Cooperative frequency control with a multi-terminal
high-voltage DC network *

Alain Sarlette ®, Jing DaiP”, Yannick Phulpin ¢, Damien Ernst ¢

28YSTeMS, Ghent University, Technologiepark Zwijnaarde 914, 9052 Zwijnaarde, Belgium

Y Department of Power and Energy Systems, SUPELEC, 8 rue Joliot Curie, 91192 Gif-sur- Yvette, France

¢INESC Porto, FEUP campus, Rua Dr. Roberto Frias 378, 4200 - 465 Porto, Portugal

4 Department of Electrical Engineering and Computer Science, University of Liége, B-4000 Liége, Belgium

Abstract

We consider frequency control in power systems made of several non-synchronous AC areas connected by a multi-terminal
high-voltage direct current (HVDC) grid. We propose two HVDC control schemes to make the areas collectively react to power
imbalances, so that individual areas can schedule smaller power reserves. The first scheme modifies the power injected by each
area into the DC grid as a function of frequency deviations of neighboring AC areas. The second scheme changes the DC
voltage of each converter as a function of its own area’s frequency only, relying on the physical network to obtain a collective
reaction. For both schemes, we prove convergence of the closed-loop system with heterogeneous AC areas.
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1 Introduction

During the last decades, the dynamical systems and con-
trol literature has investigated a variety of mechanisms
to induce and exploit cooperation in networks. Elec-
trical power networks are a prominent application do-
main where cooperative reactions allow substantial sav-
ings. Probably the most well-known cooperative reaction
mechanism in power networks is the so-called primary
frequency control [15], whose aim is to counter imbal-
ances between power consumption (or ‘load’) and gener-
ation at short timescales in an alternating current (AC)
network. It exploits the fact that any imbalance induces
variations of the common frequency throughout the en-
tire network [8], so all the network’s units participating
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in primary frequency control can sense even remote [un-
known| power imbalances through [measured] frequency
deviations and adapt their effort to correct them. Since
the efforts of these units sum up, large synchronous ar-
eas can achieve economies of scale [2,14]. This has been
one of the motivations for e.g. interconnecting regional
and national systems into the synchronous grid of Con-
tinental Europe, supplying over 400 million customers
in 24 countries.

The trend of interconnecting AC systems into larger net-
works is still ongoing. However, engineers now favor a
direct current (DC) technology instead of AC links for
the interconnections. This leads among others to lower
electrical losses and no need for reactive compensation
in submarine and underground transmission links. In a
network resulting from interconnection with such a high-
voltage direct current (HVDC) system — see Figure 1
— each AC subnetwork (area) is linked to a terminal
of a DC grid through a controlled power electronic de-
vice (converter), which can set for instance its DC-side
voltage or the power flow that it transmits. The effec-
tive coupling between the AC areas then depends on the
converters’ algorithms. In particular, since the AC areas
are not directly interconnected, they are not physically
restricted to have identical nor even correlated frequen-
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Fig. 1. Multi-terminal HVDC system connecting five AC ar-
eas via converters. Variables are explained in Section 2. Mea-
sured outputs are the frequencies f; in AC areas i = 1,2, ....
The scalar control input at each converter i is selected from
either P{° (power injection) or V% (DC-side voltage).

cies. On one hand, this offers the possibility to use the
DC links as safety barriers to prevent faulty AC sub-
networks from harming healthy ones. But on the other
hand, it means that even in a healthy network, the units
participating in primary frequency control will not nec-
essarily respond to and help counteract imbalances lo-
cated in remote AC areas. Precisely the current HVDC
operating practice, with converters transferring a sched-
uled amount of power regardless of AC area states, im-
plies independent frequency dynamics in the different
AC areas, which leads to no imbalance sharing between
them. To recover imbalance sharing between the differ-
ent AC areas, the HVDC system requires specifically de-
signed control algorithms, that let the converters react to
current AC area states. The modern HVDC converters’
quick actuation capabilities make this a realistic goal.

