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Abstract 

A neurobiological account of cognitive vulnerability for recurrent depression is presented based on 

recent developments of resting state neural networks. We propose that alterations in the interplay 

between task positive (TP) and task negative (TN) elements of the Default Mode Network (DMN) 

act as a neurobiological risk factor for recurrent depression mediated by cognitive mechanisms. In 

the framework, depression is characterized by an imbalance between TN-TP components leading to 

an overpowering of TP by TN activity. The TN-TP imbalance is associated with a dysfunctional 

internally-focused cognitive style as well as a failure to attenuate TN activity in the transition from 

rest to task. Thus we propose the TN-TP imbalance as overarching neural mechanism involved in 

crucial cognitive risk factors for recurrent depression, namely rumination, impaired attentional 

control, and cognitive reactivity. During remission the TN-TP imbalance persists predisposing to 

vulnerability of recurrent depression. Empirical data to support this model is reviewed. Finally, we 

specify how this framework can guide future research efforts. 

 

Keywords: depression, default mode network, vulnerability, rumination, attention, cognitive 

reactivity 
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1. Introduction 

Depression is a severe psychiatric illness that is associated with high levels of personal 

suffering and with substantial costs to society (Gustavsson et al., 2011). Major depression has a 

life-time prevalence of 15-30% (Kessler et al., 2003). Pharmacological and psychological 

interventions show efficacy in the short term. However, there is a pressing need for improved long 

term effectiveness of treatments. This is especially true with regard to the prevention of 

recurrence. Numerous studies indicate that remitted patients have a 70% risk of developing new 

depressive episodes. Moreover, the risk of new episodes increases as a function of the number of 

previous episodes (Keller, 2003). After multiple prior episodes of depression even minor stressors 

can become triggers for new depressive episodes (Monroe and Harkness, 2005).  

Understanding risk for recurrent depression in remitted patients is important for the 

development of its effective treatment. The neural correlates of depression are increasingly well 

understood (for reviews, see Davidson et al., 2002; Disner et al., 2011; Price and Drevets, 2012). 

For instance, imaging research has identified the neural circuitry involved in emotion-attention 

interactions as an important focus in the pathophysiology of depression. This has led to a 

conceptualization of depression as a failure to recruit top-down control (related to prefrontal 

regions – e.g., dorsolateral prefrontal cortex, DLPFC) to regulate limbic activity (e.g., amygdala; 

Davidson et al., 2002; Mayberg, 1997; Ochsner et al., 2002; Phillips et al. 2003; Phan et al., 2004). 

A crucial structure in this circuitry is the anterior cingulate cortex (ACC) with the ventral ACC 

processing of emotion-related signals, and the dorsal ACC involved in response selection and 

conflict monitoring signals (Bush et al., 2000). ACC signals to DLPFC to alter the direction of 

attention or to modify the distribution of processing resources (Hopfinger et al., 2000). This can 

inhibit emotion processing in amygdala via connections with other frontal regions, such as 

orbitofrontal cortex (OFC; Taylor and Fragopanagos, 2005).  
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Depression-related disruptions in this circuitry are well established especially during tasks 

involving emotion processing. These neural disruptions correspond to specific information-

processing characteristics observed in depression (Disner et al., 2011; De Raedt and Koster, 

2010). Depressed individuals are unable to swiftly reallocate attention away from negative to 

positive or task-relevant information (Koster et al., 2005; Leyman et al, 2007). Depression-related 

failures to exercise cognitive control in the face of stressful information appear to enhance the 

tendency towards rumination (Koster et al., 2011). A recent fMRI study found that difficulty 

disengaging attention from negative information is related to depressive brooding, and that 

brooding was correlated with DLPFC activity (Vanderhasselt et al., 2011). Moreover, ACC related 

cognitive impairments were found to increase linearly with the number of prior depressive 

episodes illustrating that such effects persist even after remission of depression (Vanderhasselt and 

De Raedt, 2009). Thus, deficient cognitive control is considered an important vulnerability factor 

for recurrent depressive episodes (for a review, see De Raedt and Koster, 2010), a view supported 

by recent findings that such deficits predicts recurrence of symptoms in a sample of patients in 

remission (Demeyer, De Lissnyder, Koster, and De Raedt, 2012).   

Alongside this focus on the “task-related” disruption on fronto-limbic circuits there is a 

growing interest in disruptions in “task-independent” resting state neural networks in the 

pathophysiology of depression (Hamilton, Furman, and Gotlib, 2011). In the current article we 

develop a framework of Default Mode Network (DMN) dysregulation as a neural substrate of 

depression. Central to our model is the notion that DMN is a system comprised of two tightly 

locked but anti-correlated subcomponents namely the Task Negative (TN) and Task Positive (TP) 

circuits (Fox et al., 2005). DMN dysregulation has been implicated in a range of psychiatric 

disorders (Broyd et al., 2009), such as, for instance, depression and schizophrenia (e.g. Bar, 

2009b; Northoff and Qin, 2011; Northoff et al., 2011; Pizzagalli, 2011; Whitfield-Gabrieli and 

Ford, 2012). Our hypothesis is that dysfunction in the TP and TN components can result in an 

imbalance in the default mode system as a whole leading to deficits in the psychological functions 
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subserved by the DMN. These aberrant psychological functions are thus thought to embody 

cognitive deficits that have been specifically linked to depression such as rumination and poor 

attentional control. In particular, we argue that DMN dysregulation, mediated by key aspects of 

depression-related cognitive impairment, underpins neurobiological risk for recurrent depression 

(Figure 1). Specifically, we propose that an imbalance between TP and TN circuits in the DMN 

system drives the three well-establised components of cognitive vulnerability for recurrent 

depression: (1) rumination, (2) impaired attentional control, and (3) cognitive reactivity. These 

risk phenomena have been studied and conceptualized independently of each other in the past, 

while here we propose DMN system dysregulation as a common underlying mechanism to explain 

them. The aim of this paper therefore is to explain cognitive and neural processes underpinning 

risk for recurrent depression in terms of our emerging knowledge of the resting brain. First, we 

will describe current understanding of the DMN, its neural correlates, and functional significance. 

Second, the state of art concerning the role of the DMN in major depression will be presented, 

shedding light on specific neuropsychological features. Third, we will argue that the TN and TP 

components of the DMN system are core neural hubs underpinning the main cognitive risk factors 

for recurrent depression. We will describe the available data supporting this proposition. Finally, 

future directions for research are described, based upon our new framework that allows more 

specific predictions of the interplay between the TN, the TP and cognitive risk factors to be tested. 

In this way the current paper builds upon previous views on DMN in depression (Bar, 2009b; 

Northoff et al., 2011) and recurrent depression (De Raedt and Koster, 2010) to establish an 

integrative understanding of neural and cognitive risk factors for recurrent depression.  

 

2. The Default Mode Network (DMN) as a system of coordinated “Task-

Positive” and “Task-Negative” components 
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The resting brain exhibits spontaneous patterns of self-organization framed in terms of multiple 

long range neural networks characterized by task independent patterns of temporally coherent 

neural activity (Beckmann et al., 2005; Damoiseaux, et al., 2006; De Luca et al., 2006; Raichle et 

al., 2001; Shulman et al., 1997). Perhaps the most robust regions considered part of this resting 

network consists of a series of primarily midline regions including the medial prefrontal cortex 

(MPFC), the most rostral parts of the anterior cingulate cortex (rACC), the precuneus, the 

posterior cingulate cortex (PCC), and the retrosplenial cortex (Rsp) along with more lateralized 

regions of the parietal cortex (Raichle and Snyder, 2007) as well as mediolateral temporal cortex 

(MLTC) and hippocampal formation (Buckner et al., 2008) (Figure 2). This network shows 

enhanced functional coherence during rest which parametrically attenuates in an event-related 

fashion during cognitive tasks (McKiernan et al., 2003; Singh and Fawcett, 2008). Originally, 

characterized as underpinning a default mode of brain activity, the circuitry in this network has 

been proposed to subserve internal attention (Fox et al., 2005), during which internally-generated 

information dominates and exogenous stimulation is processed only to a limited extent (Chun et 

al., 2011). It has also been linked to other psychological functions, characterized by predominant 

internally-oriented attention. Mindwandering, for instance, is defined as naturally occurring 

mental activity which spontaneously and automatically arises when an individual is not engaged in 

an attention demanding task (Gruberger et al., 2011). Mason et al. (2007) manipulated proficiency 

on a working memory task during rehearsal and a novel task. They found a strong positive 

correlation between  degree of mindwandering and BOLD signal changes in the MPFC, PCC, 

precuneus, superior frontal gyrus, rACC, and middle and superior temporal gyrus (see also 

Christoff et al., 2009). Self-related processing is the evaluation of information in relation to an 

individual’s own mental concept of themselves (Christoff et al., 2011). Studies have found  

increased activity in the MPFC and PCC during self-related processing tasks compared to rest 

(Fossati et al., 2003; Gusnard et al., 2001; Mitchell et al., 2006; Ochsner et al., 2005). 

Interestingly, empirical data show that different self-related sub-processes involve specific brain 
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components. While the ventromedial prefrontal cortex (VMPFC) plays a role in identifying 

stimuli as self-salient (Gusnard et al., 2001; Schimtz and Johnson, 2007), the PCC, the lateral 

parietal cortex, and the hippocampal formation are considered important for the processing of 

autobiographical and past self-relevant stimuli (Cavanna, 2007). Other neuropsychological 

functions are also associated with activity within these regions, such as autobiographical memory 

(Addis et al., 2007), theory of mind, (Mitchell et al., 2005) and future prospection (Andrews-

Hanna et al., 2010; Sonuga-Barke and Fairchild, 2012).  

