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[1] Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem
models is critical because errors in simulated GPP propagate through the model to
introduce additional errors in simulated biomass and other fluxes. We evaluated simulated,
daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower
sites across the United States and Canada. None of the models in this study match
estimated GPP within observed uncertainty. On average, models overestimate GPP in
winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP
under dry conditions and for temperatures below 0�C. Improvements in simulated soil
moisture and ecosystem response to drought or humidity stress will improve simulated
GPP under dry conditions. Adding a low-temperature response to shut down GPP for
temperatures below 0�C will reduce the positive bias in winter, spring, and fall and
improve simulated phenology. The negative bias in summer and poor overall performance
resulted from mismatches between simulated and observed light use efficiency (LUE).
Improving simulated GPP requires better leaf-to-canopy scaling and better values of
model parameters that control the maximum potential GPP, such as ɛmax (LUE),
Vcmax (unstressed Rubisco catalytic capacity) or Jmax (the maximum electron
transport rate).
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1. Introduction

[2] Terrestrial gross primary productivity (GPP) is the
total photosynthetic uptake or carbon assimilation by plants
and is a key component of terrestrial carbon balance. GPP
is the main carbon input to terrestrial ecosystems, noting
relatively minor inputs by dissolved organic carbon, as
well as deposition by rainwater and sedimentation [Chapin
et al., 2006]. GPP depends on climate, climate variability,
disturbance history, water and nutrient availability, soil
type, species composition, and community structure.
Understanding how these factors influence GPP remains a
challenge due to complex interactions and the difficulty in
quantitatively measuring GPP directly at various temporal
and spatial scales. Estimates of GPP are only available at
eddy covariance flux tower sites for the past decade, so
we depend on models to estimate GPP over long periods
of time at regional and global scales, and to project future
changes in GPP in response to climate change.
[3] Any error in simulated GPP will propagate through the

model, introducing errors in simulated biomass and fluxes. If
simulated GPP is too low or too high, then predicted leaf
area index, wood biomass, crop yield, and soil biomass may
also be too low or high [Schaefer et al., 2008]. Net ecosys-
tem exchange (NEE) is total ecosystem respiration (Reco)
minus GPP, with a positive NEE indicating a net release of
CO2 to the atmosphere. Autotrophic respiration depends on
GPP and heterotrophic respiration depends on soil condi-
tions and dead plant biomass, so errors in GPP readily
propagate to errors in Reco and simulated diurnal and sea-
sonal cycles of NEE. Through representation of stomatal

control on GPP and transpiration, errors in GPP introduce
errors in simulated latent and sensible heat flux, which in
turn can introduce error in simulated atmospheric circula-
tion. GPP is a key carbon flux that needs to be simulated as
accurately as possible to ensure the most reliable values of
simulated biomass and surface fluxes.
[4] We can classify GPP models into enzyme kinetic

(EK), light use efficiency (LUE), or empirical models. EK
models represent leaf-scale enzyme-kinetics with electron
and product transport limits on simulated GPP [Farquhar
et al., 1980; Caemmerer and Farquhar, 1981; Collatz
et al., 1991]. Nearly all EK models include a representa-
tion of stomatal conductance balancing GPP against water
loss through leaf stomata [Collatz et al., 1991; Collatz et al.,
1992]. Most stomatal conductance models are based on
empirical correlations between conductance, photosynthesis,
and either relative humidity [Ball et al., 1987] or vapor
pressure deficit (VPD) [Wang and Leuning, 1998]. LUE
models estimate either GPP or net primary productivity
(NPP) by multiplying incident photosynthetically active radi-
ation (PAR) by a remotely sensed fraction of PAR absorbed by
the vegetation (fPAR) and an energy to biomass conversion
factor (typically called light use efficiency) [Monteith, 1972;
Field, 1995; Prince and Goward, 1995; Landsberg and
Waring, 1997; Goetz et al., 1999; Running et al., 2000; Sims
et al., 2006; Zhao et al., 2007; Sjöström et al., 2009;
As-syakur et al., 2010]. Finally, empirical models use sta-
tistical relationships between observed environmental con-
ditions and GPP estimated from eddy covariance flux data,
which is then expanded to regional or global scales using
various reanalysis weather products [Beer et al., 2010].
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These GPP models vary greatly in intended application,
complexity, and their representation of physical and bio-
logical processes.
[5] The modeling community currently lacks a quantita-

tive evaluation of multiple GPP models to gauge overall
performance across different ecosystems and help prioritize
long-term model development. Many modeling teams com-
pare simulated NEE to observed NEE measured at single
points using eddy covariance techniques [Baldocchi et al.,
2001; Grant et al., 2010]. Others compare against NEE for
large regions estimated from transport inversions that are
optimally consistent with observations of atmospheric CO2

concentration [Gurney et al., 2002; Peters et al., 2010].
However, comparisons with observed NEE do not distin-
guish between Reco and GPP and provide little information
on model performance relative to GPP. Fortunately, NEE
measured by eddy covariance techniques can be partitioned
into Reco and GPP: a temperature function is tuned to
nighttime Reco, the function is used to calculate daytime
Reco, and the estimated GPP is the daytime Reco minus the
daytime NEE [Desai et al., 2008; Lasslop et al., 2010].
There are assessments in the literature of how well terrestrial
biosphere models simulate GPP, but they focused on a single
or small number of models compared to GPP estimated from
eddy covariance data at a small number of towers [e.g.,
Thornton et al., 2002; Schaefer et al., 2008; Verbeeck et al.,
2008]. These studies used different techniques to estimate
GPP from observed NEE [Desai et al., 2008], making it
difficult to differentiate between errors in the partitioning
technique and true model-data mismatches. The evaluations
were run at different sites and used different input weather,
making it difficult to isolate input errors from true model-
data mismatches. The performance measures used in these
evaluations are difficult to compare because most used
qualitative performance criteria while those with quantitative
performance measures used different statistical techniques
and quantities. None of these model evaluations account for
uncertainty in estimated GPP due to uncertainty in the eddy
covariance data and partitioning techniques. The actual GPP
value lies within the range defined by uncertainty, so the
ideal performance target of any model is to match the
observed GPP within uncertainty. These studies provide
insight into the performance of individual models. However,
the differences among evaluations make it very difficult to
compare and synthesize the results to identify strengths and
weaknesses common to all terrestrial biosphere models and
to determine what changes will provide the greatest
improvements in simulated GPP.
[6] We hypothesize that model performance depends on

1) model structure and 2) how models simulate GPP
response to changing environmental conditions. Model
structure refers to differences in how models represent var-
ious physical and biological processes, such as LUE versus
EK models. To test our hypotheses, we compared simulated
GPP from 26 models against estimated GPP at 39 eddy
covariance flux tower sites in the North American Carbon
Program (NACP) site-level interim synthesis. Our analysis
includes observation uncertainty to determine if the models
hit the desired performance target: matching observed GPP
within uncertainty. The number and variety of models and
sites in the NACP site synthesis are sufficient to identify the

strengths and weaknesses common to all GPP models and,
most importantly, how to improve the models.

