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Abstract—Advanced computer architectures rely mainly on compiler optimizations for parallelization, vectorization, and pipelining.

Efficient code generation is based on a control dependence analysis to find the basic blocks and to determine the regions of control.

However, unstructured branch statements, such as jumps and goto’s, render the control flow analysis difficult, time-consuming, and

result in poor code generation. Branches are part of many programming languages and occur in legacy and maintenance code as well

as in assembler, intermediate languages, and byte code. A simple and effective technique is presented to convert unstructured

branches into hammock graph control structures. Using three basic transformations, an equivalent program is obtained in which all

control statements have a well-defined scope. In the interest of predication and branch prediction, the number of control variables has

been minimized, thereby allowing a limited code replication. The correctness of the transformations has been proven using an

axiomatic proof rule system. With respect to previous work, the algorithm is simpler and the branch conditions are less complex,

making the program more readable and the code generation more efficient. Additionally, hammock graphs define single entry single

exit regions and therefore allow localized optimizations. The restructuring method has been implemented into the parallelizing compiler

FPT and allows to extract parallelism in unstructured programs. The use of hammock graph transformations in other application areas

such as vectorization, decompilation, and assembly program restructuring is also demonstrated.

Index Terms—Program transformation, structured programming, compilers, optimization, parallel processing, software/program

verification, correctness proofs.
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1 INTRODUCTION

A structured program is a block-oriented program in
which each block of statements has a single entry, a

single exit, and the blocks are properly nested. Using block-
oriented control constructs, such as while and if-then-else
statements, most imperative languages enforce a structured
style. However, branches such as jumps and goto’s,
interacting with block-oriented statements, make these
statements unstructured, because there is no single locus
of control.

The work presented here describes a method to convert

programs with unstructured branches into structured form.

The motivation is that structuring is necessary for a

compiler to perform optimizations such as parallelization

and vectorization. To this end, we present a new restructur-

ing algorithm which limits code expansion and maintains a

simple control structure. The algorithm eliminates all

branches, maintains the basic block lengths, preserves

structured loops and if-tests, and introduces only a few

logical variables. The new approach is based on the creation

of nested hammock graphs. These single-entry, single-exit

graphs create well-defined nested control regions which can

be separately optimized and parallelized. The method has

been implemented in a parallelizing compiler and was able

to generate a significant number of extra parallel loops.

Furthermore, examples illustrate that the resulting code is
generally more readable.

This research grew out of the need to parallelize and
vectorize unstructured programs. The resulting restructur-
ing method is simple, implementable in a compiler,
provably correct, and generates a less complex control
flow. A major benefit is that hammock graph restructuring
builds a hierarchy of structured code regions. This enlarges
the granularity and makes global code optimization
possible, such as loop transformations, data locality en-
hancements, and other techniques used to find parallelism
[14], [21], [38]. It is well known that unstructured code such
as irreducible loops, i.e., loops with more than one entry
point [16], may block optimization because there is no
information on the control flow [15]. Existing front-end
compiler methods are directed towards loop normalization
[3] and goto elimination [13]. Back-end methods repair
irreducible loops by node splitting (replication) and
DJ-graphs [19], [32]. The present method is a front-end
approach which repairs unstructured regions by creating
hammock graph structures in the control flow graph.

Hammock graph restructuring operates on the control
flow graph of the source code and eliminates all branches
while minimizing the number of new control variables and
associated control expressions. As a consequence, the basic
blocks keep the same length as in the original program and
the branching conditions maintain the same complexity.
The conversion of the program is based on three elementary
transformations, namely, the backward copy, forward copy,
and cut operations. The transformations reorganize the
program into a set of nested hammock graphs, each having
a single entry and a single exit. As an example, consider the
program in Fig. 1. The loop created by goto 100 has two
entries and is therefore irreducible. After a backward copy
Fig. 1b and a simple if-conversion Fig. 1c, the resulting
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program contains two hammock graphs. In contrast to the
original program Fig. 1a, the structured program enables

optimizations which are otherwise impossible due to
lacking control flow information. For example, the while
loop may be converted into a parallel loop subject to a

dependence analysis [38]. Further examples of optimization
are given in Section 5.

The correctness of the three transformations has been

proven using an axiomatic proof rule system. The remain-
der of this text is organized as follows: In Section 2,
definitions and a basic corollary are given. The methods for

converting branches into block structured control state-
ments are developed in Section 3. Here, program transfor-
mations for single branches, multiple interacting branches,

and branches interacting with structured control statements
are developed. The correctness of the program transforma-
tions is formally proven in Section 4 using axiomatic proof

rules for branches. A number of experimental results in the
area of parallel processing are reported in Section 5. In

Section 6, the related work is described and compared with
the proposed approach. Concluding remarks are given in
Section 7.

2 DEFINITIONS

A program consists of sequential statements and control
statements. During the execution, a sequential statement is
followed by the next statement in the program whereas the

statement following a control statement is selected by a
conditional jump. The statement ordering during the
execution of the program is described by the control flow

graph.

Definition 1: Control flow graph of a program. The control

flow graph of a program, CFG ¼< N;E; n0; ne > , is a

directed graph < N;E > in which the nodes N represent the

statements and the edges E indicate the conditional transfer of

control between the statements. There is a path from node

n0 2 N to all other nodes, and all paths end with node ne 2 N .

n0 is called the initial node and ne is called the terminal node.

A path in the control flow graph traversing nodes ni, e.g.,
fn1; n2; � � � ; nkg is called an execution trajectory [33]. The

control flow graph represents the possible execution
trajectories. In the control flow graph of a program, regions
with a single entry and a single exit are hammock graphs.