Other influential theories have tried to capture the psychological functions of the DMN. The 

Internal Mentation Hypothesis (Buckner et al, 2008) postulates that the sorts of mental activities 

subserved by this resting network (e.g. MPFC, rACC, the precuneus, PCC, Rsp, LPC MLTC, and 

hippocampal formation) involve the ability to project oneself somewhere in time (i.e., past or 

future) or space (i.e., theory of mind). Interestingly, some memory-related brain regions (e.g. 

MTLC and hippocampus) also play an important role in facilitating mental simulation (Andrews-

Hanna et al., 2010). Moreover, MTLC, by binding past-related information and providing building 

blocks for future scenarios (Hassabis and Maguire, 2007), subserves the ability to project oneself 

in the future (Andrews-Hanna et al., 2010), while hippocampus and frontoparietal midlines are 

activated during tasks involving autobiographical memory and future prospection (Andrews-

Hanna et al., 2010). Alternatively, Bar et al. (2007) have argued that the regions within this 

network play a key role in associative conditioning which in turn is crucial as basic “units of 

thought”, given their intrinsic nature to connect multiple strands of information. Bar et al. define 

such associations as multimodal links between perceptual, conceptual, and emotional 

representations (e.g. schemata) which are formed by a lifetime of extracting repeating patterns and 

statistical regularities from experience. Several studies (Bar and Aminoff, 2003; Bar, 2004; 

Aminoff et al., 2007) have shown that attending to highly inter-associated objects activates the 

medioparietal cortex, MTLC, and MPFC. It is noteworthy that from a theoretical standpoint these 

associative links rely on memory processes, a fact supported also by the contribution of the 
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MTLC. Recently, Bar (2009a) suggested that associative conditioning goes beyond the simple 

stimulus-stimulus link – rather it may also be seen as a “mindset” which shapes behavior even at 

the level of sophisticated psychological functions, such as motivations and expectations. A 

mindset is indeed regarded as a “list of needs, goals, desires, predictions, context-sensitive 

conventions and attitudes” (Bar, 2009a, pag. 1239), that form a specific set of salient memories, 

attitudes and predictions interacting with environmental stimuli. Crucially, in this model the 

response to stimuli (either internal or external) is almost entirely dependent on the specific kind of 

mindset operating (mindset-stimulus interaction specificity).  

Because there is some evidence that internally-oriented attention associated with this circuitry 

in some ways impairs efficient performance on most tasks requiring substantial controlled 

processing (Barron et al., 2011; Braboszcz and Delorme, 2011; MacLean et al., 2009; for  a 

review see Smallwood and Schooler, 2006) and because failures to attenuate neural activity in this 

system have been shown to be linked to attentional lapses (Christoff et al., 2009, Weissman et al., 

2006), it has been characterized as a task negative (TN) component . Such network is tightly 

coordinated with a second resting brain network (Cabeza and Nyberg, 2000, Corbetta and 

Shulman, 2002), which shows similar patterns of low frequency (~0.01 - 0.08 Hz) functional 

connectivity (Fox et al., 2005). This second component of the default mode resting network 

consists of regions, such as the DLPFC, the inferior parietal cortex (IPC), the supplementary 

motor area (SMA), frontal eye fields, and extrastriate cortex (Fox et al., 2005; Fransson, 2006; 

Figure 2), which are routinely activated during attention demanding, goal-directed task 

performance (Dosenbach et al., 2006; Duncan and Owen, 2000). For this reason it has been 

termed the task positive component. During rest the TP has been claimed to subserve intermittent 

“external awareness”, defined as the conscious perception through different sensory modalities of 

one`s surrounding environment (Vanhaudenhuyse et al., 2011).  
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Crucially, TN and TP activity is thought to be anti-correlated both in rest and task periods 

(Figure 3). Given such tightly anti-correlated and coordinated patterns of neural activity, and the 

complementary nature of the associated psychological functions, the TP and TN have been 

conceptualized as two components of one system regulating activity within the brain’s default 

state (Broyd et al., 2009; Sonuga-Barke and Castellanos, 2007). It has indeed been suggested that 

normal activity during rest within this system involves the “toggling” between TN and TP activity 

(Fox et al., 2005; Fransson, 2005, 2006). While the TN and TP show a putative antagonism of 

function, at the psychological level this TN-TP interplay has been reframed in terms of a 

coordinated ongoing switching between internally- vs. externally-oriented attention (Fransson, 

2005, 2006; Sonuga-Barke and Castellanos, 2007). In a recent study, healthy participants were 

required to simultaneously rate the intensity of their internally- and externally-oriented attention 

during rest (Vanhaudenhuyse et al., 2011). Consistent with previous results, internal and external 

awareness was found to be anti-correlated (Spearman`s rho = -.44), and stronger internal 

awareness correlated with increased activity in the TN regions, such as MPFC, ACC, PCC, 

precuneus, and parahippocampal cortices, while external awareness correlated with TP structures, 

such as the DLPFC and the IPC. Sridharan et al. (2008) identified the right fronto-insular cortex 

(rFIC), consisting of the right VLPFC and the right insula, as a key region in the control of TP-TN 

interplay – with activation preceding the switch between TN and TP activity (so called salience 

network; Seeley et al., 2007). Moreover, a similar analysis revealed that the TN component exerts 

more influence than the TP in this process (Uddin et al., 2009). In sum, this antithetical relation 

between TN and TP has been proposed by many to constitute a core element of  DMN function 

(Broyd et al., 2009; Fox et al., 2005; Sonuga-Barke and Castellanos, 2007).  

However, the TN-TP anti-correlation is still under debate (Cole at el., 2010; Van Dijk et al., 

2010). It has been argued that regressing out the mean global signal, a pre-processing procedure 

performed to control for unwanted variation in the BOLD signal, may artificially introduce 

spurious anti-correlations between time series (Murphy et al., 2009). Although previous studies 
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have not reached a consistent conclusion on this issue (Chang and Glover, 2009; Fox et al., 2009; 

Weissenbacher et al., 2009), improved analytical approaches have been recently proposed, such as 

regressing out time-locked cardiac and respiratory artifacts (RETROICOR; Glover et al., 2000) or 

controlling for non-neuronal sources of noise (CompCor; Behzadi et al., 2007). Adopting these 

procedures does not extinguish the TN-TP anticorrelation (Chai et al., 2012; Chang and Glover, 

2009) 

Function-wise, there are a number of hypotheses concerning the purpose of TN-TP switching 

during rest. One suggestion is that dominant internally-focused attention, supported by the TN 

connectivity, is interleaved by periodic and intermittent phases of TP increased connectivity, 

which reflects a general state of vigilance, by which the environment is scanned for novel and 

unexpected stimuli, to increase preparedness implicated in response selection, and planning of 

actions (Fransson, 2005, 2006). The possible function of the TP in mitigating the internally-

oriented attention is allowing external information to be processed more effectively. This would 

provide a clear evolutionary advantage in terms of survival and adaptation to the environment, 

enhancing the likelihood to detect threatening stimuli (Broyd et al., 2009). Alternatively, during 

rest the TN connectivity may reflect the internal generation of different predictions and mental 

simulations about external events, both of which are TN-related functions (Bar, 2009a; Bruckner 

et al., 2008). Therefore, during this ongoing internal mentation, the TP may allow people to 

constantly update self-relevant information processing, so that individuals can anticipate short and 

long term outcomes through different predictions and simulations (Sonuga-Barke and Castellanos, 

2007).  

The balance between TP and TN may be disturbed in a number of ways in both normal and 

clinical populations. During rest, one DMN component can temporally dominate over the other, 

leading to an imbalance in related psychological functions. Alternatively, TN and TP may become 

desynchronized so that these two orientations enter into a competitive rather than a 
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complementary relationship, or, on the contrary, they may show an excessive anti-correlation, 

resulting in an aberrant antagonism. There may be a failure to attenuate sufficiently during the 

transition to task performance in one component compared to another so residual activity within 

either the TP or the TN interferes with task performance and attention. All of these forms of 

disruption are likely to have profound implications for mental functioning and personal well-

being. Indeed several abnormalities in TN-TP interplay at the level of functional connectivity have 

been reported to impact on both mental health and behavioral performance.  

An exaggerated anti-correlation between the TN and the TP was reported in several severe 

(psycho)pathologies, such as schizophrenia (Zhou et al., 2007) and depression (Zhou et al., 2010), 

whereas a reduced and blurred anti-correlation was reported in autism (Kennedy and Courchesne, 

2008) and in healthy individuals showing less consistent behavioral performance (Kelly et al., 

2008, Hampson, et al., 2010). These data speak in favor of the existence of an optimal degree of 

anti-correlation between the two networks, above and below which detrimental effects can be 

observed. Thus, the nature of the antithetical relation between the TN and the TP should be 

considered when explaining how resting state activity influences mental health and 

psychopathology.  

More recently, a new approach investigating the imbalance between the TN and the TP has 

been proposed to take into account the temporal perspective, defined as “dominance” of one 

network over the other one (Hamilton et al., 2011). For instance, TN-dominance over the TP is 

operationalized as the time points where the TN BOLD signal is greater than the TP BOLD signal. 

The increased duration of  TN-dominance over the TP is thought to reflect elevated levels of TN 

functions. This approach, which has the clear advantage of not needing to take into account the 

strength of the anti-correlation but only the ongoing temporal pattern of the DMN components, 

provides a new and promising index. This index might capture individual differences in thinking 



12 
 

styles such a rumination, a crucial factor in depression (Berman and Jonides, 2011; Hamilton et 

al., 2011).  

