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Abstract

In this paper we study t-norms on the lattice of closed subintervals of the unit in-
terval. Unlike for t-norms on a product lattice for which there exists a straightforward
characterization of t-norms which are join-morphisms, respectively meet-morphisms, the
situation is more complicated for t-norms in interval-valued fuzzy set theory. In previous
papers several characterizations were given of t-norms in interval-valued fuzzy set theory
which are join-morphisms and which satisfy additional properties, but little attention has
been paid to meet-morphisms. Therefore, in this paper, we focus on t-norms which are
meet-morphisms. We consider a general class of t-norms and investigate under which
conditions t-norms belonging to this class are meet-morphisms. We also characterize the
t-norms which are both a join- and a meet-morphism and which satisfy an additional
border condition.
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1 Introduction

Interval-valued fuzzy set theory [11, 15] is an extension of fuzzy theory in which to each
element of the universe a closed subinterval of the unit interval is assigned which approximates
the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy
set theory introduced by Atanassov [1]. In [8] it is shown that the underlying lattice of
intuitionistic fuzzy set theory is isomorphic to the underlying lattice LI of interval-valued
fuzzy set theory.

In [6, 7, 5, 18] several characterizations of t-norms on LI in terms of t-norms on the unit
interval are given. In [13, 19, 20] t-norms on related and more general lattices are investigated.
However all the characterizations in these papers only deal with t-norms which are join-
morphisms. Unlike for t-norms on a product lattice for which there exists a straightforward
characterization of t-norms which are join-morphisms [3], respectively meet-morphisms, the
situation is more complicated for t-norms in interval-valued fuzzy set theory. Therefore, in
this paper, we focus on t-norms which are meet-morphisms. We consider a general class of
t-norms (given in [7]) and investigate under which conditions t-norms belonging to this class
are meet-morphisms.
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2 The lattice LI

Definition 2.1 We define LI = (LI ,≤LI ), where

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2] ≤LI [y1, y2] ⇐⇒ (x1 ≤ y1 and x2 ≤ y2), for all [x1, x2], [y1, y2] in LI .

Similarly as Lemma 2.1 in [8] it can be shown that LI is a complete lattice.

Definition 2.2 [11, 15] An interval-valued fuzzy set on U is a mapping A : U → LI .

Definition 2.3 [1] An intuitionistic fuzzy set on U is a set

A = {(u, µA(u), νA(u)) | u ∈ U},

where µA(u) ∈ [0, 1] denotes the membership degree and νA(u) ∈ [0, 1] the non-membership
degree of u in A and where for all u ∈ U , µA(u) + νA(u) ≤ 1.

An intuitionistic fuzzy set A on U can be represented by the LI -fuzzy set A given by

A : U → LI :

u 7→ [µA(u), 1− νA(u)],

In Figure 1 the set LI is shown. Note that to each element x = [x1, x2] of LI corresponds
a point (x1, x2) ∈ R2.

[0, 0]

[1, 1][0, 1]

x1

x2

x = [x1, x2]

x1

x2

Figure 1: The grey area is LI .

In the sequel, if x ∈ LI , then we denote its bounds by x1 and x2, i.e. x = [x1, x2]. The
length x2−x1 of the interval x ∈ LI is called the degree of uncertainty and is denoted by xπ.
The smallest and the largest element of LI are given by 0LI = [0, 0] and 1LI = [1, 1]. Note
that, for x, y in LI , x <LI y is equivalent to x ≤LI y and x 6= y, i.e. either x1 < y1 and x2 ≤ y2,
or x1 ≤ y1 and x2 < y2. We define for further usage the set D = {[x1, x1] | x1 ∈ [0, 1]}.

Note that for any non-empty subset A of LI it holds that

supA = [sup{x1 | [x1, x2] ∈ A}, sup{x2 | [x1, x2] ∈ A}],
inf A = [inf{x1 | [x1, x2] ∈ A}, inf{x2 | [x1, x2] ∈ A}].
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Theorem 2.1 (Characterization of supremum in LI) [6] Let A be an arbitrary non-
empty subset of LI and a ∈ LI . Then a = supA if and only if

(∀x ∈ A)(x ≤LI a)

and (∀ε1 > 0)(∃z ∈ A)(z1 > a1 − ε1)
and (∀ε2 > 0)(∃z ∈ A)(z2 > a2 − ε2).

Definition 2.4 A t-norm on LI is a commutative, associative, increasing mapping T :
(LI)2 → LI which satisfies T (1LI , x) = x, for all x ∈ LI .

Example 2.1 [7, 9] We give some special classes of t-norms on LI . Let T , T1 and T2 be
t-norms on ([0, 1],≤) such that T1(x1, y1) ≤ T2(x1, y1) for all x1, y1 in [0, 1], and let t ∈ [0, 1].
Then we have the following classes:

• t-representable t-norms:

TT1,T2(x, y) = [T1(x1, y1), T2(x2, y2)],

for all x, y in LI ;

• pseudo-t-representable t-norms:

TT (x, y) = [T (x1, y1),max(T (x1, y2), T (x2, y1))],

for all x, y in LI ;

• TT,t(x, y) = [T (x1, y1),max(T (t, T (x2, y2)), T (x1, y2), T (x2, y1))], for all x, y in LI ;

• T ′T (x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)], for all x, y in LI ;

• TT1,T2,t(x, y) = [T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2), T2(x2, y1))], for all x, y in LI ,
where T1 and T2 additionally satisfy, for all x1, y1 in [0, 1],

T2(x1, y1) > T2(t, T2(x1, y1)) =⇒ T1(x1, y1) = T2(x1, y1). (1)

In Theorem 5 of [7] it is shown that TT1,T2,t is indeed a t-norm on LI if T1 and T2 satisfy
(1).1

Definition 2.5 We say that a t-norm T on LI is

• a join-morphism if for all x, y, z in LI ,

T (x, sup(y, z)) = sup(T (x, y), T (x, z));

• a meet-morphism if for all x, y, z in LI ,

T (x, inf(y, z)) = inf(T (x, y), T (x, z));

1Note that the condition in Theorem 5 of [7] that T1 and T2 are left-continuous is not used to prove that
TT1,T2,t is a t-norm.
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• a sup-morphism if for all x ∈ LI and ∅ 6= Z ⊆ LI ,

T (x, supZ) = sup{T (x, z) | z ∈ Z};

• an inf-morphism if for all x ∈ LI and ∅ 6= Z ⊆ LI ,

T (x, inf Z) = inf{T (x, z) | z ∈ Z}.