Several formal definitions for hammock graphs exist, e.g., see
[14], [20]. Here, the definition from Ferrante et al. [14] is used.

Definition 2: Hammock graph. Let CFG ¼ < N;E; n0; ne >
be a control flow graph and consider a subgraph H ¼ < N 0;
E0; u; v > with a distinguished node u in H and a
distinguished node v not in H such that 1) all edges from
ðCFG�HÞ to H go to u, 2) all edges from H to ðCFG�HÞ
go to v.H is called a hammock graph. Node u is called the entry
node and v is called the exit node of H.

Fig. 2 shows a program, the control flow graph and a
hammock graph. This example will be used to illustrate the
key steps of the algorithm.

The single-entry, single-exit property of hammock graphs
allow us to confine the restructuring region. Since a
hammock graph transformation doesn’t generate side effects
on the rest of the program, the following corollary holds.

Corollary 1. A correct transformation of the control flow in a
hammock graph maintains the correctness of the program.

Hereby, we remind that that a restructuring transforma-
tion does not depend on data outside the hammock graph
and that code duplication and new variables as a result of
the transformation are invisible for code outside the
hammock graph.

Ill-structured code is identified by the type and interac-
tion of the control statements. There are two types of control
statements: block-oriented statements and branches.

Definition 3: Block-oriented and branch statements. A
block-oriented control statement governs the execution of a
sequential block of statements delineated by language depen-
dent markers, e.g., braces in the C-language or do, enddo in
Fortran. Block-oriented statements can be nested, and the
nesting level of a statement is the number of block-oriented
statements guarding its execution. A branch control
statement is a statement of the type: if (<bcond>) goto

<label>, where <bcond> is the branch condition and
<label> identifies the target statement. The goto statement
is called the branch, and the <label> is called the target.
This definition includes unconditional jumps, and statements
with implicit targets, such as stop and return.

Definition 4: Branch types. A branch is classified as
backward or a forward if its target occurs, respectively,
before or after the branch in lexical order. The lexical order is
defined as the statement ordering, also called the program
ordering [2], [22]. A branch in a block-oriented statement is
called incoming or outgoing when the branch and its target
are not in the same block and the target is respectively inside or
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Fig. 1. (a) Irreducible loop with two statements S1, S2, (b) after
backward copy, (c) after single branch to if-conversion. Fig. 2. A programand its control flow graph. The subgraph boundedby the

dashed line is hammock graph HG27 with entry node 2 and exit node 7.



outside the block. For example, a branch in a while-loop with a
target outside the loop body is an outgoing branch.

Definition 5: Branch order. Let if be a forward branch. If no
forward branch lexically occurs before if , then branch if is
called the initial forward branch. Let ib be a backward branch.
If no backward branch lexically occurs before ib, then branch ib
is called the initial backward branch.

Definition 6: Structured control statement. A control
statement p is structured if it is block-oriented and each block
of statements controlled by p is a hammock graph.

Note that, according to this definition, a block-oriented
statement such as a loop or an if-then-else statement is
structured only if the loop body or the if-blocks are
hammock graphs. For example, the block-oriented
if-statement in Fig. 2 is not structured because the inner
if-statement jumps from the else part to the then part. In
general, whenever a block contains an incoming jump, the
block becomes unstructured.

Definition 7: Control graph of a control statement. Let
CFG ¼< N;E; n0; ne > be a control flow graph and let node
p 2 N represent a control statement. The control graph of p is
the subgraph CGp ¼< �;�; p; q > , where q is defined as
follows: 1) If p is a block-oriented control statement, then q is
lexically the last node of the block of statements controlled by p;
2) if p is a branch, then q is the target node of p. Furthermore
� ¼ faja 2 N and a is a statement between p and q in the
source program, including p and q g and � ¼ fða; bÞja; b 2 �
and ða; bÞ 2 Eg.

Informally, the control graph CGp describes the region of
the program directly controlled by statement p. Fig. 3 shows
the control graphs of three branches. In Fig. 2, the control
graph of the if-then-endif statement is the nodes 2-7, i.e.,
HG27, while the control graph of the if-goto statement is the
nodes 3-6. Control graphs may be disjoint, fully nested or
they may interact.

Definition 8: Interacting control statements. Let CGi0 ¼
< �;�; i0; ie > and CGm0

¼< �0;�0;m0;me > be the con-
trol graphs of two control statements i0 and m0, where
i0 6¼ m0. If the set of nodes � and �0 partially intersect, i.e.,
ð� \ �0 6¼ �Þ ^ ð�0 6� �Þ ^ ð� 6� �0Þ, then control statements
i0 and m0 interact. If i0 interacts with m0 and m0 interacts
with control statement k0, then i0 and k0 interact indirectly.

Interacting control statements create an indeterminate
control flow which at compile time prevents optimizing
loop transformations because it is difficult to determine the
dataflow and the dependencies. A minimal hammock graph
of a branch is found by including all control graphs which
interact directly or indirectly with the control graph of the
branch.

Definition 9: Minimal hammock graph of a branch. Let nb

be a branch statement in a program with control flow graph
CFG ¼< N;E; n0; ne > . The minimal hammock graph of
nb, denoted MHGnb

¼< N 0; E0;m0;me > , is the smallest
hammock subgraph of CFG, containing nb.

The minimal hammock graph MHGnb
of a branch nb

defines its region of control. An algorithm to find the
minimal hammock graph of a branch statement nb is given
below.

Algorithm 1

(find the minimal hammock graph of branch nb)

input: nb – a branch;

output: MHGnb
– the minimal hammock graph

containing nb.

