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Abstract. Feature selection techniques are often used to reduce data
dimensionality, increase classification performance, and gain insight into
the processes that generated the data. In this paper, we describe an
iterative procedure of feature selection and feature construction steps,
improving the classification of acceptor splice sites, an important subtask
of gene prediction.
We show that acceptor prediction can benefit from feature selection,
and describe how feature selection techniques can be used to gain new
insights in the classification of acceptor sites. This is illustrated by the
identification of a new, biologically motivated feature: the AG-scanning
feature.
The results described in this paper contribute both to the domain of gene
prediction, and to research in feature selection techniques, describing a
new wrapper based feature weighting method that aids in knowledge
discovery when dealing with complex datasets.

1 Introduction

During the past decades, feature selection techniques have increasingly gained
importance, allowing researchers to cope with the massive amounts of data that
have emerged in domains like image processing, text classification and bioinfor-
matics. Within the framework of dimensionality reduction techniques, feature
selection techniques are referred to as those techniques that select a (minimal)
subset of features with “best” classification performance. In that respect, they
differ from other reduction techniques like projection and compression, as they
do not transform the original input features, but merely select a subset of them.
The reduction of data dimensionality has a number of advantages: attaining
good or even better classification performance with a restricted subset of fea-
tures, faster and more cost-effective predictors, and the ability to get a better
insight in the processes described by the data. An overview of feature selection
techniques can be found in [11] and [7].

In many classification problems in bioinformatics, the biological processes
that are modelled are far from being completely understood. Therefore, these
classification models are mostly provided with a plethora of features, hoping
that the truly important features are included. As a consequence, most of the



features will be irrelevant to the classification task, and will act as noise. This
can degrade the performance of a classifier, and obfuscates the interpretation by
a human expert, motivating the use of feature selection techniques for knowledge
discovery.

An important machine learning task in bioinformatics is the annotation of
DNA sequences: given a genome sequence and a set of example gene structures,
the goal is to predict all genes on the genome [18]. An important subtask within
gene prediction is the correct identification of boundaries between coding re-
gions (exons) and intervening, non coding regions (introns). These border sites
are termed splice sites: the transition from exon to intron is termed the donor

splice site, and the transition from intron to exon is termed the acceptor splice
site. In higher organisms, the majority of the donor splice sites are character-
ized by a GT subsequence occurring in the intron part, while the acceptor splice
sites have an AG subsequence in the intron part. As a result, each splice site
prediction task (donor prediction, acceptor prediction) can be formally stated as
a two-class classification task: given a GT or AG subsequence, predict whether
it is a true donor/acceptor splice site or not. In this paper we will focus on the
prediction of acceptor splice sites in the plant model species Arabidopsis thaliana.

The paper is organised as follows. We start by introducing the different clas-
sification algorithms and feature selection techniques that were used in the ex-
periments. Then we discuss the application of these techniques to the acceptor
prediction task, describing an iterative procedure of feature selection and fea-
ture construction steps. We conclude by summarizing the new ideas that emerged
from this work, and some suggestions for future work.

2 Methods

It is generally known that there is no such thing as the best classification algo-
rithm. Likewise, there is no best feature selection method, and a comparative
evaluation of classification models and feature selection techniques should thus
be conducted to find out which combination performs best on the dataset at
hand. In this section we discuss the classifiers, feature selection algorithms, and
combinations of both techniques that were evaluated in our experiments, fol-
lowed by a description of the datasets and the implementation.

2.1 Classification algorithms

For our experiments, we chose two distinct types of classifiers that are widely
used in machine learning research : a Bayesian classifier and a linear discrimi-
nant function. For the Bayesian classifier, the Naive Bayes method (NBM) was
chosen because of its ability to cope with high-dimensional feature spaces and
its robustness [5]. For the linear discriminant function, the linear Support Vec-
tor Machine (SVM) [3] was chosen because of its good performance on a wide
range of classification tasks, and its ability to deal with high-dimensional feature
spaces and large datasets.



