [20] in the < f(€),g(€) >= /+°° F(6) g(&) W (£) de. (10)

construction of the macromodels, the number of calls to the .
2-D EM solver described in Section IlI-A is limited, redugin

the CPU time. The accuracy of the macromodels (3) and @?nce the expansion coefficient(s) and Yi(s), k =

K, in (6) and (7) are given by:

w.r.t. the original p.u.l. parametets(s,5) and Y (s can

be controlled by means of the number of poles |n the Vector Zi(s) = < Z™0(s, B), 1 (€) > / K, (11)
Fitting step and by the number of samplés (Note that, Vils) — < ymm Iz 12
here, the same samplgs, v = 1,...,V, are used for the k(s) =< (5,6); @ (€) > / kL. (12)

construction of bothZ™ and Y™, but this is not strictly  Second, the unknown voltage and current along the line are
necessary.) Further computational details will be prodide expanded in a similar way:

Section V.
It is important to already underline here that thanks to
this macromodeling step, and in contrast to [7] and [8], an Vi(z5,8) = ZV’“(Z’S)QS’“(&)’ (13)
accurate and efficient stochastic modeling technique can be
implemented now for on-chip interconnects, for which no
empirical models of the p.u.l. parameters exist. This is the
oretically described in the next sections and also numigrica
validated in Section IV. Third, the expansions (6), (7), (13), and (14) are substitut
into the telegrapher’s equations (1) and (2):

I(z,s,8) = ZIk25¢k (14)

C. Stochastic Galerkin Method (SGM)

K K
éf ZV;C (2,8)br(€) = —ZZZk(S)Il(ZaS)¢k(§)¢l(§)a

In this paper, to solve the stochastic telegrapher’'s equ k=0 1=0
tions (1) and (2), an SGM is adopted, applying Galerkin (15)
projection to a Polynomial Chaos (PC) expansion of these; X K K
differential equations [9], [10]. Let us assume that thels&s- ka (2,9)06() = =YY Yi(s)Vi(2, 5)6n(£)du(€).
tic parameters is a Gaussian random variable with a mean “ k=0 k=0 1=0

value s and a normalized standard deviatiep. Introducing (16)



Fourth, a Galerkin projection is applied, meaning that (15) function of the stochastic parameters are very accurately

and (16) are weighted with the same set/f+ 1 polyno- known (see also remark 3) below). Whereas the tech-
mials ¢,,(¢), m = 0,..., K, using the inner product (10). niques in [7] and [8] are based on simplified models
Taking the orthogonality (9) into account, this leads to: for the p.u.l. parameters of cables and on-board traces,

here, the 2-D EM modeling technique of Section IlI-
A is employed, allowing such a variability analysis of
d KK on-chip interconnects.

Vin(z,8) = — Zzaklmzk(s)h(zvs)’ (17) " 2) For the single line, the computation of the inner prod-

Ym=0,...,K,

dz
’“;0 l;‘) ucts (11) and (12) is necessary to expand the scalar
d p.u.l. parameters (6) and (7). In general, the computation
@l’”(z’s) = =22 cumYi(s)Vi(z ), (18) of the expansion coefficients of the p.u.l. parameters
_ =0 1=0 require the weighting of these p.u.l. parameters with
with the proper polynomials, necessitating the evaluation of
Qtm =< S1(E)D1(€), dm () > /ml. (19) multﬁdimensjonal integrals (A-8). _Traditionally, numer-
ical integration schemes, employing Gauss-Hermite cu-
Together, (17) and (18) form a matrix ordinary differential  batures [21], are required. Here, however, thanks to the
equation (ODE) in the2(K + 1) unknown expansion coef- macromodeling step, p.u.l. parameters are obtained that
ficients Vi.(z, s) and Iy (z,s), k = 0,..., K. Thanks to the are analytically known as a function of frequency and
SGM, the equation does no longer depend on the stochastic as a function of the stochastic parameters (see (3), (4),
parameters. and (A-3)). This allows efficient, closed-form integra-

Fifth, this ODE is solved. Thereto, pertinent boundary  tions, drastically reducing the setup time of the SGM.
conditions (BCs) must be constructed. These BCs evolve from  This is also numerically illustrated in Section IV.