Finally, rest-to-task transition appears to be important for both the DMN components (Northoff 

et al., 2010; Northoff et al., 2011) and disrupted attenuation or impaired activation of DMN 

system activity should be carefully considered to explain cognitive impairment. Previous models 

have focused on the failure to attenuate spontaneous TN neural processes during active task 

performance as a cause of attentional lapses and related cognitive deficits (Sonuga-Barke and 

Castellanos, 2007). A key idea in our model is that DMN abnormalities during rest-to-task 

transitions relating to both TN and TP can undermine mental and brain activity in a way that has 

implications for depression-related cognitive risks, so that two aberrant non-mutually exclusive 

profiles may be proposed (Figure 4). The first relates to a failure to deactivate TN when an 

individual begins to engage in a goal-oriented task and continues to show an inappropriate level of 

spontaneous and intrusive internally-oriented TN activation. We term this TN-persistence. The 

second relates to a failure to fully engage TP regions during rest-to-task transition so that the 

attention to task-relevant stimuli is reduced. This is called TP-deficiency. Interestingly, both TN-

persistence and TP-deficiency have been reported in mental disorders (Grimm et al., 2009; Hooley 

et al., 2005; Mitterschiffthaler et al., 2008; Sheline et al., 2009) as well as in some conditions in 

healthy participants (Polli et al., 2005; Weissman et al., 2006).  

Within our framework we propose specific links between DMN aberrations at the level of TN 

and TP functioning in relation to cognitive risk factors, known to be of crucial importance for 

recurrent depression. We first turn to research on the DMN in depression. 

 

3. The Default Mode Network (DMN) in depression 

Several aspects of DMN system dysregulation have been linked to depression.  
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3.1 Altered functional connectivity and temporal sequencing during rest 

Studies have reported a hyper-connectivity of TN brain regions in depression during rest (e.g. 

Berman et al., 2011, Zhou et al., 2010). Greicius et al. (2007) were the first to report increased 

functional connectivity of the subgenual cingulate cortex (SubG), the thalamus, the OFC, and the 

precuneus in depressed individuals. In particular connectivity of the SubG with other TN areas 

distinguished depressed from healthy participants (Cohen`s d = 1.01) and was positively 

correlated with depression refractoriness, as measured by the length in weeks of the current 

episode. The SubG was also functionally connected with thalamus during rest, which led the 

authors to conclude that “[…] in depressed subjects, activity in medial thalamus is excessively 

coupled to activity in the ‘affective’ subgenual cingulate, at the cost of reduced connectivity to the 

‘cognitive’ dorsal anterior cingulate” (Greicius et al., 2007; pp 435). Consistent with this, non-

refractory depression was associated with reduced fronto-limbic connectivity - a finding congruent 

with reduced inhibitory control (of the PFC) over the limbic system activity seen in depression 

(Dannlowski et al., 2009). Moreover, refractory depression has been related to diminished 

thalamo-frontal connectivity (Lui et al., 2011). These results suggest a possible differential role of 

the thalamus in the various resting state functional connectivity profiles among depression-related 

subtypes. This latter finding provides an initial justification to consider the specificity of TN 

activity in recurrent vs. non refractory depression. Note that the findings relating to this are not 

fully consistent as Bluhm et al., (2009) reported increased connectivity between the 

PCC/precuneus and caudate nucleus in healthy controls, whereas medication-free depressed 

individuals did not show enhancement of connectivity in the areas reported by Greicius et al. 

(2007). These authors suggested that, given the role of the caudate nucleus in reward processing 

(Yacubian et al., 2006), this connectivity pattern may be related to anhedonia in depression. While 

these inconsistent results may simply be due to the use of different methods of analysis (Hasler 

and Northoff, 2011), they could also be linked to different stages of the depressive illness (e.g. 

strengthened vs. decoupled links between emotion, cognition and bodily sensations), whereby 
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early (or first onset) and recurrent (or chronically) depressed individuals may show different 

connectivity patterns. This latter idea is in line with our proposal to investigate the specificity of 

the DMN components after remission, to focus on “scars” of former episodes. Indeed it has been 

proposed that neurobiological abnormalities in depression increase with each new episode, thereby 

increasing individual vulnerability (for a review, see De Raedt and Koster, 2010).  

Recently, the specific temporal order of activation in DMN related regions in depression has 

been investigated using Granger Causality Analysis (Hamilton at al., 2010). Increased activity in 

the hippocampus predicted subsequent activation of the SubG, which in turn showed a reciprocal 

augmentation with the MPFC. Additionally, SubG activity seemed to inhibit the dorsal 

medioprefrontal cortex (DMPFC), the PCC and the DLPFC. Interestingly, increased hippocampal 

activation also preceded reduced activation of the DLPFC - suggesting that hippocampus 

hyperactivity may contribute in important ways to resting state abnormalities in depression. Other 

recent connectivity data also supports the idea that the hippocampus plays an important role in 

depression. For instance, increased hippocampus functional connectivity with thalamus, frontal 

and posterior cingulate regions has been reported in an elderly depressed population (Goveas et 

al., 2011). Therefore, even though the hippocampus was not consistently detected as part of the 

TN in earlier studies, this area and its functions, such as contextual memory retrieval, are 

increasingly considered important. This region seems to contribute to TN functional connectivity 

both in healthy and depressed subjects (Buckner, 2010; Hamilton et al., 2010; Perry et al., 2011).  

An important question about aberrant DMN is the extent to which increased functional 

connectivity could be due to well-known anatomical abnormalities in depression (e.g. Davidson et 

al., 2002). Although functional and structural connectivity (i.e. Diffusion Tensor Imaging, DTI) 

can be highly overlapping, nevertheless they do not map onto each other one-to-one in healthy 

subjects (Greicius et al., 2009). A recent review indeed indicates that strong functional 

connectivity can be present even among anatomically unrelated structures (Honey et al., 2010). 
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Unfortunately no studies have investigated this issue in depressed patients thus far, but it has been 

proposed that the divergence between structural and functional connectivity might be strong in 

mood disorders, perhaps mediated by neurochemical imbalance (Hasler and Northoff, 2011). This 

provides an interesting area of research, since functional connectivity research in depression could 

capture specific pathological features above and beyond existing anatomical models (e.g. Price 

and Drevets, 2012). 

3.2 DMN rest-to-task transition in depression: TN-persistence vs. TP-deficiency. 

 Given the partial overlap between DMN regions and emotion regulation structures (e.g. Goldin 

et al., 2008; Ochsner et al., 2004), recent studies have investigated how these regions respond to 

emotional stimuli in depression, and specifically whether rest-to-task transition in emotional 

contexts is affected by TN-persistence and TP-deficiency (Figure 4).  

Several recent studies report failures of depressed individuals to deactivate TN regions during 

task engagement (Grimm et al., 2009; Sheline et al., 2009). Grimm et al. (2009) reported reduced 

rest-to-task attenuation of the rACC, VMPFC, and dorsal PCC activity to the presentation of 

emotional pictures by participants with major depression compared with healthy participants. 

Amongst the depressed individuals reduced deactivation in VMPFC was highly correlated with 

feelings of hopelessness, whereas reduced deactivation in the dorsal PCC was correlated with 

depressive symptoms. In another study, depressed participants failed to show a reduction of 

BOLD signal in the rACC, VMPFC, lateral temporal cortex (LTC), and lateral parietal cortex 

(LPC) during both passive viewing and active reappraisal of emotional stimuli (Sheline et al., 

2009). Depressed individuals also displayed greater activation in response to negative compared 

with neutral pictures in left parahippocampus, right hippocampus, and left amygdala during a 

passive viewing task suggesting that both automatic and effortful processing of emotional stimuli 

is influenced by aberrant TN-persistence. 
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Important for our framework, currently depressed patients show TP-deficiency during rest-to-

affective task transition, underlining that not only is TN less effectively suppressed, but also that 

TP brain regions are less efficiently activated in depression. Despite a lack of activation studies 

which take into account the whole TP network, several studies report that a key TP region, that is 

the DLPFC, shows deficient activation patterns during rest-to-affective task transitions (Fales et 

al., 2008, 2009; Holmes and Pizzagalli, 2008; Mitterschiffthaler et al., 2008; Siegle et al., 2007). 

Depressed individuals exhibited less recruitment of the DPLFC compared with healthy individuals 

in a modified emotional Stroop task (Mitterschiffthaler et al., 2008). Depressed patients also show 

less right DLPFC recruitment when required to ignore negative stimuli in an attentional 

interference task with emotional material (Fales et al., 2008). Moreover, increasing brain activity 

by multiple sessions of repetitive Transcranial Magnetic Stimulation (rTMS) over the left DLPFC 

normalized the inhibition of negative emotional stimuli in treatment resistant depressed patients, 

which was correlated with a decrease in depressive symptoms (Leyman et al., 2011). These results 

are indicative of difficulties that depressed patients have in activating TP components so as to 

appropriately execute cognitive control during affective tasks.   

A recent meta-analysis reported the effects of pharmacotherapy (e.g. mainly SSRIs) on emotion 

processing in major depression, supporting abnormal rest-to-affective task transition as specific 

feature of depression and, in turn, a target for therapeutic interventions (Delaveau et al., 2011). 

Several findings are in line with the hypothesis that pharmacological treatments effectively 

targeted both TN-persistence and TP-deficiency: after several weeks of treatment depressed 

participants displayed reduced activation in SubG, dorsal PCC, and precuneus and increased 

activation in DLPFC and VLPFC during emotional tasks. An interesting hypothesis to pursue is 

that antidepressant medication may work by rebalancing TN and TP during rest-to-task 

transitions. 