{ MHG ¼ CGnb
;

while (9 branch ib j ðCGib \MHG 6¼ �Þ ^
ðCGib 6� MHGÞ ^ ðMHG 6� CGibÞÞ
MHG ¼ MHG [ CGib ;

return(MHG);

}

In this algorithm, the while condition selects the
branches ib of which the control graph CGib partially
intersects MHG. Applying the algorithm to the if-statement
at line 5 in Fig. 3 gives iteratively statements (nodes)
f2� 5g [ f1� 4g [ f3� 6g ¼ f1� 6g.
Definition 10: Structured program and control flow graph.

If all control graphs of a control flow graph are structured, i.e.,
are hammocks, then the contro flow graph is called complete
hammock and the program is well-structured.

3 THE CONVERSION OF BRANCH STATEMENTS

The block-oriented control structures used are if-then-else-
endif, while, and repeat. In this section, branches are
converted into structured control statements.

A single branch. A single branch is a branch not
interacting with other branches or block-oriented control
statements. As such its control graph is a hammock graph.
A single forward branch is replaced by a block-if and a
single backward branch is converted into a while or a repeat
statement. In this way, the branch is replaced by a
structured control statement.

Multiple interacting branches. Interacting branches are
restructured by type: first backward branches are converted
into loops containing no incoming branches. In the process
forward branches out of a loop are replaced by an “exit”
statement followed by a jump to the target. This is repeated
until no backward branches remain. Next the forward
branches are converted one by one into structured
if-statements.

ZHANG AND H. D’HOLLANDER: USING HAMMOCK GRAPHS TO STRUCTURE PROGRAMS 233

Fig. 3. An example program (a) and its control flow graph (b). The three

subgraphs in (b) are the control graphs of respectively statements 1, 3,

and 5. Graph (c) is a CFG where the nodes are vertically aligned

according to the statement order in the program.



Branches interacting with block-oriented statements. A

programing language usually contains block-oriented con-

trol statements such as do loops or if-then-else statements.

When a block-oriented control statement interacts with a

branch, it prevents hammock graph restructuring. As an

example the if statement at line 6 in Fig. 2 interacts with the

block-if statement. Therefore, first, the block-oriented

if-statements are converted into branches. Then, branches

out of loops are cut into exit statements inside the loop and

conditional branches outside the loop. This makes the loops

single-entry, single-exit hammocks. Next, the branches are

removed.

3.1 Algorithm Outline

The hammock graph restructuring algorithm is based on

three types of code transformations, respectively, for out-

going, backward, and forward branches.
The outline of the algorithm is as follows:

1. Preprocessing. Replace if-then-else statements inter-
acting with branches by if-goto statements.

2. Single branches. Replace single branches by struc-
tured block-if or loop statements.

3. Outgoing branches. Replace an outgoing branch in a
loop by an exit statement and put a conditional jump
to the original target after the loop. This is the Cut
transformation (Algorithm 2).

4. Backward branches. For each backward branch,
determine the minimal hammock graph enclosing
the branch. Starting with the initial backward branch
ib in this graph, convert each backward branch into a
loop and move the targets of incoming branches
outside the loop body (Algorithm 3). Cut each
outgoing forward branch in the loop into an exit-
jump followed by a conditional jump to the target of
the branch

5. Forward branches. For each forward branch, deter-
mine the minimal hammock graph enclosing the
branch. Starting with the initial forward branch,
convert each forward branch into a structured
if-statement (Algorithm 4).

After removal of the branches, the structuring may offer

extra opportunities to remove dead code (e.g., see Fig. 7e) or

to beautify the result, e.g., by using alternative looping

constructs. This could be taken care of in a postprocessing

step, based on specific compiler optimizations requested by

the user. The following subsections present these techni-

ques in more detail.

3.2 Cut Transformation

Loops with outgoing forward branches are unstructured.

Therefore the Cut conversion is applied: 1) a new variable

bri is used to register the state of the branch condition and

then the loop control expression is modified using the

variable bri, 2) the long jump is cut into two parts, one is

within the loop and jumps to the end of the loop using the

exit statement, the other is located outside the loop and

conditionally jumps to the original target. Algorithm 2

realizes this transformation.

Algorithm 2 (elimination of outgoing branches)

input: loop_nest – a loop nest with outgoing branches;

output: loop_nest – a loop nest without outgoing branches.

Cut(loop_nest){

for l ¼ the innermost to the outermost loop

{ n ¼ the number of exit branches in loop l;

Before loop l, insert:

1. fpi = .false. ð1 � i � nÞ
For each outgoing branch i with guard condition Bi

ð1 � i � nÞ:
{ replace branch i to target ti by:

2. if (Bi) then {fpi =.true.; exit }

} After loop l insert:

3. if (fpi) goto ti (1 � i � n)

}

}

3.3 Backward Copy

Let ib be an arbitrary backward branch. Principally, a
backward branch can be represented by a repeat-statement
if there are no incoming branches into the loop body. An
incoming branch prevents the backward branch from being
directly converted into a loop. Since the body of this loop is
executed at least once, we unroll the loop one time and
modify the repeat loop into a while loop. The labels of
incoming branches are moved out of the loop. As Fig. 4
illustrates, after unrolling the loop, the incoming branches
n0 and ne are moved outside the loop and the backward
branch is converted into a while-loop. This process is called
the Backward copy. However, we cannot take an arbitrary
backward branch and use Backward Copy in order to
remove this branch. For example, suppose in Fig. 4 we
convert ne first instead of ib into a repeat-loop. Because loop
overlapping is not allowed, ib cannot be directly converted
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Fig. 4. Illustration of the backward branch elimination. (a) The minimal

hammock graph MHGib , initial backward branch ib, beginning and end

nodes n0 and ne. (b) After converting ib into a while statement, there are

two nested hammock graphs: the body of the while loop, B, and the

blocks {A, B0, do while and C}.



into either a repeat-loop or a while-loop. When the initial
backward branch is converted first, there are no internal
backward branches going out of the loop.