Definition 2.6 Let n ∈ N \ {0}. If for an n-ary mapping f on [0, 1] and an n-ary mapping
F on LI it holds that

F ([a1, a1], . . . , [an, an]) = [f(a1, . . . , an), f(a1, . . . , an)],

for all (a1, . . . , an) ∈ [0, 1]n, then we say that F is a natural extension of f to LI .

Clearly, for any mapping F on LI , F (D, . . . ,D) ⊆ D if and only if there exists a mapping
f on [0, 1] such that F is a natural extension of f to LI . E.g. TT,T , TT , TT,t = TT,T,t and T ′T
are all natural extensions of T to LI , Ns is a natural extension of Ns.

Example 2.2 Let, for all x, y in [0, 1],

TW (x, y) = max(0, x+ y − 1),

TP (x, y) = xy,

TD(x, y) =

{
min(x, y), if max(x, y) = 1,

0, else.

Then TW , TP and TD are t-norms on ([0, 1],≤). Let now, for all x, y in LI ,

TW (x, y) = [max(0, x1 + y1 − 1),max(0, x1 + y2 − 1, x2 + y1 − 1)],

TP (x, y) = [x1y1,max(x1y2, x2y1)].

Then TW and TP are t-norms on LI . Furthermore, TW and TP are natural extensions of TW
and TP respectively.

We will also need the following result and definition (see [2, 12, 14, 16, 17]).

Theorem 2.2 Let (Tα)α∈A be a family of t-norms and (]aα, eα[)α∈A be a family of non-empty,
pairwise disjoint open subintervals of [0, 1]. Then the function T : [0, 1]2 → [0, 1] defined by,
for all x, y in [0, 1],

T (x, y) =

aα + (eα − aα) · Tα
(
x− aα
eα − aα

,
y − aα
eα − aα

)
, if (x, y) ∈ [aα, eα]2,

min(x, y), otherwise,
(2)

is a t-norm on ([0, 1],≤).

Definition 2.7 Let (Tα)α∈A be a family of t-norms and (]aα, eα[)α∈A be a family of non-
empty, pairwise disjoint open subintervals of [0, 1]. The t-norm T defined by (2) is called the
ordinal sum of the summands 〈aα, eα, Tα〉, α ∈ A, and we will write

T = (〈aα, eα, Tα〉)α∈A.
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Figure 2: The different positions of x, y ∈ LI , where Tα([0, 1], [0, 1]) = [0, 1], Tk([0, 1], [0, 1]) =
[0, t] and Tβ([0, 1], [0, 1]) = [0, 0]. The value of (T (x, y))2 is calculated at the ending points of
the arrows.

Let A be an arbitrary countable index-set and Tα a t-norm on LI , for all α ∈ A. Define,
for all α ∈ A and for all aα, eα in D with aα ≤LI eα, the following sets and mappings:2

Jα = {x | x ∈ LI and aα ≤LI x ≤LI eα};
J∗α = {x | x ∈ LI and x1 > (aα)1 and x2 ≤ (eα)2};
Φα : Jα → LI :

x 7→
[
x1 − (aα)1

(eα)1 − (aα)1
,
x2 − (aα)2

(eα)2 − (aα)2

]
,∀x ∈ Jα;

Φ−1α : LI → Jα :
x 7→ [(aα)1 + x1((eα)1 − (aα)1), (aα)2 + x2((eα)2 − (aα)2)], ∀x ∈ LI ;

T ′α = Φ−1α ◦ Tα ◦ (Φα × Φα).

In Figure 2 the three smaller triangles are Jα, Jk and Jβ. Assume that J∗α ∩ J∗β = ∅, for any

α, β ∈ A. Our aim is to construct a t-norm T on LI such that T
∣∣
J∗
α×J∗

α
= T ′α, for all α ∈ A.

Let arbitrarily k ∈ A and define the sets A< = {α | α ∈ A and aα <LI ak} and A> =
{α | α ∈ A and aα >LI ak}. Assume furthermore that Tα([0, 1], [0, 1]) = [0, 1], for all α ∈ A<,
and Tα([0, 1], [0, 1]) = [0, 0], for all α ∈ A>. For Tk we do not impose any restriction, so
Tk([0, 1], [0, 1]) = [0, t] with t ∈ [0, 1]. In [4, Theorem 4.2] it is shown that if Tα is continuous
for all α ∈ A and if we want to construct a t-norm T on LI which satisfies the residuation
principle and for which T

∣∣
J∗
α×J∗

α
= T ′α for all α ∈ A, then there must exist a k ∈ A such that

the previously mentioned assumptions for Tα([0, 1], [0, 1]), for all α ∈ A, hold.