2. Methods

2.1. Estimated GPP

[7] Our analysis used daily average GPP estimated at
39 eddy covariance flux tower sites (Table 1). Observed
NEE at all towers were processed and partitioned into GPP
and Reco using standard techniques [Barr et al., 2004]. The
NACP site synthesis included 47 tower sites, but we did not
include those sites where the GPP partitioning was not done
or the algorithm failed to converge. The chosen sites repre-
sented eight major biome types across North America except
tundra, with 24 sites from the AmeriFlux network and
15 sites from the Fluxnet Canada Research Network/
Canadian Carbon Program. GPP partitioning was not done
for tundra sites due to large data gaps in winter and the lack
of nighttime data in summer to train the Reco model. NACP
site synthesis used the International Global Biosphere Pro-
gram (IGBP) biome classifications [Loveland et al., 2000].
Some models were designed for specific biome types, such
as forest or agriculture sites only, so not every model sim-
ulated all sites, resulting in a total of 627 simulations and an
average of 16 simulations per site.
[8] Observed, hourly NEE at each site was gap-filled

and decomposed into hourly Reco and GPP using a standard
procedure [Barr et al., 2004] and converted into 24-hour daily
averages. Before processing, observed NEE was screened to
remove outliers [Papale et al., 2006] and exclude data dur-
ing periods of low turbulence based on a friction velocity
threshold (A. G. Barr et al., Use of change-point detection
for u*–threshold evaluation for the North American Carbon
Program interim synthesis, manuscript in preparation, 2012).
Reco was set equal to observed, nighttime NEE and fitted to
an empirical model based on air and soil temperature using a
moving window approach. The function was then used to
calculate the daytime Reco, which was subtracted from day-
time NEE to get GPP. Finally, gaps in GPP were filled using
an empirical model that was tuned to the estimated GPP
values. GPP was set to zero when the soil was frozen and the
air temperature was below 0�C, assuming air temperature
represents the temperature of the entire system. The parti-
tioning procedure occasionally produced negative GPP
values at dawn and dusk at most sites and occasionally for
entire days at the dry, grassland sites. The negative GPP
values typically greatly exceeded estimates of random
uncertainty and probably resulted from errors in the Reco

temperature response or the fact that the partitioning algo-
rithm did not account for influences of soil moisture on GPP.
We set all negative GPP values to zero and transferred the
flux to Reco to maintain the observed NEE, and recalculated
the daily average GPP. One third of the models used a daily
time step, so we calculated the daily average as the average
rate of GPP over a 24-hour period using both estimated and
gap-filled values.
[9] Although treated here as “observed” GPP, they are not

strictly observed, but rather estimated from observed tower-
based NEE. The GPP includes all the strengths, weaknesses,
and assumptions of the original NEE observations. The
energy budget at flux towers does not balance because the
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eddy covariance technique captures small-scale turbulent
fluxes less than 1 km, but can underestimate latent and
sensible heat fluxes due to large-scale eddies on the order of
10 km [Foken, 2008]. Assuming similarity with the lack of
surface energy balance closure, the measured NEE might be
between 15 and 20% less than the actual values [Foken,
2008], indicating a potential underestimate of GPP. Eddy
covariance techniques can underestimate nighttime Reco,
depending on the threshold used to filter out Reco under
stable conditions, also resulting in an underestimate of GPP.
The empirical formulation for Reco used to estimate GPP
from NEE assumed air temperature represents the tempera-
ture of the entire system, underestimating GPP when the

canopy temperature is greater than zero and the air temper-
ature is less than zero. Last, the partitioning algorithm did
not account for how soil moisture and other factors control
Reco, resulting in errors in the estimated GPP (as evidenced
by occurrences of negative GPP at some grassland sites).
[10] Total GPP uncertainty included gap filling algorithm

uncertainty, partitioning uncertainty, random uncertainty,
and threshold friction velocity (u*) uncertainty, summed in
quadrature. Summing in quadrature assumes that these
sources of error are uncorrelated. We did not correct for
potential biases due to the lack of energy closure or under-
estimates of Reco at night. Random and u* filtering uncer-
tainty was estimated using a Monte Carlo technique

Table 1. Summary of Site Characteristics

Site IGBP Classa Description
Longitude

(deg)
Latitude
(deg)

Start
(yr)

Stop
(yr)

Number
Models Reference(s)

CA-Ca1 ENF Campbell River, Mature Douglas-fir �125.3 49.9 1998 2006 23 Krishnan et al. [2009];
Humphreys et al. [2006]

CA-Ca2 ENF Campbell River, Douglas-fir, clearcut �125.3 49.9 2001 2006 8 Krishnan et al. [2009];
Humphreys et al. [2006]

CA-Ca3 ENF Campbell River, Douglas-fir, juvenile �124.9 49.5 2002 2006 8 Krishnan et al. [2009];
Humphreys et al. [2006]

CA-Gro MF Groundhog River �82.2 48.2 2004 2006 17 McCaughey et al. [2006]
CA-Let GRA Lethbridge Grassland �112.9 49.7 1997 2007 22 Flanagan and Adkinson [2011]
CA-Mer WET Eastern Peatland, Mer Bleue �75.5 45.4 1999 2006 18 Roulet et al. [2007]
CA-Oas DBF BERMS, Old Aspen �106.2 53.6 1997 2006 23 Krishnan et al. [2006];

Barr et al. [2006]
CA-Obs ENF BERMS, Old Black Spruce �105.1 54.0 2000 2006 22 Krishnan et al. [2008];

Kljun et al. [2006]
CA-Ojp ENF BERMS, Old Jack Pine �104.7 53.9 2000 2006 18 Kljun et al. [2006]
CA-Qfo ENF Quebec, Mature Black Spruce �74.3 49.7 2004 2006 17 Bergeron et al. [2008];

Bergeron et al. [2007]
CA-SJ1 ENF BERMS, Jack Pine, 1994 Harvest �104.7 53.9 2002 2005 7 Zha et al. [2009]
CA-SJ2 ENF BERMS, Jack Pine, 2002 Harvest �104.6 53.9 2003 2006 8 Zha et al. [2009]
CA-SJ3 ENF BERMS, Jack Pine, 1995 Harvest �104.6 53.9 2005 2006 7 Zha et al. [2009]
CA-TP4 ENF Turkey Point, Mature �80.4 42.7 2002 2007 17 Arain and Restrepo [2005];

