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Abstract— We consider a voting problem where voters have
expressed their preferences on a single set of objects. These
preferences take the shape of strict partial order relations. In
order to allow extraction of a unique strict partial order relation
corresponding to a social set of preferences, we determine the
minimum number of votes a pairwise preference should receive
in order to qualify as a social pairwise preference. Transitive
closure of the social pairwise preferences will result in the social
set of preferences. At the same time, the social set of preferences
needs to be cycle-free, and the minimum number of votes should
be determined with this constraint in mind. We provide an
example application.

I. INTRODUCTION

We discuss the problem of dealing with a set of preferences
in the form of partial order relations, defined on a single set
of objects. The aim is to extract or learn a unique richest
preference relation from such a set. We have discussed one
take on this problem in a previous paper [1], and formulate
a new, unrelated approach here. We make no distinction
between a set of transitive strict preferences and a multi-
criteria strict ranking problem, both of which typically result
in partial order relations. In some sense, we will think of the
partial order relations as voters, and look for the minimum
size of the majority for which majority-based voting will
yield an outcome that can be transitively closed to yield a
strict partial order relation.

The current work can be related to preference learning in
machine learning, aiming to learn a ranking function, or a
total order relation over the set of objects, on the basis of a
set of input pairwise preferences [2], [3]. Additionally, it is
clearly related to the field of social choice functions [4], [5],
[6], where the concept of majority also plays a crucial role.
The work by Vincke [7], containing a number of ranking
procedures (a mapping associating a complete pre-order to
a relation on a finite set) with a thorough investigation of
a number of properties, also involves calculating scores in
order to decide on the final (complete or partial) pre-order
of the objects under consideration.

II. PRELIMINARIES

A (binary) relation R on a set of objects Q denotes
some property or characteristic that objects of Q can have
w.r.t. each other, i.e. xRy means “x is R-related to y”. For
example, R could denote “smaller than” or “less polluted
than”. A relation R on Q can be represented as a set of
couples of objects from Q; for example R = {(a, b), (c, d)}
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denotes aRb and cRd. If a relation R fulfills the properties of
reflexivity (xRx) and transitivity (xRy and yRz imply xRz),
it is called a pre-order relation. If it also has the property of
antisymmetry (xRy and yRx imply x = y), in addition to
reflexivity and transitivity, the relation R constitutes a partial
order relation. If xRy or yRx, x and y are commonly said to
be comparable. An order relation is strict, often denoted by
the symbol <, if it is irreflexive (¬ (x < x)) and asymmetric
(x < y implies ¬ (y < x)). A couple (Q,<), with Q a set of
objects and < a strict order relation on Q, is called a (strictly)
partially ordered set, or poset for short. We will restrict
ourselves to preference relations in the shape of strict partial
order relations for both the input and the output preference
relations.

We are dealing with a set of objects Q which have been
(partially) ordered on the basis of several strict preference
relations Ri. As such, we have (Q,R1), (Q,R2), (Q,R3)
and so on. When the preference relations are strict partial
order relations, it is natural to write (Q,<1), (Q,<2),
(Q,<3) and so on.

A relation R′ on Q is called an extension of a relation R
on Q if it holds that R ⊆ R′ (it is equivalent to say that R is
a subset of R′). The unique smallest transitive extension of R
is called the transitive closure of R, often denoted as R̂ and
commonly computed via the Floyd-Warshall algorithm [8],
[9], though other algorithms exist [10], [11]. Similarly, a
poset (Q,<′) is called an extension of a poset (Q,<) if
<′ is an extension of <. We say that two relations R1, R2

on a set Q contradict each other on two objects x, y ∈ Q if
we have xR1y and yR2x (and not yR1x or xR2y), or yR1x
and xR2y (and not xR1y or yR2x).

In this paper, we will construct partial order relations as
a function of a set of partial order relations on a single data
set. On the basis of the set S of partial order relations R we
define the function R : Q×Q→ [0, 1] as follows:

R (x, y) =
|{R |R ∈ S ∧ xRy }|

|S|
. (1)

We define a threshold α and a relation Rα in this context,
where xRαy holds if R (x, y) ≥ α. As such, R1/|S| is
the relation denoting that for at least one R from S , xRy
holds. More generally for any α, the minimum number of
partial order relations from S that need to contain a specific
ordered pair so as to allow that pair to be present in Rα, is
equal to b(α× |S|)c. One could also think of α as a decision
boundary, as all R (x, y) smaller than this value are not taken
into consideration in Rα.

In general Rα does not constitute a (pre-)order relation,



nor does its transitive closure R̂α. We will look for ways to
extract such a relation from S by selecting a suitable α on
the basis of the function R. We will show that a minimal
α leads to a maximal R̂α, and consider this a way to learn
a single set of pairwise preferences over a set of objects.
Observe that each relation R ∈ S need not voice an opinion
on each pair of objects.