the terminations at the ends of the lines. In Appendix A-l, a 3) In standard PC techniques, expansions such as (6)

framework for general BCs, also allowing stochastic vaoiat and (7), can be considered as paojection of the
of the terminations, is outlined in detail, together witre th p.u.l. parameters onto a vector space of polynomials.
solution technique of general ODEs féiTLs. Here, we In Section 1lI-C, this vector spac®y is spanned by
merely sketch the solution technique for the single linehwit the set of chosen polynomialg,, & = 0,..., K, of
a finite lengthL, the presence of a deterministic Thévenin degree at mosk'. Usually, such a projection introduces
generator — composed of a voltage soui€g (s) and an a loss of accuracy that is determined by the number
impedanceZy (s) — at the near end of the line: & 0), and of terms K + 1 used in the truncated series. Here,
a deterministic load impedancér(s) at the far end of the however, the macromodels also exhibit a polynomial
line (z = £), which leads to the following BCs: behavior as a function of the stochastic parameter(s). By
V(0,5) = Ex(s) — Zn(s) 1(0, s), (20) choosing the maximum degrée—1 in (3)and (4_) equal
to K, the macromodels already residef, making (6)
V(L,s) = Zr(s) (L, 5). (21) and (7) exact! Thus, the expansion can be considered as

Application of the hPC expansion with Galerkin weighting @ change of basis, rather than a projection.

to (20) and (21) yields a new set &f(K + 1) boundary The above advantages come, of course, at a cost, namely
conditions, allowing to solve (17) and (18) for tR¢K + 1) the construction of the macromodels. It is important toestat
unknown expansion coefficientg,(z,s) and I;(z,s), k = that rapid multivariate parameterized macromodeling tech
0,..., K. Substitution of these coefficients into (13) and (14)iques [23], [24] are being developed, also allowing a amntr
again, finally yields the desired voltagé(z, s, 3) and cur- lable accuracy. Furthermore, these macromodels are ceahput
rent I(z, s, 3) along the line, as a function of the stochastioffline and stored (CPU times are provided in Section IV).
parameter3. As demonstrated in Section IV, this allows tdOnce available, they can also be employed for any other
efficiently compute any desired stochastic quantity or fiomg type of PC expansion (other theétermite PC), for sensitivity
such as the stochastic moments or the probability densitpalysis, and for optimization purposes.

function (PDF) of the voltage at the load, using standard

analytical or numerical techniques [22]. IV. VARIABILITY ANALYSIS OF IEM LINES
In this section the stochastic modeling strategy of Sedtion
D. Observations is validated and its efficiency is demonstrated, using the

Before numerically validating the proposed modeling strafPPlication examples of Section II. All computations have
egy, outlined in Sections I1I-A, 11I-B, and I1I-C, the folising P€€n Performed on a Dell Precision M4500 laptop with an

three interesting observations are put forward, which oan [t€I(R) Core(TM) i7 X940 CPU running at 2.13 GHz and
considered as clear improvements w.r.t. the state-okthe- 8 GB of RAM.