The loop_body contains only target labels of internal
branches. Labels used as targets of both internal and
external branches are renamed, and the internal branches
are redirected to the new internal labels.

When a backward branch is converted into a loop, the
only remaining outgoing branches are forward branches.
These are removed using the Cut transformation. After
removing the first initial backward branch, the next initial
backward branch is selected and removed, and so on, until
no backward branches remain. The steps are shown in
Algorithm 3 (Fig. 5).

3.4 Forward Copy

At this point, the backward branches are converted into

loops without incoming branches by Algorithm 3. Outgoing

branches are eliminated using exit statements. As a

consequence, the only remaining branches are forward

branches branches both of whose end points appear at the

same nesting level. A forward branch transfers control to

the target or to the next statement, depending on a Boolean

condition. The first trajectory is called the true_part, the

other trajectory is called the false_part. Forward branches are

eliminated starting with the initial forward branch. Then,

for each initial branch if , the surrounding minimal hammock

graph is determined and the initial branch is structured.
Given the initial forward branch if , the minimal

hammock graph MHGif ¼ < N;E; if ; ie > contains all

forward branches interacting with if (see Fig. 6). The

statements on the path between the target of if and the

terminal node ie are called the shared statements in MHGif .

The shared statements are determined as follows: Let CGif

be the control graph of forward branch if . Furthermore,

let J be the target of the branch if , then one has

shared statements ¼ ðMHGif � CGif � fiegÞ [ J . Branch if
is converted into a block-if where the shared statements are

duplicated into the true part and the statements inside the

minimal hammock graph MHGif are moved into the false

part. The following algorithm eliminates forward branches

in a program where backward branches and outgoing

branches have been eliminated.

Algorithm 4 (elimination of forward branches)

input: CFG – a flowgraph with only forward branches;

output: CFG0 – a flowgraph without branches.

Forward_copy(CFG) {

{ while (there exists an initial forward branch if )

{ Find the minimal hammock graph of if , MHGif ,

with end node ie;

if (CGif interacts with other forward branches)
{ /* a forward-copy transformation is applied */

true_part = the shared statements =

ðMHGif � CGif � fiegÞ [ J ;

false_part = MHGif � fif ; ieg;
MHGif is replaced by:
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Fig. 5. Algorithm 3: Elimination of backward branches.

Fig. 6. (a) The minimal hammock graph MHGif . if is a forward branch

whose target is J, and ie is the terminal node. (b) The shared statements

are duplicated into the true part of if . The brace indicates the shared

statements.



1. if (B) then true_part else false_part endif;

} /* B is the Boolean expression of if .*/

else /* a single forward branch */
{true_part = MHGif � fif ; ieg;
MHGif is replaced by:

1. if (:B) then true_part endif; fieg;
}

Eliminate_forward(true_part);

Eliminate_forward(false_part);

}

}

Example. The algorithm is applied to the hammock graph
H27 of Fig. 2. Fig. 7 shows the successive steps:

1. First, the block-if is converted into branches
because the then-part contains an incoming
branch.

2. Next, the backward copy creates a while loop
without incoming branch.

3. The cut transformation converts the outgoing
branch into an exit. Since the branch and while
loop have the same successor, no logical variable
is necessary.

4. The forward copy removes the last branch. The
shared statements in the then-part are eliminated
due to dead code removal.

5. Finally, the compiler replaces the single while-
loop iteration by a block-if statement.

In the following section, the correctness of the basic
hammock graph transformations is formally proven
using axiomatic proof rules.

4 CORRECTNESS PROOF OF THE ELEMENTARY

PROGRAM TRANSFORMATIONS

The elementary transformations used to construct ham-
mock graphs are limited to the Forward copy, the Backward
copy, and the Cut transformation. These transformations
operate on a branch by branch basis and each handles a
particular type of interacting branch. Since no other
transformations are used, the basic cases cover all branches.
In this section, the correctness proofs of these transforma-
tions are developed based on an axiomatic program
specification [18], [17], [24], [1]. The formulas of the
inference system have the form fPg S fQg, where S is a
block of statements representing a hammock graph.
Branches are either within S or are expressed explicitly. P
is a precondition and Q is a postcondition. The proof rules
for structured statements are given in Table 1. Unstructured
statements containing a goto to label L have the form:

fPg if ðBÞ goto L fQg fL : Rg: ð1Þ

There are two postconditions: fQg ¼ fP ^ :Bg for the
normal exit and fL : Rg ¼ fL : P ^Bg for the jump to the
statement labeled L : . If the computation state satisfies
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Fig. 7. Restructuring steps of the unstructured code inside the hammock graph HG27 in Fig. 2. (a) Conversion into branches, (b) backward copy,
(c) cut outgoing branch, (d) forward copy, (e) unconditional exit optimization.



precondition P , then on a normal exit, Q is asserted, while
on the jump goto L, the computation state satisfies R. In
addition, R is an invariant condition which is satisfied for
all computing states reaching label L. The inference rules
for goto’s are given in Table 2.

