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Abstract. In the framework of Clifford analysis a chain of harmonic and monogenic potentials is constructed in the upper
half of Euclidean space Rm+1. Their distributional limits at the boundary are computed, obtaining in this way well-known
distributions in Rm such as the Dirac distribution, the Hilbert kernel, the square root of the negative Laplace operator, and
the like. It is shown how each of those potentials may be recovered from an adjacent kernel in the chain by an appropriate
convolution with such a distributional limit.
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1. INTRODUCTION

In the complex plane the notion of holomorphic potential or holomorphic primitive is linked to the complex derivative
d
dz . When restricting to the upper half plane, the logarithmic potential lnz is the holomorphic primitive of the Cauchy
kernel 1

z , which is, up to a constant, the fundamental solution of the Cauchy–Riemann operator. In its turn this Cauchy
kernel is the holomorphic primitive of the holomorphic function − 1

z2 . At the other side, and still restricting to the
upper half plane, the logarithmic potential lnz shows the holomorphic primitive z(lnz− 1), which in its turn has a
holomorphic potential, etc. Our aim is to construct, in the upper half of Euclidean space, a similar chain of monogenic
potentials. Monogenicity is the central notion in Clifford analysis; it generalizes to higher dimension the notion of
holomorphy in the complex plane, and is expressed by means of the generalized Cauchy–Riemann operator which
is a combination of the derivative with respect to one of the variables, say x0, and the so–called Dirac operator in
the remaining variables (x1, . . . ,xn). The Cauchy–Riemann operator and its conjugate linearize the Laplace operator
whence Clifford analysis is entitled to be called a refinement of harmonic analysis. Starting point of our construction
then is the fundamental solution of the Cauchy–Riemann operator, also called Cauchy kernel, and its relation to the
Poisson kernel and its conjugate harmonic in upper half space. We then proceed by induction in both directions,
downstream by differentiation, and upstream by primitivation, yielding an infinite chain of monogenic, and thus
harmonic, potentials. Identifying the boundary of the upper half space with Rm ∼= {(x0,x) ∈ Rm+1 : x0 = 0}, the
distributional limits for x0→ 0+ are computed; they divide into two classes which are linked by the Hilbert transform
and encompass well–known distributions in Rm such as the Dirac distribution, the Hilbert kernel, the fundamental
solutions of the Dirac and the Laplace operator, the square root of the negative Laplacian, and the like. It is also shown
how each of the monogenic potentials constructed may be recovered by the convolution of an adjacent kernel in the
chain with an appropriate boundary distribution.

2. BASICS OF CLIFFORD ANALYSIS

Clifford analysis (see e.g. [1, 2]) is a function theory which offers a natural generalization to higher dimension of
holomorphic functions in the complex plane and refines harmonic analysis. Let (e0,e1, . . . ,em) be the canonical
orthonormal basis of Euclidean space Rm+1, then the non–commutative multiplication in the real Clifford algebra
R0,m+1 is governed by the rule eα eβ + eβ eα = −2δαβ , α,β = 0,1, . . . ,m, whence R0,m+1 is generated additively
by the elements eA = e j1 . . .e jh , where A = { j1, . . . , jh} ⊂ {0, . . . ,m}, with 0 ≤ j1 < j2 < · · · < jh ≤ m, and e /0 = 1.
We identify the point (x0,x1, . . . ,xm) ∈ Rm+1 with the vector variable x = x0e0 + x1e1 + · · ·xmem = x0e0 + x and the
point (x1, . . . ,xm) ∈ Rm with the vector variable x. At the heart of Clifford analysis lies the so–called Dirac operator
∂ = ∂x0e0+∂x1e1+ · · ·∂xmem = ∂x0e0+∂x, which squares to the negative Lapace operator: ∂ 2 =−∆m+1 and ∂ 2

x =−∆m.
We also introduce the generalized Cauchy–Riemann operator D = e0∂ = ∂x0 + e0∂x and its conjugate D = ∂x0 − e0∂x,
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which also decompose the Laplace operator: DD = DD = ∆m+1. We call a continuously differentiable function F(x)
in an open region Ω⊂ Rm+1 (left–)monogenic if it satisfies DF = 0 in Ω, which is equivalent with ∂F = 0. Singling
out the basis vector e0, we can decompose the real Clifford algebra R0,m+1 in terms of the Clifford algebra R0,m as
R0,m+1 =R0,m⊕e0R0,m. Similarly we decompose the functions considered as F(x0,x) = F1(x0,x)+e0F2(x0,x) where
F1 and F2 take their values in the Clifford algebra R0,m; mimicing functions of a complex variable, we will call F1 the
real part and F2 the imaginary part of the function F .