1) An accurate variability analysis for uniform transmis- _ )
sion lines, leveraging the SGM or any other stochastft Single IEM line
modeling technique, can only be carried out if the p.u.l. We consider the single IEM line shown in Fig. 1(a). The
parameters as a function of the frequency and asnscromodels for the p.u.l. parameters are computed offime.
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obtain a relative error di.1%, thanks to the adaptive samplingule, this already requires 10000 evaluations of the irzteds,
technique, only 29 frequency samples are needed to conhstrared hence, 10000 calls to the 2-D EM solver, each call taking
the univariate macromodelg"™™"(s, 5,) and Y"™™(s 3,), 1.16 s. So, the setup time would become larger than three
v =1,...,V, and this forVV = 4 values of the stochastic hours.
parameters. Hence,29 x 4 = 116 calls to the 2-D EM In Fig. 3 the probability density function (PDF) and the
solver are required, each sample taking 1.16 s. The maccomulative distribution function (CDF) dff (s, 3)| for f =
model building time itself takes about 6 s. So, in total, t& GHz are shown. The full and the dashed line indicate the
constructZz™™ (s, 3) andY ™™ (s, 8), 140 s are needed. ThePDF and the CDF computed using the novel technique, the
results of this macromodeling step were already shown in [Sfrcles @) and squaresy) are computed using the 50000 sam-
where they were used to implement a tractable MC analysigdes from the MC run. Apart from the excellent agreement,
A variability analysis is now performed. The IEM lineit is also observed that such results can clearly quantiéy th
of Fig. 1(a) is given a finite lengthC = 1 mm. It is influence of the stochastic parametetand hence the effect of
driven by a Thévenin voltage source producing a sine watlee manufacturing process on the behavior of the interadnne
with frequency f, amplitude En (s = j2xf), and with an
internal impedanceZy = 1Q. It is terminated by a load
impedanceZr = (j27fCr + 1/Rz)~!, with C;, = 1 pF
and Ry, = 1 k2. To analyze the possible adverse effects of
the manufacturing process, the paramegidas assumed to be
a Gaussian random variable with a mean valye= 2 pm
and a normalized standard deviation = 10%, and the SGM
computation is performed. Also, as a reference, a brutesfor
MC analysis is carried out, using 500Q0®samples. As a
result, amongst others, the output voltagéL, s, 3) at the
load is computed as a function of the stochastic paranieter
In Fig. 2(a), a bode plot of the magnitude of the transfer
function H(s,8) = V(L,s,3)/E(s) is shown, for a broad 305 7 e o
frequency band up to 100 GHz. Fig. 2(b) zooms in on Frequencyf [Hz]
the resonance around 7 GHz. The full black line indicates (a) Response as a function of frequency
the meanu ) of this output characteristic and the dashed 9
lines show thet3o | deviations from this meap, |, both

201log,q |H (s, 8)] [dB]

computed using the novel technique. The gray lines on Fig. 2 Es " ﬂ\u‘
correspond to 100 samples of the MC run; the circtdsapd %7’

squarest) indicate the meap, ;| and thet-30 | deviations, el ;

resp., computed using the 50000 samples of the MC run. (For @:57

clarity, the circles and squares are not shown on Fig. 2(a).) = i

It can be observed that the novel technique and the MC run 4

are in perfect agreement, validating the presented stbchas EO 3t g

modeling strategy. The computation times are indicated in < J N
Table I. The setup time refers to the time that is needed in ;

the SGM to construct the matrix ODE (17) and (18) and I 6 7 8

the corresponding boundary conditions. The solution time Frequencyf [GHZ]

denotes the time needed to solve this equation for 250 fre-  (b) Detail of Fig. 2(a) around 7 GHz, clearly illustrating

. . . the effect of the stochastic parameter
guency samples. For the technique proposed in this work, a P s

significant speed-up factor of 32 w.r.t. the MC approach fsig. 2: Bode plot of the magnitude of the transfer func-
observed. By means of a simple computation concerning thién H(s,3) for the single IEM line. Full black line:
setup time, the importance of the macromodeling step cafean 4 ;) computed using the novel technique; Dashed
be clearly illustrated. Without the macromodels, the MC ruplack line: 430/ -variations computed using the novel tech-
would require250 x 50000 calls to the 2-D EM solver, each nique; Gray lines: 100 samples from the MC run; Circles
one requiring 1.16 s. Hence, computing all samples wou{é): mean;;; computed using MC technique; Squares: (

take approximately 168 days. Also the setup time for the +30|47-variations computed using MC technique.
SGM, now being only 0.02 s, would become unacceptably

long. Indeed, we need to compute the coefficiefitss) (11)

andYy(s) (12),k =0,..., K. For 250 frequency samples and )

with K = 3, this requires the computation @fx 250 x 4 = B. Coupled IEM lines

2000 integrals of the type (10). Without the macromodels, Let us now shift our attention to the pair of coupled
no analytical expressions are available and these integri#M lines of Fig. 1(b). In a similar way, macromodels for
need to be computed numerically, e.g., using a Gauss-Herntite p.u.l. parameters are constructed. These are how2
cubature. When leveraging merely a five-points quadratureatricesZ(s, 3,¢) andY (s, 3, ¢), depending on the frequency



Technique CPU time [s] Speed-up factor 10 -
setup solve total J
Novel approach|| 0.02 0.11  0.13 32 5
Monte Carlo 4.13 o

