
Cloudlets: Bringing the cloud to the mobile user

Tim Verbelen∗, Pieter Simoens∗†, Filip De Turck∗, Bart Dhoedt∗

∗Ghent University - IBBT, Department of Information Technology
†Ghent University College, Department INWE

tim.verbelen@ugent.be, pieter.simoens@ugent.be, filip.deturck@ugent.be, bart.dhoedt@ugent.be

ABSTRACT
Although mobile devices are gaining more and more capa-
bilities (i.e. CPU power, memory, connectivity, ...), they
still fall short to execute complex rich media and data anal-
ysis applications. Offloading to the cloud is not always a
solution, because of the high WAN latencies, especially for
applications with real-time constraints such as augmented
reality. Therefore the cloud has to be moved closer to the
mobile user in the form of cloudlets. Instead of moving a
complete virtual machine from the cloud to the cloudlet, we
propose a more fine grained cloudlet concept that manages
applications on a component level. Cloudlets do not have
to be fixed infrastructure close to the wireless access point,
but can be formed in a dynamic way with any device in
the LAN network with available resources. We present a
cloudlet architecture together with a prototype implemen-
tation, showing the advantages and capabilities for a mobile
real-time augmented reality application.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Cloud Computing

1. INTRODUCTION
Nowadays, smartphones are becoming increasingly popular.
In the fourth quarter of 2011, one witnessed a 47.3 per cent
increase in smartphone sales from the fourth quarter of 2010
[6]. As the capabilities of mobile devices advance (in terms
of CPU power, network connectivity and sensors), people
increasingly use them for other tasks such as emailing, GPS
routing, Internet banking, gaming etc. Although many ad-
vances in technology, mobile devices will always be resource
poor, as restrictions on weight, size, battery life, and heat
dissipation impose limitations on computational resources
and make mobile devices more resource constrained than
their non-mobile counterparts [14]. Therefore, mobile de-
vices still fall short to execute many rich media and data
analysis applications that require heavy computation, and

often also have (near) real-time constraints such as aug-
mented reality (AR).

One solution to overcome these resource limitations is mo-
bile cloud computing [7]. By leveraging infrastructure such
as Amazon’s EC2 cloud or Rackspace, computationally ex-
pensive tasks can be offloaded to the cloud. However, these
clouds are typically far from the mobile user, and the high
WAN latency makes this approach insufficient for real-time
applications. To cope with this high latency, Satyanarayanan
[13] introduced the concept of cloudlets: trusted, resource
rich computers in the near vicinity of the mobile user (e.g.
near or colocated with the wireless access point). Mobile
users can then rapidly instantiate custom virtual machines
(VMs) on the cloudlet running the required software in a
thin client fashion [14].

Although cloudlets may solve the issue of latency, there are
still two important drawbacks of the VM based cloudlet ap-
proach. First, one remains dependent on service providers
to actually deploy such cloudlet infrastructure in LAN net-
works. To alleviate this constraint, we propose a more dy-
namic cloudlet concept, where all devices in the LAN net-
work can cooperate in the cloudlet, as depicted in Figure 1.
Next to the cloudlet infrastructure integrated in the mobile
network by service providers, or provided by a corporation

Figure 1: Static cloudlets can be provided by a cor-
poration in a corporate cloudlet, or by a service
provider in the mobile network. Ad hoc cloudlets
can be formed in the home network or within a rail-
way carriage.



as a corporate cloudlet, all devices in the home network can
share their resources and form a home network cloudlet. On
the train, different users can also share resources in an ad
hoc cloudlet.

A second drawback of VM based cloudlets is the coarse gran-
ularity of VMs as unit of distribution. Instead of execut-
ing the whole application remotely in the VM and using a
thin client protocol, better performance can be achieved by
dynamically partitioning the application in components [4].
Also, as resources in the cloudlet will still be limited, chances
are that even the cloudlet runs out of resources when many
users execute their VM simultaneously on the cloudlet in-
frastructure. With component offloading, a more flexible
allocation of the cloudlet resources is possible, so that prior-
ity is given for latency-critical parts of the application, while
non real-time parts can be offloaded to a more distant cloud.