III. MAIN RESULTS

A. Minimizing α Leads to Maximizing R̂α

Consider α, β ∈ [0, 1], with α < β. Clearly, Rβ ⊆ Rα by
definition: if for an x, y ∈ Q R (x, y) ≥ β holds, then so
will R (x, y) ≥ α. The same holds for the transitive closures
of Rα and Rβ , namely R̂β ⊆ R̂α. As such, if we want to
extract a most informative strict partial order relation on the
basis of R or S , we should look for the minimal value for α
for which R̂α is a strict partial order relation. We will denote
this minimum value as αmin.

B. Computing R̂α

As mentioned in Section II, algorithms exist to compute
the transitive closure of any relation, in our case Rα. If,
during the closing procedure, we would encounter a cycle
(for example, we have xRαy and yRαz, yielding xR̂αz,
while we already have zRαx or ascertained zR̂αx), we can
halt the procedure and conclude R̂α will not be a partial
order relation. Obviously, each check to see if Rα can be
closed to yield a partial order relation, is at most of the same
complexity (in the number of elements of the posets) as the

transitive closure operation, i.e. O
(
|R|

3
)

.

C. Upper and Lower Bounds to αmin

In effect, we are dealing with a voting problem, with |S|
voters, each of whom entered a partial order relation in the
form of a list of transitive pairwise preferences. Based on
these voters, we want to determine a strict partial order
relation, which by definition cannot contain cycles. From
social choice and voting theory, we know that the regular
concept of pairwise majority does not preclude existence of
a cycle. Hence, a value of 1

2
will not be an upper bound for

αmin. In contrast, a lower bound for αmin is easily found on
the basis of R. This lower bound is exactly equal to

1

|S|
+max

x,y
(min (R(x, y),R(y, x))) , (2)

which can at most be equal to 1

|S| +
1

2
. If α were lower

than the value in (2), we would immediately have xRαy
and yRαx for at least one x 6= y. Consequently, R̂α would
then definitely not be a partial order relation.

A trivial upper bound for αmin is 1, which simply states
that if we only include those relations which are present in
all R ∈ S , R̂α (in this case equal to Rα) will be a partial
order relation. This amounts to simply taking the intersection
of all partial order relations R ∈ S .

D. Efficient Determination of αmin

The number of different values that R (x, y) can take, is
the number of partial order relations in S plus 1. We do not
need to examine all |S| + 1 possible values for α however.
We know that if for a given α, R̂α is not a strict partial
order relation, then no R̂β , with β > α, can be a strict
partial order relation as well. Consequently, we will need at
most log

2
(|S|+ 1) steps in order to determine αmin. We are

now able to construct an algorithm to compute αmin and the
corresponding R̂αmin

(often, we will simply write R̂ when
no confusion is possible).

Algorithm 1: Computing αmin and corresponding R̂α

Data: Set of partial order relations S
Result: Maximal partial order relation R̂α

Compute R;
Determine αmin lower bound;
while (upper bound αmin − lower bound αmin) <

1

|S|

do
α←midpoint[lower bound αmin; upper bound αmin];

Determine Rα;
Compute R̂α;
if R̂α is a partial order relation then

upper bound αmin ← α;
else

lower bound αmin ← α;
end

end

A better way to determine αmin could be to construct a
relation R : Q × Q → [0, 1], and initialize each R (i, j) by
setting it to the corresponding R (x, y) value. Subsequently,
the transitive closure of this relation could be performed,
denoted as R̂, or by iteratively setting

R(i, j) = max

{
R(i, j),max

k∈Q
{min {R (i, k) , R (k, j)}}

}
,

and repeating this operation until no R (i, j) changes (requir-
ing at most |Q| iterations). Once this relation is constructed,
max (R (x, y) | R(x, y) ≤ R(y, x)) immediately yields αmin.
In fact, letting R correspond to those R̂ (i, j) > αmin would
immediately yield the desired partial order relation R̂αmin

.
This results in the much simpler Algorithm 2.

Algorithm 2: Computing αmin and corresponding R̂α

based on R̂

Data: Set of partial order relations S
Result: Maximal partial order relation R̂α

Compute R, R and R̂;
Determine αmin;
Determine Rα on the basis of αmin and R̂;

The two algorithms are equivalent as for an α in between
R (i, j) and R (i, j), iRj would be induced by transitivity.



Thus, selecting αmin on the basis of R values is equivalent
to selecting an αmin on the basis of the R values taking the
subsequent transitive closure of the resulting Rα in mind.

E. Interpretation of αmin

If αmin takes a low value, one can surmise the sets of
preferences to complement one another, while a high value
of αmin indicates that the sets of preferences contradict
one another on at least one relation, or would exhibit a
cyclical preference relation. Two partial order relations of
the same size can thus be compared on the basis of their
αmin value. On the other hand, the number of relations in
Rαmin

compared to R0 could also be a measure of the extent
to which the partial order relations contradict rather than
complement each other.