TABLE I: Comparison between the efficiency of the proposed
approach and an MC analysis for the single IEM line.
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Fig. 3: PDF and CDF of the magnitude of the transfer %3, h;

function H (s, 8) at 7 GHz for the single IEM line. Full black o :

line: PDF computed using the novel technique; Dashed black %32*

line: CDF computed using the novel technique; Circles ( =4 !
PDF computed using the MC technique; Squares CDF o ; \

computed using the MC technique. 0 L o

5 6 8
Frequencyf [GHz]
(b) Detall of Fig. 4(a) around 7 GHz, clearly illustrating

and on the two stochastic parametgrand(. First, univariate the effect of the stochastic parametgrsand ¢

rational models are created using VF for a set of samplifgg. 4: Bode plot of the magnitude of the transfer func-

values of the two stochastic parameters. Second, the Win H(s,3,¢) for the coupled IEM lines. The same legend
variate models are strung together via barycentric Lagrang as in Fig. 2 is used.

interpolation. The general expressions for the multiaria
macromodels can be found in Section A-I-B of the appendix.
To obtain a relative error ad.1%, the total time to construct of the active and the victim line, respectively. We constraic
the macromodels is about 30 minutes. This comprises 68g cathnsfer functionH (s, 5, ¢) = Vi(L, s, 5,¢)/E(s) and a for-
to the EM solver (19 frequency samples, 6 samples for theard crosstalk functionF'X (s, 3,¢) = Va(L, s, 8,¢)/E(s).
parameters and 6 samples for the parametgr each sample Bode plots of the magnitude of both functions are shown in
taking 2.64 s, and about 15 s for the construction of ttEigs. 4(a) and 5(a) up to 100 GHz and magpnifications of the
macromodels themselves. resonance around 7 GHz are shown in Figs. 4(b) and 5(b). As
Consider a source-line-load configuration where the lengbefore, the full black lines indicate the meang; andyr x|,
of the two IEM lines isC = 1 mm. The far endz = £ of and the dashed lines show th8c ;| and+30 x| deviations
each line is terminated by a capacitive lodg; = Zr, = from these means, all computed using the novel approach. The
(j2rfCpL + 1/Rp)~!, with C;, = 1 pF andR, = 1 kQ. gray lines on the figures correspond to 100 samples of the MC
The first line is an active line. It is driven at the nearun; the circles €) and squaresc) indicate the means and
end z = 0 by a Thévenin voltage source producing a sinthe +3c-deviations, resp., computed using the 50000 samples
wave with frequencyf, amplitude Ex (s = j2xf), and of the MC run. From Figs. 4 and 5 an excellent agreement
with an internal impedanc&y,; = 1. The second line between the MC analysis and the novel technique is observed.
is the victim line. At its near end, it is terminated by a&omparison of CPU times between the two techniques are
low impedanceZy o, = 1. Again, a variability analysis is shown in Table Il. A substantial speed-up factor of 228 is
performed, using the novel modeling strategy and an MC ruobtained. A similar reasoning as given in Section IV-A would
The stochastic parameters are considered to be independesnd again to the conclusion that the setup time without
Gaussian random variables. The badeas a mean valuygs = leveraging the macromodels becomes unacceptably long. The
2 pm and a normalized standard deviatiep = 10%. The PDF and the CDF of the transfer function and of the forward
gap ¢ has a mean valug,, = 3 pum and a normalized crosstalk at 7 GHz are presented in Figs. 6 and 7. Apart from
standard deviatiorr, = 8%. 250 frequency samples arethe excellent agreement, it is again noticed that such graph
calculated and for the MC run 50000, ¢)-samples are used.present valuable information for designers, allowing thtem
The two output parameters that we observe here are tlapidly assess the behavior of the interconnect.
output voltagesl; (£, s, 3,¢) and Va(L, s, 5,¢) at the loads  Note that, in this paper, to make the hPC expansions of the
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crosstalk F X (s, 3,¢) for the coupled IEM lines. The same

legend as in Fig. 2 is used. crosstalkF' X (s, 5,¢) at 7 GHz for the pair of coupled IEM

lines. The same legend as in Fig. 3 is used.