The case goto L is treated as if ðtrueÞ goto L. Applying
the goto rule, this gives: fPg goto L ffalseg fL : Pg.
Definition 11: Semantic equivalence. Let fPg be an arbitrary

precondition. S and S0 are programs, and fPg S fQg,
fPg S0 fQ0g. The program S is semantically equivalent to
the program S0, if and only if Q ¼ Q0.

Definition 12: Invariant condition. An invariant condition U
is a predicate at label L in the program such that all incoming
computation states satisfy U . If an incoming computation state
s at L satisfies predicate R, then one has R ) U .

Theorem 1: Backward copy. The Backward copy transforma-
tion preserves the semantics of the program.

Proof. A Backward copy is applied when there exists a target
for an incoming branch within the control region of an
initial backward branch, such as label L in the program
shown in Fig. 8a. Denote L the target of an incoming
branch. The Backward copy converts the program (a)
(Fig. 8) into (b) (Fig. 8). Suppose fPg (Fig. 8a) fQg and
fPg (Fig. 8b) fQ0g. Let U and R2 be the invariant
conditions respectively before S1 and after S2 in
program (a) (Fig. 8). Now, location L has two or more
incoming states: the state after S1 and the state of an

arbitrary incoming branch to target L. Let R1 be a
condition which is satisfied by those states. Hence,
fUg S1 fR1g, fR1g L : S2 fR2g. Furthermore, U is an
invariant condition at the label L1 and all incoming
states must satisfy U , therefore R2 ^B ) U and P ) U .
The proof rules of the program (a) (Fig. 8) are given in
Fig. 9. With P ) U and R2 ^B ) U , the consequence
and the forward labeling rules give: fPg L1 : S1L : S2

if ðBÞ goto L1 fR2 ^ :Bg. Hence, fQg ¼ fR2 ^ :Bg.
Using U and Ri as defined in Fig. 9, rewriting the
clauses and applying the axiomatic proof rules, program
(b) (Fig. 8) is derived as shown in Fig. 10: Since the
postcondition of program (b) (Fig. 8b), Q0 ¼R2^ :B ¼ Q,
the transformed program is semantically equivalent to
the original. Furthermore, the incoming target is moved
out of the loop. tu

Theorem 2 (Cut transformation). The Cut transformation

preserves the semantics of the program.

Proof. The Cut transformation breaks a branch out of a loop
into two branches. The first branch just exits the loop, the
second is located after the loop and transfers the control
to the target of the original far jump. In this way, the
program (a) (Fig. 11) is transformed into (b) (Fig. 11). To
prove that the transformed program (b) (Fig. 11) is
semantically equivalent to the program (a) (Fig. 11), let
fPg (Fig. 11a) fQg and fPg (Fig. 11b) fQ0g. Assume U is
an invariant condition before the loop. Furthermore,
define Ri, i ¼ 1; . . . ; 3, such that fU ^B1g S1 fR1g, fR1 ^
:B2g S2 fUg and fU ^ :B1g S3 fR3g. Because U is an
invariant condition before the loop, one has fPg ) fUg.
Now, the program (a) (Fig. 11) is annotated with the
assertions shown in Fig. 12. Hence, the postcondition at
L2 is Q ¼ R3 _R1 ^B2.

In program (b) (Fig. 11), the instruction exit is
introduced. Semantically, this instruction modifies the
postcondition of the dowhile construct, fU ^ :B1g, by
adding the disjunction of the exit condition, Re, giving
rise to the new postcondition, fU ^ :B1 _Reg. A new
logical variable br2 is introduced to register the state of
the Boolean expression B2. br2 is outside the state space
of the original program. Therefore, neither S1 nor S2 nor
S3 change the state of br2, i.e.,

fRi�1g Sk fRig ) fRi�1 ^ br2g Sk fRi ^ br2g; ð1 � k � 3Þ:
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TABLE 1
Axiomatic Proof Rules for Structured Control Statements

TABLE 2
Inference Rules for Labels and Goto’s

Fig. 8. Elementry backward copy transformation: (a) backward branch,

(b) do while conversion.



Using the proof rules of program (a) (Fig. 11), program (b)
(Fig. 11) can be derived next (see Fig. 13). Lw is a
placeholder for the exit-node of the while-loop.

The postcondition of program (b) (Fig. 11) is
Q0 ¼ R3 ^ :br2 _R1 ^B2 ^ br2. Since the branch variable
br2 can take either value :true: or :false:, depending on
the program, one has Q0 ) R3 _R1 ^B2. Therefore,
Q0 ) Q and the transformation is valid. tu

Since a repeat statement can be represented by a while
statement, it can be proven similarly that the Cut transfor-
mation in the case of a repeat statement is valid.

Theorem 3: (Forward copy). The Forward copy transformation
preserves the semantics of the program.

Proof. Consider program (a) (Fig. 14) containing interacting
forward branches. The forward branches have targets L1

and L2, respectively. The minimal hammock graph of
the initial forward branch extends from the first
statement to target label L2. The Forward copy converts
the initial forward branch into a block-if statement by
duplicating the shared statement S3 into the true part of
the block-if (see Fig. 6). The resulting program is given in
(Fig. 14b). The second noninteracting forward branch is
similarly converted into a block-if, resulting program (c)
(Fig. 14). Let fPg (Fig. 14a) fQg and fPg (Fig. 14c) fQ0g.
Now, define Ri in program (a) (Fig. 14) as follows:
Suppose fP ^ :B1g S1 fR1g, denote R2 and R3 the
invariant preconditions at the label L1 and L2 and let
fR3g S4 fR4g. Then, one has fR1 ^ :B2g S2 fR2g, P ^B1

) R2, fR2g S3 fR3g, and R1 ^B2 ) R3.
The proof rules of (Fig. 14a) are shown in Fig. 15.

