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Abstract. We are going to prove that every ordinal α with ε0 > α ≥ ωω
satisfies a natural zero one law in the following sense. For α < ε0 let
Nα be the number of occurences of ω in the Cantor normal form of
α. (Nα is then the number of edges in the unordered tree which can
canonically be associated with α.) We prove that for any α with ωω ≤
α < ε0 and any sentence ϕ in the language of linear orders the limit
δϕ(α) = limn→∞

#{β<α:(β,∈)|=ϕ ∧ Nβ=n}
#{β<α:Nβ=n} exists and that δϕ(α) ∈ {0, 1}.

We further show that for any such sentence ϕ the limit δϕ(ε0) exists
although this limit is in general in between 0 and 1. We also investigate
corresponding asymptotic densities for ordinals below ωω.

1 Introduction

This paper concerns logical limit laws for infinite ordinals. It is based on methods
and techniques from the theory of logical limit laws for classes of finite struc-
tures and some ingredients from the theory of linear orders. We heavily use the
machinery (which to a large extent goes back to pioneering work of Compton)
developed in the book by Burris [2].

In 2001 the first author (after having read [2] and having recognized that or-
dinals below ε0 form a natural additive number system) discussed the possibility
of limit laws for ordinals with Compton at an AOFA-workshop in Tatihoo and
Compton suggested among other things to contact the second author because
of his results on limit laws for trees. This led to a fruitful interaction over the
years. Tragically the second author passed away at the age of 58 unexpectedly in
december 2011 and the first author feels responsible to make publically available
the beautiful results which so far have been achieved (partially funded by DFG
and the John Templeton Foundation).

Technically this article is based on a mixture of results from [4] (which when
compared with the results from this article have preliminary nature) and [7].
Also some basic techniques from [2], [3] (and implicitly [1]) are used.

More elaborate results of the authors (concerning larger ordinal segments and
more general languages, like the second order monadic ones) on limit laws for
ordinals are sketched at the end and will hopefully be treated at later occasions.
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2 Some basic results

For two linear orders A and B let Gn(A,B) be the following two person game,
also well known as Ehrenfeucht Fräısse game, between, lets say, Bob and Alice. A
play consists of an ordered sequence of n repetitions of the following: Bob chooses
an element of A or B and Alice chooses an element of the other. The element of
A selected at the t-th turn is denoted at and the element of B selected at the
t-th turn is denoted bt. We say that Alice has won the game if for each s, t ≤ n
the assertion as < at (mod A) is equivalent with bs < bt (mod B). Otherwise we
say that Bob has won. As usual we define what a winning strategy for Alice is
and we say A ∼n B iff Alice has a winning strategy for Gn(A,B). (We took this
standard exposition from page 99 in Rosenstein’s classical text book [3] on linear
orders.) Let L be the usual first order language of linear orders. Then α ∼n β
yields that α and β model exactly the same L-sentences ϕ of quantifier rank not
exceeding n.

Lemma 1 Fix a natural number n ≥ 1. Let (ai)i≤n and (a′i)i≤n be sequences
of natural numbers such that for all i ≤ n: (ai ≥ 2n ⇐⇒ a′i ≥ 2n) and
(ai < 2n ⇒ ai = a′i).

Then we have

ωn · an + · · ·+ ω0 · a0 ∼n ωn · a′n + · · ·+ ω0 · a′0. (1)

Moreover for such sequences (ai)i≤n and (a′i)i≤n and for any pair of non zero
ordinals α and β we have

ωn+1 · α+ ωn · an + · · ·+ ω0 · a0 ∼n ωn+1 · β + ωn · a′n + · · ·+ ω0 · a′0. (2)

Proof. We have only to show assertion (1) (but we still need assertion (2) for
applying the induction hypothesis). For, we have ωn+1 · α ∼2n+2 ωn+1 and
ωn+1 · β ∼2n+2 ωn+1 by assertion (1) of Theorem 6.18 in [3]. Assertion (1)
above and closure of ∼n onder sums (i.e. assertion (1) of Lemma 6.5 of [3])
together with downward conservativity (cf., e.g. Lemma 6.4 of [3]) then yield
ωn+1 ·α+ωn · an + · · ·+ω0 · a0 ∼n ωn+1 · β+ωn · a′n + · · ·+ω0 · a′0. For proving
assertion (1) we proceed by induction on n. The induction starts with n = 1 for
which the assertion holds. Now consider

γ = ωn · an + · · ·+ ω0 · a0

and

δ = ωn · a′n + · · ·+ ω0 · a′0.