Recently, several researchers have sought to extend the
real-time collective reaction of single-area AC systems
to systems made of several AC areas connected by an
HVDC grid. Converter control algorithms have been pro-
posed for the special case of two AC areas, regulating the
power exchanged on their single link, see e.g. [1,7,9,18—
20]. In the present paper, we propose and analyze two
cooperative primary frequency control algorithms for ar-
bitrary networks, with power or voltage steering at the
converters. Both algorithms are designed on the basis
of cooperative decentralized control. Their explicit tar-
get is to drive the frequency deviations of all areas to-

wards a common value, mimicking the collective reac-
tion in a single AC network. This target also allows us
to exploit the so-called consensus viewpoint from the
distributed control literature for algorithm design, see
e.g. [6,11,16,21]. The first controller adapts the power
injections from each AC area converter into the DC grid
as a function of neighboring areas’ frequency deviations,
with a proportional-integral consensus type action. Co-
ordination among local controllers is ensured by commu-
nicating frequency values across the network. This leads
to a generalization of the two-area control laws from the
literature. In our second controller, each converter re-
acts to frequency deviations in its own AC area only;
but, instead of acting on power injections, it adjusts the
voltage of the DC grid node. This “signals” the area’s
needs as it affects power flows throughout the network.
The physical coupling in the DC grid then induces a co-
operative behavior, without requiring any explicit com-
munication. This appears to be an original control strat-
egy. We prove that both algorithms yield a stable over-
all dynamical system with favorable imbalance sharing.
Notably, our analysis covers the realistic case where all
subsystems can be different. Simulations on a system
with five AC areas illustrate the controllers’ effective-
ness. We have presented the ideas behind this work to
power systems researchers, see [3-5]. The goal of this pa-
per is to provide (i) a comprehensive decentralized con-
trol viewpoint on the algorithms; and (ii) a new theo-
retical study of the equilibria and their stability, holding
for non-identical subsystems.

The paper is organized as follows. Section 2 gives a
mathematical model of multi-terminal HVDC systems.
Sections 3 and 4 describe and analyze the two control
schemes. Section 5 presents simulation results.

2 Multi-terminal HVDC system model

The multi-terminal HVDC system is composed of a DC
grid, N separate AC areas, and N converters that inter-
face the AC areas with the DC grid (see Figure 1).

Each AC area i, for i = 1,2,..., N, has a state vector
(fi, Pmi) € R? and is governed by

Pri— Py — P
Ji %fi:Téﬁ*Dgi(fiffnom,i) (1)
d _ o} PnonL,i fi_.f'n,om,,i
Tsmzapmz—PmZ_sz_Tm (2)
IDli = ]DZ(Z . (]- + Dll(fz - fnom,i)) . (3)

The frequency f;(t) can be readily measured and hence
used for feedback control. Its evolution (1) expresses a
balance between generated power, consumed power and
angular acceleration. Equation (2) expresses local pri-
mary frequency control, i.e. the standard adjustment
of mechanical power input P,,;(¢) to counter deviations
from nominal frequency from,; within the AC area. J; is



the moment of inertia of the aggregated area i genera-
tor and Dg; its damping factor; o; is called the genera-
tor droop, Ppom,i its rated mechanical power, T,,; the
time constant for local power adjustment. The reference
power P¢ . is adapted by secondary frequency control
over timescales no shorter than 30s, and can therefore
be considered as a constant parameter Py, = P2 . for
our much faster primary frequency control. The aggre-
gated power load Pj;(t) fluctuates with sensitivity fac-
tor Dy; as a function of frequency, see (3). Its nominal-
frequency value P3(t) can be viewed as an input of the
consumers to the power network. The power P2(t) in-
jected by area 4 into the DC grid through its converter
governs its interaction with the HVDC network.

Converters are complex nonlinear dynamical systems.
At the timescales of our algorithm, they can be modeled
as devices that consume no power between AC and DC
side, and capable of instantaneously applying either a
given DC-side voltage V%(¢) or a given power injection
Pde(t). We will thus alternately consider either the V4
or the P as actuated variables. The DC sides of con-
verters 4 and k are connected in the DC grid through a
resistance R;. If converters i, k are not connected, we
assign R;; = oo. Then by Ohm’s law, the power flows
Pfe(t), for i = 1,2,..., N, satisfy

N

Vdc _ Vdc)
Pidc — V'idc Z ( i k . (4)
— Ri

We put a bar over a symbol to indicate its value at the
reference operating point. The latter is a particular equi-
librium at which the system is assumed to rest in the
absence of disturbances. It has all frequencies equal to
their nominal values f; = fpom,; and further depends on
some reference powers and voltages. In practice, fixing
the reference operating point is a complex process that
may involve several actors. Equations (1),(2) at equilib-
rium and (3),(4) impose among others: P,,; = P2, and
Ei:‘IBZ(;:p7?Li_PidC7Vi'