Peichl and Arain [2006]
CA-WP1 WET Western Peatland, LaBiche River �112.5 55.0 2003 2007 14 Flanagan and Syed [2011]
US-ARM CRO ARM, Southern Great Plains �97.5 36.6 2000 2007 17 Fischer et al. [2007]
US-Dk3 ENF Duke Forest, Loblolly Pine �79.1 36.0 1998 2005 17 Oren et al. [2006];

Stoy et al. [2006]
US-Ha1 DBF Harvard Forest, EMS Tower �72.2 42.5 1991 2006 23 Urbanski et al. [2007]
US-Ho1 ENF Howland Forest, Main Tower �68.7 45.2 1996 2004 23 Richardson et al. [2009]
US-IB1 CRO Fermi Lab, agriculture �88.2 41.9 2005 2007 16 Post et al. [2004]
US-IB2 GRA Fermi, prairie �88.2 41.8 2004 2007 17 Post et al. [2004]
US-Los WET Lost Creek �90.0 46.1 2000 2006 12 Sulman et al. [2009]
US-Me2 ENF Metolius, Intermediate-aged Ponderosa Pine �121.6 44.5 2002 2007 20 Thomas et al. [2009]
US-Me3 ENF Metolius, Ponderosa Pine, young (2) �121.6 44.3 2004 2005 8 Vickers et al. [2009]
US-Me5 ENF Metolius, Ponderosa Pine, young (1) �121.6 44.4 1999 2002 8 Law et al. [2001]
US-MMS DBF Morgan Monroe State Forest �86.4 39.3 1999 2006 16 Schmid et al. [2000]
US-MOz DBF Missouri Ozark �92.2 38.7 2004 2007 17 Gu et al. [2006]
US-Ne1 CRO Mead, Irrigated maize �96.5 41.2 2001 2006 17 Verma et al. [2005];

Suyker and Verma [2010]
US-Ne2 CRO Mead, Irrigated maize or soybean �96.5 41.2 2001 2006 17 Verma et al. [2005];

Suyker and Verma [2010]
US-Ne3 CRO Mead, Rainfed �96.4 41.2 2001 2006 23 Verma et al. [2005];

Suyker and Verma [2010]
US-NR1 ENF Niwot Ridge �105.5 40.0 1998 2007 17 Monson et al. [2002];

Monson et al. [2005]
US-PFa MF Park Falls/WLEF �90.3 45.9 1995 2005 14 Davis et al. [2003]
US-Shd GRA Shidler �96.7 36.9 1997 2000 15 Suyker et al. [2003]
US-SO2 CSH Sky Oaks, Old �116.6 33.4 1998 2006 16 Luo et al. [2007]
US-Syv MF Sylvania Wilderness Area �89.3 46.2 2001 2006 15 Desai et al. [2005]
US-Ton WSA Tonzi Ranch �121.0 38.4 2001 2007 15 Ma et al. [2007]
US-UMB DBF UMBS �84.7 45.6 1999 2006 22 Gough et al. [2008]
US-Var GRA Vaira Ranch �121.0 38.4 2000 2007 17 Ma et al. [2007]
US-WCr DBF Willow Creek �90.1 45.8 1998 2006 16 Cook et al. [2004]

aIGBP biome class definitions: CRO, Croplands; CSH, Closed Shrublands; DBF, Deciduous Broadleaf Forest; ENF, Evergreen Needleleaf Forest; GRA,
Grasslands; MF, Mixed Forests; WET, Permanent Wetlands; WSA, Woody Savannas.
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[Richardson and Hollinger, 2007; A. G. Barr et al., manu-
script in preparation, 2012]. A. G. Barr et al. generated a
synthetic flux time series using the gap-filling algorithm,
randomly introduced artificial gaps, added noise, and then
refilled the gaps. Repeating the process 1000 times for each
site-year produced probability distribution functions with the
2.5 and 97.5 percentiles representing uncertainty. Assuming
the GPP uncertainty due to the gap-filling algorithm was the
same as that for NEE, the GPP gap filling uncertainty was
the fraction of filled GPP values for each day times the stan-
dard deviation of multiple algorithms [Moffat et al., 2007].
Partitioning uncertainty was based on the standard deviation of
multiple partitioning algorithms [Desai et al., 2008]. Total
uncertainty generally increased with the magnitude of GPP
and varied from a minimum of�1 mmol m�2 s�1 in winter to
2–4 mmolm�2 s�1 in summer. Random uncertainty dominated
over other sources of uncertainty, ranging from�90% of total
uncertainty in summer months to�50% of total uncertainty in
winter months.

2.2. Modeled GPP

[11] Our analysis used simulated GPP from 24 different
models (Table 2) plus two model averages. We used the
model characteristics in Table 2 as covariates to determine if
the different representations of physical and biological pro-
cesses produce statistically significant differences in model
performance relative to GPP. All the EK models included
the effects of stomatal conductance and all but two used the
Ball-Berry stomatal conductance model [Ball et al., 1987].
The leaf-to-canopy column indicates whether the strategy for
scaling from a single leaf to the entire canopy accounts for
the effects of diffuse light on shaded leaves (2-leaf) or not
(big-leaf). To determine if resolving the diurnal cycle
improved performance, we included the ensemble average of

all models and the average of all models that resolved the
diurnal cycle. Including the two ensemble averages at each
site, we have a total of 627 simulations or 4242 site-years of
model output with an average of 23 simulations per model.
[12] We included estimates of MODIS GPP from Collec-

tion 5.0 and Collection 5.1, [Heinsch et al., 2003; Running
et al., 2004]. We extracted a 3 by 3 pixel window of 8-day
maximum composite GPP values at 1 km2 spatial resolution,
with the center pixel containing the tower site [Distributed
Active Archive Center for Biogeochemical Dynamics,
2010]. We filtered out low quality pixels using the simple
binary quality control flag to remove the effects of potential
cloud contamination and averaged the rest of the pixels to
represent the GPP at each site. We linearly interpolated
between 8-day composite values to obtain daily GPP.
[13] The MODIS GPP from Collection 5.0 and Collec-

tion 5.1 were not based on observed meteorology, so we
also calculated GPP using gap-filled observed weather and
the MODIS algorithm [Heinsch et al., 2003; Running et al.,
2004]:

GPP ¼ 0:45ɛmaxFSW fPARSVPDST ; ð1Þ

where ɛmax is the maximum light use efficiency, FSW is
the incident shortwave radiation flux, fPAR is the absorbed
fraction of PAR, SVPD is the VPD scaling factor, and ST is
the air temperature scaling factor. SVPD represents the GPP
response to drought and humidity stress and ST represents
the GPP response to temperature, with both varying between
zero and one. We used the MODIS Biome-Property-Look-
Up-Table [Zhao and Running, 2010] and daily fPAR values
interpolated from the monthly mean GIMMSg NDVI data
set [Tucker et al., 2005]. Although the complexity and
sophistication varies widely, all the models have a GPP

