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Abstract

In this paper we study t-norms on the lattice of closed subintervals of the unit in-
terval. Unlike for t-norms on a product lattice for which there exists a straightforward
characterization of t-norms which are join-morphisms, respectively meet-morphisms, the
situation is more complicated for t-norms in interval-valued fuzzy set theory. In previous
papers several characterizations were given of t-norms in interval-valued fuzzy set theory
which are join-morphisms and which satisfy additional properties, but little attention has
been paid to meet-morphisms. Therefore, in this paper, we focus on t-norms which are
meet-morphisms. We consider a general class of t-norms and investigate under which
conditions t-norms belonging to this class are meet-morphisms. We also characterize the
t-norms which are both a join- and a meet-morphism and which satisfy an additional
border condition.
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1 Introduction

Interval-valued fuzzy set theory [I1, [I5] is an extension of fuzzy theory in which to each
element of the universe a closed subinterval of the unit interval is assigned which approximates
the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy
set theory introduced by Atanassov [I]. In [§] it is shown that the underlying lattice of
intuitionistic fuzzy set theory is isomorphic to the underlying lattice £! of interval-valued
fuzzy set theory.

In [6l, [7, B (18] several characterizations of t-norms on £ in terms of t-norms on the unit
interval are given. In [13] 19, 20] t-norms on related and more general lattices are investigated.
However all the characterizations in these papers only deal with t-norms which are join-
morphisms. Unlike for t-norms on a product lattice for which there exists a straightforward
characterization of t-norms which are join-morphisms [3], respectively meet-morphisms, the
situation is more complicated for t-norms in interval-valued fuzzy set theory. Therefore, in
this paper, we focus on t-norms which are meet-morphisms. We consider a general class of
t-norms (given in [7]) and investigate under which conditions t-norms belonging to this class
are meet-morphisms.



2 The lattice £!
Definition 2.1 We define £ = (L', <;r), where

L' = {[z1,m2] | (21,22) € [0, 1]2 and x1 < xa},

(21, 2] <p1 [y1,92] <= (21 <y1 and xo < y2), for all [x1,22), [y1,y2] in L.
Similarly as Lemma 2.1 in [§] it can be shown that £! is a complete lattice.
Definition 2.2 [I1] [15] An interval-valued fuzzy set on U is a mapping A : U — L'.
Definition 2.3 [I] An intuitionistic fuzzy set on U is a set
A= {(u, pa(u),va(u)) | ue U},

where pa(u) € [0,1] denotes the membership degree and va(u) € [0,1] the non-membership
degree of u in A and where for allu € U, pa(u) +va(u) < 1.

An intuitionistic fuzzy set A on U can be represented by the £!-fuzzy set A given by

A:U — LT
u = [pa(u),l —va(u)],

In Figure |1/ the set L! is shown. Note that to each element z = [z, x2] of L! corresponds
a point (z1,z2) € R2.
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Figure 1: The grey area is L.

In the sequel, if = € LI, then we denote its bounds by x; and z9, i.e. = [x1,x2]. The
length x5 — 21 of the interval = € L' is called the degree of uncertainty and is denoted by .
The smallest and the largest element of £! are given by 0, = [0,0] and 1,; = [1,1]. Note
that, for z,y in L, x <, y is equivalent to x <;; y and = # v, i.e. either 21 < y; and x5 < yo,
or 1 <y and g < y2. We define for further usage the set D = {[x1,z1] | 1 € [0,1]}.

Note that for any non-empty subset A of L’ it holds that

sup A = [sup{x1 | [x1,x2] € A}, sup{z2 | [x1,z2] € A}],
inf A= [inf{xl | [1'1,1'2] S A},inf{xg | [.’/Ul,l'Q] S A}]



Theorem 2.1 (Characterization of supremum in £!) [6] Let A be an arbitrary non-
empty subset of L' and a € L. Then a = sup A if and only if

(Ve e A)(x <pr a)
and (Ve1 > 0)(3z € A)(z1 > a1 —€1)
and (Veg > 0)(3z € A)(2z2 > az — €2).

Definition 2.4 A t-norm on L' is a commutative, associative, increasing mapping T :
(LN2 — LY which satisfies T (1,1,7) =z, for all x € LY.