Technique CPU time [s] Speed-up factor
setup  solve total
Novel approach|| 0.23  8.09 8.31 228 modeling strategy for the variability analysis of on-chiypeir-
Monte Carlo 1895.72

connects was presented. The strategy consists of a tlepe-st
TABLE II: Comparison between the efficiency of the proposeapproach. First, an accurate computation of the pertinenit p
approach and a Monte Carlo analysis for the coupled IENarameters using a powerful 2-D EM solver is performed.
lines. Second, parameterized macromodels of these p.u.l. pagemet
are constructed. These macromodels are rational as adancti
of frequency and polynomial as a function of the stochastic
pu| parameters exact, as exp|ained in Sections Il and Rarameters. Thlrd, a Stochastic Galerkin Method is adopted

|, the so-calledtensor productapproach is adopted, makingt© solve the stochastic telegrapher’'s equations. Theeglyat
sure that the macromodels are elements of the pertinerdvedtas been applied to the variability analysis of single and
space spanned by the Hermite polynomials. Other approack?é%’pmd IEM lines. Compared to Monte Carlo runs, the novel
such astotal degree hyperbolic cross and Smolyak have method shows excellent agreement and superior efficiency.
also been proposed [25], limiting the number of terms ijhhe improvements and advantages w.r.t. the state-oftthe-a
the expansions, and hence reducing both the accuracy #h@tochastic modeling of multiconductor transmissiorein
the computational cost. The trade-off between precisicth aWere clearly outlined, the most important being that, fa th
efficiency following such schemes in the case of on-cthSt time in literature, such modeling oh-chipinterconnects

interconnect modeling, is a topic for further investigatio IS now made possible.
In the present paper, no random variations along:tagis

were taken into account. It would however be possible to in-

clude surface roughness effects, adding to the losses #iagng
Designers of on-chip interconnects are facing a challengin-direction, by incorporating a pertinent correction facte

task. Due to the randomness introduced by the manufacturswgh as the one proposed by Hammerstad and Bekkadal [26]

process, position and widths of these lines are no longerin the p.u.l. resistance. Extension to sensitivity ancapar

deterministically known and their cross-sections haveloam eter variability studies of full 3-D structures, such as gled

trapezoidal shapes. Therefore, in this paper a novel sstichavias in package and board plane structures [27], is cugrentl

V. CONCLUSIONS



under investigation. sampling values{8'!) ,..., 201 v® = 1 ... v® p =

(1) v(B)
1,...,B. Hence, for each stochastic paramet¥f), V)
A-l. APPENDIX such sampling values are used and, tQ{s, , Vv (®) univariate

In this appendix, we generalize the formulation of Sedhodels are required to construct the macromodels (A-3).
tion 11l to multiconductor transmission lines (MTL) with anAlthough it is not strictly required for the remainder of the
arbitrary number of stochastic parameters. A technique fymalism described below, here, there is opted to use the

solve the resulting matrix ODE is also described. same set of sampling values for all elements of the p.u.l.
matrix X (X stands forY andZ). The univariate macromodels

are strung together by means of barycentric Lagrange inter-

A Desx_:npnon of the mte_rcc.mnect _ _ polation, yielding pertinent weight coefficients'?), , v(*) =
Consider an MTL consisting ol coupled uniform signal ; ) ,—1 B

lines and a reference conductor. The axis of invarianceeis-th

axis. There areB stochastic parameteig®, b = 1,..., B, _ _
that influence the MTL's behavior as follows: C. Stochastic Galerkin Method (SGM)
B® = s (1+050&), b=1,...,B, (A-1) As we have considered a Gaussian distribution of the
stochastic parameters, all elements of the macromodeleld p.
where &, b = 1,..., B, are independent Gaussian randoratrices are now expanded as follows:

variables with zero mean and unit variance. TBevector X«

containing all these variable is denotge- [¢; --- ¢g]7. The mm B N

mean and normalized standard deviation of the paramgters X", 8) = ;X””“(S)%(@’ (A-4)
are denotedusew) and ogey respectively. In the Laplace . N o 1 N

domain, using the complex variable = j2rf, where f L A A A

denotes the frequency, the telegrapher's equations, iE&Er where . (¢) is the k-th element of a set ofultivariate