Table 2. Summary of Model Characteristics

Model Number Sites Time Step Soil Layersa Phenologyb Nitrogen Cycle GPP Modelc Leaf-to-Canopy Reference

AgroIBIS 5 Hourly 11 Prognostic Yes EK Big-Leaf Kucharik and Twine [2007]
BEPS 10 Daily 3 Semi-prognostic Yes EK 2-Leaf Liu et al. [1999]
Biome-BGC 33 Daily 1 Prognostic Yes EK 2-Leaf Thornton et al. [2005]
Can-IBIS 24 Hourly 7 Prognostic Yes EK 2-Leaf Liu et al. [2005]
CN-CLASS 28 Hourly 3 Prognostic Yes EK 2-Leaf Arain et al. [2006]
DLEM 30 Daily 2 Semi-prognostic Yes EK 2-Leaf Tian et al. [2010]
DNDC 5 Daily 10 Prognostic Yes LUE Big-Leaf Li et al. [2010]
Ecosys 35 Hourly 15 Prognostic Yes EK 2-Leaf Grant et al. [2009]
ED2 24 Hourly 9 Prognostic Yes EK 2-Leaf Medvigy et al. [2009]
EDCM 9 Daily 10 Prognostic Yes LUE Big-Leaf Liu et al. [2003]
ISAM 13 Hourly 10 Prognostic Yes LUE 2-Leaf Yang et al. [2009]
ISOLSM 9 Hourly 20 Observed No EK 2-Leaf Riley et al. [2002]
LoTEC 10 Hourly 14 Prognostic No EK Big-Leaf Hanson et al. [2004]
LPJ 26 Daily 2 Prognostic No EK Big-Leaf Sitch et al. [2003]
MODIS_5.0 38 Daily 0 Observed No LUE Big-Leaf Heinsch et al. [2003]
MODIS_5.1 37 Daily 0 Observed No LUE Big-Leaf Heinsch et al. [2003]
MODIS_alg 39 Daily 0 Observed No LUE Big-Leaf Heinsch et al. [2003]
ORCHIDEE 32 Hourly 2 Prognostic No EK Big-Leaf Krinner et al. [2005]
SiB3 28 Hourly 10 Observed No EK Big-Leaf Baker et al. [2008]
SiBCASA 32 Hourly 25 Semi-prognostic No EK Big-Leaf Schaefer et al. [2009]
SiBcrop 5 Hourly 10 Prognostic Yes EK Big-Leaf Lokupitiya et al. [2009]
SSiB2 39 Hourly 3 Observed No EK Big-Leaf Zhan et al. [2003]
TECO 32 Hourly 10 Prognostic No EK 2-Leaf Weng and Luo [2008]
TRIPLEX 6 Daily 0 Observed Yes LUE Big-Leaf Peng et al. [2002]

aZero soil layers indicate the model does not have a prognostic submodel for soil temperature and moisture.
bObserved phenology means the model uses remote sensing data to determine leaf area index (LAI) and gross primary productivity (GPP). Semi-

prognostic means that remote sensing data is used to specify either LAI or GPP, but not both.
cGPP model types: EK (enzyme kinetic) and LUE (light use efficiency).
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formulation similar to MODIS: a peak potential rate times
the amount of absorbed light, multiplied by a series of
scaling factors representing how GPP responds to changing
environmental conditions. The scaling factors represent the
ratio of actual to a reference or optimal GPP and vary
between zero and one.
[14] All models used gap-filled observed weather from each

tower site [Ricciuto et al., 2009; http://www.nacarbon.org/
nacp/] with input parameters and biophysical characteristics
derived from local observations, such as soil texture. Missing
air temperature, atmospheric humidity, shortwave radiation,
and precipitation data were filled using DAYMET [Thornton
et al., 1997] or the nearest available climate station in the
National Climatic Data Center’s Global Surface Summary of
the Day (GSOD) database. Daily GSOD and DAYMET data
were temporally downscaled to hourly or half-hourly values
using the phasing from observed mean diurnal cycles calcu-
lated from a 15-day moving window. When station data were
unavailable, a 10-day running mean diurnal cycle was used
[Ricciuto et al., 2009; http://nacp.ornl.gov/docs/Site_Synthe-
sis_Protocol_v7.pdf]. The models were run for as many years
as required, repeating the gap-filled weather, until they
reached steady state initial conditions where Reco balances
GPP and the average NEE over the entire simulation is near
zero. The steady state assumption influences Reco, but has little
or no effect on simulated GPP. All models used their standard
values for various biophysical parameters except LoTEC,
which used optimized parameter values obtained through data
assimilation [Ricciuto et al., 2011].

2.3. Model Performance

[15] We quantified model performance using a statistical
analysis of model-data residuals using daily average GPP.
We first calculated residuals:

ri ¼ GPPsi � GPPoið Þ; ð2Þ

where ri is the residual for the ith model-data pair, GPPsi is
simulated daily average GPP, and GPPoi is estimated daily
average GPP. Bias is the residual mean and the Root Mean
Square Error (RMSE) is the residual standard deviation. X2

is the mean of residuals normalized by uncertainty:

X 2 ¼ 1

n

Xn
i¼1

ri
ɛi

� �2

; ð3Þ

where n is the number of residuals and ɛi is the uncertainty
for the i th daily average estimated GPP. We filtered out
�0.1% of daily estimated GPP values with ɛi ≤ 0.3 mmol
m�2 s�1 which produced extreme outlier X2 values that
skewed our results. Such unrealistically small ɛi values
occasionally occurred when GPP was near zero. We did not
filter out daily average GPP values based on the number of
filled values per day because these values have higher
uncertainty and a proportionally lower influence on X2.
[16] The ideal target for any model is X2 < 1.0, which

means, on average, the residuals are less than uncertainty or
the model matches observations within measurement
uncertainty. Variations of X2 within this target range have no
meaning relative to model performance. A model with an X2

value of 0.8, for example is not “better” than a model with an
X2 value of 0.9, since both models show no statistically

significant differences with observations. Consequently, we
identified performance categories based on ranges of X2

values. An X2 value of ≤1.0 indicated good model perfor-
mance. An X2 value between 1.0 and 2.0 indicated marginal
model performance, where the model-data mismatch is on
the order of two times the observation uncertainty. An X2

value of >2.0 indicated poor model performance, where the
model-data mismatch is several times the observation uncer-
tainty. An X2 value of 9, for example, indicates that the model-
data mismatch is, on average, three times the uncertainty.
[17] To test our hypothesis that model structure influence