In this paper we present a new cloudlet architecture, where
applications are managed on component level. These appli-
cation components can be distributed among the cloudlets.
The cloudlet infrastructure is not fixed, and devices can join
and leave the cloudlet at runtime. To show the need for
such a cloudlet architecture, we present an evaluation using
an augmented reality use case.

The remainder of this paper is structured as follows. In
the next section, we will describe the augmented reality use
case, its components and requirements. Section 3 describes
in detail our cloudlet architecture. In Section 4 the current
implementation is discussed followed by the evaluation in
Section 5. Section 6 presents related work in the domain of
code offloading. Finally we conclude this paper in Section 7
and discuss future work.

2. USE CASE: AUGMENTED REALITY
As a use case, we present an augmented reality application
featuring markerless tracking as described by Klein et al.
[9], combined with an object recognition algorithm presented
in [11]. The application is shown in Figure 2. On the right
a greyscale video frame is shown with the tracked feature
points, from which the camera position is estimated. The
left shows the resulting overlay with a 3D object, and a white
border around the recognized book.

Figure 2: The augmented reality application will
track feature points in the video frames (right) to
enable the overlay of 3D objects (left).

We have split up the augmented reality algorithms of the
application and redesigned them into the following compo-
nents, as shown in Figure 3:

VideoSource The VideoSource fetches video frames from
the camera hardware. These frames are analyzed by
the Tracker, and rendered with an augmented reality
overlay by the Renderer.

Renderer Each camera frame is rendered on screen to-
gether with an overlay of 3D objects. These 3D objects
are aligned according to the camera pose as estimated
by the Tracker.

Tracker The Tracker analyses video frames and calculates
the camera pose by matching a set of 2D image features
to a known map of 3D feature points. The map of 3D
points is generated and updated by the Mapper.

Mapper From time to time the Tracker sends a video frame
to the Mapper for map generation and refinement.
By matching 2D features in a sparse set of so called
keyframes, the Mapper can estimate their 3D location
in the scene and generate a 3D map of feature points.

Relocalizer When no feature points are found in the video
frame, the Relocalizer tries to relocate the camera po-
sition until tracking resumes.

Object Recognizer In the keyframes of the Mapper the
Object Recognizer tries to locate known objects. When
an object is found, its 3D location is notified to the
Renderer that renders an overlay.

VideoSource

Tracker

Renderer

Mapper

Relocalizer

Object

Recognizer

Figure 3: The different components of the AR ap-
plication. The VideoSource and the Renderer (dark
grey) are fixed on the mobile device. The Relocal-
izer and Tracker (grey) have real-time constraints
(< 50 ms). The Mapper and the ObjectRecognizer
(white) do not have strict requirements.

These components are not only very CPU intensive, some of
them also have strict real-time constraints. The VideoSource
and the Renderer have to be executed on the mobile device,
as they access device specific hardware. In order to achieve
an acceptable performance, the Tracker and the Relocalizer
should be able to process frames within 30-50 ms, which
equivalents a frame rate of 20-30 frames per second. As
the Mapper runs as a background task constantly refining
and expanding the 3D map, this is a component that runs
preferably on a device with much CPU power, but has no
strict latency requirements. The Object Recognizer also has
more relaxed requirements, as delays in the order of a second



Execution Environment

C1 C2 C3

Operating System

Node

Agent

NA
Cloudlet

Agent

Cloudlet

Agent

Ad hoc cloudlet

in the LAN network

Elastic cloudlet in

a public cloud 

infrastructure

...

VM1

VM2
NA

NA

NA
EE

EE

EE

EE

OS

OS

OS

OS

Figure 4: The application components are distributed among nodes in two cloudlets. An ad hoc cloudlet
consisting of a mobile phone, a laptop and a desktop computer, and a distant elastic cloudlet in a public cloud
infrastructure. All components are managed and monitored by an Execution Environment (EE). Different
EEs on a node are managed by a Node Agent (NA), that on their turn communicate with the Cloudlet Agent
(CA).

before relocalizing or annotating are still sufficient to achieve
acceptable user experience.