2.2 Feature selection techniques

Techniques for feature selection are traditionally divided into two classes: fil-
ter approaches and wrapper approaches [14]. Filter approaches usually compute
a feature relevance score such as the feature-class entropy, and remove low-
scoring features. As such, these methods only look at the intrinsic properties
of the dataset, providing a mechanism that is independent of the classification
algorithm to be used afterwards. In the wrapper approach, various subsets of
features are generated, and evaluated using a specific classification model. A
heuristic search through the space of all subsets is then conducted, using the
classification performance of the model as a guidance to find promising subsets.
In addition to filter and wrapper approaches, a third class of feature selection
methods can be distinguished: embedded feature selection techniques [2]. In em-
bedded methods, the feature selection mechanism is built into the classification
model, making direct use of the parameters of the induction model to include
or reject features. In our experiments, a representative sample of each type of
feature selection techniques was chosen, providing the basis for a comparative
evaluation.

Filter techniques In general, filter techniques compute a feature relevance
score in a single pass over the data, requiring a computational cost that is linear
in the number of features. However, this comes at the expense of ignoring feature
dependencies, which may result in suboptimal feature sets. To include feature
dependencies, more complex filter approaches have been suggested such as the
Markov blanket filter [15], or correlation based feature selection [8, 26].

In our work, we used the Markov blanket filter, introduced by Koller and
Sahami, as an example of an advanced filter method that deals well with high-
dimensional feature spaces [15]. This algorithm eliminates features whose in-
formation content is subsumed by some number of the remaining features. An
approximate algorithm then solves the task of identifying the Markov blanket
for each feature, and - starting from the full feature set - iteratively removes the
feature with the “best” Markov blanket. The result of this algorithm is a rank-
ing of all features from least relevant to most relevant. This ranking can then
be used by any classification algorithm in a subsequent step. The parameter k

of the algorithm determines the size of the Markov blanket, and exponentially
increases running time as k gets larger. Typical values for K are {0,1,2}. In our
experiments we choose k = 1.

Wrapper techniques Wrapper based methods combine a specific classifica-
tion model with a strategy to search the space of all feature subsets. Commonly
used methods are sequential forward or backward selection [13], and stochastic
iterative sampling methods like genetic algorithms (GA) or estimation of distri-
bution algorithms (EDA) [16, 10]. In our experiments we used an extension of
the Univariate Marginal Distribution Algorithm (UMDA, [20]), the most simple
EDA. This approach is very similar to the compact GA [9] or to a GA with



uniform crossover. However, instead of using the single best feature subset that
results from an iterative process like a GA or EDA, we used the frequencies
with which the features are present in the final distribution of the UMDA as
feature relevance scores. This gives a more dynamic view of the feature selection
process, as it allows to derive feature weights. More details about this approach
are discussed in [23].

Embedded techniques Two embedded feature selection techniques were used
in the experiments: a weighted version of the Naive Bayes classifier, to which
we will refer as WNBM, and recursive feature elimination using the weights of
a linear SVM, further referred to as WLSVM.
The WNBM technique is based on the observation that the Naive Bayes method
can be reformulated as a linear classifier when the classification task involves
two classes, and all features are binary [5]. In this case, the feature weights can
be calculated as

wi = ln
pi(1 − pi)

qi(1 − qi)
∀ i = 1, · · · , n

where pi = Pr(xi = 1|c1) and qi = Pr(xi = 1|c2) are the class conditional
probabilities of feature xi being 1. These feature weights can then be sorted,
providing a feature ranking. In principle, any classification task can be reduced
to a set of two-class classification tasks, and arbitrary features can be converted
to binary ones by discretization and sparse vector encoding.
In a similar fashion, the weights wi of the decision boundary of a linear SVM can
be used as feature weights to derive a feature ranking. However, better results
can be obtained by recursively discarding one feature at the time, and retraining
the SVM on the remaining features, as described in [6]. This is the approach that
we adopted. A method, equivalent to this recursive feature elimination (RFE)
approach, for feature selection with SVM is described in [24].