2In [4] it is shown that if aα 6∈ D or eα 6∈ D, then there does not exist an increasing bijection Φ from Jα to
LI such that Φ−1 is increasing. In this case the ordinal sum construction cannot be extended to LI .
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Theorem 2.3 [4] Let, for all α ∈ A, Tα : [0, 1]2 → [0, 1] be the mapping defined by

Tα(x1, y1) = (Tα([x1, x1], [y1, y1]))1,∀(x1, y1) ∈ [0, 1]2,

and let T be the ordinal sum of 〈(aα)1, (eα)1, Tα〉, α ∈ A. Define the mapping T : (LI)2 → LI

by, for all x, y ∈ LI ,

(T (x, y))1 = T (x1, y1),

(T (x, y))2

=



(T ′α([max(x1, (aα)1),min(x2, (eα)2)], [max(y1, (aα)1),min(y2, (eα)2)]))2,

if (x2 ∈ ](aα)2, (eα)2] and y2 > (aα)2 and y1 ≤ (eα)1 and α ∈ A<)

or (y2 ∈ ](aα)2, (eα)2] and x2 > (aα)2 and x1 ≤ (eα)1 and α ∈ A<)

or (x1 ∈ ](aα)1, (eα)1] and y2 > (aα)2 and y1 ≤ (eα)1 and α ∈ A>)

or (y1 ∈ ](aα)1, (eα)1] and x2 > (aα)2 and x1 ≤ (eα)1 and α ∈ A>)

or (x2 > (aα)2 and x1 ≤ (eα)1 and y2 > (aα)2 and y1 ≤ (eα)1 and α = k),

min(x2, y2), if the previous conditions do not hold

and (x2 ≤ (ak)2 or y2 ≤ (ak)2),

min(x2, y1), if the previous conditions do not hold and x1 ≤ y1,
min(y2, x1), else.

Then T is a t-norm on LI called the ordinal sum of the summands 〈aα, eα, Tα〉, α ∈ A, and
we write

T = ((〈aα, eα, Tα〉)α∈A< / 〈ak, ek, Tk〉 / (〈aα, eα, Tα〉)α∈A>).

In Figure 2 the construction of (T (xi, yi))2 is shown for (xi, yi) ∈ (LI)2 where i ∈
{0, . . . , 5}. The value of (T (xi, yi))2 is calculated at the ending points of the arrows for
each i ∈ {0, . . . , 5}. In the figure, k is defined as in the paragraph before Theorem 2.3,
α ∈ A< and β ∈ A>.

In the following example we show that there exist different t-norms T1 and T2 on ([0, 1],≤)
such that the mapping TT1,T2,t defined in Example 2.1 is a t-norm on LI .

Example 2.3 Let T̂1, T̂2 and T̂3 be t-norms on ([0, 1],≤) such that T̂1 ≤ T̂2. Let furthermore
t ∈ [0, 1]. Define the t-norms T1 and T2 by

T1 = (〈0, t, T̂1〉, 〈t, 1, T̂3〉),
T2 = (〈0, t, T̂2〉, 〈t, 1, T̂3〉).

Then

T2(x1, y1) > T2(t, T2(x1, y1)) (= min(t, T2(x1, y1)))

⇐⇒ T2(x1, y1) > t

=⇒ min(x1, y1) > t,

for all x1, y1 in [0, 1]. It can be easily verified that T1 ≤ T2 and T1(x1, y1) = T2(x1, y1), for all
x1, y1 in ]t, 1]2. Clearly, if T̂1 6= T̂2, then T1 6= T2.

Define the mapping TT1,T2,t by TT1,T2,t(x, y) = [T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2),
T2(x2, y1))], for all x, y in LI . Then TT1,T2,t is a t-norm on LI (see Example 2.1).
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Finally we need a metric on LI . Well-known metrics include the Euclidean distance and
the Hamming distance. In the two-dimensional space R2 they are defined as follows:

• the Euclidean distance between two points x = (x1, x2) and y = (y1, y2) in R2 is given
by

dE(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 ,

• the Hamming distance between two points x = (x1, x2) and y = (y1, y2) in R2 is given
by

dH(x, y) = |x1 − y1|+ |x2 − y2|.

If we restrict these distances to LI then we obtain the metric spaces (LI , dE) and (LI , dH).
In these metric spaces, denote by B(a; ε) the open ball with center a and radius ε defined as
B(a; ε) = {x | x ∈ LI and d(x, a) < ε}. In the sequel, when we speak about continuity on LI ,
we mean continuity w.r.t. one of the above mentioned metric spaces.

3 Characterization of t-norms which are meet-morphisms

Since ([0, 1],≤) is a chain, any t-norm on the unit interval is a join- and a meet-morphism. Fur-
thermore, it is well-known that continuous t-norms on ([0, 1],≤) are sup- and inf-morphisms.
For t-norms on product lattices, the following result holds.

Theorem 3.1 [3] Consider two bounded lattices L1 = (L1,≤L1) and L2 = (L2,≤L2) and a t-
norm T on the product lattice L1×L2 = (L1×L2,≤), where (x1, x2) ≤ (y1, y2) ⇐⇒ (x1 ≤L1

y1 and x2 ≤L2 y2), for all (x1, x2), (y1, y2) in L1 × L2. The t-norm T is a join-morphism
(resp. meet-morphism) if and only if there exist t-norms T1 on L1 and T2 on L2 which are
join-morphisms (resp. meet-morphisms), such that for all (x1, x2), (y1, y2) in L1 × L2,

T ((x1, x2), (y1, y2)) = [T1(x1, y1), T2(x2, y2)].

On LI , the situation is more complicated. Not all t-norms on LI are join- and meet-
morphisms. Consider the t-norm T ′TP given by T ′TP (x, y) = [min(x1y2, x2y1), x2y2], for all x, y

in LI . Then we have T ′TP ([0.2, 0.5], sup([0.5, 0.5], [0, 1])) = T ′TP ([0.2, 0.5], [0.5, 1]) = [0.2, 0.5] 6=
[0.1, 0.5] = sup([0.1, 0.25], [0, 0.5]) = sup(T ′TP ([0.2, 0.5], [0.5, 0.5]), T ′TP ([0.2, 0.5], [0, 1])). So T ′TP
is not a join-morphism. Similarly the t-norm TTP is not a meet-morphism.