The goal now is to run this application on a mobile device,
while meeting all the imposed constraints. Therefore we de-
fine a cloudlet architecture that will manage the application
on a component based level, being able to configure and/or
distribute application components within the cloudlet or to
other cloudlets.

3. CLOUDLET ARCHITECTURE
We envision the cloudlet as shown in Figure 4, with three
layers: the component level, the node level and the cloudlet
level.

A component is the unit of deployment that is specified by
its providing and required interfaces [16]. Components are
managed by an Execution Environment (EE), that can start
and stop components, resolve component dependencies, ex-
pose provided interfaces etc. To support distributed exe-
cution, dependencies can be resolved with other (remote)
Execution Environments. In that case, proxies and stubs
are generated and the components can communicate by re-
mote procedure calls (RPCs). Components can also define
performance constraints (e.g. the maximum execution time
of a method), and expose configuration parameters to the
EE. By monitoring the resource usage of each component,
the EE can detect violations of the performance constraints
and actions can be taken such as calculating a new deploy-
ment (i.e. offloading some resource intensive components)
or adapting component configurations (i.e. lowering compo-
nent quality).

One or multiple Execution Environments run on top of an
operating system (OS), which in its turn can run on both vir-
tualized or real hardware. The (possibly virtualized) hard-
ware together with the installed OS is called a node, and is
managed by a Node Agent (NA). The Node Agent manages
all the EEs running on the OS, and can also start or stop
new Execution Environments, for example for sandboxing
components. The NA also monitors the resource usage of
the node as a whole, and has info about the (maybe virtu-

alized) hardware it runs on (e.g. the number of processing
cores, processing speed, etc.).

Multiple nodes that are in the physical proximity of each
other (i.e. low latency) form a cloudlet. The cloudlet is
managed by a Cloudlet Agent (CA), that communicates with
all underlying Node Agents. Cloudlet Agents of different
cloudlets can also communicate with each other, for ex-
ample to migrate components between cloudlets. Within
a cloudlet, the node with the most resources is chosen to
host the Cloudlet Agent.

When an EE detects a performance constraint violation,
it notifies the Node Agent of the node it runs on. This
Node Agent will in its turn notify the Cloudlet Agent of
the cloudlet it is part of, which will then calculate a new
deployment or configuration of the components. This hier-
archical approach has a number of advantages. First, it is
more scalable than to let all the Execution Environments
decide as peers. Second, the possibly complex decision logic
is not executed on the weakest devices (that signal perfor-
mance constraint violations), but on the strongest device
in the cloudlet. Third, the Cloudlet Agent has a global
overview of all available resources, and thus is able to cal-
culate a global optimum for all the devices in the cloudlet,
rather than calculating (possibly conflicting) optima for each
device separately.

There are two types of cloudlets, as shown in Figure 4: the
ad hoc cloudlet and the elastic cloudlet. The ad hoc cloudlet
consists of dynamically discovered nodes in the LAN net-
work. These nodes run a Node Agent that can spawn Exe-
cution Environments to deploy components in. When nodes
join or leave the cloudlet, the Cloudlet Agent will recalcu-
late the deployments, migrating components if needed. The
elastic cloudlet runs on a virtualized infrastructure, where
nodes run in virtual machines. Here, the Cloudlet Agent
can spawn new nodes when more resources are needed, or
stop nodes when too much resources are allocated. This
type of cloudlet comes close to the VM based cloudlet envi-
sioned by Satyanarayanan [14], but with extra middleware
in the VM (NA and EE) that manages the application. Elas-



C1 C2

Proxy C1

R-OSGi

OSGi

C1

Proxy C1

R-OSGi

OSGi

EE
Network

Channel

Figure 5: The internals of the Execution Environ-
ment implementation, running on top of OSGi and
R-OSGi. Component C1 provides an interface that
is proxied by the EE. All components requiring this
interface get a reference to the EE proxy, which al-
lows the EE to transparently monitor and migrate
components.

tic cloudlets can also be used as abstraction for the public
cloud, when standardized interfaces such as OCCI are used.