We are going to apply Theorem 6.6 in [3] i.e. we verify the Fräısse conditions for
games on linear orderings. So we have to show that for every splitting of γ (δ)
into an initial and final segment there is a splitting of δ (γ) into corresponding
initial and final segments for which the second player wins the corresponding
games on initial and final segments separately with n− 1 moves.
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Assume without loss of generality that Player one picks ξ < γ. (In case that
he picks ξ < δ the argument is symmetrical.) Assume that

ξ = ωn · an + · · ·+ ωi+1 · ai+1 + ωi · bi + · · ·+ ω0 · b0

and bi < ai.
Assume first that ai ≥ 2n.
In this case also a′i ≥ 2n. If bi < 2n−1 let b′i := bi. If If bi ≥ 2n−1 and

ai − bi < 2n−1 let b′i := a′i − (ai − bi) ensuring b′i ≥ 2n−1. If bi ≥ 2n−1 and
ai − bi ≥ 2n−1 then let b′i := 2n−1. Let

ξ′ := ωn · a′n + · · ·+ ωi+1 · a′i+1 + ωi · b′i + · · ·+ ω0 · b0

and let Player two play ξ′. By induction hypothesis applied to (2) and assertion
(1) of Lemma 6.5 in [3] we obtain ξ ∼n−1 ξ′. So the initial segments determined
by ξ and ξ′ are ∼n equivalent and it remains that the final segments in γ and δ
are also ∼n equivalent. To prove this let

X := {η : ξ < η < γ}

and
Y := {η : ξ′ < η < δ}.

For a set X of ordinals let as usual otype(X) denote its order type, i.e. the
ordinal which is order isomorphic to it. Then

otype(X) = ωi · (ai − bi) + ωi−1 · ai−1 + · · ·+ ω0 · a0.

If bi < 2n−1 then

otype(Y ) = ωi · (a′i − bi) + ωi−1 · a′i−1 + · · ·+ ω0 · a′0

where ai − bi ≥ 2n−1 since a′i ≥ 2n.
If bi ≥ 2n−1 and ai − bi < 2n−1 then

otype(Y ) = ωi · (a′i − (a′i − (ai − bi)) + ωi−1 · a′i−1 + · · ·+ ω0 · a′0
= ωi · (ai − bi) + ωi−1 · a′i−1 + · · ·+ ω0 · a′0.

If bi ≥ 2n−1 and ai − bi ≥ 2n−1 then

otype(Y ) = ωi · (a′i − 2n−1) + ωi−1 · a′i−1 + · · ·+ ω0 · a′0

where a′i − 2n−1 ≥ 2n−1 since a′i ≥ 2n. By induction hypothesis applied to (2)
and closure of ∼n−1 under sum (assertion (1) of Lemma 6.5 in [3]) we obtain
X ∼n−1 Y.

Assume for the second case that ai < 2n. In this case by assumption on the
ai and a′i we have necessarily a′i = ai. Let

ξ′ := ωn · a′n + · · ·+ ωi+1 · a′i+1 + ωi · bi + · · ·+ ω0 · b0
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be the response of Player two. To apply Theorem 6.6 of [3] we split as in the first
case γ and δ into initial and final segments. By induction hypothesis applied to
(2) and assertion (1) of Lemma 6.5 in [3] we obtain ξ ∼n−1 ξ′. As before let

X := {η : ξ < η < γ}

and

Y := {η : ξ′ < η < δ}.

otype(X) = ωi · (ai − bi) + ωi−1 · ai−1 + · · ·+ ω0 · a0

and

otype(Y ) = ωi · (a′i − bi) + ωi−1 · a′i−1 + · · ·+ ω0 · a′0.