The range in which P,,;(¢) can vary around P2, by
following (2) is called the primary reserve of area i. Pro-
viding sufficient primary reserves entails non-negligible
costs to transmission system operators [13]; e.g. the
procurement costs in primary reserve markets in Ger-
many totaled around € 80 million in 2006 [17]. The
alm in the present paper is to propose converter con-
trol algorithms that make the whole HVDC network
cooperatively react to any imbalances. The AC areas
then ‘share their primary reserves’, so the necessary
reserve in each individual area might be downsized.
Since primary frequency control is designed for power
imbalances that are relatively small with respect to
the total generation capacity ', we consider small de-
viations from the reference operating point. We define:

! In case of larger imbalances, that are pretty rare, emer-

states: x; = P — ]5;’”-
Yi = fi - fnom,i (:OUtPUt) 5
disturbance: dy =P — IBﬁ ;

control input:  u; = P — Pd¢ or v = Vde - Vde
fori =1,2,..., N. We denote x the column-vector with
components x;, and similarly for y,d, v and v. Table 1
gathers further notation. As the most hazardous event
in primary frequency control is the instant loss of a gen-
erator group or a significant load, our analysis focuses
on a step variation of d;.

Table 1

Notation and parameters.
D; = Dyi + PDui /(47 from,i) >0
a; =D;/J; >0
ao; = 1/(47T2fmm,iJi) >0
asi = Prom,i/(Tsmi0i fnom,i) >0
Qi =1/Tsmi >0
mi; = a1i/az; + asi/as; >0
ma; = Prom,i/(0i from,i) = asi/as; >0
Ay, M, diagonal matrix of the ak; resp. mg;
V,C diagonal matrix of the V,%° resp. ‘I;%Zi
0 all-zero matrices of appropriate siz;s
I identity matrix € RV*¥
q” complex conjugate transpose of ¢

3 Power-injection-based control scheme

If all the converters try to independently impose their
power injection Pid"’, a severe HVDC power balance con-
flict can result, indicated by the fact that (4) has no
(realistic) solution. We therefore apply power-injection
control to the first N — 1 converters only, and compute
a compatible value of Pg for fixed V¢ = Vr‘icf

Primary reserve sharing means collective reaction to dis-
turbances. We therefore want to design the u;(t) such
that the y; all tend to be equal. Driving variables to a
common value is addressed by consensus algorithms (see
e.g. the review [11]): area ¢ would control its dynamics
to drive y; towards the average of output values {y;} of
some other areas {k}, known through communication.
Originally developed for simple integrators [21], consen-
sus has been generalized to other situations including
linear second-order systems [16]. Following this line of
work, we let proportional-integral type subcontrollers

gency control strategies such as load-shedding actions usu-
ally supersede primary frequency control.
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Fig. 2. Schematic representation of the power-injection-based
controller. Double lines denote communication channels car-
rying several variables. The area ¢ example subcontroller re-
ceives frequency information from areas 1 and 4. A similar
subcontroller structure is applied for all i = 1,2,..., N — 1.
Cooperative frequency control relies on local subcontrollers
and explicit communication, shown in bold.

drive y; towards the y;, for i € {1,2,...,N — 1}:

u; = g:l bik (a/(yi — i) dt + B(y; yk)) (5)

where «, 0 are positive gains and the coefficients b
model communication: b;; = 1 if subcontroller 7 receives
frequency information from area k, otherwise b;;, = 0.
One could more generally tune gains «;x, B;r as a func-
tion of areas ¢ and k, but this goes beyond the scope of
the present paper. Figure 2 illustrates the system with
this controller. The HVDC grid does not explicitly show
up: its only role is to physically allow the N —1 converters
to transfer power to somewhere. The different behavior
of converter N is a departure from classical consensus.
However, in practice it turns out that up (¢) follows the
same dynamics (5) in good approximation (see next).

We study the closed-loop system linearized around the
reference operating point. Numerical simulations further
explore the full nonlinear model in Section 5. We make
the following assumptions.

Assumption 1 The graph representing frequency devi-
ation communication among the subcontrollers is

- constant in time;

- undirected: b;r, = by; Vi, k, that is if subcontroller k has
access to y; then subcontroller v has access to yi;

- connected: for each pair of agents i,j there exists a set
of indices k1, ks, ..., km such that k1 = i, k,, = j and
bipkp =1 forn=1,2,...m—1.