4. CURRENT IMPLEMENTATION
We implemented a prototype of our framework in Java,
which allows it to run on most hardware such as laptops,
desktops and servers, but also on Android, the most pop-
ular mobile operating system [2]. As base for the Execu-
tion Environment we adopted OSGi [17], a service oriented
module management system allowing to dynamically load
and unload software modules. OSGi is selected as it pro-
vides some of the required functionality, such as manag-
ing components, resolving dependencies and distribution of
components across different OSGi instances using R-OSGi
[12]. The OSGi framework is also easily extendable using
the hooks API.

The Execution Environment runs on top of the OSGi frame-
work and R-OSGi, as shown in Figure 5. Each component is
an OSGi bundle, whose providing interfaces are proxied by
the EE. This way, the EE can easily monitor all method calls
of the interface. The proxying of the interface also allows the
EE to transparently migrate a component to a remote EE,
redirecting all method calls through R-OSGi to the remote
instance of the component.

On every node a Node Agent and a Cloudlet Agent are ini-
tially started, and all Execution Environments register with
the Node Agent of the node they run on. When the node
connects to a wireless network, other Cloudlet Agents are
discovered using the Service Location Protocol (SLP) [18].
When another Cloudlet Agent is discovered in the LAN net-
work, the Cloudlet Agent on one of the nodes (preferably
the one with least resources) stops and its Node Agents reg-
ister with the other Cloudlet Agent. This way an ad hoc
cloudlet is formed. When the cloudlet has an uplink to the
public internet, other cloudlets (i.e. an elastic cloudlet) can
be registered by their IP address with the Cloudlet Agent,
that will handle them as peers.

When an Execution Environment detects a constraint viola-
tion in one of the components, its Node Agent is signalled,
which in its turn signals the Cloudlet Agent. The Cloudlet
Agent can then instruct the EE to take actions to lower the

load on the EE: configuration parameters of some compo-
nents can be changed, or components can be outsourced to
other nodes within the cloudlet or other known cloudlets.

The constraints and configuration parameters of a compo-
nent are defined by the application developer using an XML
description, as shown in listing 1. A typical constraint is
the maximum execution time of a method. Configuration
parameters are defined by their name, and can be config-
ured by the EE using reflection.

<component name="Tracker">

<service name="TrackerService">

<method name="trackFrame">

<constraint type="maxTime">50</constraint>

</method>

</service>

<parameter name="MaxFeatures"

type="uint"

range="50..1000"

default="200"/>

</component>

Listing 1: Example of a component description,
defining the Tracker component with a constraint
on the maximum execution time of the trackFrame
method and a configurable parameter MaxFeatures.

The optimization goal of the Cloudlet Agent is to maxi-
mize the quality, while still meeting all the defined time con-
straints. We assume the quality of a component increases
with the amount of resources used, or thus with the amount
of (useful) work done. In the current implementation, the
Cloudlet Agent only supports fixed predefined actions, but
we plan to investigate different heuristics and learning tech-
niques. Some preliminary work on algorithms for distribut-
ing components with multiple configuration options between
a single mobile device and a server was presented in [19]. In
this case, this has to be extended to a global optimization
problem for multiple mobile devices and multiple servers.

We implemented the AR use case as a number of OSGi com-
ponents as shown in Figure 3. To speedup the computa-
tion, most of the image processing is implemented in native
C/C++ code, which is wrapped in OSGi components using
the Java Native Interface (JNI). To be able to run the OSGi
component on different platforms, native libraries are com-
piled for different architectures and the right library is se-
lected and loaded at runtime by the OSGi framework. This
way, the application components run both on x86 based ma-
chines running Linux and ARM based mobile devices run-
ning Android.

5. EVALUATION
With this evaluation we show that our cloudlet architecture
with ad hoc cloudlets and a component management layer
is beneficial for mobile rich media application that gener-
ate heavy load and have real-time constraints such as the
augmented reality use case presented in Section 2.