Example 2.1 [7, 9] We give some special classes of t-norms on L. Let T, Ty and T be
t-norms on ([0, 1], <) such that T3 (x1,y1) < Ta(z1,y1) for all x1,y; in [0, 1], and let ¢ € [0, 1].
Then we have the following classes:

e t-representable t-norms:
T, (z,y) = [T1(21,y1), Ta(22, y2)],

for all z,y in L’;

pseudo-t-representable t-norms:

7}(‘7:7 y) - [T(xlv yl)a maX(T(mly y2)7 T(x27 yl))]?

for all z,y in L';

7}',75(1.73/) = [T(xlvyl)vmaX(T(t7T(‘T27y2))7T(‘T17y2)7T(x2ay1))]7 for all z,y in LI;

Ti(x,y) = [min(T(z1,y2), T(x2,41)), T (w2, y2)], for all z,y in LY;

%1,T2,t(x7 y) = [Tl(xh yl)’ ma'X(TQ(tv T2(£27 y?))? Tg(l‘l, y?)a T2($2, yl))]? for all €,y in LI7
where T} and T, additionally satisfy, for all x1,y; in [0, 1],

To(z1,y1) > To(t, Ta(z1,91)) = Ti(z1,y1) = Ta(z1, 1) (1)

In Theorem 5 of [7] it is shown that 77, 7, + is indeed a t-norm on L1 if Ty and T5 satisfy

@1
Definition 2.5 We say that a t-norm T on L' is
e a join-morphism if for all x, y, z in L',
T (z,sup(y, z)) = sup(7T (z,y), T (z,2));
o a meet-morphism if for all x, y, z in L!,

T (z,inf(y, 2)) = inf (T (x,y), T (z, 2));

'Note that the condition in Theorem 5 of [7] that T3 and T are left-continuous is not used to prove that
Ty, 15t 1S & t-norm.



o a sup-morphism if for all x € L' and ) # Z C L',
T(z,sup Z) =sup{T (z,2) | z € Z};

o an inf-morphism if for allz € L' and 0 # Z C LY,

T (x,inf Z) = inf{T (z,2) | z € Z}.

Definition 2.6 Let n € N\ {0}. If for an n-ary mapping f on [0,1] and an n-ary mapping
F on L' it holds that

F([ala al]a sy [anv an]) = [f(a17 s ,an)v f(a17 s 7an)]7
for all (a1,...,a,) € [0,1]", then we say that F is a natural extension of f to L*.

Clearly, for any mapping F on L!, F(D,...,D) C D if and only if there exists a mapping
f on [0,1] such that F is a natural extension of f to L!. E.g. Trr, Tr, Tre = Trore and T
are all natural extensions of T to L!, N is a natural extension of Nj.

Example 2.2 Let, for all z,y in [0, 1],
TW($7y) - maX(O, T+Yy— 1)7
Tp(z,y) = zy,

TD($7y) - {

min(z,y), if max(z,y) =1,

0, else.
Then Ty, Tp and Tp are t-norms on ([0, 1], <). Let now, for all o,y in L7,

Tw (z,y) = [max(0,z1 +y1 — 1), max(0, 21 + y2 — 1,2 + y1 — 1)],
Tp(z,y) = [z1y1, max(z1y2, T2y1)].

Then Ty and Tp are t-norms on £!. Furthermore, Ty and Tp are natural extensions of Ty
and Tp respectively.

We will also need the following result and definition (see [2, 12} 14} 16 [17]).

Theorem 2.2 Let (Ty)aca be a family of t-norms and (Jaq, €al)aca be a family of non-empty,
pairwise disjoint open subintervals of [0,1]. Then the function T : [0,1]* — [0,1] defined by,
for all z,y in [0, 1],

T — Qq Y — Qq

ao + (ea — aq) - Ta< ) . if (2,9) € [aa, ea)?,

min(zx, y), otherwise,

T(:B) y) = €a — aa’ €a — Qq (2)

is a t-norm on ([0,1], <).

Definition 2.7 Let (Ty)aca be a family of t-norms and (Jaqa, eal)aca be a family of non-
empty, pairwise disjoint open subintervals of [0,1]. The t-norm T defined by 1s called the
ordinal sum of the summands (aq,€q,Twn), @ € A, and we will write

T = ((aa; €as Ta))aca-



;xl
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Figure 2: The different positions of z,y € Lf, where 7,(]0, 1],[0,1]) = [0, 1], Tx([0, 1], [0, 1]) =
[0,¢] and T3([0,1],[0,1]) = [0,0]. The value of (7 (x,y))2 is calculated at the ending points of
the arrows.

Let A be an arbitrary countable index-set and 7, a t-norm on £, for all o € A. Define,
for all @ € A and for all aq, e, in D with a, <;r e, the following sets and mappingsﬂ

Jo={z|ze Ll and an <;1 x <;r eq};
Jr={z |z e L’ and 21 > (aa)1 and z2 < (eq)2};

o, :J,— L
z1 — (aa)1 22— (Ga)2
T = , NV € Jy;
(ea)l - (aoc)l (ea)Q - (aa)2 “
ot L — g,

z = [(aa)1 + 21((ea)1 = (aa)1), (@a)2 + 22((ea)2 — (aa)2)],Vz € LT
722@;107;0(@04 x D).