Assumption 2 The wvariation of the net overall
power flow injected into the DC grid can be neglected,

i.e. Zivzl u; = 0.

Assumption 2 simplifies (4), which rigorously imposes
SN (Pejvde — pde /ey — 0 with the V4 to be
computed from nonlinear coupled equations. The ap-
proximation holds because relative variations of the ex-
changed power largely exceed relative variations of the
voltage in practice. The conclusions obtained under this
approximation agree with simulations of the exact model
in Section 5. Assumptions 1 and 2 imply that uy also
satisfies (5), with by; = by fori=1,2,...,N.

The only nonlinear differential equation, resulting from
(1) and (3), has the standard linearization

d xi—di—ui

Ji Y = —D;yi. 6
Y 47‘-2fnom,i Y ( )

dt

The linearized closed-loop system is then given by elec-
tromechanical dynamics (6) and primary frequency con-
trol (2) in the individual areas, plus our HVDC power-
injection controller (5), for all areas i = 1,2, ..., N. De-
note L € RV*N the Laplacian matriz of the graph de-
scribing inter-area communication, whose off-diagonal
elements are l; , = —b;, Vk, ¢ # k and diagonal elements
lii = Y ) bik- Then the closed-loop system writes:

Ay
i =S - 10 d (7)
7 Tz | = T
u U 0
—A; Ao —As
with S = —As3 —Ay 0

L(al —BA;) BLAy —BLA;

Proposition 3 Consider the system (2), (5), (6) satis-
fying Assumptions 1 and 2. Then at the equilibrium point
associated to load imbalances {d; : i = 1,2,..., N}, the
frequency deviations of all areas are equal and given by

yi=—Q_p di) / O, mak)

Mechanical power correspondingly varies as

Vie{1,2,.,N}. (8)

Ty = —M25 Yi - 9)

Proof: Annihilating the derivative of (5) under Assump-
tion 1 imposes y; = yi =: y© for all ¢, k, with y¢ un-
specified. (This is indeed the unique zero-eigenvector of
the Laplacian associated to the communication graph
— standard consensus argument, see e.g. [11,16].) Then
imposing equilibrium in (6),(2) expresses z; and u; as
a function of d; and y°. The conservation of Zi\il U;
from Assumption 2 finally fixes the value of y°.

The sharing of a load disturbance in equal frequency
deviations for all AC areas is reminiscent of an all-AC



network. The z; values further reflect primary reserve
sharing. Consider for instance an imbalance d; = d in
AC area i and dy, = 0 Vk # i. Keeping u; = 0 Vk would
then yield x; = (mag;/m1;)d and z = 0 Vk # i. With
our controller, z; is reduced by a factor (3°, mix) /mis,
while the other areas contribute similarly. This reduces
maxg(xy), hence the necessary primary reserve in indi-
vidual areas. AC areas with larger msg; — giving more
weight to frequency deviations in their local controller
(2) — contribute more to the collective reaction.

Proposition 4 The system (7) restricted to the sub-

N . L
space Y .~ w; = 0 is stable for any communication
graph satisfying Assumption 1, for any o > 0 and 8 > 0.

Proof: The restriction to the subspace cancels one 0
eigenvalue of S corresponding to a continuum of equilib-
ria (see also Proposition 3). If the 0 eigenvalue had alge-
braic multiplicity > 2 for S, then it would have geometric
multiplicity > 2 for S2. One checks by rank-preserving
transformations that S? has rank 3N — 1, confirming
that 0 is an eigenvalue of algebraic multiplicity 1 for S,
when « # 0. It thus remains to show that S can have no
eigenvalue A\ # 0 with Re(\) > 0.

By contradiction, assume that S has an eigenvalue A # 0
with Re(A) > 0, associated to an eigenvector with y =
q €CN,z=¢q € CN,u=gq3 € CN. A few algebraic
operations with (7) lead to the conditions:

B=B+a/X)Lq (10)
g3 = — (MXzAl " MTAJ o . (11)

Note that g = 0 would imply g» = g3 = 0, so we must
have g1 # 0. Since the Laplacian of an undirected graph
is positive semi-definite, (10) then requires Re(g7gs) > 0
and (11) requires Re(qigs) < 0. There can thus be no
eigenvector with an eigenvalue A # 0, Re(A) > 0. O

Decentralized control methods often assume identi-
cal subsystems. The ‘consensus’ literature [11] more-
over considers simple subsystem dynamics to focus on
switching graphs, which covers robotic and computer
networks applications. For power networks the situation
is opposite: under normal operation they undergo little
qualitative changes, but assuming identical AC areas is
unrealistic. This motivates our non-standard proof.