2.3 Data sets and implementation

The Arabidopsis thaliana data set was generated from sequences that were
retrieved from the EMBL database, and only experimentally validated genes
(i.e. no genes that resulted from a prediction) were used to build the dataset.
Redundant genes were excluded, and splice site datasets were constructed from
1495 genes. More details on how these datasets were generated can be found in
[4].

Because in real sequences, the number of true acceptor sites is largely out-
numbered by the number of false acceptor sites, we chose to enforce a class

imbalance in our datasets for feature selection. We constructed a dataset of 6000
positive instances and 36,000 negative instances. To obtain stable solutions for
feature selection, a 10-fold cross-validation of this dataset was used to test all
feature selection methods. This was done by doing 5 replications of a two-fold
cross-validation, maintaining the same class imbalance of 1 positive versus 6
negative instances in every partition. For the EDA-based wrapper approach, the



internal evaluation of classification performance was obtained by doing a 5-fold
cross-validation on the training set.

The methods for feature selection were all implemented in C++, making use

of the SVMlight implementation for Support Vector Machines [12]. The EDA-
based wrapper method is a suitable candidate for parallellization, providing a
linear speedup of the selection process. This was done using the MPI libraries,
available at http://www-unix.mcs.anl.gov/mpi/mpich. However, due to other
processes running on our servers, timing comparisons of the different algorithms
fall outside the scope of this article.

3 An iterative feature selection approach

As already discussed in the introduction, many biological processes are still far
from being understood. This greatly influences the design of the features that
are to be used for a classification model that tries to model this process. In this
section we describe an iterative feature construction and feature selection ap-
proach, resulting in increasingly more complex features and datasets, the design
of which is guided by the feature selection techniques.

We start from the knowledge that the discrimination between true and false
acceptor sites is determined by the part of the sequence where the site is located,
more precisely the local context of the acceptor site. Therefore, the nucleotides
A,T,C and G occurring on either side of the acceptor constitute a basic feature
set.

3.1 A simple dataset: position dependent nucleotides

A local context of 100 nucleotides (50 to the left, 50 to the right) around the
acceptor sites was chosen, having at each position one of the four nucleotides
{A,T,C,G}. These features were extracted for the positive and negative in-
stances, resulting in a dataset of 100 4-valued features, which were converted into
binary format using sparse vector encoding (A=1000,T=0100,C=0010,G=0001).
This results in a dataset described by 400 binary features. For this dataset, the
following combinations of classifiers and feature selection algorithms were evalu-
ated: the Koller-Sahami filter method (further abbreviated as KS) for both NBM
and linear SVM (LSVM), the EDA-based wrapper approach (EDA-R) for both
NBM and LSVM, and both the embedded methods WNBM and WLSVM. For
EDA-R the distribution size and the number of iterations were tuned to 500 and
20 respectively. For the SVM, the C-parameter was tuned to 0.05, using the full
feature set.

A comparative evaluation of the results of our experiments is shown in Table 1.
The classifier/selection approach combinations are tabulated row wise, and the
results on different feature subsets are shown in the columns. Apart from the re-
sults using the full feature set (100%), the results using only 50%, 25%, 10% and
5% of the features are shown. The numbers represent the average F-measure [19]



Table 1. F test comparisons for the dataset of 400 features.

Method 100% 50% 25% 10% 5%

KS NBM 80.87 ± 0.31 80.85 ± 0.37= 78.77 ± 0.45 74.67 ± 0.79 72.14 ± 0.70
EDA-R NBM 80.87 ± 0.31 82.32 ± 0.32∗ 80.65 ± 0.37= 76.70 ± 0.73 69.49 ± 2.46
WNBM 80.87 ± 0.31 80.80 ± 0.42= 76.84 ± 0.41 67.52 ± 0.52 60.39 ± 1.73

KS LSVM 84.45 ± 0.30 82.75 ± 0.28 80.66 ± 0.49 75.05 ± 0.42 71.00 ± 0.49
EDA-R LSVM 84.45 ± 0.30 84.17 ± 0.38= 81.62 ± 0.46 76.32 ± 0.67 68.73 ± 2.09
WLSVM 84.45 ± 0.30 84.00 ± 0.40 81.87 ± 0.39 76.73 ± 0.43 71.23 ± 0.40

over the 10 cross-validation folds, and the standard deviation. For each of the
reduced feature sets, the result was compared to the results on the full feature
set, using the combined 5x2 cv F test, introduced in [1]. Statistically significant
improvements at confidence intervals of 0.9 and 0.99 were denoted respectively
by ‡ and ∗, statistically equivalent results compared to the full feature set were
denoted by = and statistically worse results were not marked.