3.3 Altered TN-TP anti-correlation in depression 
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 Zhou et al. (2010) detected an increased degree of anti-correlation between TN and TP in 

depression using both the PCC/precuneus (TN) and the right DLPFC (TP) as seed regions. This 

was interpreted as an exaggerated antagonism between these two components, which, the authors 

argued, may be involved in biased processing of information in depression. For instance, during 

spontaneous low frequency oscillations, the TP, comprising areas which are known to subserve 

attention and emotion regulation (e.g. bilateral DLPFC and IPL), might represent active attempts 

to regulate emotions and deploy attention even without current external stimulation. On the other 

hand, the fluctuations of the TN (e.g. MPFC, SubG, and PCC/precuneus) may be the 

neurobiological underpinning of enhanced memory for negative emotional experiences and 

increased maladaptive self-focus. While the optimal attunement between TN and TP is thought to 

reflect efficient intrinsic brain organization (Fox et al., 2005), such an exaggerated TN-TP 

antagonism might reduce the integration between different strands of information (e.g. “internal” 

vs. “external”), potentially resulting in attention and memory biases. Recently, a study 

demonstrated a differential role of the rFIC in switching activation between the TN and TP 

connectivity in depression (Hamilton et al., 2011). That is, during the ongoing anti-correlated TN-

TP fluctuations in rest, an increased activity of the rFIC was detected when TN showed a peak in 

activation while the opposite pattern was found in healthy participants, who showed increased 

activity of the rFIC when TP activity peaked. The authors suggested that the rFIC plays an 

affective regulatory function, so that when the negative state subserved by the TN in depression 

reaches its peak, the rFIC induces an increased activation in the TP to counterbalance this 

undesired state.  

3.4 Blurred boundaries among neural networks during rest: the “Dorsal Nexus”  

So far, we have delineated specific DMN dysfunctions which occur during rest or in transition 

to task. Nevertheless, a broader perspective could be fruitful in shedding light on how the TN and 

TP activity are related to each other and to other neural networks. Recently, Epstein et al. (2011) 
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demonstrated that when exposed to emotional material healthy people show a clear segregation 

between the TN (e.g. PCC/Precuneus and MPFC) and emotional processing networks (e.g. insula, 

amygdala, and ventral striatum). In contrast, in depressed patients these networks are not clearly 

disentangled but partially overlapping. These results are in line with another study showing that in 

depression the TN leads the organization of the whole brain during rest, resulting in a perturbation 

of other neural networks (Zhang et al., 2011). Such problematic failures to clearly segregate 

networks in depression appear to occur not only interneurally, but also intraneurally within the 

DMN components. In fact, the TN-TP imbalance in depression may also take the form of an 

abnormal overlap between TN and TP as this could undermine the attunement between the two 

resting networks. Sheline et al. (2010) compared connectivity maps of three different resting state 

networks in depressed and healthy participants. The three networks were the TN (precuneus seed), 

the TP (DLPFC seed), and the affective network (SubG seed). DMPFC, defined by the authors as 

the “dorsal nexus” to stress the hub role played by this region, was the sole region which 

distinguished depressed from never depressed participants and was found to be part of all three 

networks. Moreover, this area was functionally connected with brain regions shown to be crucial 

in depressive pathophysiology (e.g., DLPFC, VMPFC, superior DMPFC, rACC, PCC, and 

precuneus). DMPFC activation was also highly correlated with depressive symptoms. DMPFC 

dysregulation was hypothesized to be the key driver of depression-related impairments, such as 

attentional problems, increased autonomic responding, and enhanced negative self-focus. The 

crucial role of this hub area is confirmed by a recent study which shows that SSRIs target the 

DMPFC by reducing its connectivity to the hippocampus during rest (McCabe et al., 2011). 

3.5 The DMN as a depression vulnerability marker in at-risk subjects 

Even though research has mainly investigated the role of the DMN in currently depressed 

patients, some preliminary pieces of evidence suggest that dysfunctions at level of default brain 

could precede the clinical episode. One approach is to examine close biological relatives, such as 
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non-affected offspring of depressed parents, as depression in parents is associated with a higher risk 

of major depression in the offspring (Hoffmann, Baldwin, and Cerbone, 2003). Norbury, Mannie, 

and Cowen (2011) report that people who have never personally suffered from major depression but 

have a biological parent with a history of depression show increased TN functional connectivity 

during rest (e.g. DMPFC and middle temporal gyrus) compared with offspring of non-depressed 

parents. Beyond the TN hyperconnectivity, other evidence supports the presence of DMN 

dysfunctions among vulnerable individuals. Confirming the heuristic utility of what we termed as 

rest-to-affective task transition, Di Simplicio, Norbury, and Harmer (2011) reported the efficacy of 

SSRIs in normalizing such transition in at-risk subjects. The researchers administered either placebo 

or citalopram (i.e. SSRI) for 7 days to people with high levels of neuroticism, a personality trait 

reported to strongly predict the onset of major depression (Kendler, Gatz, Gardner, and Pedersen, 

2006). Afterwards, both groups underwent an experiment requiring subjects to classify negative and 

positive self-descriptors. The analyses revealed that, compared with placebo, citalopram 

administration significantly decreased activation of the VMPFC and rACC in response to negative 

self-referred stimuli. This confirms the presence in at-risk subjects of TN-persistence which can be 

ameliorated by SSRI medication, as reported in currently depressed individuals (Delaveau et al., 

2011).  

Although more research is recommended, some speculation on DMN in relation to the course of 

depression is warranted. First, it seems that at-risk individuals could show similar DMN aberrations 

but to a milder degree, both in rest period and in rest-to-task transition phase. Such a notion has 

been supported in the context of schizophrenia, another clinical syndrome which demonstrates 

notable genetic influence and inheritability (for a review, Whitfield-Gabrieli and Ford, 2012). For 

instance, unaffected siblings of schizophrenic patients show TN hyperconnectivity during rest to a 

lesser extent than a clinical group, but still greater than healthy controls. Moreover, TP connectivity 

clearly differentiates clinically affected from unaffected siblings (Liu et al., 2012). These results 

suggest that it is also possible in depression that at-risk individuals may be characterized by a 
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neurobiological profile that partially mirrors aberrations observed in clinical depression. Second, 

such research in at-risk populations suggests that DMN dysfunctions might predict future clinical 

episodes. In other words, the aberrations within the DMN might precede the onset of major 

depression. However, it is still a matter of debate by what mechanism the transition from non-

symptomatic phases to the first depressive episode occurs. In this context, both theoretical models 

and empirical research (i.e. longitudinal studies) are needed (Whitfield-Gabrieli and Ford, 2012). 

Third, given the specific cognitive signature of recurrent depression (marked attentional problems, 

high levels of rumination, and cognitive reactivity), we argue that DMN aberrations, likely present 

to a milder extent even before the first clinical episode, become more pronounced with increasing 

episodes and are associated with recurrence in remitted depressed samples. This proposal is 

described in detail in the next sections. 

3.6 The DMN in depression: Theoretical advances 

Several recent attempts have been made to relate different facets of depressive phenomenology 

to DMN (Hasler and Northoff, 2011; Pizzagalli, 2011). Among others, Northoff et al. (2011) 

proposed a DMN system theory of depression, focusing on underlying mechanisms of symptoms. 

They proposed neural hyperactivity during rest as one of the endophenotypes for unipolar mood 

disorder. In this model aberrant resting brain performance is thus seen as a ‘neural predisposition’ 

or susceptibility marker with abnormal rest-stimulus transitions as the final cause of depression. 

They propose that specific subcortico-cortical systems play distinct roles in the depressive 

phenomenology. For instance, the rest-related hyperactivity of the rACC, VMPFC, DMPFC, 

amygdala, and hippocampus is hypothesized to be responsible for sustained negative mood, while 

decreased TN performance during rest-to-task transition could account for the abnormally high 

levels of sadness (e.g. Sheline et al., 2009). The deviant perception of subjective time in depressed 

individuals would be due to an increased rest-related activity of VMPFC, DMPFC, and rACC, 

whereas hopelessness, which appears closely related to prospection abilities, is linked to reduced 
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rest-stimulus interaction (e.g. Grimm et al., 2009). Finally, the rest-related hyperactivity of rACC, 

VMPFC, DMPFC, peri-aqueductal gray, and the dorsomedial thalamus could be responsible for 

depressive self-focus and rumination (e.g. Berman et al., 2011; Greicius et al., 2007). 

It is noteworthy that, despite the increasing efforts to highlight the role of the DMN in 

depression, the issue of remitted depression is virtually uncovered in literature. Unfortunately, the 

absence of a theoretical roadmap has so far impeded a systematic and fruitful investigation of the 

links between DMN and recurrent depression.    

3.7 The DMN in depression: Summary 

 A number of depression-related DMN abnormalities have been reported both during rest and 

rest-to-task transition. These include (i) increased TN functional connectivity during rest between 

the MPFC, the PCC, and the SubG (Berman et al., 2011; Greicius et al., 2007, Zhang et al., 2011) 

with a promising role for areas not universally reported to be part of the TN, such as the 

hippocampus (Goveas et al., 2011, Zhang et al., 2011) and the thalamus (Lui et al., 2011); (ii) 

evidence of both TN-persistence (Grimm et al., 2009; Sheline et al., 2009) and TP-deficiency 

(Mitterschiffthaler et al., 2008; Leyman et al., 2011) following rest-to-affective task transitions 

with these effects leading to poor attentional control during task involving emotional material. 

Importantly, these problems with transition from rest seemed to be ameliorated by 

pharmacotherapy (Delaveau et al., 2011); (iii) an increased level of TN-TP anti-correlation during 

rest (Zhou et al., 2010); (iv) an altered pattern of TN-to-TP switching with the brain regions 

thought to drive switching (e.g. rFIC) functioning differently in depressed compared with healthy 

subjects (Hamilton et al., 2010); (v) less segregation between TP, TN and other resting state 

networks (Epstein et al., 2011; Zhang et al., 2011) and a strong role for the DMPFC across these 

networks in depression (Sheline et al., 2010); (vi) at-risk individuals seem to show a depression-

like DMN pattern (Di Simplicio et al., 2011; Norbury et al., 2011). Recently, several theoretical 
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models try to account for different aspects of current depression in relation to DMN (Hasler and 

Northoff, 2011; Northoff et al., 2011; Pizzagalli, 2011). 