In a practical implementation of (5), the explicit com-
munication of remote information between the AC areas
introduces delays. We show in [3] that the system can
be destabilized for time delays of a few hundred millisec-
onds. This motivates the proposal of a second control
scheme, that does not rely on explicit communication.

4 DC-voltage-based control scheme

When actuation takes place through DC-side voltage
Vde all N converters can independently set their v; val-

v1 Ui
r { Rk } ;

HVDC grid

o “n)

N —

Uy

AC area i yﬁ

U4 [
Converter 1 v
subcontroller

Fig. 3. Schematic representation of the voltage-based con-
troller. It relies on local subcontrollers and on the constitu-
tive physical law (4) of the HVDC grid, both shown in bold.

ues without creating a conflict.

The goal is to dispose of explicit communication, i.e. reg-
ulating v; as a function of y; only. Interaction then re-
lies on the fact that u;, an input variable to the dynam-
ics (1)-(3) of AC area i, depends on the vy values set
by other converters for which R;; # co. Coordination
thus explicitly relies on the plant-induced coupling. This
approach differs from typical cooperative robotics as in
[6,11,16]. To design a cooperative reaction, we note that
a decreased frequency y; < 0 corresponds to a lack of
power in AC area i; we should then increase power flow
into AC area i, which happens if we decrease the voltage
at its converter node. This motivates the control law

Vi =YY 7f0rl€ {17277N} (]‘2)

with positive gain v > 0. (All conclusions can be gen-
eralized to AC-area-dependent gains ;.) Figure 3 illus-
trates the system with this controller. The HVDC grid
explicitly shows up to couple AC areas, unlike on Fig-
ure 2. The subcontrollers provide inputs v; to this phys-
ical network where the laws of electricity, letting power
flow as a function of voltage differences, essentially per-
form a frequency comparison to provide inputs u; to the
AC areas. The { R;; } determine the interaction topology.

Similarly to Section 3, we study the closed-loop system
linearized around the reference operating point. We must
now explicitly consider the relation between the voltage
and the power injection. Linearizing (4) yields:

pdc

=

pd N rde
u; = W v; + ,; R (vi —vg) . (13)
The second term in (13) is dominant for typical param-
eter values. Together with (12), it implies power injec-
tions that reflect differences among connected AC areas’
frequency deviations, similarly to the control law of Sec-
tion 3. We can therefore expect a similar consensus-like
behavior among the frequencies. The first term in (13)
together with (12), makes u; depend directly on y;, un-
like in our first controller. This difference would lead to



an unstable system if we replaced the proportional con-
troller (12) by a proportional-integral controller as used
in (5). The following proves that (12) can yield a stable
primary reserve sharing situation.

Denote LT € RN¥*N the weighted Laplacian matriz of
the graph describing the HVDC grid, with off-diagonal
elements lfk = —1/R, Vk, i # k and diagonal elements

lfi = >, 1/Rik. The closed-loop system then writes:

) ()

with S — —(A1 +7A42(C + VLE)) A,
Ay A, )

Proposition 5 Consider the closed-loop system (14). If
v is small enough such that mq; + vPidC/Vidc > 0 for all
i, then a load imbalance d defines an equilibrium

y = —(My +~C +4VL® 1 d (15)
x = —Myy. (16)

In particular, for a load imbalance affecting area i only,
i.e.d; =d >0 and di = 0 Vi # k, this implies:

(a) yr < 0 for all areas in the connected DC grid.

(b) Area i has the mazimal deviation |y;| > |yx| Yk # i.
(c) Define D = V=Y M; + ~C) diagonal, G =
D=Y2LED=1/2 and G, € RWN-DX(N=1) by dropping
row i and column i from G. Then

7 N-1

k=1

|yi i+ APE Ve (14 ~vAk)

where the (N — 1) largest eigenvalues A\, of G and eigen-
values ug of G, satisfy

A 2>p1 > A > pe > > Av-1 > puv—1 > 0. (18)