Gehrke et al. [10] used the following definition for a t-norm on LI : a commutative, asso-
ciative binary operation T on LI is a t-norm if for all x, y, z in LI ,

(G.1) T (D,D) ⊆ D,

(G.2) T (x, sup(y, z)) = sup(T (x, y), T (x, z)),

(G.3) T (x, inf(y, z)) = inf(T (x, y), T (x, z)),

(G.4) T (1LI , x) = x,

(G.5) T ([0, 1], x) = [0, x2].
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They showed that such a t-norm is increasing, so their t-norms are a special case of the
t-norms on LI as defined in Definition 2.4.

Clearly, commutative, associative binary operations on LI satisfying (G.1)–(G.5) are t-
norms on LI which are join- and meet-morphisms. The two additional conditions (G.1) and
(G.5) ensure that these t-norms are t-representable, as is shown in the next theorem.

Theorem 3.2 [10] For every commutative, associative binary operation T on LI satisfying
(G.1)–(G.5) there exists a t-norm T on ([0, 1],≤) such that, for all x, y in LI ,

T (x, y) = [T (x1, y1), T (x2, y2)].

We can extend this result as follows. First we need a lemma.

Lemma 3.3 [5] Let T be a t-norm on LI which is a join-morphism. Then there exists a
t-norm T on ([0, 1],≤) such that, for all x, y in LI ,

(T (x, y))1 = T (x1, y1).

Theorem 3.4 For any t-norm T on LI satisfying (G.2) and (G.5) there exist t-norms T1
and T2 on ([0, 1],≤) such that, for all x, y in LI ,

T (x, y) = [T1(x1, y1), T2(x2, y2)].

Proof. From Lemma 3.3 it follows that there exist a t-norm T1 on ([0, 1],≤) such that
(T (x, y))1 = T1(x1, y1), for all x, y in LI . From (G.5) it follows that, for all x, y in LI ,

(T (x, y))2 = (T ([0, 1], T (x, y)))2

= (T (T ([0, 1], x), T ([0, 1], y)))2

= (T ([0, x2], [0, y2]))2.

Hence (T (x, y))2 is independent of x1 and y1, for all x, y in LI . Let now T2(x2, y2) =
(T ([x2, x2], [y2, y2]))2, for all x2, y2 in [0, 1]. Similarly as in the proof of Lemma 3.3 given
in [5] it is shown that T2 is a t-norm on ([0, 1],≤). �

Clearly, (G.5) is a rather restrictive condition. We will show that if this condition is not
imposed, then the class of t-norms on LI satisfying the other conditions is much larger.

For continuous t-norms on LI we have the following relationship between sup- and join-
morphism, and between inf- and meet-morphisms.

Theorem 3.5 Let T be a continuous t-norm on LI . Then

(i) T is a sup-morphism if and only if T is a join-morphism;

(ii) T is an inf-morphism if and only if T is a meet-morphism.

Proof. Let T be a continuous t-norm on LI . We prove the first statement, the second
equivalence is proven in a similar way. Clearly, if T is a sup-morphism, then T is a join-
morphism.
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Assume conversely that T is a join-morphism. Let x ∈ LI , A be an arbitrary non-empty
subset of LI and a = supA. Since T is increasing, we have that T (x, y) ≤LI T (x, a), for all
y ∈ A.

From Theorem 2.1 it follows that there exists a sequence (yn)n∈N∗ in A such that (yn)1 >
a1− 1

n , for all n ∈ N∗. Let y∗ = limn→+∞ yn, then clearly y∗1 = a1 and y∗2 ≤ a2. Similarly, there
exists a sequence (zn)n∈N∗ in A such that (zn)2 > a2− 1

n , for all n ∈ N∗. Let z∗ = limn→+∞ zn,
then z∗2 = a2 and z∗1 ≤ a1. Since T is a join-morphism, T (x, a) = sup(T (x, y∗), T (x, z∗)) =
[max((T (x, y∗))1, (T (x, z∗))1),max((T (x, y∗))2, (T (x, z∗))2)].

Assume that (T (x, a))1 = (T (x, y∗))1 (the case (T (x, a))1 = (T (x, z∗))1 is similar). Since
T is continuous, we have in particular that

(∀ε1 > 0)(∃N ∈ N∗)(∀n ∈ N∗)
(n > N =⇒ |(T (x, yn))1 − (T (x, y∗))1|+ |(T (x, yn))2 − (T (x, y∗))2| < ε1).

So, for any ε1 > 0, there exists an n ∈ N∗ such that (T (x, y∗))1 − ε1 < (T (x, yn))1 ≤
(T (x, y∗))1 = (T (x, a))1. Hence, for any ε1 > 0, there exists an element y ∈ A such that
(T (x, y))1 > (T (x, a))1 − ε1. Similarly, for any ε2 > 0, there exists a z ∈ A such that
(T (x, z))2 > (T (x, a))2 − ε2. From Theorem 2.1 it follows that T (x, a) = supy∈A T (x, y). �

In the following theorem the t-norms on LI which satisfy the residuation principle and an
additional border condition are characterized in terms of the class of t-norms TT1,T2,t given in
Example 2.1.

Theorem 3.6 [7] Let T : (LI)2 → LI be a t-norm such that, for all x ∈ D, y2 ∈ [0, 1],
(T (x, [y2, y2]))2 = (T (x, [0, y2]))2. Then T satisfies the residuation principle if and only if
there exist two left-continuous t-norms T1 and T2 on ([0, 1],≤) and a real number t ∈ [0, 1]
such that, for all x, y ∈ LI ,

T (x, y) = [T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2), T2(y1, x2))],

i.e. T = TT1,T2,t, and, for all x1, y1 in [0, 1],{
T1(x1, y1) = T2(x1, y1), if T2(x1, y1) > T2(t, T2(x1, y1)),

T1(x1, y1) ≤ T2(x1, y1), else.

We extend Theorem 3.6 to t-norms on LI which are join-morphisms. The proof of the
following theorem is analogous to the proof of Theorem 3.6 given in [7].