 

4. Cognitive Risk for Recurrent Depression and the DMN 

 In this section we focus specifically on recurrence of depression in remitted patients, reviewing 

the literature on cognitive vulnerability factors and describing how default mode dysregulation can 

provide a unifying explanation of these deficits (Figure.1). As we have described, major 

depression is characterized by DMN abnormalities. Our model of recurrence is built on the idea 

that remitted depressed individuals, especially after a history with several depressive episodes, still 

show most of the DMN aberrations, albeit probably to a lesser extent than in the acute symptom 

phase. In this sense, the DMN disruptions can be defined as a “depressive scar” (Lewinsohn et al., 

1981) and as such are predicted to be influenced by the number and duration of previous 

depressive episodes (Wichers et al., 2010). Crucially, we suggest that this neurobiological scar is 

manifest primarily in terms of dysregulation in the pattern of synchronized switching between 

internally- and externally-oriented attention which marks the normal interplay between TN and TP 

components of the DMN system. In turn this dysregulation leads to specific and well established 

cognitive deficits considered as risk factors for recurrent depression; (i) rumination, (ii) impaired 

attention control, and (iii) cognitive reactivity.  

4.1 Rumination and TN-dominance over TP 

Rumination has been defined as “behaviors and thoughts that focus one’s attention on one’s 

depressive symptoms and on the implications of those symptoms” (Nolen-Hoeksema, 1991, p. 

569). The response style theory of depression (Nolen-Hoeksema, 1991) proposes that individuals 

differ in their reaction to negative mood states and that rumination is a trait-like response style to 

distress. Individuals engage in depressive rumination because they believe that ruminating about 
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their mood and symptoms will lead to greater self-understanding. However, rather than leading to 

increased self-understanding, depressive rumination augments sad mood and negative thinking by 

focusing attention on current mood (Lyubomirsky and Nolen-Hoeksema, 1995). The harmful 

effects of rumination may not stem from attention to distress per se, but from internally-oriented 

attention that is negative, evaluative, and judgmental (Rude et al., 2007).  

To assess individual differences in the tendency to ruminate, Nolen-Hoeksema and Morrow 

(1991) developed the Ruminative Response Scale (RRS). This scale has high internal consistency 

and acceptable convergent validity (Butler and Nolen-Hoeksema, 1994; Nolen-Hoeksema and 

Morrow, 1991). Factor analysis of the RRS has identified two distinct subtypes of rumination 

(Treynor et al., 2003). The first, reflective pondering, is a more adaptive form of rumination and 

reflects the degree to which individuals engage in cognitive problem solving to try to improve 

their mood. The second, depressive brooding, - the degree to which individuals passively focus on 

symptoms of distress and the meaning of those symptoms - is a more maladaptive form of 

rumination. Rumination in response to negative mood increases vulnerability to depression. 

Numerous studies have demonstrated that rumination is associated with depressive symptoms 

(Treynor et al., 2003) and prospectively with the onset (Nolen-Hoeksema, 2000), severity (Just 

and Alloy, 1997; Nolen-Hoeksema and Morrow, 1991) and duration (Nolen-Hoeksema, 2000) of 

depression. The ability to control ruminative thought is associated with recovery from depression 

(Kuehner and Weber, 1999; Schmaling et al., 2002). Rumination is also associated with cognitive 

reactivity, one of the crucial predictors of recurrent depression, even when depression levels were 

statistically controlled (Moulds et al., 2008).  

Here we argue that rumination is related to a tendency toward enhanced TN connectivity and 

TN-dominance over the TP component of the DMN system. In fact, Zhu et al. (2011) reported that 

in unmedicated individuals with major depression, increased MPFC and SubG connectivity 

correlated with rumination, measured with the Cognition Emotion Regulation Questionnaire 
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(CERQ, Garnefski, Kraaij, and Spinhoven, 2001). In line with this, Berman et al. (2011) found 

increased TN-SubG connectivity in depressed patients during rest periods of a cognitively 

demanding task. Levels of connectivity between the SubG and the PCC were highly correlated 

with rumination scores in both clinical and non-clinical sub-samples. The maladaptive ruminative 

response (i.e. brooding) was correlated with SubG-PCC connectivity across all sub-samples. 

While healthy participants did not differ in the SubG-PCC connectivity between rest and task-

related blocks, depressed patients showed hyperactive connectivity during rest phases and 

hypoactive connectivity during active blocks. On one hand, these results suggest that when 

depressed people are left to themselves they are more prone to experience maladaptive internally-

oriented rumination. On the other hand, it is possible that during active task periods the enhanced 

activation of the TP counteracts the TN, which may provide temporary relief from rumination. 

Moreover, this can result in an abnormal activation of the SubG, implicated, for instance, in 

reduced likelihood of recovery from depression (Siegle et al., 2006) and an increase in the risk of 

depression as a consequence of adolescent peer rejection (Masten et al., 2011).  

Hamilton et al. (2011) examined the association between TN-TP interplay and rumination 

using a new approach to data analysis to measure the dominance of one network over the other 

one. This new index quantifies the number of time periods when the TN BOLD signal is greater 

than the TP BOLD signal. This allows an estimate of the increased duration of TN-dominance 

over the TP and an assessment of whether this is reflected by elevated levels of TN functions. 

Comparing the TN-dominance level in depressed patients and controls, the study reported that this 

positively correlated with the depression subscale – another RRS subscale which along with the 

brooding subscale measures cognitions characterized by “a passive comparison of one’s current 

situation with some unachieved standard” (Treynor et al., 2003, p.256) – and negatively correlated 

with the adaptive reflective pondering subscale of the RRS in the depressed group. This pattern 

held also after controlling for brooding and depressive symptoms measured with the Beck 

Depression Inventory-II (BDI-II, Beck et al., 1996). Interestingly, current findings support this 
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association between rumination and TN connectivity or dominance only during rest, exactly when 

task specific regions are intrinsically less activated (Berman and Jonides, 2011). Here we argue 

that the neurobiological dynamics of rumination (see also Pizzagalli, 2011) are represented by a 

specific psychological mechanism, namely an aberrant attentional switching in depressed patients 

which leads to excessive internally-oriented attention (i.e. maladaptive self-focus), a phenomenon 

subserved by TN hyperactivity. This in turn leads to a failure to use external stimuli to distract 

from rumination (Disner et al., 2011; De Raedt and Koster, 2010). Increased TP activity to 

compensate this TN activity could indeed provide environmental stimulation necessary for 

distraction, efficacious to counterbalance rumination (Huffziger and Kuehner, 2009; Morrow and 

Nolen-Hoeksema, 1990). Here we propose that this tendency towards TN dominance over TP 

persists in individuals with a history of depression after recovery from the acute symptoms phase, 

leaving them vulnerable to rumination during future difficult or stressful times. We predict that 

remitted depressed individuals, compared with healthy participants, will display an; (i) increased 

TN functional connectivity during rest, with the SubG being expected to play a major role; (ii) 

increased TN-dominance over TP during rest; (iii) increased internally-oriented attention during 

rest. Moreover we propose that (iv) these DMN connectivity indexes and internal attention 

preference during rest are both correlated with rumination and that (v) connectivity indexes 

predict, partially mediated by rumination, future depressive relapse in remitted depressed 

individuals.  

4.2 Impaired attentional control, TN persistence, and TP-deficiency in rest-to-task 

transitions  

Attention deficits and impairments in concentration are important diagnostic criteria for 

depressive episodes (APA, 2000). It has been proposed that impairments in general attentional 

control functions involved in working memory might drive both these deficits (e.g., concentration) 

and more specific emotion-related cognitive biases, such as mood-congruent interpretation biases, 

memory biases, and attentional biases (Joormann, 2005). There is some neuropsychological 
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evidence suggesting that depression is associated with general impairments (valence unspecific) 

in cognitive control but typically the findings are mixed (for a review, see Joormann et al., 2007), 

with marked general impairments most often being present in severe depression (Kaiser et al., 

2003). Given these inconsistent findings it has been argued that attentional control is particularly 

hampered in relation to the processing of negative, mood-congruent information (Joormann et al., 

2007). Indeed, depression is associated with difficulties in inhibitory processing of task-irrelevant 

negative material (Goeleven et al., 2006; Joormann, 2004), as well as problematic trial-by-trial 

updating of negative information in working memory (Joormann and Gotlib, 2008; Levens and 

Gotlib, 2010). Recently, attentional control has been related to specific cognitive vulnerability 

factors for depression, such as a rumination (for a review, see Koster et al., 2011) and emotion 

regulation (for a review, see Joormann and D’Avanzato, 2010). Research indicates that rumination 

is related to impaired attentional control during the processing of both non-emotional (Davis and 

Nolen-Hoeksema, 2000; De Lissnyder et al., 2010) and emotional information (De Lissnyder et 

al., 2010; Joormann and Gotlib, 2008; Lau et al., 2007). Depressive brooding in particular seems 

strongly related to impaired attentional control. Current research suggests that impaired attentional 

control plays an important role in depression vulnerability rather than just representing a simple 

correlate of a depressed state. A number of prospective studies suggest that attentional biases are 

associated with emotional reactivity and precede the development of anxiety and depression 

(Beevers and Carver, 2003; MacLeod and Hagan, 1992). In the context of depression, Beevers and 

Carver (2003) demonstrated that such biases interact with intervening life stresses to predict 

higher scores on depression seven weeks later. Mood-congruent attentional bias has also been 

demonstrated after negative mood induction in never depressed offspring at risk for the 

development of depression (Joormann et al., 2007). Importantly for the current argument, 

attentional control is reduced during recurrent depressive episodes and this persists even during 

remission. Electrophysiological markers of cognitive control (N450) have been shown to decrease 
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linearly with more frequent occurrences of depressive episodes in remitted patients (Vanderhasselt 

and De Raedt, 2009).  