On a global scale, the only method that achieves better results is NBM com-
bined with EDA-R feature selection, using only half of the features. For NBM,
the wrapper method thus seems to produce the best results. The filter method
KS produces the second best results, and WNBM performs worst. For the linear
SVM, no significant gain in classification performance could be obtained. This
can be explained by the fact that the SVM already implicitly uses a feature
weighting scheme. For the LSVM, the embedded method WLSVM achieves the
best results overall, followed by EDA-R and KS.

For knowledge discovery, the only method in our experiments that is able to
derive feature weights is the EDA-R method. Using the results of the EDA-R
LSVM combination, we can thus use the derived weights to visualize the rele-
vance of the features. This can be done by color coding the normalized feature
weights, as is shown in Figure 1. Part a in this figure shows the results of this color
coding, where a gradient ranging from blue (unimportant) to red (important)
shows the feature weights. For each of the nucleotides (rows), the nucleotide po-
sitions (columns) are shown for both parts of the local context, the acceptor site
being in the middle. Several patterns can be observed. The nucleotides bordering
the acceptor site are of primary importance, representing binding information.
Furthermore the nucleotides T in the left part of the context are highly impor-
tant, representing the well-known pyrimidine-stretch (an excess of nucleotides T
and C). A last pattern that can be observed is the three-base periodicity in the
right part of the context, especially for nucleotides T and G, capturing the fact
that this part of the sequence is the coding part (exon), and that nucleotides in
this part are organized in triplets.

3.2 Adding position invariant features

Position dependent features are not the best solutions when trying to capture
information like coding potential and composition in the sequence. Therefore, a



Table 2. F test comparisons for the dataset of 528 features.

Method 100% 50% 25% 10% 5%

KS NBM 78.21 ± 0.50 78.40 ± 0.50= 77.96 ± 0.64= 77.26 ± 0.46 74.21 ± 0.58
EDA-R NBM 78.21 ± 0.50 84.48 ± 0.30∗ 83.52 ± 0.36∗ 80.79 ± 0.57‡ 75.93 ± 0.87
WNBM 78.21 ± 0.50 77.17 ± 0.51 77.85 ± 0.37= 74.06 ± 0.32 67.96 ± 0.68

KS LSVM 87.52 ± 0.49 87.15 ± 0.32 86.03 ± 0.41 82.05 ± 0.46 77.03 ± 0.80
EDA-R LSVM 87.52 ± 0.49 86.72 ± 0.54 85.64 ± 0.59 82.34 ± 0.43 77.02 ± 1.10
WLSVM 87.52 ± 0.49 87.20 ± 0.49 86.40 ± 0.50 84.35 ± 0.48 78.34 ± 0.92

second dataset was constructed as an extension of the dataset in the previous
experiment. In addition to the position dependent nucleotide features, we also
added a number of position invariant features. These features capture the oc-
currence of 3-mers (words of length 3) in the sequence flanking the acceptor. An
example of such a feature is the occurrence of the word “GAG” in the left part
of the context. This results in another 128 binary features (64 for each part of
the context), a 1 decoding the presence, a 0 the absence of the specific word in
the context. Together with the position dependent features, this yields a dataset
consisting of 528 binary features. The same parameters for EDA-R and SVM
were used as with the previous dataset.

The results of the feature selection experiments on this dataset are shown in
Table 2. Comparing the results for NBM to the previous dataset, the classi-
fication performance on the full feature set is lower than on the first dataset.
However, using feature selection, better classification results than on the first
dataset can be obtained. Again, the best results were obtained with the EDA-
R wrapper method. Using only 10% of the features, this method still obtains
significantly better results than using the full feature set. The KS filter method
performs second best, WNBM performs worst. For the SVM, a significant gain of
3% in classification performance was obtained by adding the position invariant
features. Similar to the previous dataset, the performance could not be improved
using feature selection methods, and the embedded method WLSVM obtains the
best results.