Theorem 3.7 Let T : (LI)2 → LI be a t-norm such that, for all x ∈ D, y2 ∈ [0, 1],
(T (x, [y2, y2]))2 = (T (x, [0, y2]))2. Then T is a join-morphism if and only if there exist two
t-norms T1 and T2 on ([0, 1],≤) and a real number t ∈ [0, 1] such that, for all x, y ∈ LI ,

T (x, y) = [T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2), T2(y1, x2))],

i.e. T = TT1,T2,t, and, for all x1, y1 in [0, 1],{
T1(x1, y1) = T2(x1, y1), if T2(x1, y1) > T2(t, T2(x1, y1)),

T1(x1, y1) ≤ T2(x1, y1), else.
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Now we characterize the t-norms on LI belonging to the class TT1,T2,t which are meet-
morphisms. First we need some lemmas.

Lemma 3.8 Assume that TT1,T2,t is a meet-morphism. Then T2(t, y1) = min(t, y1), for all
y1 ∈ [0, 1].

Proof. Let arbitrarily y1 ∈ [0, 1]. Then

TT1,T2,t([0, 1], inf([y1, y1], [0, 1])) = TT1,T2,t([0, 1], [0, y1])

= [0, T2(t, T2(1, y1))]

= [0, T2(t, y1)].

On the other hand,

TT1,T2,t([0, 1], inf([y1, y1], [0, 1])) = inf(TT1,T2,t([0, 1], [y1, y1]), TT1,T2,t([0, 1], [0, 1]))

= inf([0,max(T2(t, y1), y1)], [0, t])

= inf([0, y1], [0, t])

= [0,min(y1, t)].

Hence T2(t, y1) = min(t, y1), for all y1 ∈ [0, 1]. �

Corollary 3.9 Assume that TT1,T2,t is a meet-morphism. Then there exists two t-norms T̂1
and T̂2 on ([0, 1],≤) such that

T2 = (〈0, t, T̂1〉, 〈t, 1, T̂2〉).

Proof. Define, for all x, y in [0, 1],

T̂1(x, y) =
T2(tx, ty)

t
,

T̂2(x, y) =
T2(t+ (1− t)x, t+ (1− t)y)− t

1− t
.

(3)

Then it is easy to see that T̂1 is commutative, associative and increasing. Since from Lemma
3.8 it follows that T2(t, y) = min(t, y), for all y ∈ [0, 1], we obtain that T̂1(1, y) = y, for all
y ∈ [0, 1]. So T̂1 is a t-norm. Similarly, we obtain that T̂2 is a t-norm on ([0, 1],≤).

Let arbitrarily x, y in [0, 1] such that x < t < y (the case y < t < x is similar). Then we
obtain that x = min(t, x) = T2(t, x) ≤ T2(x, y) ≤ T2(1, x) = x, so T2(x, y) = min(x, y). It
now easily follows that T2 is equal to the ordinal sum of 〈0, t, T̂1〉 and 〈t, 1, T̂2〉. �

Lemma 3.10 Assume that TT1,T2,t is a meet-morphism. Then the t-norm T̂2 in the repre-
sentation of T2 given in Corollary 3.9 is equal to the minimum.
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Proof. Let arbitrarily x1, z1 in [t, 1]. From Lemma 3.8 it follows that T2(t, z1) = min(t, z1) =
t. Furthermore, from Corollary 3.9 it follows that T2(x1, z1) ≥ t. So, we obtain

TT1,T2,t([x1, 1], inf([0, 1], [z1, z1])) = TT1,T2,t([x1, 1], [0, z1])

= [0,max(T2(t, z1), T2(x1, z1))]

= [0,max(t, T2(x1, z1))]

= [0, T2(x1, z1)]

and

TT1,T2,t([x1, 1], inf([0, 1], [z1, z1]))

= inf(TT1,T2,t([x1, 1], [0, 1]), TT1,T2,t([x1, 1], [z1, z1]))

= inf([0,max(t, x1)], [T1(x1, z1),max(T2(t, z1), T2(x1, z1), z1)])

= inf([0, x1], [T1(x1, z1), z1])

= [0,min(x1, z1)].

So T2(x1, z1) = min(x1, z1). From (3) it easily follows that T̂2 = min. �

Corollary 3.11 Assume that TT1,T2,t is a meet-morphism. Then there exists a t-norm T̂1 on
([0, 1],≤) such that

T2 = (〈0, t, T̂1〉, 〈t, 1,min〉).

Lemma 3.12 Assume that there exists a t-norm T̂1 on ([0, 1],≤) such that T2 = (〈0, t, T̂1〉,
〈t, 1,min〉), then TT1,T2,t is a meet-morphism.

Proof. Let arbitrarily x, y, z in LI . If y ≤LI z (the case y ≥LI z is similar), then
TT1,T2,t(x, inf(y, z)) = TT1,T2,t(x, y) = inf(TT1,T2,t(x, y), TT1,T2,t(x, z)). So, let y1 < z1 and
y2 > z2 (the case y1 > z1 and y2 < z2 is similar). Then we have the following cases:

• max(x1, y1, z1) ≤ t:
From the fact that T2 ≤ min it follows that T2(x1, z2) ≤ t and T2(x2, y1) ≤ t, so
T2(x1, z2) ≤ min(t, T2(x2, z2)) = T2(t, T2(x2, z2)). Since T2(x2, y1) ≤ T2(x2, z1) ≤
T2(x2, z2), we obtain similarly that T2(x2, y1) ≤ T2(t, T2(x2, z2)). Thus,

TT1,T2,t(x, inf(y, z)) = TT1,T2,t(x, [y1, z2])
= [T1(x1, y1),max(T2(t, T2(x2, z2)), T2(x1, z2), T2(x2, y1))]

= [T1(x1, y1), T2(t, T2(x2, z2))].