performance, we aggregated the performance measures by
model, model characteristic, site, and month-of-year. To
identify any statistically significant differences in perfor-
mance based on how the models represented various physi-
cal and biological processes, we aggregated performance
measures by the model structural characteristics listed in
Table 2. To evaluate seasonal variation in performance
parameters, we aggregated by month-of-year, where January
is the average of all Januaries, February the average of all
Februaries, etc.
[18] To test our hypothesis that model performance

depends on how they represent the GPP response to chang-
ing environmental conditions, we compared observed and
simulated environmental response curves. We sorted the
daily average GPP values into bins based on daily average
values of input driver variables and calculated the mean,
standard deviation, and uncertainty of the daily average GPP
for each bin. We focused on downwelling shortwave radia-
tion flux, air temperature, and relative humidity. The relative
humidity response function reflects the reduction in GPP due
to stomatal closure under drier atmospheric conditions.
VPD, the difference between saturated and actual water
vapor pressure, also reflects stomatal closure, but varies with
temperature such that the range and magnitude varies among
sites. Relative humidity always varies between zero and one
and greatly simplifies our analysis by allowing easy com-
parison among sites. More importantly, 16 of the 20 models
in this analysis that account for stomatal conductance used
the Ball-Berry stomatal conductance model, which is based
on relative humidity. Each model’s mathematical formula-
tion and associated parameters values determined the shape
of the simulated response curves. We compared simulated
and observed shape characteristics, such as slope, to isolate
those model formulations or parameters that determine
model performance. The response function for each driver
variable differs slightly from site to site and is only weakly
correlated to response functions for other driver variables.
For example, the optimal temperature for GPP is different
for each site but does not depend on humidity or light.
Consequently, we made no attempt to remove covariance
between driver variables.

3. Results

3.1. Performance Summary

[19] None of the models in this study achieved a good
overall performance of X2 less than one for all sites
(Figure 1). LoTEC, which was optimized against flux data
and DLEM achieved marginal performance, while SSIB2
and TECO had large X2 values due to large biases. Generally
speaking, higher RMSE resulted in higher X2, but the
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relationship was weak because X2 accounts for uncertainty
and bias while RMSE does not. There was no relationship
between model bias and either RMSE or X2. The RMSE fell
within a narrow performance range, with a mean and stan-
dard deviation of 2.8 � 1.0 mmol m�2 s�1. On average, the
models underestimated GPP (negative bias) with a mean
bias of �0.3 mmol m�2 s�1, but the spread between models
was very large compared to the mean, with a bias standard
deviation of �0.6 mmol m�2 s�1.
[20] Figure 2 shows that models, on average, under-

estimated GPP in summer (negative bias) and overestimated

GPP in winter, spring, and fall (positive bias). These sea-
sonal biases of opposite sign tended to cancel, resulting in
the lower overall biases seen in Figure 1. Figure 2 shows the
average monthly bias, but every month showed both positive
and negative biases for individual models with standard
deviations ranging from two to ten times the mean bias. The
estimated GPP is smaller in spring and fall, with corre-
spondingly smaller uncertainties, which magnified the rela-
tively small model biases to produce slight peaks in X2 in
spring and fall. The models performed worst in the summer
and the best in winter, indicating the models properly shut
down GPP during winter, but the real challenge is to capture
GPP dynamics during the growing season.
[21] The models generally performed the best at forest

sites and the worst at crop, grassland, and savanna sites
(Figure 3). The models did not show good overall perfor-
mance at any site, but did show marginal performance at
seven sites. The models performed best for deciduous
broadleaf, mixed forest, and evergreen needleleaf biome
types and all of the ten sites with the best overall perfor-
mance were forest. The spread in performance within biome
types was broad: two of the ten sites with the worst perfor-
mance were evergreen needleleaf forest sites. However,
seven of the ten sites with the worst model performance
were crop, grassland or savanna sites.
[22] The models showed a large spread in both the mag-

nitude and timing of the simulated GPP seasonal cycle, as
indicated by the large spread in Figure 4. The models cap-
tured the basic observed seasonal pattern in GPP with near-
zero values in winter and a peak value in mid-summer, so
the standard deviation of the seasonal cycle is an alternative
measure of seasonal amplitude. Consequently, the radial

Figure 1. Overall model performance per model for all
sites as defined by (a) X2, (b) root mean squared error
(RMSE), and (c) bias. The models are arranged in order of
increasing X2 and color-coded for enzyme kinetic (EK), light
use efficiency (LUE) and model means. An X2 value of <1.0
indicates good performance, an X2 value of 1.0–2.0 indicates
marginal performance, and an X2 value of >2.0 indicates
poor performance.

Figure 2. The monthly average bias in (a) simulated GPP
and (b) monthly X2 based on all 627 simulations from all
models. An X2 < 2.0 indicates marginal performance.
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distance in Figure 4 is effectively the ratio of simulated to
estimated seasonal amplitude of GPP, an alternative measure
of bias. Ratios less than 1.0 indicate the model under-
estimates the GPP seasonal amplitude (negative bias). The
models had standard deviation ratios ranging from 0.5 to 1.4,
which means the simulated GPP ranged from 50% to 140%
of estimated GPP. The models showed correlations between
0.6 and 0.9, indicating they varied widely in how well they
captured the timing of the estimated GPP seasonal cycle,
regardless of how well they captured the magnitude. For
example, LOTEC, ISOLSM, and LPJ all had standard
deviation ratios near one, consistent with the low biases seen
in Figure 1. However, these three models showed progres-
sively smaller correlations and correspondingly larger X 2,
indicating that simulated phenology and associated phasing
of the GPP seasonal cycle played an important role in
determining overall model performance.

[23] The two model means showed the highest correlation
with observations. This indicates that model-data mis-
matches associated with the timing of the GPP seasonal
cycle can partly cancel out when averaging the results from
multiple models. Essentially, the ensemble mean gave better
results than any single model alone. Although errors in
timing cancel, an ensemble mean does not eliminate overall
bias. The standard deviation ratios for the two model means
in Figure 4 reflected the overall, average negative bias of all
the models in our analysis. Although there was positive bias
in winter, spring, and fall, the negative bias in summer
dominated and, on average, the models as a whole under-
estimate GPP by 20%–30%.
[24] These results complement and extend previous anal-

yses from the NACP site synthesis. Richardson et al. [2012]
found that overestimation of GPP in spring and fall resulted
in models predicting the start of spring uptake about two
weeks earlier than observed and the end of uptake in fall
about two weeks later than observed. Schwalm et al. [2010]
found models simulate NEE better at forest sites than
grassland sites. The positive biases in spring and fall can
help explain the decreased model performance relative to
NEE in spring and fall [Schwalm et al., 2010]. Under-
estimating GPP in summer can explain the peaks in the
spectral signature of NEE residuals at the annual time scale
[Dietze et al., 2011]. Our results and those from prior studies
indicate that seasonal biases in simulated GPP can help
explain problems in simulating seasonal changes in NEE.
[25] Overall, there was a very large spread in model per-

formance. On average, a single model showed good perfor-
mance at 12% of the sites, marginal performance at 26%,
and poor performance for the rest. Nearly every model had
one “outlier” site where it performed considerably worse
than the other sites, with X2 values often exceeding 20.
Conversely, nearly all models showed good or marginal
performance at least one site. The spread in performance
across sites was equally broad, with three outlier sites where
none of the models performed well. The spread among
models at a single site was also wide: each site, on average,
had two good simulations, four marginal simulations, and
two outlier simulations with X2 > 20.