3. A CONJUGATE HARMONIC TO GREEN’S FUNCTION

The notion of conjugate harmonics in the complex plane was generalized to higher dimension in [3] as follows. Given
a harmonic function U(x) in the upper half space UHS = {x ∈ Rm+1 : x0 > 0}, there exists a harmonic function V (x)
in UHS such that F(x) =U(x)+ e0 V (x) is monogenic in UHS. This conjugate harmonic V (x) and the corresponding
monogenic function F(x) may be derived from a harmonic potential Ĥ(x):

V (x) =−∂xĤ(x) and F(x) = DĤ

The fundamental solution of the Laplace operator ∆m+1 in Rm+1, sometimes called Green’s function, is given by

K(x) =− 1
m−1

1
am

1
|x|m

with am the area of the unit sphere Sm−1 in Rm; it thus satisfies, in distributional sense, ∆m+1K(x) = δ (x), where δ (x)
stands for the Dirac distribution in Rm+1. We consider it as a harmonic function in UHS and construct its conjugate
harmonic L(x) by solving the following generalized Cauchy-Riemann system expressing the monogenicity of the
function K(x)+ e0L(x) in UHS:

∂x0K +∂xL = 0
∂x0L+∂xK = 0

Introducing the one variable function Fm by

Fm(v) =
∫ v

0

ηm−1

(1+η2)(m+1)/2 dη =
vm

m 2F1(
m
2
,

m+1
2

;
m
2
+1;−v2)

with 2F1 a hypergeometric function, this conjugate harmonic L(x) turns out to be

L(x0,x) =
1

am+1

x
|x|m

Fm

(
|x|
x0

)
which, nota bene, is well defined for x = 0 since limx→0 L(x0,x) = 0, x0 > 0. An alternative expression for this
conjugate harmonic is obtained by introducing the one variable function F̃m by

F̃m(u) =
∫ u

0

dξ

(1+ξ 2)(m+1)/2 = u 2F1(
1
2
,

m+1
2

;
3
2

;−u2)

leading to

L(x0,x) =
1

am+1

x
|x|m

(√
π

2
Γ(m

2 )

Γ(m+1
2 )
− F̃m

(
x0

|x|

))
From this alternative expression it follows that for x 6= 0:

l(x) = lim
x0→0+

L(x0,x) =
1
2

1
am

x
|x|m

in which we recognize, quite surprisingly, the fundamental solution of the Dirac operator ∂x in Rm. Note, by the way,
that

k(x) = lim
x0→0+

K(x0,x) =−
1

m−1
1

am+1
Fp

1
|x|m−1
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with Fp the so–called finite part distribution on the real line. This is, up to a multiplicative constant, the pseudodiffer-
ential operator (−∆)−

1
2 (see e.g. [4]). Moreover these two distributional limits form a Hilbert pair: H [k] = H ∗ k = l

and H [l] = H ∗ l = k, see the next section for the definition of the Hilbert transform and its kernel.

4. DOWNSTREAM POTENTIALS

As is well-known the Cauchy kernel C(x0,x), i.e. the fundamental solution of the Dirac operator ∂ , may be decomposed
in UHS in terms of the Poisson kernels:

C(x) =
1
2

P(x)+
1
2

Q(x)

where for x0 > 0

P(x0,x) = 2∂x0K =−2∂xL =
2

am

x0

|x|m+1 and Q(x0,x) = 2∂x0L =−2∂xK =− 2
am

x
|x|m+1

showing the following distributional limits for x0→ 0+

lim
x0→0+

P(x0,x) = δ (x) and lim
x0→0+

Q(x0,x) = H(x)

the distribution
H(x) =− 2

am
Pv

x
|x|m+1

being the convolution kernel of the Hilbert transform in Rm. Both distributional limits are linked by the Hilbert
transform H since, quite trivially H [δ ] = H ∗δ = H, and also H [H] = H ∗H = δ in view of the involutive character
of the Hilbert transform: H 2 = 1.

Seen the monogenicity of C(x) in UHS there holds DC = 2∂x0C =−2e0∂xC = DP = D(e0Q) and we put

C−2 = DC =
1
2

A−2 +
1
2

e0B−2

It then follows that C(x) is a monogenic potential of C−2(x), while P(x) and Q(x) are its conjugate harmonic potentials.
Moreover C−2 shows the following distributional limits for x0→ 0+:

1
2

a−2 = lim
x0→0+

1
2

A−2 =
2

am+1
Fp

1
|x|m+1 and

1
2

b−2 = lim
x0→0+

1
2

B−2 =−∂xδ

Note that 1
2 a−2 is nothing else but the convolution operator −∂xH =−H∂x, known as the Hilbert-Dirac operator (see

[5]), or perhaps better known as the pseudodifferential operator square root of the negative Laplacian (−∆)
1
2 . Also

note that, again, both distributional limits form a Hilbert pair: H [ 1
2 a−2] =

1
2 b−2 and H [ 1

2 b−2] =
1
2 a−2. A direct and

elegant way of proving this is to express the Hilbert transform as a convolution with the Hilbert kernel H(x) and to
revert to the thorough study, and in particular the results about convolution, of higher dimensional distributions in the
Clifford analysis setting (see [6]).