In Figure [2| the three smaller triangles are J,, J and Jg. Assume that J3 N Jg = @, for any
a, € A. Our aim is to construct a t-norm 7 on £! such that T JexJr = 7o, for all a € A.
Let arbitrarily k& € A and define the sets Ac = {a | a € A and c;la <pr ap} and As =
{a| a € A and a, >;1 ar}. Assume furthermore that 7,([0,1],[0,1]) = [0,1], for all &« € A,
and 7,([0,1],]0,1]) = [0,0], for all & € As. For T; we do not impose any restriction, so
T([0,1],[0,1]) = [0, t] with ¢ € [0,1]. In [4, Theorem 4.2] it is shown that if 7, is continuous
for all & € A and if we want to construct a t-norm 7 on £! which satisfies the residuation
principle and for which T JixJr = 7. for all & € A, then there must exist a k € A such that

the previously mentioned assumptions for 7,([0, 1], [0, 1]), for all & € A, hold.

*In [] it is shown that if ao & D or eo € D, then there does not exist an increasing bijection ® from J, to
LT such that @' is increasing. In this case the ordinal sum construction cannot be extended to L.



Theorem 2.3 [ Let, for all a € A, T, : [0,1]*> — [0, 1] be the mapping defined by

TOé(xbyl) - (7&([%1,@1], [yl,y1]>)17v($1;y1) € [07 1]2,

and let T be the ordinal sum of {(aa)1, (€a)1,Ta), a € A. Define the mapping T : (L1)? — L!
by, for all x,y € L',

(T (@, y)1 = T(x1, 1),

(T(2,9))2

(T (max(e1, (aa)1), min(z2, (ea)2)], Imax(y1, (@a)1), min(ya, (ea)2)]))a,
if (x2 € ](aa)2, (€a)2] and y2 > (aa)2 and y1 < (ea)1 and o € Ac)
or (y2 € |(an)2, (a)2] and 2 > (aq)2 and 1 < (eq)1 and a € AL)

7 (21 € [(aa)1, (€a)1] and y2 > (aa)2 and y1 < (eq)1 and a € As)

or (y1 € J(aa)1, (€a)1] and 2 > (aq)2 and z1 < (eq)1 and a € As)

B or (o > (aq)2 and r1 < (eq)1 and yo > (aq)2 and y1 < (eq)1 and a = k),

min(xg,y2), if the previous conditions do not hold

and (z2 < (ar)2 or y2 < (ag)2),

else.

(
min(xy,y1), if the previous conditions do not hold and x1 < y1,
),

min(ysa, 1

Then T is a t-norm on L' called the ordinal sum of the summands (an, €0, Ta), a € A, and
we write

T = ((<aa76a;7:1>>04614< / <ak76k777f> / <<aayeaa72x>)aeA>)-

In Figure [2| the construction of (7 (z;,¥:))2 is shown for (z;,y;) € (L')? where i €
{0,...,5}. The value of (7 (x;,y;))2 is calculated at the ending points of the arrows for
each i € {0,...,5}. In the figure, k is defined as in the paragraph before Theorem
a€ Ac and § € A-.

In the following example we show that there exist different t-norms T} and 75 on ([0, 1], <)
such that the mapping 7, 1, defined in Example is a t-norm on £!.

Example 2.3 Let 71, T5 and T3 be t-norms on ([0, 1], <) such that Ty < T5. Let furthermore
t € [0,1]. Define the t-norms 77 and T3 by

= (<O taT1>7<t717T3>)7

Ty = ((0,t,T5), (t, 1, T3)).
Then

To(x1,y1) > To(t, To(x1,y1)) (= min(t, To(x1,v1)))
— Tyh(z1,y1) >t
= min(x1,y1) > t,

for all 1,1 in [0, 1]. It can be easily verified that 71 < T and T} (z1,y1) = T2(x1,y1), for all
x1,y1 in Jt, 1)2. Clearly, if Ty # T, then T} # Ts.

Define the mapping Try 1,0 by Try 1y, (2,y) = [T1(21, y1), max(Ta(t, To(w2, y2)), To(x1, y2),
To(x2,y1))], for all z,y in L!. Then T7, 1+ is a t-norm on L1 (see Example .



Finally we need a metric on L!. Well-known metrics include the Euclidean distance and
the Hamming distance. In the two-dimensional space R? they are defined as follows:

e the Euclidean distance between two points = (x1,22) and y = (y1,%2) in R? is given
by

d”(z,y) = /(21 — y1)* + (22 — 12)?

e the Hamming distance between two points z = (z1,22) and y = (y1,%2) in R? is given
by
d"(xz,y) = |z1 — 1| + w2 — 1.