3.2. Model Structure

[26] Model performance did not depend on model struc-
ture, as defined by the model characteristics in Table 2. We
did not find any statistically significant relationships
between performance and how models represent various
physical and biological processes (Table 3). In all cases, the
difference in mean values between model groups was much
smaller than the standard deviation within groups such that
none of the differences were statistically significant. For
example, LUE models performed better then EK models, but
when excluding SSIB2 and TECO, which had large biases,
EK models performed better than LUE models. Essentially,
EK and LUE models performed equally well in simulating
observed GPP. The performance difference for a daily ver-
sus hourly time step was consistent with the difference
between EK and LUE models, since nearly all EK models
use an hourly time step. The same was true for the other
model structural characteristics: models that include a
nitrogen cycle, a soil model, shaded leaves, or prognostic
phenology performed equally well as models that do not.

Figure 3. Overall performance per site for all models as
defined by (a) X2, (b) RMSE, and (c) bias. The sites are
arranged in order of increasing X2 and color-coded by biome
type.
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[27] We found no significant relationships, but this does not
mean that model structure does not influence performance.
Sprintsin et al. [2012], for example, clearly demonstrate that
accounting for diffuse light and changing from a big-leaf to a
2-leaf formulation improved BEPS performance. However,
SiB is a big-leaf model and performed just as well as BEPS.
The lack of significant relationships means that model per-
formance is dominated by some other aspect of model design
not represented by the model characteristics in Table 3, such as
how models simulate GPP responses to changing environ-
mental conditions.

3.3. Light Response

[28] The poor overall performance and the negative bias in
summer resulted from mismatches between simulated and
observed LUE. The light response curve is GPP as a func-
tion of downwelling shortwave radiation and its slope is the
LUE. Figure 5 shows a light response curve based on dai-
ly average GPP for US-Me2 which we chose because it
had a large number of simulations and was typical of all
sites. The uncertainty in Figure 5 was dominated by gap-
filling and partitioning uncertainty because the bin averaging
tended to greatly reduce the random uncertainty. US-Me2
is an evergreen needleleaf site with simulations from

19 models with a marginal overall performance (X2 = 1.9).
Five models had good performance (X2 ≤ 1.0), two showed
marginal performance (1.0 < X2 ≤ 2.0), and the rest showed
poor performance. Four out of the five models with good
performance all had LUEs that matched observed values
within uncertainty. We saw no clear pattern in bias, with

Figure 4. Taylor plot by model for all sites. A Taylor plot is a polar plot where the cosine of the angle
from the x axis is the correlation coefficient between simulated and observed gross primary productivity
(GPP). The correlation coefficient measures how well the simulated GPP captures the phasing and timing
of the observed GPP. The radial direction is the ratio of simulated to observed standard deviation. The
green lines represent RMSE normalized by standard deviation. An ideal model would have a standard
deviation ratio of 1.0 and a correlation of 1.0 (point A).

Table 3. Differences in Performance Based on Model Structural
Characteristics (Value� Standard Deviation) for All 627 Simulations

Characteristic Value c2 (�)
RMSE

(mmol m�2 s�1)
Bias

(mmol m�2 s�1)

GPP Model Type EK 4.2 � 3.9 2.4 � 1.2 0.1 � 1.2
GPP Model Type LUE 3.2 � 2.3 2.8 � 1.7 �0.9 � 1.3
Leaf-to-Canopy Big-Leaf 3.7 � 3.2 2.6 � 1.5 �0.3 � 1.4
Leaf-to-Canopy 2-leaf 4.2 � 3.8 2.4 � 1.2 �0.1 � 1.3
Phenology Observed 3.1 � 2.5 2.3 � 1.3 �0.3 � 1.2
Phenology Prognostic 4.8 � 4.1 2.7 � 1.4 �0.1 � 1.4
Soil Model No 3.3 � 2.6 2.6 � 1.7 �0.6 � 1.4
Soil Model Yes 4.2 � 3.8 2.4 � 1.2 0.0 � 1.3
Nitrogen Model No 4.1 � 3.6 2.5 � 1.4 �0.1 � 1.3
Nitrogen Model Yes 3.7 � 3.3 2.5 � 1.4 �0.3 � 1.3
Time Step Daily 3.5 � 3.0 2.7 � 1.6 �0.7 � 1.3
Time Step Hourly 4.3 � 3.8 2.4 � 1.2 0.2 � 1.2
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each model under-predicting GPP at some sites and over-
predicting at others, but the spread in simulated GPP among
models at US-Me2 was typical of all sites.
[29] Bias decreased as the ratio of simulated to observed

LUE approached one (Figure 6). We calculated the observed
and simulated LUE as the regression of GPP versus short-
wave radiation flux with a Y-intercept forced to be zero.
Both the observed and simulated light response curves were
noisy, so we forced the Y-intercept to be zero to guarantee
that GPP was zero for zero incident shortwave light. The
LUE ratio was simulated LUE divided by observed LUE,
with a ratio less than one indicating the model under-
estimated GPP (negative bias). The LUE ratios formed a
diagonal line with near zero bias when the LUE ratio was
one. Plots of LUE ratios for subgroups defined by the model
structural characteristics in Table 2, individual models, and
individual sites all showed the same pattern as in Figure 6:
when the LUE ratio was one, the bias was zero.
[30] To improve performance in simulated GPP, model

developers should focus first on those parameters that
determine the simulated LUE. The LUE is determined by the
leaf-to-canopy scaling and a small number of parameters that
define the maximum potential GPP. For the MODIS algo-
rithm described above, for example, the LUE is determined
by ɛmax, so a better value of ɛmax will improve performance.
For other models, Vcmax (the unstressed Rubisco carboxyla-
tion rate), a (quantum yield), or Jmax (the maximum electron
transport rate) determine LUE. These maximum potential
GPP parameters are either held constant for all sites, like in
ECOSYS [Grant et al., 2009] or vary with biome or plant
functional type (PFT), like SiB3 [Baker et al., 2008]. Models
account for changing environmental conditions by multi-
plying the maximum potential GPP by temperature, mois-
ture, and humidity scaling factors that represent the ratio of
actual to peak GPP.
[31] How a model scales from a single leaf to an entire