By induction hypothesis applied to (2) and closure of ∼n−1 under sum we obtain
X ∼n−1 Y. The assertion now follows from Theorem 6.6 of [3]. �

Let us define for each α < ε0 the norm of α, Nα, as follows by recursion
on α. N0 := 0 and Nα := n + Nα1 + · · · + Nαn if α has Cantor normal form
α = ωα1 + · · ·+ ωαn . Then Nα is the number of occurrences of ω in the Cantor
normal form of α. If we associate with α an unordered tree in the canonical
way (see the proof of Theorem 2) then Nα is the number of edges in the tree
representation of α and so N is in fact a canonical norm function on the ordinals
below ε0. For a given α < ε0 and n < ω there will only be finitely many ξ < α
with Nξ = n. For a finite set M we denote its cardinality by #M . The ordinal
ε0 is as usual the least ordinal ξ such that ξ = ωξ.

For α < ε0 we therefore may then define

cα(n) = #{ξ < α : Nξ = n}

and for an L-sentence ϕ we may further define

cϕα(n) = #{ξ < α : ξ |= ϕ ∧ Nξ = n}.

We further define

δϕ(α) := limn→∞
cϕα(n)

cα(n)

if this limit exists. We say that α satisfies an L-limit law if δϕ(α) exists for all ϕ
and we say that α satisfies an L zero one law if δϕ(α) exists for all ϕ and if δϕ(α)
is either 0 or 1. In the sequel we write α |= ϕ as an abbreviation for (α,∈) |= ϕ.

Theorem 1 Let ε0 > α ≥ ω. Then ωα satisfies an L zero one law.

Proof. Let ϕ be a sentence of the language of linear orders. Assume that n is
the quantifier rank of ϕ. Let I be the set {{0}, {1}, . . . , {2n−1}, {m : m ≥ 2n}}.
Let A0, . . . , An be a sequence of elements of I. Let

Pα(A0, . . . , An) := {ωn+1·β+ωn·an+· · ·+ω0·a0 < ωα : β > 0 ∧ (∀i ≤ n)[ai ∈ Ai]}
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and

Qα(A0, . . . , An) := {ωn · an + · · ·+ ω0 · a0 < ωα : (∀i ≤ n)[ai ∈ Ai]}.

Then the union of Pα’s and Qα’s taken over all (finitely many) sequences of
elements in I gives the set of all ordinals below ωα. By the Lemma 1 we have γ ∼n
δ for any pair of elements of each of the sets Pα(A0, . . . , An) and Qα(A0, . . . , An).
The finite collection of the Pα(A0, . . . , An) andQα(A0, . . . , An) yields an effective
(finite) description of the finitely many equivalence classes for ∼n. Then

{π < ωα : π |= ϕ} =
⋃

A0,...,An∈I:(∃iAi 6={∅})∧∃ξ∈Pα(A0,...,An):ξ|=ϕ

Pα(A0, . . . , An) ∪

⋃
A0,...,An∈I:(∃iAi 6={∅})∧∃ξ∈Qα(A0,...,An):ξ|=ϕ

Qα(A0, . . . , An)

and we only have to show that the asymptotic density of each Pα(A0, . . . , An) and
Qα(A0, . . . , An) is either 0 or 1. Of course the value 1 can only be distributed
once. Consider a set Pα(A0, . . . , An) where some Ai is a singleton containing
exactly ai. Let Pn+1 := {ωη : α > η ≥ n + 1}. Let Pi := {ωi} for i ≤ n. Then
Pα(A0, . . . , An) is a partition set in the sense of Burris [2] and can be written as

P (A0, . . . , An) = (≥ 0)Pn+1 + · · ·+ ai · Pi · · · .

This means that elements of P (A0, . . . , An) can be written as sums of arbitrary
many members of Pn+1 and ai members of each Pi for i ≤ n. We have that the
local count function cωα(n) for ωα is in RT1 by [4] and according to Compton’s
Theorem 4.1 in [2] we obtain that the asymptotic density of Pα(A0, . . . , An) is
zero since ai is a small index (following the terminology of Definition 3.23 in
[2]. If all Ai are non singleton elements then Theorem 4.1 in [2] shows that the
asymptotic density of Pα(A0, . . . , An) is one. Finally since Q(A0, . . . , An) can be
written following Definition 3.25 of [2] as 0 ·Pn+1 + · · · Theorem 4.1 in [2] yields
that the asymptotic density of Q(A0, . . . , An) is zero since 0 is a small index. �

Theorem 2 For any L sentence ϕ the limit δϕ(ε0) exists.

Proof. The proof starts as the proof of Theorem 1 and continues with Woods’
tree theorem.