Proof: Equilibrium conditions for (14) directly yield
(15),(16), with my; + yP¢/V4e > 0 guaranteeing in-
vertibility: for instance, applying the Gershgorin circle
criterion on the rows of Q := (M +~yC +~V L) guaran-
tees that its eigenvalues have strictly positive real part.
Now we analyze (15) for the particular imbalance af-
fecting area i only. If y1,ys,...,ynv are not all equal,
then in the connected HVDC network there exists
an area k such that y, > y; Vj and yi > y for at
least one area I connected to area k. We then have
> R%_,»@k —y;) > 0. Line k of Qy = —d therefore
pdc
requires (my + 'y%) yr < —di < 0. If in contrast
k
y1 = y2 = ... L
- pde
(y1 =y2 = ... =) y; = —d/(m1; + v3) < 0. Thus (a)

= yn, then line i of Qy = —d gives

holds in both cases. Now assume that there exists an

area k # i such that |yx| > |y;| Vj, contradicting (b).

Then y, < 0and (yr —y;) < 0Vj, but line k of Qy = —d
. pdc _

requires (myy + wﬁ) yi + Ve > R%J(yk —y;) =0.

This leads to a contradiction, so (b) must be true.

For (c), first note that Qy = —d indeed writes
(D+v LBy = — ‘7% d. Solving this for y; with the Schur

_det(Dr4yLE)
det(D+~LE) Vde >
where D,., LF € RW=Dx(N=1) are obtained by drop-
ping row i and column i from D and L% respectively.
Now observe that det(D + L) = det(DY?(I +
yD~12LED=1/2) DV/2) = det(D) det(I + vG) and the
same with . indices. Diagonality of D ensures that G,
is as well obtained by dropping row i and column i from
G. Formula (17) follows by writing out the determinants
in eigenvalues. The “eigenvalue interleaving” in (18) is
a standard property of a symmetric matrix and one of
its (N — 1) x (N — 1) principal sub-matrices. O

complement method yields y; =

Property (a) shows that the AC areas collectively react
to any local load imbalance. In absence of integral action,
power flows are directly driven by frequency differences,
so it is unavoidable that the y; of different AC areas
take different values at equilibrium 515)_. For realistic
parameter values, m1; dominates | P2¢/V4¢|. Then the
product of (14+~yug)/(14+~Ag) in (17) characterizes how
much the maximal frequency deviation following a local
imbalance is reduced thanks to our controller. Power
transfers are obviously not expected to help when all
areas undergo similar load disturbances. For that case,
(15) says that our controller might even lead to (typically
slightly) increased maximal deviations.

Proposition 6 If v > 0 is small enough such that
pdc
472 from.i Di + 7% > 0 for all i, then the equilibrium

in Proposition 5 iszasymptotically stable.

Proof: Write y = q1, x = V ¢2 a potential eigenvector of
S’ associated to an eigenvalue A with fe(\) > 0, to find
a contradiction similarly to Proposition 4. O

The assumptions involving v in Propositions 5 and 6 are
just sufficient bounds. We have found unstable systems
with my; + P23 /V:% > 0 though, confirming that the
tighter bound for Proposition 6 is justified. Both bounds
can be checked locally in each AC area, without requiring
any knowledge about other areas or the network topol-
ogy (L). On the other hand, since the parameters of a
power system are essentially invariant in time, a central
system designer with knowledge of all the HVDC net-
work parameters could perform a more detailed analysis,
e.g. assessing stability from (14) directly. He could then
fine-tune the controller parameters offline and send them
to the local operators, prior to online operation with de-
centralized dynamic variables x;, y; and v;. The impor-
tant economic context could still motivate decentralized



Table 2

Parameter values for the simulated system.

HVDC grid Unit
Ri2 Ry5 Ras Ras R34 Rys
1.39 417 278 695 278 278 Q
AC areas 1 2 3 4 5
J 2026 6485 6078 2432 4863 kg m?
Dy 48.4 1464 140 547 95 W s?
Tsm 1.5 2.0 2.5 2 1.8 s
o 002 0.04 0.06 004 0.03 /
Prom 50 80 50 30 80.4 MW
Vde 99.17  99.60 99.73 99.59 100 kV
Ppde -50 20 10 -20 404 MW
Py 100 60 40 50 40 MW
From,i =50Hz, D;; =0.1s and P,gw. = Phom,i for all 4

tuning strategies, where local agents do not communi-
cate their area characteristics to any central authority. If
the reference operating point uses zero power exchanges
PidC = 0 V¢, meaning Vidc = dec Vi, k, then (and only
then) C has no negative components. Propositions 5 &
6 then allow arbitrarily large v and larger v always yield
smaller |y;|. These are however associated to larger V%
and Pf¢ variations, which limits the gain in practice.