On the other hand, we obtain similarly that

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= inf([T1(x1, y1), T2(t, T2(x2, y2))], [T1(x1, z1), T2(t, T2(x2, z2))])

= [T1(x1, y1), T2(t, T2(x2, z2))],

using the fact that T2 is increasing, y1 < z1 and y2 > z2.
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• max(x1, y1) ≤ t < z1:

Similarly as in the previous case, we have that

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1), T2(t, T2(x2, z2))]

and

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= inf([T1(x1, y1), T2(t, T2(x2, y2))], [T1(x1, z1),max(T2(t, T2(x2, z2)), T2(x2, z1))])

= [T1(x1, y1),min(T2(t, T2(x2, y2)),max(min(t, T2(x2, z2)), T2(x2, z1)))].

We have two cases:

1. x2 ≤ t: in this case, we have that T2(x2, z1) = min(x2, z1) = x2 ≤ t, so T2(x2, z1) ≤
min(t, T2(x2, z2)) = T2(t, T2(x2, z2)). Hence

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= [T1(x1, y1),min(T2(t, T2(x2, y2)), T2(t, T2(x2, z2)))]

= [T1(x1, y1), T2(t, T2(x2, z2))].

2. x2 > t: in this case, T2(x2, z1) = min(x2, z1) > t, so T2(x2, y2) ≥ T2(x2, z2) ≥
T2(x2, z1) > t. Thus,

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= [T1(x1, y1),min(min(t, T2(x2, y2)), T2(x2, z1)))]

= [T1(x1, y1), t]

and

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1),min(t, T2(x2, z2))] = [T1(x1, y1), t].

• x1 ≤ t < y1 (< z1):

We have that T2(x1, z2) ≤ x1 ≤ t, so T2(x1, z2) ≤ min(t, T2(x2, z2)) = T2(t, T2(x2, z2)).
We obtain

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1),max(T2(t, T2(x2, z2)), T2(x2, y1))]

and similarly

inf(TT1,T2,t(x, y), TT1,T2,t(x, z)) = inf([T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x2, y1))],

[T1(x1, z1),max(T2(t, T2(x2, z2)), T2(x2, z1))]).

We have two cases:

1. x2 ≤ t: in this case, we have that T2(x2, y1) ≤ t, so, using the fact that y1 < z1 ≤
z2, T2(x2, y1) ≤ min(t, T2(x2, z2)) = T2(t, T2(x2, z2)). Thus,

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1), T2(t, T2(x2, z2))].

Similarly, we obtain that inf(TT1,T2,t(x, y), TT1,T2,t(x, z)) = [T1(x1, y1), T2(t, T2(x2,
z2))].
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2. x2 > t: from the representation of T2 it follows that T2(x2, y2) ≥ T2(x2, z2) ≥
T2(x2, z1) ≥ t. So, using the fact that T2(t, a) = min(t, a) for all a ∈ [0, 1], we
obtain

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1),max(t, T2(x2, y1))]

and

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= [T1(x1, y1),min(max(t, T2(x2, y1)),max(t, T2(x2, z1)))]

= [T1(x1, y1),max(t, T2(x2, y1))].

• (y1 <) z1 ≤ t < x1:

Similarly as in the previous case, we obtain that

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1),max(T2(t, T2(x2, z2)), T2(x1, z2))]

and

inf(TT1,T2,t(x, y), TT1,T2,t(x, z)) = inf([T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2))],

[T1(x1, z1),max(T2(t, T2(x2, z2)), T2(x1, z2))]).

We have two cases:

1. y2 ≤ t: we obtain that T2(x1, z2) ≤ T2(x1, y2) ≤ t, so T2(x1, y2) ≤ min(t, T2(x2,
y2)) = T2(t, T2(x2, y2)) and similarly for T2(x1, z2). Thus

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1), T2(t, T2(x2, z2))]

and

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= inf([T1(x1, y1), T2(t, T2(x2, y2))], [T1(x1, z1), T2(t, T2(x2, z2))])

= [T1(x1, y1), T2(t, T2(x2, z2))].

2. y2 > t: we have that T2(x1, y2) ≥ t ≥ min(t, T2(x2, z2)) and T2(x1, y2) ≥ T2(x1,
z2), so

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= [T1(x1, y1),min(T2(x1, y2),max(T2(t, T2(x2, z2)), T2(x1, z2)))]

= [T1(x1, y1),max(T2(t, T2(x2, z2)), T2(x1, z2))]

= TT1,T2,t(x, inf(y, z)).

• y1 ≤ t < min(x1, z1):

We have that T2(x2, y1) ≤ y1 ≤ t ≤ T2(x1, z2) ≤ T2(x1, y2), so

TT1,T2,t(x, inf(y, z)) = [T1(x1, y1),max(min(t, T2(x2, z2)), T2(x1, z2))]

= [T1(x1, y1), T2(x1, z2)].
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Similarly,

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= inf([T1(x1, y1),max(T2(x1, y2), T2(x2, y1))],

[T1(x1, z1),max(T2(x1, z2), T2(x2, z1))])

= [T1(x1, y1),min(T2(x1, y2),max(T2(x1, z2), T2(x2, z1)))].

We have two cases:

1. x1 < min(x2, z1): in this case, we have that T2(x1, z2) = min(x1, z2) = x1 <
min(x2, z1) = T2(x2, z1) (using Corollary 3.11), so

min(T2(x1, y2),max(T2(x1, z2), T2(x2, z1)))

= min(T2(x1, y2), T2(x2, z1))

= min(x1, y2, x2, z1)

= x1 = min(x1, z2) = T2(x1, z2).

2. x1 ≥ min(x2, z1): since z2 ≥ z1 ≥ min(x2, z1), we have that T2(x1, z2) = min(x1,
z2) ≥ min(x2, z1) = T2(x2, z1), so

min(T2(x1, y2),max(T2(x1, z2), T2(x2, z1)))

= min(T2(x1, y2), T2(x1, z2))

= T2(x1, z2),

since y2 > z2.