The visualization of the feature weights, obtained by the EDA-R LSVM ap-
proach, is shown in part b of Figure 1. While the same patterns as in the case of
dataset 1 can be observed, it is clear that some information is translated from
position dependent features into position invariant features. An example of this
is the pyrimidine stretch, which is somewhat shortened compared to the results
on the previous dataset, together with the fact that T-rich 3-mers in the left
part of the context show up as very important. Another example is the fact that
the 3-base periodicity on the coding side is less pronounced, yet some 3-mers are
shown to be highly relevant. The results from the feature weighting, combined
with the improved classification results explain that indeed position invariant
features contribute to the prediction of acceptor sites.



Table 3. F test comparisons for the dataset of 2096 features.

Method 100% 50% 25% 10% 5%

KS NBM 79.21 ± 0.33 79.46 ± 0.30= 79.08 ± 0.39= 79.07 ± 0.57= 78.03 ± 0.97=

EDA-R NBM 79.21 ± 0.33 85.29 ± 0.36∗ 83.81 ± 0.69∗ 79.90 ± 0.62= 76.51 ± 0.99

WNBM 79.21 ± 0.33 79.90 ± 0.44‡ 79.52 ± 0.34= 77.36 ± 0.50 75.61 ± 0.58

KS LSVM 88.24 ± 0.51 87.56 ± 0.41= 85.62 ± 0.64 83.10 ± 0.49 79.88 ± 1.06
EDA-R LSVM 88.24 ± 0.51 87.90 ± 0.36 86.66 ± 0.43 84.07 ± 0.74 81.73 ± 0.56
WLSVM 88.24 ± 0.51 88.22 ± 0.44= 88.08 ± 0.35= 87.10 ± 0.32 85.86 ±0.34

3.3 Adding more complex features: dependencies between adjacent

nucleotides

It is known that correlations exist between nucleotides in the vicinity of splice
sites. To detect these dependencies, higher-order (i.e. non-linear) classification
methods can be used, like polynomial SVMs. However, these methods have the
disadvantage of being quite slow to train, rendering the feature selection process
more computationally intensive. Here, we describe another approach to deal with
nucleotide dependencies, having the advantage that linear (and thus fast) classi-
fication models can be used. We do this by constructing more complex features,
capturing the nucleotide dependencies at the feature level. Another important
advantage is that the combination with feature selection techniques allows us to
select those dependencies that are of primary importance, and visualize them.

To this end, we created complex features that capture dependencies between
two adjacent nucleotides. These features are represented as position dependent
2-mers (words of length 2). At each position i of the local context, these features
represent the word appearing at position i and i + 1. This results in an a set
of 1568 binary features (49x16x2). Together with the position dependent nu-
cleotides and the position invariant features, this results in a dataset described
by 2096 features. For this dataset, the C-parameter of the SVM was tuned to
0.005.

The results of the feature selection experiments for this dataset are shown
in part c of Figure 1. Compared to the results on the previous datasets, similar
trends can be observed. The NBM classifier performs worse than dataset 1 on
the full feature set, but outperforms the results on dataset 1 and 2, when EDA-R
is used with only 50% of the features. For the SVM, an increase in classification
performance is noted, compared to dataset 1 and 2. Again, the result on the full
feature set cannot be improved using feature selection methods.

Visualizing the weights derived from the EDA-R LSVM combination (Figure 1,
part c) reveals some remarkable, new patterns. In addition to the previous pat-
terns, three new patterns, related to the inclusion of dependencies between ad-
jacent nucleotides, can be observed. Firstly, it is observed that nucleotide de-
pendencies immediately neighbouring the acceptor site are of great importance.
Furthermore two patterns, related to the 2-mers AG and TG emerge in the left
part of the context.