Let ϕ be a sentence of the language of linear orders. Assume that n is the
quantifier rank of ϕ. Let I be the set {{0}, {1}, . . . , {2n − 1}, {m : m ≥ 2n}}.
Let A0, . . . , An be a sequence of elements of I. Let

P (A0, . . . , An) := {ωn+1·β+ωn·an+· · ·+ω0·a0 < ε0 : β > 0 ∧ (∀i ≤ n)[ai ∈ Ai]}

and

Q(A0, . . . , An) := {ωn · an + · · ·+ ω0 · a0 < ε0 : (∀i ≤ n)[ai ∈ Ai]}.

Then the union of P ’s and Q’s taken over all (finitely many) sequences of ele-
ments in I gives the set of all ordinals below ε0. By Lemma 1 we have γ ∼n δ for
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any pair of elements of fixed set P or a fixed set Q. Thus we have an effective
description of the finitely many equivalence classes for ∼n. Then

{π < ε0 : π |= ϕ} =
⋃

A0,...,An∈I:(∃iAi 6={∅})∧∃ξ∈P (A0,...,An):ξ|=ϕ

Pα(A0, . . . , An) ∪

⋃
A0,...,An∈I:(∃iAi 6={∅})∧∃ξ∈Q(A0,...,An):ξ|=ϕ

Q(A0, . . . , An)

and we only have to show we only have to show that the asymptotic density of
each P (A0, . . . , An) andQ(A0, . . . , An) exists. Now consider a fixed P (A0, . . . , An)
(or Q(A0, . . . , An)). To each ordinal α less than ε0 we may associate canonically
a finite rooted non planar tree T (α) as follows. (Non planar refers in contrast
to planar to the property that there is no canonical ordering assumed for the
immediate subtrees of a given tree.) To 0 we associate the tree consisting of a
root. If α has a normal form ωα1 + · · ·+ ωαn then we may assume that we have
associated trees T (αi) to the ordinals αi for 1 ≤ i ≤ n. Now let T (α) be the tree
consisting of a root and immediate subtrees T (α1), . . . , T (αn). Then |T (α)|, the
number of nodes of T (α), is 1+N(α). By the finitary character of the description
of P (A0, . . . , An) we may find a sentence ψ in the language of trees such that
P (A0, . . . , An) = {α < ε0 : T (α) |= ψ}. This follows from Lemma 1 and the
fact that one can describe trees representing ordinals of the form ωk by a first
order formula in the language of trees. Theorem 1.1 of the second author from
[7] yields that for any monadic second order property ψ the limiting distribution
probability of the fraction of unlabelled rooted trees with n vertices and which
satisfy ψ exists. Therefore

lim
n→∞

#{T : T |= ψ ∧ |T | = n+ 1}
#{T : |T | = n+ 1}

exists. But this limit is equal to

lim
n→∞

#{α < ε0 : T (α) |= ψ ∧ Nα = n}
#{α < ε0 : Nα = n}

which is the asymptotic density of P (A0, . . . , An). �

It is clear that we cannot expect a zero one law for ε0. Being a successor is
a first order property which has in this case a limiting distribution probability
strictly inbetween 0 and 1 as shown in [4].

3 Refinements

We now investigate limit laws for not necessarily additive principal ordinals
below ε0.
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Lemma 2 Let α = ωβ · m + γ where m > 0 and γ < ωβ < ε0. Let ϕ be an
L-sentence. Assume that

δϕ(ωβ ·m) = lim
n→∞

cϕ
ωβ ·m(n)

cωβ ·m(n)

exists. Then

lim
n→∞

cϕα(n)

cα(n)
= δϕ(ωβ ·m).

Proof. This Lemma is an easy corollary of the proof of Lemma 3.1 in [4].

cϕα(n)

cα(n)
≥
cϕ
ωβ ·m(n)

cα(n)

=
cωβ ·m(n)

cα(n)
·
cϕ
ωβ ·m(n)

cωβ ·m(n)
→n→∞ 1 · δϕ(ωβ ·m)

by equation (2) in the proof of Lemma 3.1 of [4]. Moreover

cϕα(n)

cα(n)
≤
cϕ
ωβ ·m(n)

cωβ ·m(n)
+

#{ξ : ωβ ·m ≤ ξ < α ∧ Nξ = n}
cωβ ·m(n)

→n→∞ δϕ(ωβ ·m) + 0

by equation (2) in the proof of Lemma 3.1 of of [4]. �

Lemma 3 Assume that α < ωω where α = ωk ·mk + · · ·+ω0 ·m0 with mk > 0.
Then for each ` ∈ {0, . . . ,mk} there is a sentence ϕ ∈ L such that

lim
n→∞

cϕα(n)

cα(n)
=

`

mk
.