canopy also influences the simulated LUE. The maximum
potential GPP parameters typically represent peak or optimal
values for a single leaf at the canopy top. The leaf-to-canopy
scaling factor represents the ratio of GPP for a single leaf to
GPP for the entire canopy. A model assumes the distribution
of leaf nitrogen and light levels within the canopy, and

integrates from canopy top to bottom to calculate a leaf-to-
canopy scaling factor. SiB and BEPS, for example, both
assume the distribution of light is governed by Beer’s law
[Sellers et al., 1996; Sprintsin et al., 2012]. Unfortunately,
the leaf-to-canopy scaling and the maximum potential GPP
parameters are coupled and can compensate, indicating that
the model has to get both right to get the correct GPP.
[32] Our results indicate that better LUE parameter values

and leaf-to-canopy scaling will improve overall performance
in simulated GPP, although we could not delve into indi-
vidual models to identify the correct parameters and the best
values. The number, nomenclature, definition, and units of
the various parameters that define LUE differ widely among
models. Model developers can use data assimilation of, for
example, eddy covariance data to estimate parameter values
[Hanson et al., 2004]. The LOTEC model illustrates the
potential to improve performance by estimating the maxi-
mum potential GPP parameters with data assimilation.
However, due to differences among models, parameter
values estimated for one model may not work in another.
The TRY database of plant characteristics [Kattge et al.,
2011] includes observations of Vcmax, Jmax, and a com-
piled from many studies that could potentially minimize
these inter-model differences. The leaf-to-canopy scaling
depends on the assumed variation of light levels and
parameter values within the canopy, which may require
additional field observations. For example, measuring leaf-
level nitrogen content, which determines Vcmax, is relatively
easy, but what models need is canopy-level nitrogen content,
which, unfortunately, is much more difficult to measure.
Changes to how models treat the distribution of light within
the canopy could improve the leaf-to-canopy scaling, such
as better canopy radiative transfer models coupled to the
GPP models or separating sunlit and shaded leaves, but
developers have to demonstrate that such changes improve
GPP performance. The observed LUE shows strong vari-
ability within PFT classes and the biases may result from the
fact that the models assume constant parameter values for
each PFT. Although spatially explicit maps of LUE param-
eter values currently do not exist, remote sensing of canopy
nitrogen shows promise [Ollinger et al., 2008]. However,
nitrogen in Rubisco is the variable of interest and relating
total nitrogen to a canopy Vcmax in a way that will work for
all models will require new theoretical development.

Figure 5. The light response curve for US-Me2 showing
simulated and observed GPP as a function of downwelling
shortwave radiation. The gray bar indicates uncertainty in
the observed GPP response to shortwave radiation.

Figure 6. GPP bias as a function of the ratio of simulated
to observed LUE for summer (June–July–August) for all
627 simulations.
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3.4. Humidity Response

[33] We found that difficulties in simulating GPP under
dry conditions can explain why models performed worse
at grassland and savanna sites than forest sites. Figure 7
shows normalized humidity response curves for the US-Var
grassland and US-Ha1 deciduous broadleaf forest sites. We
normalized the humidity response curves to emphasize the
shape of the curves, which were typical of all sites: low GPP
under dry conditions, an optimal GPP at 70%–80% relative
humidity, and a decrease for higher humidity associated with
colder temperatures. Models calculate lower GPP under
stressed conditions using scaling factors that represent the
ratio of stressed to optimal GPP. The scaling factors deter-
mine the shape of the response curves in Figure 7, but the
simulated LUE determines the GPP magnitude. Decreased
GPP at low relative humidity can be caused either by
humidity stress reducing stomatal conductance, high tem-
perature stress, or drier soils with reduced water availability
(drought stress). Half of the models overpredicted GPP at
both sites under low humidity conditions (relative humidity
less than 60%). Such dry conditions occurred only 23% of
the time at US-Ha1, but occurred 46% of the time at US-Var,
which has dry summers with near zero growth. Even though
half the models did not capture GPP under dry conditions at
both sites, the effect on performance was much stronger at
US-Var because the dry periods occurred twice as often than
at US-Ha1. This explains the poor performance at the ever-
green needleleaf forest sites CA-SJ1 and CA-SJ2, where the

dry periods occurred nearly as often as US-Var. Essentially,
the more often the dry periods occurred, the worse the
performance.
[34] The NEE partitioning algorithm can partly explain the

model-data mismatch at drier sites. The algorithm was not
designed for drier sites where soil moisture has greater
influence on Reco than temperature. Consequently the algo-
rithm either did not converge or produced negative GPP,
which we changed to zero as described above. However,
filtering out these zero GPP values did not change model
performance at these sites. The partitioning algorithm could
be improved to account for moisture, but the models also
need to improve simulated GPP under dry conditions.
[35] Determining exactly how to improve simulated GPP

under dry conditions was not possible in our analysis
because the effects of drought and humidity stress are
intertwined. Periods of low rainfall simultaneously reduce
both soil moisture and atmospheric humidity, making the
associated effects of drought and humidity stress on GPP
difficult to separate. Models that account for drought stress
typically calculate a GPP scaling factor using either input
precipitation or plant water availability from simulated soil
moisture [Schaefer et al., 2008; Potter et al., 1993]. Models
that account for humidity stress either calculate a GPP
scaling factor based on humidity or directly reduce stomatal
conductance [Heinsch et al., 2003; Baker et al., 2008]. Thus,
overpredicting GPP under dry conditions could result from
problems with the simulated soil moisture, the calculation of
plant water availability, or the representation of humidity
stress.
[36] To complicate matters, a model’s representation of

humidity stress can compensate for poor representation of
drought stress, and vice versa. For example, the MODIS
algorithm above does not account for drought stress at all,
but the humidity response was strengthened to compensate
[Heinsch et al., 2003], such that MODIS reproduced the
shape (but not magnitude) of the observed humidity
response curves. Determining whether models should
improve simulated soil moisture, drought stress, or humidity
stress requires a simultaneous analysis of simulated and
observed soil moisture, latent heat flux, and GPP, which is
beyond the scope of our analysis.