the MTL's behavior, are: Hermite polynomials. This set is constructed by the ten-
d | V(z,s,08) sor product of theB sets of univariate Hermite polyno-
@{ I(z,s,8) } mials {¢; (&) lv:<:;>—1, b =1,...,B. Hence, K = —1 +
o [ 0 Z(s,B) ] . [ V(z,s,0) } (A-2) 2, v, and this set off + 1 multivariate polynomials
Y (s,0) 0 I(z,5.8) |’ spans theB-dimensional vector space, of polynomials of

degree at mosy = max{V® —1}2_, in which all macro-

where theN-vectorsV = [V -+ Vy]" andI = [I; -+ IN]"  models (A-3) reside. The elements in this set are orthogonal
contain the voltages and currents along theniform coupled \y rt. the inner product

lines. These voltages and currents are functions of the fre-

guency and of the distaneealong the lines. They also depend < f(€),9(&) >= F(&) g(&) W (€) de, (A-5)
on all stochastic parameters, as indicated by the@et RB

{B®};L,. The N x N-matricesZ(s,8) and Y(s,3) are jth weighting function

the p.u.l. impedance and admittance matrix, which can be

computed using the 2-D EM solver described in Section I11-A. W) = 1 —1EE (A-6)

B. Parameterized macromodeling of the p.u.l. parameters as follows:

Multivariate macromodels forZ(s,3) and Y (s,3) are _
constructed. These models are rgtion)al along(the )dimension < Pr(8), pm(&) >= Okm < om(&), pm(8) >, (AT)
describing frequency and polynomial in th other dimen- where d,,, is the Kronecker delta. Therefore, the expansion
sions that correspond to thg stochastic parameters. So, eacboefficients in (A-4) are given by
element of the p.u.l. impedance matrix or admittance matrix

is modeled as follows: Xijn(s) = <<Xij(fé§3)’(p(’“£()£)>>. (A-8)
er(§), Yk
Xii(s,B) ~ Xmm (s, . . N
J(‘S/f) V(BJ) (5:8) Note that the expansion (A-4) is not an approximation for

B ) (B) yumm 1) (B) the macromodeled elements of the p.u.l. matrices, it istexac
= Z Z Wy Wy X (8 By s Bym) Indeed, as stated above, given the polynomial interpaldfie
3), for a fixed frequency, the macromodel already resides

v(1) =1 v(B)=1

v v (B)

in Py, making the expansion procedure merely a change of
x H(ﬂ(l) - 1(;2)) "'H(ﬂ(B) - 51&@)) ) (A-3)  pasis. So, the barycentric Lagrange interpolation is a @onv
kD =1 kP =1 nient choice that yields certain advantages, as previatisty
kD # o) R o) cussed in Section IlI-D. However, this choice is not necgssa
with ¢ = 1,...,N, j = 1,...,N, and whereX;; stands Other interpolation or approximation schemes could haesbe

for Z;; andY;;. The univariate models(;;™™ are rational adopted during the construction of the macromodels, making

functions of s, and are obtained through VF in a set othe expansion (A-4) a projection onid,.
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Similar as for the elements of the p.u.l

matrices, th@-13) and (A-14) are recast as

unknown voltages and currents are now also projected onto

the space’y:

Vi(z,5,8) = ZVkZSSDk (A-9)

B) = Zli_,k(z, s)or(€)
k=0

i=1,...,N.

(A-10)

d N K ~
a‘/; m(z,8) = — Z Z imi(8)1,1(2, 8), (A-17)
) 7];1 l}:{O ~

%IZ m(Z S) = — Z Z Y;j,ml(s)‘/_vj,l(za S)a (A_18)

<
I

-
i

<

Z':

1,....N,m=0,..., K.

The elements (A-15) and (A-16) are now organized into

Inserting (A-4), (A-9), and (A-10) into (A-2), yields thenew (V(K + 1) x N(K + 1))-matricesZ and Y, which
following expressions for the N (K + 1) unknown expansion can be considered asugmented p.u.l. matriceBy also

coefficientsV; , andl; ,, i =1,...,N, k=0,..
voltages and the currents along the MTL:

g K
s Z Vik(z, 8)or(€)

3y

Mz
Mx

Zijk(8)j1(2, )k (€)pr(€),  (A-11)
7=1k=01=0
@ths)wk@
= N K K
NN Vik(s)Vialz, 9)en©)ei(€),  (A-12)
7=1 k=0 1=0
i=1,...,N.