We executed the AR use case on an ad hoc cloudlet con-
sisting of a mobile device and a laptop connected via WiFi.
The laptop is equiped with an Intel Core 2 Duo CPU clocked
at 2.26GHz. As mobile device we use a HTC Desire, with
a single core Qualcomm 1 GHz Scorpion CPU, and an LG
Optimus 2x powered by a dual core Nvidia Tegra 2 CPU,
also clocked at 1GHz. For both devices we run 3 fixed de-
ployments: a first deployment with all components running
on the mobile device, a second deployment with the Mapper
and the ObjectRecognizer outsourced to the laptop, and a
third deployment where also the real-time constrained com-
ponents, the Tracker and the Relocalizer, are outsourced
next to the Mapper and ObjectRecognizer. We also compare
2 configurations of the frame size of the frames captured by
the VideoSource: 800x480 or 400x240 pixels.

The results for the HTC Desire are shown in Table 1, where
the execution time (in ms) is given for tracking one frame
(Tracker), for relocalizing one frame (Relocalizer), for ini-
tializing a 3D map (Map init), for refining the map with a
new keyframe (Mapper) and for detecting known objects in
a keyframe (Obj. Rec.). The most important action is the
tracking of a frame, as this has to be done for each camera
frame fetched, and will greatly determine the user experi-
ence. In order to offer a good quality to the end user, a
framerate of 20 to 30 tracked frames per second is desired,
which boils down to an execution time of less than 50 ms
per frame for the Tracker.

The single core processor is not able to process 800x480
frames fast enough, having an average processing time of 147
ms to track a frame. Even when offloading to the cloudlet,
the time to track one frame is still 85 ms. When configuring
the VideoSource to fetch 400x240 frames, the time to track
a frame is 87 ms. When outsourcing the Mapper and the
ObjectRecognizer the processing time lowers to 54 ms on av-
erage, what is slightly more than the predefined constraint
and the best configuration possible.

Notice that when also the Tracker and Relocalizer compo-
nents (that have real-time constraints) are outsourced, the
tracking time is still lower (68 ms) then running everything
locally, resulting in a frame rate of 15 frames per second. In
this case the time to track a frame is determined by the time

Table 1: Execution time (in ms) on the HTC De-
sire for different operations for 2 configurations of
the video source, and 3 deployments (everything lo-
cal (1), Mapper and ObjectRecognizer outsourced
(2) and Mapper, ObjectRecognizer, Relocalizer and
Tracker outsourced (3)).

800x480 400x240
1 2 3 1 2 3

Tracker 147 85 205 87 54 68
Relocalizer 95 69 2 21 16 1
Map init 2275 1783 130 1325 468 52
Mapper 3256 519 301 2627 455 150
Obj. Rec. 32835 1273 1442 19788 550 536

Table 2: Execution time (in ms) on the LG Opti-
mus 2x for different operations for 2 configurations
of the video source, and 3 deployments (everything
local (1), Mapper and ObjectRecognizer outsourced
(2) and Mapper, ObjectRecognizer, Relocalizer and
Tracker outsourced (3)).

800x480 400x240
1 2 3 1 2 3

Tracker 64 34 378 14 12 106
Relocalizer 21 21 2 3 3 1
Map init 2804 1124 176 429 390 82
Mapper 2470 519 396 547 305 156
Obj. Rec. 18682 1414 1510 6531 595 629

to transfer the raw 400x240 frame from the mobile device to
the laptop (60 ms), or thus by the bandwidth of the wireless
access network. This is probably the best configuration on
even lower end devices that do not have the CPU power to
track frames locally. Also, as the biggest part of the time
is spent on sending data, this configuration could be further
optimized, e.g. by compressing the video frames.

Also note that for the other CPU intensive tasks such as
the map initialization and refinement, and the object recog-
nition, remote execution gives a speedup of a factor 6 to
30. When comparing deployments 2 and 3, the processing
time of the Mapper is lower in deployment 3, as the Tracker
and Mapper are then colocated remotely, whereas in deploy-
ment 2 additional time is needed to transfer frames between
the Tracker (on the mobile device) and the Mapper (on the
laptop).

The LG Optimus 2x has a dual core processor, which leads
to lower local processing times as shown in Table 2. For
the Optimus the best configuration is processing 800x480
frames while outsourcing the Mapper and the ObjectRecog-
nizer, in which case frames are tracked on average within 34
ms, which is equivalent with a framerate of about 30 frames
per second. Although the 400x240 configuration has faster
processing times for tracking a frame, the 800x480 configu-
ration is chosen as this offers a better visual quality. Even
with the better mobile processor, there still is a factor 2 to
12 speedup for the outsourced components.