Proof. Let ϕ describe that there exist exactly (mk − `) k-limit points. (Recall

that 1-limit points are just limit points, i.e. ordinals of the form ω(̇1 + β) and
recall that k-limit points are limits of (k − 1)-limit points. So k-limit points

have the form ωk (̇1 + β). Obviously being a k-limit point is first order definable
property of an ordinal under consideration.)

We are going to prove that

lim
n→∞

cϕ
ωk·mk(n)

cωk·mk(n)
=

`

mk
.

This yields the claim by Lemma 2. We first see that

{δ < ωk ·mk : δ |= ϕ ∧ Nδ = n} =

{δ < ωk ·mk : δ ≥ ωk · (mk − `) ∧ Nδ = n} =

{ξ < ωk · l : Nξ = n−N(ωk · (mk − `))}

Thus cϕ
ωk·mk(n) = cωk·`(n −N(ωk · (mk − `))) ∼ cωk(n) · ` as shown in the last

line of the proof of Lemma 3.1 of [4] of [4]. Moreover cωk·mk(n) ∼ m · cωk(n) and
the assertion follows. �
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Lemma 4 If γ ≥ ω > m > 0 then

lim
n→∞

cϕωγ ·m(n)

cωγ ·m(n)
= lim
n→∞

cϕωγ (n)

cωγ (n)
∈ {0, 1}.

Proof. Fix ϕ. Assume that the quantifier rank of ϕ does not exceed the natural
number r. For 2 ≤ i ≤ m let

M1
i (n) := {δ < ωγ · i : δ |= ϕ ∧ Nδ = n ∧ δ ≥ ωγ · (i− 1) + ωr+1}

and

M2
i (n) := {δ < ωγ · i : δ |= ϕ ∧ Nδ = n ∧ ωγ · (i− 1) ≤ δ < ωγ · (i− 1) +ωr+1}

Then

cϕωγ ·m(n) ≥
#{δ < ωγ ·m : δ |= ϕ ∧ Nδ = n ∧ δ ≥ ωr}+

#M1
2 (n) + #M2

2 (n) + . . .+ #M1
m(n) + #M2

m(n).

By Assertion (1) of Theorem 6.18 in [3] we know that ωr ∼2·r ω
r ·β for all β > 0.

If δ = ωγ · i + ξ where ξ < ωγ and i > 0 then, since γ ≥ ω, δ = ωr · ωγ · i + ξ
and we have the equivalence: δ |= ϕ ⇐⇒ ωr + ξ |= ϕ. Thus δ 7→ ωr + ξ gives
a projection into ωγ which preserves the validity (invalidity) of ϕ. Assume first

that limn→∞
cϕ
ωγ

(n)

cωγ (n)
= 1. The remaining case limn→∞

cϕ
ωγ

(n)

cωγ (n)
= 0 can be treated

similarly. Now we have

#M1
i (n) = #{ξ < ωγ : ξ |= ϕ ∧ Nξ = n− (Nγ + 1) · i}

hence
#M1

i (n)

m · cωγ(n)

converges to 1
m . We have

#M2
i (n) = #{ξ < ωr+1 : ξ |= ϕ ∧ Nξ = n− (Nγ + 1) · i+ r + 1}

hence
#M2

i (n)

m · cωγ(n)

converges to 0. We see that lim infn→∞
cϕ
ωγ ·m(n)

cωγ ·m(n) ≥ 1 and the assertion follows.
�

Corollary 1 If ε0 > γ ≥ ωω then γ satisfies an L zero one law.
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Theorem 3 Assume that α < ωω where α = ωk ·mk+ · · ·+ω0 ·m0 with mk > 0.
Then for each sentence ϕ ∈ L there is an ` ∈ {0, . . . ,mk} such that

lim
n→∞

cϕα(n)

cα(n)
=

`

mk
. (3)