Hence, the postcondition of program (a) (Fig. 14a) is
Q ¼ R4. From these proof rules, the transformed pro-
gram (c) (Fig. 14c) is derived as shown in Fig. 16. By
applying the if-rule twice, the labels are removed and the
postcondition of the transformed program becomes

Q0 ¼ R4 ¼ Q. Consequently, the forward copy transfor-
mation is correct. tu

5 RESULTS

The algorithms have been implemented in the research

parallelizing compiler FPT [12], [37] with the aim to
structure programs and to extract the parallelism in ill-

structured programs. Four file sets were selected, respec-

tively, from the single-precision Linpack suite, the single-
precision Lapack suite, the double-precision Eispack suite,

and the single-precision Slap benchmark. Table 3 lists a
statistical analysis of the benchmarks, showing the relative

code expansion (excluding comments and format direc-

tives), the new control variables and the parallel loops. The
average code expansion is 32 percent, which is comparable

to Erosa’s 22 percent code expansion obtained for a
different benchmark [13]. The Linpack suite has a very

modest code increase. A closer look reveals that every

branch target is a continue statement, which is removed after
restructuring. In addition, most goto’s are used to imple-

ment if-then-else-endif constructs. This requires an extra

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

Fig. 9. Computing the postcondition of Fig. 8a.

Fig. 10. Computing the postcondition of Fig. 8b.

Fig. 11. Elementry cut transformation: (a) loop with outgoing branch,

(b) conversion using the exit statement.

Fig. 12. Computing the postcondition of Fig. 11a.



jump from then then-part to the end of the if-block, which is
also removed after restructuring. Since the Linpack routines
contain only reducible loops and are quite structured, there
is almost no code expansion. More than half of the routines
has a slight code reduction, while, in 80 percent of the
routines, the code expansion is limited to eight lines. A few
programs contain large “computed goto’s” with interfering
targets, causing a lot of code duplication. The largest
increase of 48 percent is for the routine ss.for. This
routine contains a computed-goto (multijump) statement
with 19 targets, pointing to overlapping code blocks. On the
other hand, the code expansion is highest for the Eispack
benchmark, with an average of 85.3 percent. This is
generated by a handful routines with highly interacting
branches and many target labels creating a maximal code
increase of 5.5, while the median of the code increase is
eight lines. Many Lapack routines have no goto’s and were
left out of the test suite. The Lapack benchmark routines
used here have an average code size of 192 lines and
generate a limited code increase of 26.2 percent, with a
median of seven lines. The Slap benchmark has an average
code size of 303 lines, with a median expansion of 11 lines.

After removing the branches, while- and repeat-loops are
generated. For parallelization, these loops need to be
converted into DO-loops. This conversion requires two

steps: 1) the definition of an induction variable which serves
as index of the loop and 2) the determination of the loop
count. A technique for the conversion of while into do-loops
was developed, which is described in [38]. The FPT
compiler does not parallellize programs containing goto’s
because of the potential side-effects prohibiting the depen-
dency analysis. After removing the goto’s, normally a
substantial number of parallel loops is detected. In order to
estimate the impact of branch removal on the detection of
additional parallelism, the parallel loops are classified into
two groups. Parallelizable loops not interacting with
branches are classified as “parallel loops before restructur-
ing.” Loops parallelized after branch removal are called
“parallel loops after restructuring.” The Table 3 shows that
the present restructuring technique allows between 10 per-
cent and 30 percent extra loops to be parallelized in the
Linpack, Eispack, and Lapack routines. Slap is already
better structured and, therefore, the gain is only 2 percent.

Code size increase can reduce performance, e.g., loop
unrolling is known to increase cache misses and register
pressure which may offset the benefit of the transformation.
This is especially important when the amount of memory
available is limited, e.g., in embedded systems. However, in
most cases, the code size increase is limited and the
parallelism outweighs the code size penalty. In extreme
cases, rather than reverting to unstructured code, new
alternatives at the link level offer efficient and uniform code
compaction techniques [10].

The structuring of ill-structured programs is recognized
as a necessary condition for many compiler optimizations,
especially for the exploitation of instruction level paralle-
lism [19], vectorization [2], predicated instruction schedul-
ing [8], contemporary VLIW architectures [32], and the
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Fig. 13. Computing the postcondition of Fig. 11b.

Fig. 14. Elementry forward copy transformation: (a) interacting forward
branches, (b) applying the forward copy eliminates the initial forward
branch, (c) simple conversion of the remaining branch. Fig. 15. Computing the postcondition of Fig. 14a.



handling of control flow in general. In this respect, the
results of our hammock graph restructuring technique has a
number of characteristics which compare favorably with
other approaches. This comparison is elaborated in the
section about related work.

6 RELATED WORK

Structuring programs has been an active research topic for

many years, with shifting methods and objectives, see

Table 4. In the earlier papers by Boehm et al. [7], Peterson et

al. [29], Ashcroft and Manna [5], and Williams [34], [36], a

number of techniques were introduced based on flowcharts.

Boehm et al. [7] define a set of functional and predicative

boxes, similar to sequential and control statements and

show that any flowchart (a two-dimensional programming

language) can be normalized by three basic constructs,

composition, selection and iteration, in such a way that all

loops are properly nested. The results are applied to the

theory of Turing machines, but no algorithm for ordinary

programs is given. Ashcroft and Manna [5] introduce two

algorithms to remove goto’s in a flowchart using while

statements. The first algorithm (not described in the paper)

duplicates code, the second algorithm tries to find cut-sets

within the flow graph, to eliminate the duplication using

extra logical variables. The hammock graph approach uses

selectively repeat and while loops, leading to no code

replication and no extra logical variables in the example

flow charts of [3]. Peterson et al. [29] have shown that for

any given flowchart, a program can be written using

if-statements, repeat statements, and multilevel exit state-

ments. The chart may have to be modified by node splitting.