DMN system dysregulation is probably implicated in poor attentional control during task 

performance. In particular it has been argued that attentional lapses occur when TN activity is not 

sufficiently attenuated during the transition from rest-to-task and so interferes with task-related 

activations in TP regions (Sonuga-Barke and Castellanos, 2007). This default mode interference is 

said to occur when TN activiation exceeds a threshold under which attentional failures are not 

apparent, but above which the interference could effectively impact on the task. Supporting this 

hypothesis, Prado and Weissman (2011) demonstrated that during a multimodal selective attention 

task increased current-trial connectivity between the PCC and the left DLPFC was associated with 

worse performance (e.g. longer RTs). Moreover, extending the default-mode interference 

hypothesis, the PCC/left DLPFC connectivity could also predict better performance (e.g. faster 

RTs) in the next trail, suggesting that current task-unrelated preparatory mental activity can 

enhance performance of an upcoming task at the cost of worse current performance. Consistent 

with this, in non-clinical participants longer RTs on a selective attention task were associated with 

both decreased activation of TP structures, such the right DLPFC, and increased activation of 

PCC, precuneus, and MTLC, key TN brain regions (Weismann et al., 2006). In a similar way, 

Polli et al. (2005) found that errors during an antisaccade task were characterized by a failure to 

deactivate PCC, left superior temporal gyrus, rACC, and DMPFC. Li et al (2007) reported that 

errors in a stop signal task were preceded by an increased activation of, among other regions, the 

PCC and precuneus. Interestingly, a recent study stressed that the PCC seems to precede TN-

related attentional lapses in that reduced TN deactivation during a speeded Eriksen flanker task 

predicted errors up to 30s before the error actually occurred (Eichele et al., 2008).These pieces of 

evidence support a crucial role of TN-persistence in attentional lapses, mainly driven by PCC. In 

addition, Castellanos et al. (2005) reported that subjects affected by ADHD compared with 

controls showed an increased Intra-Individual Variability (IIV), defined as very long and 
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relatively infrequent RTs, which temporally mirrored the typical DMN low-frequency pattern 

(~0.01 - 0.08 Hz). In keeping with this, Kelly et al. (2008) reported that in healthy subjects asked 

to attend an Eriksen flanker task the IIV, here defined as coefficient of variation (CV), was 

negatively correlated with the magnitude of the anti-correlation of the DMN components, that is 

the less the TN and TP were tuned and anti-correlated, the less congruent and consistent the 

performance was (e.g. increased CV). An increased IIV has been also reported to characterize 

several clinical syndromes, including depression, and this suggests its possible role as pathological 

marker (Kaiser et al., 2008). In sum, a wealth of research has indicated that the DMN is associated 

with impaired attentional control. In particular TN-persistence, TP-deficiency, and reduced TN-TP 

anti-correlation producing spontaneous fluctuations in performance during task have all been 

found to be remarkably good predictors of attentional lapses.  

Building on the default mode interference hypothesis (Sonuga-Barke and Castellanos, 2007) we 

argue that reduced attentional control in remitted depressed patients is the result of a failure to 

properly attenuate the TN network during rest-to-task transitions leading to a disruption of task-

related activity in TP regions. We see this pattern of TN-persistence as being due to depression-

related alterations during rest, especially TN dominance and increased coherence. This pattern of 

DMN activity makes it more difficult to effectively switch from rest to task, while at the same 

time making interference by the TN activity into task-related activity more likely. We therefore 

predict that remitted depressed individuals, compared with healthy controls, will (i) display TN-

persistence in rest-to-task transition, mainly led by the PCC; (ii) show TP-deficiency, mainly at 

the level of the DLPFC, in attention demanding tasks using non-emotional material; (iii) that TN-

persistence during tasks will be predicted by TN-dominance and increased TN functional 

connectivity during rest, linking excessive rumination with poor attentional control; and (iv)  that 

DMN-related attentional impairments in remitted depressed individuals can predict future 

depressive relapse.  
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To date no studies have directly investigated the role of the TN over TP persistence in 

depressed patients performing an attentional task. There is some evidence underpinning the TP 

component on attention demanding task performance using non-emotional material. Halari et al. 

(2009) found depression-related decreases in right DLPFC, using selective attention paradigms 

(Simon task) and attention switching tasks. A single session of rTMS over the left DLPFC in 

depressed patients improved performance in an attention-demanding task (task switching) 

although mood remained stable (Vanderhasselt et al., 2009). This preliminary evidence suggests 

that currently depressed individuals might show TP-deficiency during rest-to-task transition, even 

when using non-emotional material. Moreover, remitted depressed individuals showed TP-

deficiency, namely reduced left DLPFC activation, after remission (Aizenstein et al., 2009). 

Nevertheless, there is also some preliminary evidence that in depression and recovery individuals 

show a similar pattern in attention demanding tasks using emotional material. For instance, 

multiple sessions of rTMS over the left DLPFC in depressed patients resulted in increased 

inhibition of negative information (Leyman et al., 2009). Finally, a recent prospective study 

showed that remitted depressed individuals had impaired cognitive control while switching from 

angry to neutral faces which predicted rumination as well as depressive symptoms a year later 

(Demeyer et al., 2012). In conclusion, DMN dysfunction during rest-to-affective task transition 

appears to be worth deeper consideration, given its possible role in efficiently adjusting to tasks 

and predicting future depressive relapse.  

4.3 Cognitive Reactivity, increased TN connectivity and rest-to-affective task transition 

Research on information-processing in emotional disorders has been guided predominantly by 

Beck’s cognitive schema theory (Beck, 1967; Clark et al., 1999) and Bower’s associative network 

theory (Bower, 1981). Beck and colleagues argued that information-processing is guided by 

schemata, defined as memory structures which, built from previous experiences, contain and 

organize information about the self, the world, and the future. Depression is characterized by 

negative schemata involving loss and failure which are thought to bias encoding of information. 
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Specific information processing biases at the level of attention, interpretation, and memory 

mediate incoming information processing and subjective (emotional) experience. A fundamental 

aspect of Beck’s cognitive model of depression is that cognitive structures or schemata remain 

latent until activated by relevant stimuli.   

Although broad and general, this notion lies at the roots of the concept of cognitive reactivity, 

which has been central to the understanding of cognitive vulnerability factors for depression. 

Cognitive reactivity relates to fluctuations in negative self-attitudes in response to daily (stressful) 

events (Butler et al., 1994). The crucial question is why certain individuals are or become more 

reactive to stressors than others. Teasdale (1988) proposed the differential activation hypothesis 

(DAH) to account for this observation. This hypothesis assumes that, after each depressive 

episode, the link between low mood and negative thinking is strengthened. Therefore, a depressive 

mood, which can be induced by daily stressors or experimental manipulation, re-activates the 

negative thinking patterns more easily after multiple depressive episodes. Proposing an 

association-based mechanism, the DAH can explain the often reported phenomenon that after 

several depressive episodes even minor hassles can evoke strong depressive symptoms, and a 

downward spiral of negative thoughts. 

Support for this theory comes from studies showing that people who have experienced 

depression in the past, as compared to never depressed individuals, report more dysfunctional 

attitudes, negative cognitive biases, and decreased positive biases after negative mood induction 

(for a review, see Scher et al., 2005). Moreover, some longitudinal studies have shown that the 

interaction between cognitive reactivity and stress is a significant predictor of the onset of 

depressive episodes (e.g. Hankin et al., 2004; but see Barnett and Gotlib, 1990). An influential 

study which supports the role of cognitive reactivity in relapse of depression in remitted 

individuals found that mood-induced cognitive reactivity significantly predicted relapse over a 18-

months interval (Segal et al., 2006). This evidence clearly supports the existence of latent 
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vulnerability factors in at-risk individuals which are not detected during euthymic phases, but 

easily activated by stressors.  

How is the concept of cognitive reactivity linked to DMN activity? Although direct research on 

DMN activity in relation to cognitive reactivity is lacking, a relation can be inferred from several 

lines of research. Cognitive reactivity has been mainly conceptualized as an associative processing 

between the self, negative mood and negative thinking (Bower, 1981; Teasdale, 1988). 

Interestingly, the TN circuit overlaps with the brain regions activated during associative 

conditioning (Bar et al., 2007) and the strength of the association elicited by a stimulus has been 

shown to be related to the TN activation (Bar and Aminoff, 2003; Bar, 2004; Aminoff et al., 

2007). In particular, MPFC, PCC and MTLC (e.g. hippocampus and parahippocampus) play a 

fundamental role in both basic as well as more complex associative processes (Aminoff et al., 

2007; Bar, 2004; Eichenbaum, 2000).  

Bar (2009b) proposed a link between aberrations in TN-related associative processing and 

negative mood (as well as depression). This hypothesis encompasses a bidirectional influence 

between broad associative thinking and mood. Broad associative thinking is linked to positive 

affect whereas narrow associative processing is related to negative mood. While the former 

phenomenon seems to be important in relation to protective factors (cf. the “broaden-and-build 

theory” of resilience; Fredrickson, 2004), the latter has been applied to depression and related risk 

factors especially rumination. Bar speculates that during rest MPFC hyperactivity (comprising 

also the SubG, (see Drevets et al., 2002; Greicius et al., 2007) could dramatically limit activation 

linked to associative processing in the MTLC. The main psychological outcome of this constraint 

is both a narrowed associative network and rumination, causing negative mood which in turn 

reduces the likelihood to broaden the associative links afterwards. Preliminary evidence 

supporting this hypothesis is provided by an fMRI study that showed enhanced connectivity in the 

MPFC and MTLC in depression (Berman et al., 2011). 
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Supporting the link between DMN and cognitive reactivity, the MPFC, the PCC, and the 

MTLC are all areas involved, albeit to different degrees, in memory and self-related processing 

(Andrews-Hanna et al., 2010; Cavanna, 2007; Gusnard et al., 2001), functions which are both 

related to the concept of self-schemata (Beck, 1967). In line with literature showing negative self-

evaluation after recovery (Dozois and Dobson, 2001; Seeds and Dozois, 2010), we propose that 

remitted depressed patients still possess latent negative self-schemata (e.g. negative mindset), the 

neural substrate of which is represented by increased levels of  TN functional connectivity during 

rest. Interestingly, our proposition is partially in line with a recent theory, in which the MPFC, 

ACC, amygdala and other sub-cortical regions are explicitly invoked to support negative self-

schemata in current depression (Disner et al., 2011). 