It should be noted that the only result that can be drawn from this visualiza-
tion is the fact that these are important features for classification. The method
does not tell if e.g. AG occurs more or less at these positions in true acceptor
sites than in false sites. In order to reveal this information, inspection of the
classification model or the datasets is needed. In the case of the AG-feature,
an analysis of our dataset shows that there is a strong selection against AG
dinucleotides in the left part of the context. This can be explained by looking
into more detail to the biological process involved in the recognition of acceptor
sites. In this process, a protein binds to a part of the sequence to the left of the
acceptor (the so-called branch point) and then scans the sequence until an AG
is encountered (usually the first AG encountered is the splice site). As a result,
our feature selection method discovers this “AG-scanning” as very important in
the distinction between true and false acceptors, as false acceptors will usually
have more AG dinucleotides in the left part of the sequence. The second pattern
(TG) was identified as being more abundant in true acceptor sites than in false
sites, and is probably related to the T-abundance of the pyrimidine stretch.

Comparing the results of all feature selection combinations on the three dataset
reveals some general trends for these acceptor datasets. For the NBM classifier,
classification performance could be significantly improved using feature selection,
especially using the EDA-R wrapper method, which achieves the best results
when half of the features have been eliminated. Using feature selection on the
most complex dataset achieves an F-measure of 85%, which is about 5% better
than using all features of the simplest dataset. Overall, the EDA-R method gives
the best results for NBM, followed by the KS filter method, and the embedded
method WNBM.

For the linear SVM, classification performance could not be improved upon
using feature selection. At least equivalent results could be obtained using fea-
ture selection methods. However, we showed the potential of feature selection
techniques as a useful tool to gain more insight into the underlying biological
process, using the combination of EDA-R with SVM. The iterative approach
of feature selection and feature construction shows that also the classification
performance of SVM could be improved. On the most complex dataset, SVM
achieves an F-measure of about 88%, an increase by 3% compared to using the
most simple dataset. Additionally, the complex dataset allowed us to distinguish
a new feature: AG-scanning.

4 Related work

The use of feature selection techniques for splice site prediction was first de-
scribed in [4]. More recent work on splice sites includes work on maximum en-
tropy modelling [25], where the authors only consider a very short local context,
and the work of Zhang et al. [27] where SVMs are used to model human splice
sites. Related work on using EDAs for feature selection can be found in [10,



22], and some recent developments to use feature selection in combination with
SVMs are described in [24]

5 Conclusions and future work

In this paper, we described an iterative feature selection approach for the clas-
sification of acceptor splice sites, an important problem in the context of gene
prediction. A comparative evaluation of various feature selection and classifica-
tion algorithms was performed, demonstrating the usefulness of feature selection
techniques for this problem. Furthermore, we proposed a new feature weighting
scheme (derived from the EDA-R method) that deals well with datasets de-
scribed by a large number of features. We showed how this technique can be
used to guide the feature construction process, arriving at more complex feature
sets with better classification performance. Using these feature weights, and the
design of complex features that capture dependencies at the feature level, we
demonstrated how important nucleotide correlations could be visualised. Such a
visualisation facilitates the discovery of knowledge for human experts, and led to
the discovery of a new, biologically motivated feature: the AG-scanning feature.

For the best-scoring method of our experiments, the linear SVM, preliminary ex-
periments with a more complex version of the AG-scanning feature have been de-
signed, incorporating the predictor in a complete gene prediction system. These
experiments show promising results with respect to state-of-the-art splice site
predictors, like GeneSplicer [21]. Another line of future research is motivated by
the use of linear classifiers in combination with more complex features, captur-
ing higher order, or non-adjacent nucleotide dependencies at the feature level, or
taking into account secondary structure information. Combining such complex
feature sets with linear classifiers and feature selection techniques can be useful
to learn and visualise more complex dependencies.
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Fig. 1. Visualization of the feature weights for datasets with increasing complexity,
obtained by the EDA-R LSVM approach: a simple dataset of 400 binary features
(part a), an extended dataset also including position invariant features (part b), and a
complex dataset also capturing adjacent feature dependencies (part c).