5 Simulations

We illustrate the two control schemes on the 5-terminal
HVDC system of Fig. 1, modeled as a purely resistive
grid with realistic parameter and reference operating
point values given in Table 2. We simulate the full nonlin-
ear model (1)-(4). To observe the system’s response to a
power imbalance, we assume that all areas initially oper-
ate at the reference operating point and we increase P},
by 5% at time ¢ = 2s. The ensuing evolution of f, with-
out primary reserve sharing — i.e. keeping P¢ = Pd¢
and Vidc = ‘_/idc for all 4 — is drawn with blue cir-
cles on Figures 4 and 5. It features a maximal transient
deviation of 0.196Hz and stabilizes at 49.927Hz, which
matches the deviation given by (15) with v = 0; this
validates our linearization for the theoretical study. The
primary reserve usage Ppo — P2, = 22 equals 2.93 MW.
For other areas obviously y; = x; = 0.

Now we apply our power-injection-based control (5) for
1 =1,2,3,4, fix V5dc = 100 kV and compute all other
converter variables to ensure perfect consistency of (4).
Our communication graph coincides with the DC net-
work topology. Figure 4 shows the frequency evolutions
for « = B = 2 x 10%, assuming instantaneous communi-
cation. The maximal transient deviation of f5 is 0.136Hz
and the frequencies of all areas converge to each other to
settle at 49.983Hz, matching (8). The primary reserve
consumptions at steady state range from x4, = 251 kW
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Fig. 4. Frequencies of the five AC areas under the power-in-
jection-based control scheme with o« = 8 = 2 x 10°. Blue
circles also show the evolution of fo when a = 3 = 0.
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Fig. 5. Frequencies of the five AC areas under the DC-volt-
age-based control scheme with v = 2 x 10%. Blue circles also
show the evolution of f> when v = 0.

to x5 = 898 kW. The maximal effort by an individual
AC area is thus divided by about 3. Larger controller
gains reduce the transient deviation of fo. This is lim-
ited in practice among others by time delays. With the
chosen o = 8 = 2 x 10°%, communication delays above
0.57s can destabilize the system.

Next we apply the DC-voltage-based control (12). We
take v = 2 x 103 to meet the conditions of Proposi-
tions 5 and 6. Figure 5 shows how the frequencies follow
similar variations to finally settle between 49.976Hz and
49.988Hz, in agreement with (15). The 0.024Hz steady-
state deviation of fy is larger than with the first con-
troller, but still three times less than without control.
Primary reserve consumption x; at steady state reduces
t0 976 kW for AC area 2 and lies between 194 and 843 kW
for the other areas. The 0.055Hz maximum transient de-
viation of f5 is lower than with the first controller. For
v = 4% 102, the frequencies settle within a smaller band-
width of 0.007Hz and AC area 1 contributes more than
AC area 2 (z; = 850 kW, x5 = 837 kW). Although
this larger v violates the condition for Proposition 6, an
eigenvalue computation shows that S’ is still stable.



The V¥ (resp. P{&) vary by no more than 0.3%
(resp. 12%) in the above simulations, with instanta-
neous variations within modern converters’ tracking
speeds (see e.g. [10,12]). We have also simulated our
controllers with P variations up to 50% in one AC

area, without observing instabilities.

6 Conclusion

We have presented controllers that make an HVDC sys-
tem collectively react to local variations in the (handily
measurable) AC area frequencies. A first scheme, requir-
ing communication, regulates the power injection from
each AC area into the DC grid as a function of com-
pared frequency deviations in neighboring areas, much
like a standard consensus algorithm. A second control
scheme just sets the DC-side voltage of each converter
proportionally to its local frequency deviation. Each AC
area thereby “signals” its imbalance through the nat-
ural dynamics of the DC grid so that coordination is
achieved without explicit communication. Theoretical
analysis proves that the interconnected system locally
converges to a stable equilibrium with each controller.
The frequency deviations and primary reserve consump-
tions resulting from a local power imbalance are shared
between AC areas, such that the affected area’s effort is
significantly reduced. This analysis is valid for AC areas
with different individual characteristics and confirmed
by simulations. Primary reserves are thus shared like
in an AC network, but with a controlled coupling that
e.g. can easily accommodate firewalls to prevent cascad-
ing outages.
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