F. Subsets of S - Robustness to Noisy or Non-Informative

Preference Relations

Suppose we are puzzled by the high value of an αmin

and suspect one of the sets of pairwise preferences to be
incorrect or a protest vote. To what extent can such a set
disturb the procedure? We first mention that a single set
has an influence of at most 1

|S| on each R (x, y) or R (x, y)

value, and even on the R̂ (x, y) values. As such, a single
noisy set of preferences can be expected to cause only few
problems, in contrast with accepting only those pairs for
which all sets of preferences agree, or with taking the union
of all preferences. The intersection commonly results in only
very few preference relations being accepts, while the union
quickly degenerates into a set weak order relations with
extensive equivalence classes, as we illustrated in [1].

Suppose we have a set of preferences R which is, in
fact, an empty set: no object is preferred to another object,
according to R. If we were to add this empty set to S ,
how would this affect R̂αmin

? Clearly, each of the non-zero
R (x, y) values would become slightly smaller, by a fraction
1− |S|−1

|S| , as would αmin. Nevertheless, R̂αmin
would not be

affected: The exact same set of R (x, y) values would satisfy
the new αmin threshold. Obviously, if S is not empty, there
can be changes for those pairwise preferences not also part
of S, even for the objects w.r.t. which S is indifferent.

IV. A PARAMETERIZED VERSION OF R

Alternatively, we could devise an R : Q × Q → [0, 1]
that makes a distinction between those pairs of objects for
which the partial order relations contradict each other, and
those pairs for which some of the partial order relations do
not express a preference for either object over the other. Let
0 ≤ β ≤ 1/2, and define:

Rβ (x, y) =
|{R | R ∈ S ∧ xRy}|

|S|

+ β ×
|{R | R ∈ S ∧ ¬ ((xRy) ∨ (yRx))}|

|S|
.

(3)

This seemingly minor adjustment has far reaching conse-
quences. First, observe that for β = 0, we retrieve the

TABLE I

R, R′ , R̂ AND R̂
′ VALUES FOR AN EXAMPLE SET OF PARTIAL ORDER

RELATIONS S

Couple R R
1/2

R̂ R̂
1/2

(a, u) 2/5 7/10 2/5 7/10

(u, b) 2/5 7/10 2/5 7/10

(a, v) 2/5 4/10 2/5 4/10

(v, b) 2/5 4/10 2/5 4/10

(a, b) 0/5 4/10 2/5 7/10

(u, v) 0/5 5/10 2/5 6/10

(u, a) 0/5 3/10 1/5 6/10

(b, u) 0/5 3/10 1/5 6/10

(v, a) 3/5 6/10 3/5 6/10

(b, v) 3/5 6/10 3/5 6/10

(b, a) 1/5 6/10 3/5 6/10

(v, u) 0/5 5/10 2/5 6/10

original R. Next, observe that irrespective of the value for
β,

(
Rβ (x, y)−R (x, y)

)
=

(
Rβ (y, x)−R (y, x)

)
. In other

words, R (x, y) and R (y, x) would be increased by the exact
same amount, and as such, R (x, y) < R (y, x) implies
Rβ (x, y) < Rβ (y, x) for any β. Nevertheless, it is possible

that while we have yR̂αmin
x, we have that x

(
R̂β

)
αmin

y,

as we will show below.

Suppose β = 1/2 and |S| = 5 for a set of 4 objects
a, b, u, v, with the corresponding R, R1/2, R̂ and R̂

1/2 values
shown in Table I. The R̂ values have been calculated as
mentioned in Section III-D: R̂ (a, b) equals 2/5 because we
have R (a, u) = R (u, b) = 2/5 (as well as R (a, v) =
R (v, b) = 2/5). Clearly, R̂ (x, y) < R̂ (y, x) does not imply
R̂

1/2 (x, y) < R̂
1/2 (y, x) (see (a, u) and (u, a), (a, v) and

(v, a)).

Consequently then, it is not guaranteed that the par-

tial order relation
(
R̂β

)
α′

min

will be an extension of the

partial order relation R̂αmin
. In fact, we could even have

x
(
R̂β

)
α′

min

y and yR̂αmin
x. This is the case in our ex-

ample. First note that for R0, we have αmin = 3/5
and for R1/2, we have α′

min
= 7/10. For ease of un-

derstanding, we go into some more detail: as R̂ (u, v) =
R̂ (v, u) = 2/5, α should be at least 3/5, while R̂

1/2 (u, v) =
R̂

1/2 (v, u) = 6/10, imply that α′ should be at least 7/10.
These αmin and α′

min
values lead to aR̂αmin

u, uR̂αmin
b and

b
(
R̂1/2

)
α′

min

v, v
(
R̂1/2

)
α′

min

a. Clearly, we can conclude

that R̂ * R̂β in the general case, and whether or not to use
Rβ rather than R is open to discussion. Furthermore, while
R

1/2 has the pleasing property that R1/2 (x, y)+R
1/2 (y, x) = 1,

this is no longer the case for R̂1/2, as we have for our example
R̂

1/2 (u, v) + R̂
1/2 (v, u) = 12/10. For other values of β,

similar examples can be found.