A “well-formed program” is defined as one in which loops

and conditional statements are properly nested and entered

only at their beginning. Starting from a flowchart, an

algorithm is given which transforms a flowchart into a well-

formed flowchart. A second algorithm produces a well-

formed program from a well-formed flowchart. Besides

starting from a flowchart, the difference with our approach

is that multilevel exits are actually goto’s jumping to the
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Fig. 16. Computing the postcondition of Fig. 14c.

TABLE 3
Restructuring Four Benchmark Suites

B=before, A=after, Incr. = increment, Par. = parallel loops, Par. loops
Incr. = unstructured loops parallelized after restructuring, New vars =
new logical variables.

TABLE 4
Chronological List of Restructuring Methods

CDG = control dependence graph, RP = reducible program only, IMP =
compiler implementation.



start of an arbitrary enclosed loop. This may confuse the
reader or complicate the dependence analysis, and is indeed
considered a cause of unstructuredness in [36]. Further-
more, very few languages support the multilevel exit
construct. Williams and Ossher [36] state that a structured
flow diagram consists of three base diagrams: the simple
sequence, the selection (if-then-else), and the while loop.
Unstructuredness is identified by five flow graph struc-
tures, one structure of interacting forward branches called
abnormal selection path, and four loops structures, denoted
respectively, multiple entry, multiple exit, overlapping, and
parallel loops. A detailed algorithm is given to find the loop
and selection structures and substitute the anomalous
structures by structured ones. This mechanical restructur-
ing doesn’t always produce the most efficient or most
pleasing solution. In particular, the bare flowchart of a
program looses information about the structured loops and
if-statements available in the source. In a later paper [35],
goto’s are removed from a Pascal program, taking advan-
tage of the limitations of the use of goto’s in this language
and considering three basic sets of transformations. Besides
being related to a particular programming language, the
examples of the paper use more temporary variables (flags)
than in our approach. Furthermore, no benchmark results
such as code expansion are given. The if-conversion
technique developed by Allen et al. [2] is aimed at
vectorizing Fortran loops. The idea is to remove control
statements and replace them by guarded Fortran 8X vector
instructions, e.g., WHERE (BR1(1:N)) A(1:N) = B(1:N) +

10. A number of transformations on branches are applied.
Branch relocation moves branches out of loops until the
branch and its target are at the same loop nesting level; in
this way, they become a forward or backward branch.
Branch removal eliminates forward branches by computing
guard expressions for statements under their control and
conditioning execution on these expressions. Backward
branches are left in place because they imply loops which
cannot be expressed by guarded statements. If-conversion
has two limitations: First, it is only oriented towards
vectorization, and second, backward branches representing
loops with potential parallelism are not converted. In our
approach, we follow a similar classification of branches into
forward, backward, and exit branches; however, the control
restructuring is done at the hammock graph level, instead
of the guarded statement level. This allows a coarse grain
parallelization as well as vectorization. In addition, back-
ward branches are converted into loops amenable to
parallelization. Ramshaw [30] wants to eliminate goto’s
while maintaining the program structure. He proves that
removing goto’s without code duplication requires a
reducible program. Based on a stricter set of ground rules
than Peterson et al. [29], goto’s are eliminated for a
conforming program. However, the stricter rules imply
that a major cause of unstructured loops, i.e., irreducible
loops with multiple entries, is unaccounted for.

A notably different approach is the use of continuations

as presented by Ammarguellat [3]. Informally, a continua-

tion is the remaining execution trajectory at any particular

point in the program. Ammarguellat uses continuations as

unknowns at the branch points in the program. This results

in a set of continuation equations which can be solved

recursively in a Gaussian elimination style. When the

solution is found, code factorization allows to replace

multiple identical continuation codes executable under

different execution conditions by a single continuation

code, executed under a generalized condition. This factoring

allows to avoid all code replication, except for the cases of

irreducible graphs. The approach by Ammarguellat is quite

elegant and feasible, but rather complex compared to the

approach presented here. Moreover, by factoring the

continuation code, the execution conditions become com-

plex and the associated overhead might become noticeable,

especially in small inner loops. In contrast, our technique

may create a relatively small code replication, but the

branch expressions remain essentially the same as in the

original program. Furthermore, the goal to avoid code

replication generates complex predicate expressions be-

cause the same code, executed under different conditions,

will appear only once in the program. While this indeed

creates a more compact code, the execution performance can

be hampered by a lengthy predicate analysis. Consider the

following example from Ammarguellat (Fig. 17a). The Lisp

program is rewritten into Fortran, in order to use our FPT

compiler, and the original condition (i.gt.0) is replaced

by (i.gt.5), to avoid dead code between labels 20 and 40.

Ammarguellat’s normalized flow program (Fig. 17b) con-

tains a double repeat loop, three predicates, and seven

conditional expressions representing in total 12 logical

operations. In contrast, the hammock graph transformation

generates two loops, two predicates, four conditional

expressions, and three logical operations in total. In

addition, instead of the outer repeat loop in Fig. 17b, a do

while loop without predicates in the loop condition is

generated (see Fig. 17c). The simple loop condition, derived

from the if-statement, allows the loop to be converted into a

parallel do-loop Fig. 17d, using induction variable detection

and dependence analysis [38]. This example illustrates that

reducing and simplifying branch conditions enhances the

granularity and may allow more optimization, an observa-

tion already made by Allen et al. [2].