There are many similarities between proposed functions of the DMN, association-based 

mindset (Bar, 2009a), internal mentation (Buckner et al., 2008) and cognitive reactivity. Not only 

is cognitive reactivity related to negative evaluation of the self but also to problematic beliefs 

about the future (i.e, hopelessness; Alloy et al., 1997; Antypa et al., 2010; Barnhofer and Chittka, 

2010). According to the Internal Mentation Hypothesis, the TN plays a role in several functions in 

which mental simulation is required (Buckner et al., 2008), such as temporal self-projection. 

Interestingly, a recent study shows that currently depressed individuals report a specific 

impairment in generating episodic details concerning future events (King et al., 2011). Likewise, 

in remitted depressed and never depressed subjects, hopelessness, an important facet of the 

cognitive reactivity construct (Van der Does, 2002), predicts lower positive future fluency after 

negative mood induction (Williams et al., 2008). Note that hopelessness is involved in one`s 

ability to project oneself in the future and this may be associated with TN abnormalities both in 

depressed (Grimm et al., 2009) and healthy individuals (Wiebking et al., 2011). 

Despite important differences between the internal mentation (Buckner et al., 2008) and 

association-based mindset hypothesis (Bar et al., 2007), we suggest common underlying 
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mechanisms. Given the need for past information to both create associative links and mentally 

simulate new scenarios, it can be argued that both theories rely on memory and memory-related 

brain regions, such as the MTLC and hippocampus (Buckner, 2010; Perry et al., 2011). Therefore, 

the TN which may also implicate the hippocampus (Buckner et al., 2008), could provide an 

overarching influence on these associated functions. An increasing amount of data highlights the 

role of the hippocampus and memory for TN functional connectivity in the context of depression 

(Goveas et al., 2011, Hamilton et al., 2010), so that the same pattern can be expected even after 

recovery. Indeed, as remitted depressed patients continue to show impairments in most of the 

domains supposed to be embedded in this network, it is plausible that abnormal resting state 

functional connectivity in the TN plays a crucial role in this specific population.  

Providing some evidence for our position, a recent study investigated resting state TN 

functional connectivity in late-life depression before and after 12 weeks of pharmacotherapy (Wu 

et al., 2011). Contrary to the findings from a study on mid-life depression (Greicius et al., 2007), 

this research reported decreased SubG-PCC connectivity in currently depressed patients. This 

inconsistency with previous research could be due to different data collection and data analysis 

approaches, as well as to cerebrovascular peculiarities of late-life depression (Alexopoulos, 1997). 

Crucial to our proposal, pharmacological treatment improved SubG-PCC connectivity but fully 

remitted depressed individuals continued to differ from healthy participants. Despite differences in 

the direction of connectivity, this clearly supports  the notion that even after gaining recovery 

remitted depressed individuals display abnormal TN functional connectivity during rest.  

As mentioned above, remitted depressed patients, characterized by high levels of cognitive 

reactivity, do not usually show negative thinking unless they encounter stress in everyday life or 

undergo negative mood induction in the laboratory (Scher et al., 2005). A manipulation involving 

negative mood (e.g. listening to a sad music) or self-reference (e.g. recalling a sad 

autobiographical memory) appears to successfully activate latent schemata as evidenced by 
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depressotypic negative biases (Phillips et al., 2010). Therefore, rest-to-affective task transition is 

the ideal context to investigate whether individuals, with high levels of cognitive reactivity, are 

able to (de)activate the DMN. Mirroring the depression-related TN-persistence during rest-to- 

affective task transition (Grimm et al., 2009; Sheline et al., 2010) and the mindset-stimulus 

interaction specificity (Bar, 2009a), remitted depressed individuals are supposed to show both TN-

persistence and TP-deficiency. In a recent study, remitted depressed individuals (with three or 

more major depression episodes) and healthy controls underwent a blocked design fMRI study 

where sad or neutral video clips were shown (Farb et al., 2011). A remitted depressed subgroup, 

consisting of patients who relapsed within the following 18 months, showed a statistically 

significant activation of the VMPFC in response to sad stimuli in comparison with controls. 

Patients who stayed in remission could not be distinguished from controls in terms of activation in 

TN. Crucial for our proposal, VMPFC-persistence was found to predict relapse. Moreover, Hooley 

et al. (2005) reported that, compared with healthy individuals, remitted depressed individuals 

displayed substantially reduced DLPFC activation, when confronted with negative information 

(maternal critical remarks). This is in line with the idea that, as for currently depressed individuals 

(Fales et al., 2008, 2009; Holmes and Pizzagalli, 2008; Mitterschiffthaler et al., 2008; Siegle et al., 

2007),  remitted depressed individuals also still show TP-deficiency when challenged by negative 

emotions. 

Finally, there is emerging evidence showing that specific therapies for recurrent depression, 

such as Mindfulness-based Cognitive Therapy (MBCT), may elicit therapeutic effects through 

their influences on the DMN. In this context mindfulness refers to a particular way of focusing on 

the present moment characterized by full attention to internal and external contexts, non-judgment 

and openness to current experience, increased acceptance, and lower experiential avoidance. There 

is evidence for the value of this treatment as a prophylaxis for recurrent depression (Chiesa et al., 

2011). Specifically, MBCT is designed to target the strong associative links between the self and 

negative thoughts and feelings (e.g. cognitive reactivity) in order to prevent relapse (Segal et al., 



35 
 

2002). Indeed after MBCT, the relapse rate in remitted patients at high risk for recurrence has 

been shown to decrease dramatically (Ma and Teasdale, 2004). Two recent studies have found that 

mindfulness disposition is negatively correlated with cognitive reactivity and that MBCT can 

directly influence this risk factor reducing its level or deactivating its potential toxic effects on 

mental activity (Kuyken et al., 2010; Raes et al., 2009). A recent fMRI study found that resting 

state mindfulness disposition was negatively correlated with TN activation in the MPFC, PCC, 

temporal cortex, as well as subcortical areas, such as amygdala, hippocampus, and thalamus in 

healthy participants (Way et al., 2010). Interestingly, the authors suggest that lower TN activation 

in people with higher levels of mindfulness may reflect weakened links between thoughts, 

feelings, and the self, supposed to be crucial in dormant negative schemata. After mindfulness 

training, there appears to be a mindfulness-linked improvement in TN-TP balance in response to 

sadness provocation (Farb et al., 2010). Following mindfulness training vs. no training, 

participants displayed increased activation in the DLPFC and SubG as well as increased 

deactivation in the PCC, left PFC and IFG. Thus, not only does mindfulness seem capable of 

targeting TN components by reducing its rest-related activation but also by ameliorating 

aberrations during rest-to-affective task transitions. 

 In sum, there are several findings consistent with our proposal linking cognitive reactivity with 

the DMN. First, remitted depressed individuals reporting high levels of cognitive reactivity show 

negative self-views as well as reduced positive future prospection. Both concepts of self-schemata 

and future self-projection have been attributed to resting state TN activity (Bar, 2009a; Buckner et 

al., 2008). This leads to the proposal that remitted depressed individuals show increased TN 

functional connectivity similar to currently depressed patients. On the basis of this notion we 

propose that remitted depressed individuals will display increased TN connectivity during rest, 

which supports the idea of latent negative self-schemata, given the role of TN in internally-

oriented attention (Fox et al., 2005), self-related processing (Gusnard et al. 2001), and associative 

processing (Bar et al., 2007). Additionally, decreased TP connectivity during rest and related 
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reduced externally-oriented attention might fail to provide exogenous information which may 

disconfirm and update negative self-schemata. Second, mirroring the mindset-stimulus interaction 

specificity, remitted depressed individuals are predicted to resemble currently depressed 

individuals in showing aberrant rest-to-affective task transition. Both TN-persistence and TP-

deficiency after emotional challenge have been reported in comparison with healthy people, 

supporting our proposal that depression-like DMN impairments clearly persist even after 

recovering. Third, mindfulness-based interventions appear capable of both reducing TN regions 

activity in rest and improve rest-to-affective task imbalance. 

In addition to our previous predictions about (i) enhanced TN functional connectivity during 

rest, (ii) increased TN-dominance over TP during rest, (iii) increased TN-persistence and (iv) TP-

deficiency, we predict that (v) these patterns will be positively correlated with cognitive reactivity 

measures (as well as rumination and attentional impairment) and (vi) that this abnormal DMN 

activity will predict, partially via increased cognitive reactivity, future depressive relapse. 