Tables 1 and 2 show that indeed a component based ap-
proach is needed for real-time applications such as augmented
reality. These results also show that for different devices a
different configuration of the components is more beneficial
than only outsourcing some components, and is an addition
that greatly enhances the possibilities of the middleware to
find a good deployment. In deployment scenario 3, the pro-
cessing time of the outsourced Tracker is higher for the LG
Optimus compared to the HTC Desire. The time to transfer
a camera frame from the device to the laptop accounts for
this difference, as the actual time to analyse the frame on
the laptop is the same in both cases. This shows that the
network connectivity is highly variable, which can be taken
into account in a fine grained component based partitioning.



To show the need for cloudlets in the LAN network, rather
than outsourcing to a distant cloud, we executed the best
configurations (highlighted in grey in Tables 1 and 2) with
the cloudlet running in the ‘distant’ Amazon EC2 cloud.
The results are shown in Table 3.

Table 3: Execution time (in ms) when offloading
to the Amazon EC2 cloud. Although more CPU
power is available in the cloud, data transfer slows
down performance compared to the ad hoc cloudlet
in Tables 1 and 2, due to the WAN latency.

Desire Desire Optimus
400x240 400x240 800x480

2 3 2
Tracker 51 218 31
Relocalizer 10 1 20
Map init 1765 60 2766
Mapper 1417 157 1508
Obj. Rec. 521 598 1303

When outsourcing only the Mapper and the Object Recog-
nizer (2), the execution times of the map initialization and
the map refinement are higher than in the case of the ad
hoc cloudlet, as those methods communicate with the mo-
bile device. When also outsourcing the Tracker and Relocal-
izer component (3), the tracking time is over 200 ms due to
the WAN latency, which does not come near the real-time
requirements.

6. RELATED WORK
Offloading parts of applications from mobile devices to nearly
discovered servers, called surrogates, has been proposed be-
fore under the term ’cyber foraging’ [1]. The most recent
cyber foraging frameworks are discussed below. For a more
in depth discussion on cyber foraging systems we refer to
the survey of Sharifi et al. [15].

Kristensen et al. [10] propose Scavenger, a cyber forag-
ing system in Python, that offloads CPU intensive meth-
ods to enhance performance. A dual profiling scheduler is
presented, using adaptive history-based profiles.

MAUI [5] outsources methods of Microsoft .Net applications
in order to save energy. At initialization time MAUI mea-
sures the energy characteristics of the device, and during
runtime the program and network characteristics are moni-
tored. By solving an integer linear programming (ILP) prob-
lem a decision is made whether or not to offload a method.

Chun et al. present CloneCloud [3], where virtualized clones
of the mobile device are executed in the cloud. In an off-
line profiling stage, different binaries of the application are
generated, with special VM instructions added at migra-
tion points for selected methods. At runtime a clone VM
is instantiated at the server side, and the application trans-
parently switches between execution at the device or at the
clone.

Verbelen et al. [19] present a middleware framework in
OSGi, that offloads OSGi components of an augmented re-

ality application. Like MAUI, an ILP approach is used to
determine the best partitioning. Also, when offloading is
still not enough to make the application usable, the middle-
ware will try to reduce the quality of some components and
gracefully degrade the application.

Instead of offloading to a remote server or a cloud, one could
also try to offload to other mobile devices in the vicinity [8].
This actually boils down to a special case of the cloudlet
architecture, where an ad hoc cloudlet is formed between
mobile devices, without connectivity to other cloudlets.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a cloudlet architecture that not
only provides fixed infrastructure colocated with the WiFi
access point, but also enables ad hoc discovery of devices
in the vicinity to share resources among each other. Next
to the provisioning of infrastructure, the proposed cloudlet
architecture also provides a middleware framework to man-
age and distribute component based applications, with a
focus on rich media applications such as augmented reality
that have strict real-time requirements. Preliminary results
show for an AR use case that a component based approach
is indeed beneficial, and how the cloud is less suited for out-
sourcing components with real-time constraints.