• t ≤ min(x1, y1, z1):

From Lemma 3.8 and Corollary 3.11 it follows that

TT1,T2,t(x, inf(y, z)) = TT1,T2,t(x, [y1, z2])
= [T1(x1, y1),max(min(t, T2(x2, z2)),min(x1, z2),min(x2, y1))]

= [T1(x1, y1),max(min(x1, z2),min(x2, y1))].

On the other hand, we obtain similarly that

inf(TT1,T2,t(x, y), TT1,T2,t(x, z))
= inf([T1(x1, y1),max(min(x1, y2),min(x2, y1))],

[T1(x1, z1),max(min(x1, z2),min(x2, z1))]).

Clearly, it holds that (TT1,T2,t(x, inf(y, z)))1 = T1(x1, y1) = min(T1(x1, y1), T1(x1, z1)) =
(inf(TT1,T2,t(x, y), TT1,T2,t(x, z)))1. For the second projection, we have two cases:

1. x1 < min(x2, z1): in this case, we have that min(x1, z2) = x1 < min(x2, z1) ≤
z2 < y2. So, (TT1,T2,t(x, inf(y, z)))2 = max(x1,min(x2, y1)). On the other hand

(inf(TT1,T2,t(x, y), TT1,T2,t(x, z)))2 = min(max(x1,min(x2, y1)),min(x2, z1))

= max(x1,min(x2, y1))

= (TT1,T2,t(x, inf(y, z))2

using the fact that y1 < z1 and x1 < min(x2, z1).
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2. x1 ≥ min(x2, z1): in this case, we have that x1 = x2 or x1 ≥ z1, so min(x1, z2) ≥
min(x2, z1). If x1 = x2, then (TT1,T2,t(x, inf(y, z)))2 = min(x1, z2), because z2 ≥
z1 > y1. On the other hand, (inf(TT1,T2,t(x, y), TT1,T2,t(x, z)))2 = min(min(x1, y2),
min(x1, z2)) = min(x1, z2).

If x1 ≥ z1, then (TT1,T2,t(x, inf(y, z)))2 = max(min(x1, z2), y1) = min(x1, z2), be-
cause y1 < z1 ≤ x1 ≤ x2. On the other hand, (inf(TT1,T2,t(x, y), TT1,T2,t(x, z)))2 =
min(max(min(x1, y2), y1),min(x1, z2)) = min(x1, z2), using the fact that z2 < y2.
So again (inf(TT1,T2,t(x, y), TT1,T2,t(x, z)))2 = (TT1,T2,t(x, inf(y, z)))2.

�

Now we obtain the main result.

Theorem 3.13 For any t-norms T1 and T2 on ([0, 1],≤) and t ∈ [0, 1], TT1,T2,t is a meet-

morphism if and only if there exists a t-norm T̂1 on ([0, 1],≤) such that

T2 = (〈0, t, T̂1〉, 〈t, 1,min〉).

Proof. This follows immediately from Corollary 3.11 and Lemma 3.12. �

If we assume that T1 = T2, then we do not only obtain that T1 is the ordinal sum of two
t-norms on ([0, 1],≤), but we can also write the t-norm TT1,T1,t = TT1,t as an ordinal sum of
two t-norms on LI . This is shown in the next theorem.

Theorem 3.14 For any t-norm T on ([0, 1],≤) and t ∈ [0, 1], TT,t is a meet-morphism if

and only if there exists a t-norm T̂1 on ([0, 1],≤) such that

TT,t = (∅ / 〈0LI , [t, t], TT̂1,T̂1〉 / 〈[t, t], 1LI , Tmin〉),

where, for all x, y in LI ,

TT̂1,T̂1(x, y) = [T̂1(x1, y1), T̂1(x2, y2)],

Tmin(x, y) = [min(x1, y1),max(min(x1, y2),min(x2, y1))].

Proof. Assume first that TT,t is a meet-morphism. From Theorem 3.13 it follows that there

exists a t-norm T̂1 on ([0, 1],≤) such that T = (〈0, t, T̂1〉, 〈t, 1,min〉).
Let φ : [0, t]→ [0, 1] : x1 7→ x1

t and T̂ ′1 = φ−1 ◦ T̂1 ◦ (φ× φ). Define for all x, y in LI ,

Φ1(x) = [φ(x1), φ(x2)],

Φ2(x) =

[
x1 − t
1− t

,
x2 − t
1− t

]
,

T ′
T̂1,T̂1

= Φ−11 ◦ TT̂1,T̂1 ◦ (Φ1 × Φ1),

T ′min = Φ−12 ◦ Tmin ◦ (Φ2 × Φ2).

Note that T ′min defined by the formula above is a transformation of Tmin and not a member
of the class of t-norms T ′T given in Example 2.1. Then, for all x, y, x′, y′ in LI such that
x ≤LI [t, t], y ≤LI [t, t], x′ ≥LI [t, t] and y′ ≥LI [t, t],

T ′
T̂1,T̂1

(x, y) = [T̂ ′1(x1, y1), T̂
′
1(x2, y2)],

T ′min(x′, y′) = [min(x′1, y
′
1),max(min(x′1, y

′
2),min(x′2, y

′
1))].

We consider the following cases:

15



1. max(x2, y2) ≤ t: using Lemma 3.8, we obtain

TT,t(x, y) = [T (x1, y1),max(min(t, T (x2, y2)), T (x1, y2), T (x2, y1))]

= [T (x1, y1),max(T (x2, y2), T (x1, y2), T (x2, y1))]

= [T̂ ′1(x1, y1), T̂
′
1(x2, y2)].

2. max(x2, y1) ≤ t < y2 (the case max(y2, x1) ≤ t < x2 is similar): we obtain in a
completely similar way that TT,t(x, y) = [T̂ ′1(x1, y1),min(x2, y2)] = [T̂ ′1(x1, y1), x2] =

[T̂ ′1(x1, y1), T̂
′
1(x2, t)].