Proof. By Lemma 2 we may assume without loss of generality that α = ωk ·m.
Let ϕ be given and assume that the rank of ϕ is r. Let Pi := {ωi} for i ≤ k.
Then {δ < α : δ |= ϕ} can be written as a disjoint union of partition sets (in the
sense of Definition 3.25 of [2]) in the form

⋃
A0,...,Ak

AkPk + · · · + A0P0 where
Ai is an index in {0, 1, . . . , 2r− 1, (≥ 2r)}. Now Ak has to be finite by the choice
of α. If one Ai is finite for some i < k then Ak−1Pk−1 + . . .+A0P0 is a partition
set in ωk such that by Theorem 4.1 of [2] we have

lim
n→∞

#
{δ ∈ Ak−1Pk−1 + . . .+A0P0 : Nδ = n}

cωk(n)
= 0.

Thus we may concentrate on AkPk + (≥ 2r)Pk−1 + · · ·+ (≥ 2r)P0. This set has
the same asymptotic density as AkPk and this set has asymptotic density in the
desired set according to the shape of Ak. Moreover the resulting finite sums of
these densities are also in the desired set of values. �

Remarks: One referee of this paper suggested to report about possible ex-
tensions of the results of this paper. We give a short list but proofs will be
reported elsewhere.

1. Let (pi)i≥1 be an enumeration of the prime numbers and for α < ε0 with
Cantor normal form α = ωβ + γ let Gα := pGβ · Gγ where G0 := 1. (This
Gödel numbering shows up in Schütte’s proof theory book and is also known
as Matula-coding.) Let

∆ϕ(α) := lim
n→∞

#{β < α : β |= ϕ ∧Gβ ≤ n}
#{β < α : Gβ ≤ n}

.

Then ∆ϕ(α) ∈ {0, 1} for ωω ≤ α < ε0 and ϕ ∈ L. This follows by adapting
the proofs of this paper to the new situation since we are working with
multiplicative numbers systems (in the sense of [2]) and we know from [4]
that we have for α < ε0 that

n 7→ #{β < α : Gβ ≤ n} ∈ RV0.

2. Let (pi)i≥1 again be the enumeration of the prime numbers and for α < ε0

with Cantor normal form α = ωα1 + · · ·+ ωαn let G′α := pG
′α1

1 · . . . · pG′αnn

where G′0 := 1. (Such a Gödel numbering shows up in Gödel’s work).) Let

∆′ϕ(α) := lim
n→∞

#{β < α : β |= ϕ ∧G′β ≤ n}
#{β < α : G′β ≤ n}

.

Then we conjecture that ∆′ϕ(α) ∈ {0, 1} for ωω ≤ α < ε0 and ϕ ∈ L. We
expect that this follows by adapting the proofs of this paper to the new
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situation. To carry this out it seems reasonable to investigate whether we
have for α < ε0 that

n 7→ #{β < α : G′β ≤ n} ∈ RV0.

A remaining problem is that with respect to G′ we do not have a multiplica-
tive number system in the sense of Burris [2].

3. Let us now come back to the additive situation which is based on the norm
function N . If ϕ is in the monadic second order language of linear orders
then a limit law (but in general no zero one law) can be proved for all α
with ωω ≤ α ≤ ε0. A proof for this result has been obtained by applying as
new ingredient Shelah’s ‘additive colouring’ technique.

4. If ϕ is in the weak monadic second order language of linear orders with +
then a limit law can be proved for ε0 but no algorithm can separate formulas
having limiting probability 0 from formulas having limiting probability 1.

5. If ϕ is in the weak monadic second order language of linear orders with +
and · then a limit law can be proved for the thinned out domain of structures
A = {ωα : α < ε0}.

6. One referee of this paper asked whether limit laws are affected by the choice
of notation. Using a formula by Lagrange 1775 (cf. Lemma 3.3 in [5]) it
can easily be shown that an L zero one law breaks down for many ordinals
between ωω and ε0 when they are represented by the lexicographic path
order over a signature with a binary function symbol and a constant (cf., e.g.
the definition of < in [5] p.6). But the expectation is that for any system of
ordinal notations published in the literature at least limit laws will hold with
respect to L and canonically extended norm functions. For more expressive
languages one would expect Cesaro limit laws to hold in many situations
covered by ‘natural wellorderings’ (cf., e.g., [6]).
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