5  Conclusion and Future research 

In this paper, we introduced a framework which integrates cognitive and neurobiological 

factors involved in recurrent depression. In particular we propose that specific forms of DMN 

system dysregulation lead to cognitive deficits that make remitted individuals more vulnerable to 

the onset of future episodes of depression. We argue that three well-established cognitive risk 

factors – rumination, poor attentional control, and cognitive reactivity, which have been studied in 

isolation, have their roots in the  TN dominance and hyper-connectivity. These TN features are 

associated with excessive and maladaptive self-focus and subsequent difficulties in both switching 

to an extrospective perspective during rest and effectively transitioning into tasks, impairing TP 

functioning. We suggest that remitted depressed individuals still show aberrant DMN, and that 

DMN dysfunction may represent a residual neural “depressive scar”, which is linearly influenced 

by the amount and severity of previous depressive episodes (Wichers, et al., 2010). At the same 
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time the DMN is proposed to be a good predictor of recovery-related cognitive risk factors as well 

as future depressive recurrence. Although much more research is needed, initial support for our 

model comes from a number of sources. First, rumination has been connected in healthy and 

depressed subjects to increased TN connectivity and TN-dominance over the TP during rest 

(Berman et al., 2011; Hamilton et al., 2011, Zhu et al., 2011). More specifically, midline 

structures, such as MPFC, SubG and PCC, play a crucial role in problematic self-related 

processing such as rumination. Second, attentional control failures, considered to be crucial in 

depression recurrence (De Raedt and Koster, 2010), are linked to inappropriate DMN rest-to-task 

transitioning (i.e. TN-persistence and TP-deficiency), mainly guided by the PCC (Eichele et al., 

2008), which might be related to the internal-external switch of our attention resources. Third, 

cognitive reactivity, defined as the ease with which negative latent schemata are activated by 

appropriate triggers, is thought to be neurobiologically subserved by abnormally increased rest-

related TN connectivity (particularly between the MPFC, the PCC and the 

hippocampus/parahippocampus) as well as by an aberrant DMN rest-to-task transition in the 

emotional context.  

As some of the predictions are quite tentative, we now note several general restrictions that 

apply to our framework. First, it is noteworthy that there still is ongoing debate about different 

ways to conceptualize and analyze rest-related task-independent activity. A clear taxonomy of 

different approaches to investigate resting state is still lacking and a clear consensus on the best 

way to analyze resting state has not been reached. For instance, studies concerning resting brain 

activation, rest-related functional connectivity, as well as rest-stimulus interaction, sometimes give 

inconsistent results likely due to methodological differences (Hasler and Northoff, 2011; 

Whitfield-Gabrieli and Ford, 2012). Second, the TN-TP anti-correlation is still a topic of debate 

(Cole et al., 2010). For instance, some authors have argued that apparent antagonism between 

DMN subcomponents is a technical and methodological artifact (Murphy et al., 2009), whereas 

most of studies support the idea that there actually is antagonism of function between these two 
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DMN sub-systems (e.g. Chai et al., 2012; Fox et al., 2009; Liang et al., 2012; Kelly et al., 2008; 

Margulies et al., 2007). However, the situation is fluid and views may change due to emerging 

knowledge on TN-TP switching. Third, based on new general developments as well as specific 

research in depression, future understanding of the DMN in recurrent depression can provide more 

specific links of different cognitive vulnerability factors to some aspects of this network. Finally, 

it is important to acknowledge that depression is a complex disorder that can be the outcome of a 

wide variety of biological, psychological, and environmental factors and the same obviously holds 

for recurrent depression (Monroe and Harkness, 2011). For example, in most patients increased 

emotional reactivity is observed, leading to the so called depressive interlock loop (Teasdale and 

Barnard, 1995), characterized by increased coupling between negative thoughts, emotion, bodily 

sensations and behavior, whereas other patients show blunted affect and decreased reactivity (see 

DSM-IV-TR, APA, 2000). Therefore, we argue that specific symptom clusters should be taken 

into account in future research. 

In keeping with this, a change from a syndrome-driven towards a process-based perspective in 

conceptualizing mental disorders may provide substantial progress in the development of our 

understanding of psychopathology (Borsboom et al., 2011). For instance, despite notable 

differences, both depression and schizophrenia share similar DMN aberrations, such as TN 

hyperconnectivity, TN-persistence, and TN-TP abnormal interplay (for a review Whitfiled-

Gabrieli and Ford, 2012). This clearly raises the question about how specific these default brain 

aberrations may be for each single disorder. It may be that at a general level TN and TP subserve 

respectively internal and external focus, as we propose in our model, so that mentally-affected 

individuals showing DMN aberrations are actually characterized by sub-optimal capability of 

switching between different attentional focuses. However, what still remains unclear is the process 

through which different forms of psychopathology showing partially similar neurobiological 

patterns are characterized by different symptom profiles related to the same basic processes, such 

as dominant internally-oriented attention (e.g. self-focus in depression vs. paranoid ideation in 
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schizophrenia). Arguably, a dimensional approach could overcome such problem in that certain 

psychological processes could be fruitfully investigated per se, both in clinical and non-clinical 

samples (Whitfield-Gabrieli and Ford, 2012). Investigating more basic processes one by one, 

rather than taking into account an entire and complex syndrome, could indeed enhance 

understanding of the mechanisms that are crucial in pathological phenotypes, such as the interplay 

with other networks (Hamilton et al., 2012; Menon, 2011). 

Although initial evidence for our framework is promising, more systematic research is required. 

Below we provide an agenda for future research goals derived from  the current framework. The 

very core of our framework is that remitted depressed individuals still show most depression-

related DMN aberrations, which can account for residual symptoms during recovery as well as 

future depressive recurrence. Hence, the ideal context to test our predictions is by comparing 

DMN system activity in (medication-free) currently depressed, never depressed and remitted 

depressed individuals (reporting a different amount of past depressive episodes). To do this, both 

cross-sectional and longitudinal studies are required. Therefore, as a first step, we provide an 

overview of important theoretical predictions (Table 1). Afterwards, longitudinal studies which, 

taking into account all three risk factors at the same time, investigate the potential role of the 

DMN in predicting future depressive recurrence appear to be the most appropriate further step. In 

such studies remitted depressed and never depressed individuals are suggested to be recruited and 

assessed at baseline and follow-ups either with self-report questionnaires and clinician-based 

interviews. DMN aberrations are thus expected to predict future major depression in the clinical 

group, partially via cognitive risk factors, whereas this pattern is predicted not to emerge in never 

depressed individuals. Moreover, we speculate that the DMN contribution to explaining future 

recurrence might be an overarching predictor which significantly reduces the unique predictive 

power which each risk factor has singularly. Additionally, the proposed links between cognitive 

risk factors and DMN may be organized in a hierarchical way so that vulnerability factors do not 

all predict future recurrent depression to the same degree. Rumination could be the main output of 
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dysfunctional DMN with both cognitive reactivity and impaired attention control as byproducts of 

such maladaptive self-focus; but attentional process might also be the core vulnerability factor. 

Consequently, mediation models appear to be the most appropriate way to map the neural pattern 

(DMN), psychological functioning (internally-oriented attention) and cognitive deficits (risk 

factors) in a consistent frame capable of explaining recurrence in depression. 

In conclusion, the current analysis motivates a focus on interrelated networks and resting state 

activity instead of BOLD signal in specific brain structures per se. This could indeed be a 

paradigmatic shift that enhances our insight in the relationship between depression vulnerability 

and psychological processes, because this relationship implies an interplay between many 

different brain functions. Therefore, an approach taking into account the associative nature of 

mental processes and brain functioning provides a promising avenue for future research on inter-

individual differences in vulnerability and resilience. 
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Table 1. Theoretically-derived research goals 

 

Risk factor Predictions Research Paradigm 
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ro

ss
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C
R,

 N
D

 a
nd

 R
D

 

 

Rumination 

TN increased functional connectivity rs-fMRI 

TN-dominance over TP rs-fMRI 

Increased internally oriented attention rs-fMRI with random internal and external attentional 
probes 

Impaired Attentional Control 

Rest-to-Task transition: 

• TN-persistence 

• TP-deficiency 

Rest period followed by an attention demanding task 
using non-emotional material 

Cognitive Reactivity 

TN increased functional connectivity rs-fMRI 

TN-dominance over TP rs-fMRI 

Rest-to-Task transition: 

• TN-persistence 

• TP-deficiency 

Rest period followed by an attention demanding task 
using emotional material. Outside the scanner both 
self-report questionnaires and experimental mood 
manipulation are suggested to ascertain cognitive 
reactivity 

CR – currently depressed; ND – never depressed; RD – remitted depressed;  rs-fRMI - resting state fMRI; TN – Task Negative; TP – Task Positive 



64 
 

Figure Caption 

 

Figure 1: Theoretical framework – Default Mode Network and cognitive risk factors 

 

Figure 2: Spatial distribution of BOLD signal fluctuations at rest, representing major areas of 
the anticorrelated task negative (TN; green-blue) and task positive (TP; yellow-orange) networks.  
MPFC: medioprefrontal cortex; PCC: posterior cingulate cortex; MLTC: mediolateral temporal 
cortex; LPC: lateral parietal cortex; DLPFC: dorsolateral prefrontal cortex; FEF: frontal eye fields; 
IPC: inferior parietal cortex; SMAs: supplementary motor areas. Reproduced and adjusted with 
permission from Fox et al. (2005) (permissions by Dr. Michael D. Fox and PNAS, copyright 2005, 
National Academy of Sciences, U.S.A.) 

 

Figure 3: Intrisic anticorrelation between task negative (TN) and task positive (TP) networks 
in the brain of a single subject during resting state. Posterior cingulate cortex/Precuneus (PCC; 
yellow) and medial prefrontal cortex (MPFC, orange) are set as TN seed regions, while 
intraparietal sulcus (IPS; blue) as TP seed region. Both correlations (positive values) and 
anticorrelations (negative values) are shown for single run and thresholded at r = 0.3. Reproduced 
with permission from Fox et al. (2005) (permissions by Dr. Michael D. Fox and PNAS, copyright 
2005, National Academy of Sciences, U.S.A.) 

 

Figure 4: Rest-to-Task transition in never-depressed and depressed individuals 
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