3.5. Temperature Response

[37] Figure 8 shows a typical temperature response func-
tion for the evergreen needleleaf forest site, US-Ho1, which
had simulations from 23 models and a marginal overall
performance (X2 = 1.8). US-Ho1 was the site closest to the
“average” temperature response function for all sites. The
observed optimal temperature for GPP was 19�C and aver-
age across all sites was 20 � 5�C. Differences between
simulated and observed GPP near the peak or optimal tem-
perature reflected differences in simulated and observed
LUE in summer, as described above. For US-Ho1, GPP
shut down for daily average temperatures below �6.5�C and
the average low temperature cutoff across all sites was �6 �
3�C. Cutoff temperatures below zero reflected conditions in
spring and fall where daytime temperatures were above
freezing to allow photosynthesis while the nighttime tem-
peratures were below freezing, resulting in a negative
daily average air temperature. The average winter season at
US-Ho1, defined as the time with daily average temperature

Figure 7. Normalized humidity response curves for
(a) US-Var and (b) US-Ha1 showing simulated and observed
GPP as a function of relative humidity. The gray bar
indicates uncertainty in the observed GPP response. All
response curves are normalized such that the maximum
value is 1.
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below 0�C, was 92 days and the average for all sites was 75�
47 days.
[38] Temperature was the dominant control of the seasonal

variation of GPP at most sites. The simulated start of GPP in
spring and the stop of GPP in fall is a representation of
phenology. Models primarily use temperature to control
phenology, but how this is done varies widely. Some models
using growing degree days to predict bud burst in spring
while others simply shut down GPP below a lower temper-
ature limit. How models simulate GPP at temperatures near
0�C determined the start and stop of the simulated growing
season.
[39] The models tended to overpredict GPP at low tem-

peratures: half of all simulations predicted more than double
the observed GPP at temperatures below 0�C. The obser-
vations indicated that no more than 0.8 � 0.6% of total
annual GPP occurred in winter, but the models simulated
anywhere from 0% to 15% of the annual GPP in winter. Part
of this may have resulted from the partitioning algorithm
itself, which set GPP to zero when the soil and the air tem-
perature are below zero. However, observations indicate this
is realistic since the recovery of photosynthesis after freezing
temperatures can be delayed for weeks with repeated expo-
sure to frost and cold and frozen soils limit root uptake of
water and stomatal conductance [Strand and Öquist, 1985;
Waring and Winner, 1996]. Overpredicting GPP under cold
conditions explained the positive biases in winter, spring,
and fall, which in turn resulted in uptake starting earlier than
observed in spring and later than observed in fall.
[40] Better low temperature inhibition functions will

improve simulated GPP in winter, spring, and fall and
improve simulated phenology. Most models use an expo-
nential or “Q10” response function to represent the effects of
low temperature on GPP:

ST ¼ Q10ð Þ
T�Tref

10 ; ð4Þ

where ST is a temperature scaling factor applied to GPP, T is
temperature (�C), and Tref is a reference temperature (�C). All
models based on the Farquhar et al. [1980] EK model, for
example, use this type of formulation. Most models have a

second exponential function with separateQ10 and Tref values
to reflect reduced GPP for high temperatures. Combined, the
low and high temperature functions produce an optimal
temperature for simulated GPP. The combined temperature
scaling factor represents the ratio of actual to optimal GPP
and varies between zero and one. The simulated LUE deter-
mined GPP magnitude under optimal conditions in mid-
summer, but the temperature scaling determined the seasonal
cycle in simulated GPP and simulated phenology. The exact
values of Q10 and Tref vary widely between models and we
made no attempt to determine which values are correct.
[41] The positive bias in winter, spring, and fall resulted

from the fact that the Q10 function alone will never reach zero
no matter how cold the temperature, so those models using
this type of formulation without a frost inhibition function
over predicted GPP at low temperatures. The frost inhibition
function is an additional scaling factor that shuts down GPP
below a specified threshold temperature [Kucharik and
Twine, 2007; Li et al., 2010]. In addition, some models also
include a GPP recovery period after the frost event [Baker
et al., 2008; Schaefer et al., 2008]. Data on photosynthesis
at low temperatures are relatively scarce, so developing a
low-temperature inhibition function to incorporate the effects
of nutrient and water availability in partially frozen soils may
require more observations. Improving the modeled low
temperature inhibition function will improve simulated GPP
in spring and fall, and thus simulated phenology.

4. Conclusions

[42] None of the models in this study match estimated
GPP within the range of uncertainty of observed fluxes. On
average, the models achieved good performance for only
12% of the simulations. Two models achieved overall mar-
ginal performance, matching estimated GPP within roughly
two times the uncertainty. Our first hypothesis proved false:
we found no statistically significant differences in perfor-
mance due to model structure, mainly due to the large spread
in performance among models and across sites. The models
in our study reproduced the observed seasonal pattern with
little or no GPP in winter and peak GPP in summer, but did
not capture the observed GPP magnitude. We found, on
average, that models overestimated GPP in spring and fall
and underestimated GPP in summer. Our second hypothesis
proved true: model performance depended on how models
represented the GPP response to changing environmental
conditions. We identified three areas of model improvement:
simulated LUE, low temperature response function, and
GPP response under dry conditions.
[43] The poor overall model performance resulted pri-

marily from inadequate representation of observed LUE.
Simulated LUE is controlled by the leaf-to-canopy scaling
strategy and a small set of model parameters that define the
maximum potential GPP, such as ɛmax (light use efficiency),
Vcmax (unstressed Rubisco catalytic capacity) or Jmax (the
maximum electron transport rate). The temperature, humid-
ity, and drought scaling factors determined temporal vari-
ability in simulated GPP, but the LUE parameters
determined the magnitude of simulated GPP. To improve
simulated GPP, model developers should focus first on
improving the leaf-to-canopy scaling and the values of those
model parameters that control the LUE.

Figure 8. The temperature response curve for US-Ho1
showing simulated and observed GPP as a function of daily
mean air temperature. US-Ho1 is the site closest to the aver-
age response for all sites. The gray bar indicates uncertainty
in the observed GPP response to air temperature.
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[44] Many models overpredicted GPP under dry condi-
tions, explaining why, on average, models performed worse
at grassland and savanna sites than at forest sites. The
importance of this to model performance increases at sites
where drier conditions occur more frequently. Since dry
conditions occur more frequently at grassland and savanna
sites than at forest sites, models tended to perform worse at
grassland and savanna sites compared to forest sites.
Improving how models simulate soil moisture, drought
stress, or humidity stress can improve simulated GPP under
dry conditions.
[45] Many models overpredicted GPP under cold condi-

tions, partly explaining the positive bias in simulated GPP in
winter, spring, and fall. The estimated GPP completely shut
down for daily average temperatures less than �6�C, but the
Q10 formulation used by many models did not shut down
GPP under cold or frozen conditions. The simulated GPP
started too early in spring and persisted too late in fall,
resulting in a positive bias and phasing errors in phenology.
Using an ensemble mean can cancel out errors in phenology,
but does not cancel out bias. Improving or imposing a low
temperature inhibition function in the GPP model will
resolve the problem.
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