Oulsnam [25] has an interesting paper in which he uses

Kleene’s algebra to describe an unstructured flow graph

and reduce it to a structured form represented by

structured regular expressions. He extended Brainbridge’s

reduction rules, by introducing logical variables to remem-

ber the values of branch conditions in the unstructured

flowgraph. In this way, the flowgraph can be structured by

applying the reduction rules to a system of so-called “end-

set” equations. No algorithm is given, but there is a follow-

up paper on the algorithmic transformation of schemes [26]

and the regular expression paradigm was recently revisited

[23]. The problem with this approach is that a lot of extra

logical variables are introduced, which unnecessarily

increase the loop nesting level and lower the granularity

of the resulting program. As an example, consider

Oulsnam’s treatment of the generalized Flynn’s problem

No. 5 (Fig. 7 in [25]). For the comparison, the flowchart is
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rephrased in a Fortran style, with case sensitive variable

names. From left to right one has the original program, the

code derived from Oulsnam’s flowchart and the code

generated by our transformer, FPT, see Fig. 18. The

unstructured program contains 16 lines; the programs

restructured by regular expression reduction and by

hammock graph transformations, respectively, contain 33

and 43 lines. Although Oulsnam’s code is 24 percent

shorter, it is not necessarily more efficient. This is because

the control structure is more deeply nested and requires

more conditions to be checked before executing code. For

example, the maximum nesting depth of the different

assignment statements is given in Table 5.
A large nesting depth means more jumps and less

efficient pipelining, especially in loops. Moreover, the

basic blocks are smaller, e.g., the average size of an

execution block is 1.18 statements in Oulsnam’s version

and 1.85 statements in the hammock graph transforma-

tion. A large granularity is necessary to extract paralle-

lism for wide issue architectures [8].
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Fig. 17. (a) Program with three branches, (b) minimizing code replication using predicates [3], (c) limited code replication using hammock graph
restructuring reduces predicate proliferation, and (d) allows induction variable detection and parallel loop conversion.



With respect to implementation, Allen and Ammarguel-

lat have implemented the branch removal into a Fortran

compiler, whereas Eroasa and Hendren [13] describe an

implementation for a C-compiler. Erosa and Hendren

follow basically the same branch classification as Allen,

but offer a different implementation for the exit-jumps:

They are moved in or out of the loop or if-block such that

branch and target are at the same nesting level. Incoming

jumps are cut into hops, and a conditional jump is placed at

the start of each block. Whereas the treatment of exit jumps

is the same as our approach, we treat the problem of

irreducibility differently: Loops and blocks with incoming

jumps are immediately converted into a set of interacting

branches. This allows the backward and the forward
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Fig. 18. (a) example from Oulsnam [25], (b) code restructuring using Kleene’s algebra, and (c) Hammock graph restructuring.

TABLE 5
Maximum Nesting Depth with Two Restructuring Approaches



transformations to eliminate the irreducibility without the
need for extra control variables.

A recent application area is structuring decompiled
binary programs. Cifuentes [9] developed the decompiler
dcc, able to convert 8086 executable code into a C program,
with a limited number of goto’s. To illustrate the use of
hammock graph restructuring in this area, we take the
assembly output from the Gauss-Jordan linear system
solver, generated by Turbo-C. The elimination loop contains
10 branches and 15 labels, which are depicted in Fig. 19a
(other code is omitted). After rewriting the program in
Fortran, taking into account the array dimensions and
applying the hammock graph restructuring with FPT, the
program in Fig. 19b is obtained in which the goto’s are
removed and the backward jumps become while loops. In
order to parallelize the nested loop, two further steps are
needed: the detection of an induction variable and a data
dependence analysis. Using the technique described in [37],
[38], FPT finds two parallel DOALL-loops, see Fig. 19c.

Except for the algebraic treatment of continuations by

Ammarguellat, none of the methods to remove branches

have been formally proven. This is quite understandable

since a formal proof for all but simple programs has been

recognized to be quite difficult [17]. On the other hand, the

quality of the compiler, as ubiquitous translation layer to

steer the machine hardware, is of utmost importance.

Fortunately, the painstaking effort to devise a rigorous

proof can now be alleviated with the advent of increasingly

capable automatic theorem provers. PVS, the prototype

verification system of SRI [28], has been successfully used to

verify the correctness of program transformations [31],

mathematical theorems [6] as well as live-critical aviation

software [27]. In our approach of program restructuring, the

actual program transformation is carried out by three basic

transformations. We were able to prove that the transfor-

mations are correct and the correctness proofs were verified

using PVS [11]. The proof uses Arbib et al.’s extension of the

axiomatic rules for goto’s [4].

7 CONCLUSION

Structured programs are necessary for readability and for

effective compiler optimizations. In this paper, simple,

efficient and provable correct basic program transforma-

tions are presented to remove all branches in a program. A

restructuring algorithm using the three elementary trans-

formations converts the control flow graph of a program

into a nest of hammock graphs.
From the comparison with related work it becomes

apparent that there is a trade off between conditional

expression complexity, code granularity and code replica-

tion. The transformations presented allow a limited code

replication in order to keep the sequential blocks intact and

to minimize the pressure on predicate resources and branch

prediction logic. The effect has been measured on several

benchmarks, using an implementation of the hammock

graph transformations in the research parallelizing compi-

ler FPT [37].
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