As future work, whole new challenges have to be tackled
with respect to deployment calculation and scheduling. In
comparison with existing cyber foraging frameworks, a lot
more decision options are generated by allowing different
configurations of components. Instead of a single discovered
surrogate, now multiple places for remote execution have
to be considered, within the cloudlet or in other cloudlets.
The hierarchical architecture also allows for decision taking
for all users to reach a global optimum, instead of possibly
conflicting local optima for each user individual.

Another area of interest is how to support application de-
velopers in creating such component based applications and
defining their quality constraints. Developer tools are needed
to easily split up an application in different components, in
a (semi-) automatic way and with as less burden on the de-
veloper as possible.

8. ACKNOWLEDGMENTS
Tim Verbelen is funded by Ph.D grant of the Fund for Sci-
entific Research, Flanders (FWO-V).

9. REFERENCES
[1] R. Balan, J. Flinn, M. Satyanarayanan,

S. Sinnamohideen, and H.-I. Yang. The case for cyber
foraging. In EW 10: Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 87–92.
ACM, 2002.

[2] M. Butler. Android: Changing the mobile landscape.
IEEE Pervasive Computing, 10:4–7, 2011.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti. Clonecloud: elastic execution between mobile
device and cloud. In Proceedings of the sixth
conference on Computer systems, EuroSys ’11, pages
301–314. ACM, 2011.



[4] B.-G. Chun and P. Maniatis. Dynamically partitioning
applications between weak devices and clouds. In
Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and
Beyond, MCS ’10, pages 7:1–7:5, 2010.

[5] E. Cuervo, A. Balasubramanian, D.-k. Cho,
A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.
Maui: making smartphones last longer with code
offload. In MobiSys ’10: Proceedings of the 8th
international conference on Mobile systems,
applications, and services, pages 49–62. ACM, 2010.

[6] Gartner Group. 2012 press releases.
http://www.gartner.com/it/page.jsp?id=1924314.

[7] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and
G. Alonso. Calling the cloud: enabling mobile phones
as interfaces to cloud applications. In Proceedings of
the ACM/IFIP/USENIX 10th international conference
on Middleware, Middleware’09, pages 83–102, 2009.

[8] G. Huerta-Canepa and D. Lee. A virtual cloud
computing provider for mobile devices. In Proceedings
of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond,
MCS ’10, pages 6:1–6:5. ACM, 2010.

[9] G. Klein and D. Murray. Parallel tracking and
mapping for small ar workspaces. In Proceedings of the
2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, ISMAR ’07, pages
1–10. IEEE Computer Society, 2007.

[10] M. D. Kristensen and N. O. Bouvin. Scheduling and
development support in the scavenger cyber foraging
system. Pervasive and Mobile Computing,
6(6):677–692, 2010. Special Issue PerCom 2010.

[11] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vision,
60(2).

[12] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi:
distributed applications through software
modularization. In Middleware ’07: Proceedings of the
International Conference on Middleware, pages 1–20,
New York, NY, USA, 2007. Springer-Verlag New
York, Inc.

[13] M. Satyanarayanan. Mobile computing: the next
decade. In Proceedings of the 1st ACM Workshop on
Mobile Cloud Computing & Services: Social Networks
and Beyond, MCS ’10, pages 5:1–5:6, 2010.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for vm-based cloudlets in mobile
computing. Pervasive Computing, IEEE, 8(4):14 –23,
2009.

[15] M. Sharifi, S. Kafaie, and O. Kashefi. A survey and
taxonomy of cyber foraging of mobile devices.
Communications Surveys Tutorials, IEEE, (99):1–12,
2011.

[16] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., 2nd edition, 2002.

[17] The OSGi Alliance. OSGi Service Platform, Core
Specification, Release 4, Version 4.2. aQute,
September 2009.

[18] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan.
Service Location Protocol. RFC 2165 (Proposed
Standard), June 1997. Updated by RFCs 2608, 2609.

[19] T. Verbelen, T. Stevens, P. Simoens, F. De Turck, and
B. Dhoedt. Dynamic deployment and quality
adaptation for mobile augmented reality applications.
J. Syst. Softw., 84:1871–1882, November 2011.