3. max(x1, y1) ≤ t < min(x2, y2): we obtain that T (t, T (x2, y2)) = min(t, x2, y2) =
t, T (x1, y2) ≤ x1 ≤ t and T (x2, y1) ≤ y1 ≤ t. So TT,t(x, y) = [T (x1, y1), t] =

[T̂ ′1(x1, y1), T̂
′
1(t, t)].

4. x2 ≤ t < y1 (the case y2 ≤ t < x1 is similar): we obtain that T (t, T (x2, y2)) =
min(t, x2, y2) = x2, T (x1, y2) = min(x1, y2) = x1 and T (x2, y1) = min(x2, y1) = x2. So
TT,t(x, y) = [T (x1, y1), x2] = [min(x1, y1),min(x2, y1)] = [min(x1, y1),min(x2, y2)].

5. x1 ≤ t < min(x2, y1) (the case y1 ≤ t < min(y2, x1) is similar): we obtain that
T (t, T (x2, y2)) = min(t, x2, y2) = t, T (x1, y2) = min(x1, y2) = x1 and T (x2, y1) =
min(x2, y1) > t. So TT,t(x, y) = [T (x1, y1),min(x2, y1)] = [min(x1, y1),max(min(t, y2),
min(x2, y1))].

6. t < min(x1, y1): we obtain that T (t, T (x2, y2)) = min(t, x2, y2) = t, so TT,t(x, y) =
[min(x1, y1),max(min(x1, y2),min(x2, y1))].

We see that

(TT,t(x, y))1 = T (x1, y1) =

{
T̂ ′1(x1, y1), if (x1, y1) ∈ [0, t]2,

min(x1, y1), else.

So, the first projection of TT,t is determined by the ordinal sum of 〈0, t, T̂1〉 and 〈t, 1,min〉.
The second projection of TT,t is given by

(TT,t(x, y))2

=



(T ′
T̂1,T̂1

([x1,min(x2, t)], [y1,min(y2, t)]))2,

if x2 > 0 and x1 ≤ t and y2 > 0 and y1 ≤ t,
(T ′min([max(x1, t), x2], [max(y1, t), y2]))2,

if (x1 ∈ ]t, 1] and y2 > t and y1 ≤ 1)

or (y1 ∈ ]t, 1] and x2 > t and x1 ≤ 1),

min(x2, y2), if the previous conditions do not hold

and (x2 ≤ 0 or y2 ≤ 0),

min(x2, y1), if the previous conditions do not hold and x1 ≤ y1,
min(y2, x1), else.

This corresponds to the formula in Theorem 2.3, in which A = {1, 2}, a1 = 0LI , e1 = a2 =
[t, t], e2 = 1LI , k = 1, A< = ∅ and A> = {2}. Hence TT,t is the ordinal sum of the summands
〈0LI , [t, t], TT̂1,T̂1〉 and 〈[t, t], 1LI , Tmin〉, with k = 1.
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Conversely, assume that TT,t is the ordinal sum of the summands 〈0LI , [t, t], TT̂1,T̂1〉 and
〈[t, t], 1LI , Tmin〉, with k = 1. Then from Theorem 2.3 it follows that T is the ordinal sum of
〈0, t, T̂1〉 and 〈t, 1,min〉. Using Theorem 3.13 we obtain that TT,t is a meet-morphism. �

Corollary 3.15 Let T be a t-norm on ([0, 1],≤).

• If t = 0, then TT,0 is a meet-morphism if and only if TT,0 = Tmin.

• If t = 1, then TT,1 = TT,T is a meet-morphism for any T .

By combining Theorems 3.6 and 3.13, we obtain the following result.

Theorem 3.16 Let T : (LI)2 → LI be a t-norm such that, for all x ∈ D, y2 ∈ [0, 1],
(T (x, [y2, y2]))2 = (T (x, [0, y2]))2. Then T is a join-morphism and a meet-morphism if and
only if there exist two t-norms T1 and T2 on ([0, 1],≤) and a real number t ∈ [0, 1] such that,
for all x, y ∈ LI ,

T (x, y) = [T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2), T2(y1, x2))],

T2 is the ordinal sum (〈0, t, T̂1〉, 〈t, 1,min〉), where T̂1 is a t-norm on ([0, 1],≤), and, for all
x1, y1 in [0, 1],

T1(x1, y1) = T2(x1, y1), if T2(x1, y1) > t.

4 Conclusion

In this paper we investigated t-norms in interval-valued fuzzy set theory which are meet-
morphisms. First we showed that for continuous t-norms the notions of sup- and join-
morphism, respectively the notions of inf- and meet-morphism, collapse. We considered a
general class of t-norms (given in [7]) and investigated under which conditions t-norms be-
longing to this class are meet-morphisms. We also showed that there exist non-trivial examples
of t-norms in this class, i.e. t-norms which belong to this class but not to the class investigated
in [5, 18]. Finally we gave a characterization of the t-norms which are both a join- and a
meet-morphism and which satisfy an additional border condition.
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[16] S. Saminger, On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and
Systems 157 (10) (2006) 1403–1416.

[17] B. Schweizer, A. Sklar, Associative functions and abstract semigroups, Publ. Math. De-
brecen 10 (1963) 69–81.

[18] B. Van Gasse, C. Cornelis, G. Deschrijver, E. E. Kerre, A characterization of interval-
valued residuated lattices, International Journal of Approximate Reasoning 49 (2) (2008)
478–487.

[19] G. Wang, W. Wang, Left-continuity of t-norms on the n-dimensional Euclidean cube,
Applied Mathematics Letters 23 (4) (2010) 479–483.

[20] D. Zhang, Triangular norms on partially ordered sets, Fuzzy Sets and Systems 153 (2)
(2005) 195–209.

18


	Introduction
	The lattice L^I
	Characterization of t-norms which are meet-morphisms
	Conclusion