V. EXAMPLE APPLICATION

As an illustrative example, we applied Rβ with β = 0,
yielding R0, abbreviated as R with corresponding αmin, and
β = 1/2, yielding R1/2 abbreviated as R′ with corresponding
α′
min

, to a data set regarding pollution as measured in Baden-
Württemberg (BW), a forested region in Germany [12]. More
precisely, we consider (in mg per kg of dry matter) the heavy
metal pollution in 43 regions in BW, as well as the sulfur
deposits. Pollution in these regions has been measured in
three vegetation layers, the moss, herb and tree layer. In all
layers, lead (Pb), cadmium (Cd) and zinc (Zn) presence have
been determined. For the herb and tree layer, the sulfur (S)
presence has additionaly been determined.

On the basis of these measurements or indicators, regions
can be compared: Two regions are ranked w.r.t. each other if
one region is at least as polluted as the other region according
to each indicator, and strictly more polluted according to at
least one indicator. Without loss of generality, we rank more
polluted above less polluted regions.

Using the mentioned indicators, we have constructed five
voters or strict partial order relations, on the basis of the
following indicators, respectively: (1) the Pb, Cd and Zn
pollution in the moss layer; (2) the Pb and Cd pollution in
the herb layer; (3) the Zn and S pollution in the herb layer;
(4) the Pb and Cd pollution in the tree layer; (5) the Zn and
S pollution in the tree layer.

The intersection of the five strict partial order relations is
empty. Using β = 0 and β = 1/2 results in respectively αmin

and α′
min

, as well as the corresponding R̂αmin
and R̂′

α′

min

. We
find an αmin of 3/5 for β = 0, corresponding to a majority.
For β = 1/2, we find an α′

min
value of 3.5/5. The corre-

sponding R̂αmin
and

(
R̂′

)
α′

min

differ a great deal, however,

with
(
R̂′

)
α′

min

comprising 354 pairwise preferences, being

an extension of R̂αmin
in this case, comprising 126 pairwise

preferences.
By splitting the herb and tree layer pollution indicators

in two sets, these layers have twice as much influence as
the moss layer pollution. By adding an additional copy of
the moss layer poset as a voter for a total of six voters,
the resulting α thresholds and partial order relations are
slightly different. We find for β = 0 an αmin of 3/6,
corresponding to a weak majority. For β = 1/2, we find
an α′

min
value of 4/6. The corresponding R̂αmin

for the
six voters is almost equal to the R̂αmin

for the five voters:
it contains one additional pairwise preference, yielding 127

pairwise preferences instead of 126. The
(
R̂′

)
α′

min

partial

order relations differ much more, with
(
R̂′

)
α′

min

for the six

voters comprising 373 pairwise preferences, compared to the

354 from before. Furthermore,
(
R̂′

)
α′

min

for the six voters

is no longer an extension of the previous one, although it
is close: Of the 354 pairwise preferences in the five voter
partial order relation, 352 are also present in the six voter
partial order relation.

VI. CONCLUSIONS

We have described a simple approach to learn a set of
pairwise preferences from a given collection of such sets,
meaning we are dealing with a social choice procedure.
By regarding each such set, or each pairwise preference
relation, as a voter, we learned a set of pairwise preferences
through a majority-based voting process. We did so by
determining the minimum size the majority should take in
order to avoid cyclical or contradictory preferences. We have
formulated two variants, differing in the way they deal with
incomparable objects. Both approaches are easily computed
and understood, and will yield a unique solution in each case.

Opportunities for future work are many. First and fore-
most, the properties of the proposed social choice procedures
need to be investigated, in the same manner as performed in
e.g. [7]. Secondly, an obvious extension would be to allow
non-strict partial order relations as input, though care should
be taken not to do so in a naive way: One should assure
that a non-strict preference between two objects does not
make it more or less likely for either one of the objects
to be strictly preferred to the other in the constructed par-
tial order relation. Finally, the interaction with a previous
take on this social choice problem, where we determine a
consistent union of two possibly contradicting partial order
relations [1], merits further investigation. Combining both
approaches could allow to not just determine an α for which
the resulting R̂α is a partial order relation, but to determine
an α∗ < α and corresponding Rα∗ from which a maximal
consistent partial order relation can be extracted in the same
line as the consistent union operation from [1].
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