Proceeding in the same way we can recursively define in UHS the monogenic and conjugate harmonic potential
kernels

C−k−1 = DC−k = DkC =
1
2

A−k−1 +
1
2

e0B−k−1, k = 1,2, . . .

Seen their monogenicity in UHS there also holds that

C−k−1 = 2∂x0C−k = (−2e0∂x)C−k = (2∂x0)
kC = (−2e0∂x)

kC

The real parts 1
2 A−k−1 and imaginary parts 1

2 B−k−1 of these kernels show distributional limits for x0→ 0+ which are
natural powers of the Dirac operator ∂x acting on the Dirac distribution δ (x) or the Hilbert kernel H(x) depending on
the parity of k:

(i) 1
2 a−2l(x) = limx0→0+

1
2 A−2l(x0,x) =−22l−2∂ 2l−1

x H
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(ii) 1
2 b−2l(x) = limx0→0+

1
2 B−2l(x0,x) =−22l−2∂ 2l−1

x δ

(iii) 1
2 a−2l−1(x) = limx0→0+

1
2 A−2l−1(x0,x) = 22l−1∂ 2l

x δ = 22l−1(−∆)lδ

(iv) 1
2 b−2l−1(x) = limx0→0+

1
2 B−2l−1(x0,x) = 22l−1∂ 2l

x H = 22l−1(−∆)lH

Moreover they form, once again, Hilbert pairs: H [ 1
2 a−2l ] =

1
2 b−2l and H [ 1

2 a−2l−1] =
1
2 b−2l−1.

5. UPSTREAM POTENTIALS

From the above mentioned relations between the Poisson kernels and the Green’s function and its conjugate harmonic,
it follows that DK = D(e0L) =C, which means that K and e0L are conjugate harmonic potentials and that

C0 =
1
2

K +
1
2

e0L

is a monogenic potential of the Cauchy kernel C in UHS, thus satisfying

DC0 = 2∂x0C0 =−2e0∂xC0 =C

We also mentioned above that the boundary distributions k(x) and l(x) in Rm form a Hilbert pair. Moreover they are
Dirac primitives of the distributional limits of the Poisson kernels: ∂xk =− 1

2 H and ∂xl =− 1
2 δ .

In order to construct harmonic and monogenic potentials for C0 in UHS we put A1 = K ∗ k = L∗ l and B1 = K ∗ l =
L∗ k and we verify that:

(i) ∂x0A1 = ∂x0K ∗ k = 1
2 P∗ k = 1

2 K

(ii) −∂xA1 =−∂xK ∗ k = 1
2 Q∗ k = 1

2 L

(iii) ∂x0B1 = ∂x0K ∗ l = 1
2 P∗ l = 1

2 L

(iv) −∂xB1 =−∂xK ∗ l = 1
2 Q∗ l = 1

2 K

which are precisely the relations needed for A1 and B1 to be conjugate harmonic potentials in UHS of C0. It then
follows that

C1 =
1
2

A1 +
1
2

e0B1

is a monogenic potential in UHS of C0, and we have

DC1 = 2∂x0C1 =−2e0∂xC1 =C0

The distributional limits of these harmonic potentials are given by

1
2

a1 = lim
x0→0+

1
2

A1(x0,x) =
1
2

k ∗ k(x) =
1
2

l ∗ l(x) =
1
8

1
am

1
m−2

1
|x|m−2

and
1
2

b1 = lim
x0→0+

1
2

B1(x0,x) =
1
2

k ∗ l(x) =
1
2

l ∗ k(x) =−1
4

1
am+1

1
m−1

x
|x|m−1

and again they form a Hilbert pair: H [a1] = H ∗a1 = b1 and H [b1] = H ∗b1 = a1. Note that in a1 we recognize, up
to a constant, the fundamental solution of the Laplace operator in Rm. Moreover we can compute the explicit form of
the potentials A1 and B1 making use again of the hypergeometric function Fm introduced in Section 3:

A1(x0,x) =
1
2

1
m−1

1
am+1

1
|x|m−2 Fm−2

(
|x|
x0

)
and

B1(x0,x) =
1
2

1
am+1

x0 x
|x|m

Fm

(
|x|
x0

)
− 1

2
1

am+1

1
m−1

x
|x|m−1

showing that they are wel–defined for x = 0 and confirming the distributional limits for x0→ 0+ mentioned above.
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