, K, for the properly organizing the unknown expansion coefficients in

N(K 4 1)-vectors V and I, an augmented version of the
original telegrapher’s equations (A-2) is obtained, atofos:

-l %] 03]

(A-19)
Note that, thanks to the SGM, these new equations do no
longer depend on the stochastic paramefgra\s such, (A-
19) can be considered as the pertinent telegrapher’s egsati
for a deterministic MTL consisting oV (K + 1) signal lines,
allowing to solve them with classical methods as described
next.

2 [ %(zzfs?

A Galerkin projection is now adopted by weighting (A- 11b Boundary conditions (BCs)
and (A-12) with the same set of Hermite polynomials, using

the inner product (A-5):

L3 Viklers) < (8, om(€) >
k:ON K K
=- Z YN Zuk() (2, 8) < ok(€)i(€), om(§) >,
j=1 k=0 1=0 (A13)
d K
E Z Ii,k(za S) < (pk(g)’ SDW(E) >
k:ON K K
= =22 > Yur($)Via(5) < or(©wi(€), om(€) >,
j=1k=01=0 (A_14)
i=1,...,N,m=0,...,K

With (A-7) and introducing the notation

)= e (§)ei(§), pm(§) >
z] ml ZZZ] < SDm(S) QOm(S) N 3
(A-15)
K
)< ee(§)ei(€), om(§)
Vioni(s) =2 Vs, oy 08 >
(A-16)
i=1,...,N,j=1,....N, k= K, m=0 K,

Consider now a uniform MTL, as described in Section A-
I-A, with a finite length £. The telegrapher's equations
can only be solved when proper boundary conditions (BCs)
are imposed. These BCs are determined by 2fé ter-
minations of theN lines, which are here, for simplicity,
Thévenin voltages sources. At the near end of the linesai.e
z =0, these Thévenin voltage sources comprise a voltage
source En (s, B) in series with an impedanc&y (s, 8),

i =1,...,N. At the far endz = L, they comprise a voltage
source Er;(s,3) in series with an impedanc&pr ;(s,3),
i1=1,...,N. So, these terminations can also be of stochastic
nature, which is again indicated by their dependency3on

Denoting the voltages and currents at the near end of the
lines with the N-vectorsVy(s,3) = V(z = 0,s,3) and
In(s,B) = I(z = 0,s,3) respectively and similarly at the
far end, Vp(s,8) = V(z = L,s,8) andIp(s,B) = I(z =
L,s,3), it is readily seen that the boundary conditions are

(A-20)

VN(SHB) = EN(SHB) - zN(Svﬁ) : IN(SwB)a
Z (A-21)

Vi(s,8) =Er(s,8) + Zr (s, 8) - Ir(s, B),

where theN-vectorsEy andEr contain the voltage sources
and where the matrice€y and Zy are diagonal matrices,
containing the impedances. Obviously, other terminations
yielding full matricesZ andZy, are equally possible.

The hPC expansion is now also applied to the BCs (A-
20) and (A-21). The voltages and impedances are projected

=)
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onto Py:
K
Exi(s,B) = Z Ex ik (5)ek (), (A-22)
k;o
Zx(s:8) =Y Zxin(s)pr (&), (A-23)
k=0

i=1,...,N,

whereX now stands fofV and F'. Introducing (A-22) and (A-

(1]

(2]

(3]

23) into (A-20) and (A-21) and applying Galerkin weighting

again, yields the followingaugmentedCs:
Vi (s) = Bn(s) — Zn(s)In(s), (A-24)
Vi(s) = Ep(s) + Zp(s)Ip(s), (A-25)
where the N(K + 1)-vectorsVx, Ix, and Ex (X is N

(4]

(5]

and F') contain the expansion coefficients of the voltages and

currents along the lines and the voltages sources, regelycti

The N(K +1) x N (K +1)-matricesZx contain the expansion °!
coefficients of the impedances. Similar as for the augmented
telegrapher’s equations (A-19), the augmented BCs (A-24

and (A-25) can be considered as the pertinent BCs of

deterministic MTL consisting ofV (X + 1) signal lines.
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