If we restrict these distances to L’ then we obtain the metric spaces (L, d¥) and (L, d").
In these metric spaces, denote by B(a;e) the open ball with center a and radius ¢ defined as
B(a;e) = {z | z € L' and d(z,a) < ¢}. In the sequel, when we speak about continuity on £/,
we mean continuity w.r.t. one of the above mentioned metric spaces.

3 Characterization of t-norms which are meet-morphisms

Since ([0, 1], <) is a chain, any t-norm on the unit interval is a join- and a meet-morphism. Fur-
thermore, it is well-known that continuous t-norms on ([0, 1], <) are sup- and inf-morphisms.
For t-norms on product lattices, the following result holds.

Theorem 3.1 [3] Consider two bounded lattices L1 = (L1, <r,) and Lo = (La,<;2) and a t-
norm T on the product lattice L1 x Lo = (L1 X Lo, <), where (z1,x2) < (y1,y2) <= (x1 <r,
y1 and xo <r, y2), for all (x1,x2), (y1,y2) in L1 X La. The t-norm T is a join-morphism
(resp. meet-morphism) if and only if there exist t-norms Ty on L1 and Ty on Lo which are
join-morphisms (resp. meet-morphisms), such that for all (z1,xz2), (y1,y2) in L1 X Lo,

T((x1,22), (y1,y2)) = [T1(x1,y1), To(z2,y2)].

On L', the situation is more complicated. Not all t-norms on £! are join- and meet-
morphisms. Consider the t-norm 77, given by 77, (z,y) = [min(z1y2, x2y1), 22y, for all 2,y
in L. Then we have T7,([0.2,0.5], sup([0.5,0.5], [0, 1])) = T7,,([0.2,0.5],[0.5,1]) = [0.2,0.5] #
[0.1,0.5] = sup([0.1, 0.25], [0, 0.5]) = sup(77,([0.2,0.5],[0.5,0.5]), T7,,([0.2,0.5], [0, 1])). So 77,
is not a join-morphism. Similarly the t-norm 77, is not a meet-morphism.

Gehrke et al. [10] used the following definition for a t-norm on £!: a commutative, asso-
ciative binary operation 7 on £! is a t-norm if for all z,y, z in L’,

(G.1) T(D,D) € D,

(G.2) T(z,sup(y, 2)) = sup(T (z,y), T (x, 2)),
(G.3) T(x,inf(y,2)) = inf(T (z,y), T (z, 2)),
(G4) T(
(G.5) T(



They showed that such a t-norm is increasing, so their t-norms are a special case of the
t-norms on £ as defined in Definition [2.4]

Clearly, commutative, associative binary operations on £! satisfying are t-
norms on £! which are join- and meet-morphisms. The two additional conditions and
ensure that these t-norms are t-representable, as is shown in the next theorem.

Theorem 3.2 [10] For every commutative, associative binary operation T on cl satisfying
there exists a t-norm T on (]0,1],<) such that, for all x,y in L,

T(l'a y) = [T(xla yl)a T(xQ’ y?)]
We can extend this result as follows. First we need a lemma.

Lemma 3.3 [5] Let T be a t-norm on L' which is a join-morphism. Then there exists a
t-norm T on ([0,1], <) such that, for all z,y in L!,

(T(x,y)1 =T (z1,91).

Theorem 3.4 For any t-norm T on L satisfying |(G.2) and |(G.5) there exist t-norms Ty
and Ty on ([0,1], <) such that, for all z,y in LT,

T(z,y) = [T1(z1,91), To(z2, y2)]-

Proof.  From Lemma it follows that there exist a t-norm 77 on ([0, 1], <) such that
(T (z,y))1 = T1(z1,91), for all z,y in L!. From it follows that, for all x,y in L’,

(T (2, y))2 = (T([0,1], T(2,9)))2
(T(T([Ov 1]7 IL’), T([Ov 1]7 y)))Q
(T([Ov ‘T2]7 [07 yQ]))Q'

Hence (7 (z,y))2 is independent of x1 and y;, for all z,y in LY. Let now Ty(wa,y2) =
(T ([z2, 2], [y2, y2]))2, for all za,y2 in [0,1]. Similarly as in the proof of Lemma given
in [5] it is shown that 7% is a t-norm on ([0, 1], <). O

Clearly, is a rather restrictive condition. We will show that if this condition is not
imposed, then the class of t-norms on £! satisfying the other conditions is much larger.

For continuous t-norms on £! we have the following relationship between sup- and join-
morphism, and between inf- and meet-morphisms.

Theorem 3.5 Let T be a continuous t-norm on L'. Then
(i) T is a sup-morphism if and only if T is a join-morphism;
(ii) T is an inf-morphism if and only if T is a meet-morphism.

Proof. Let T be a continuous t-norm on £!. We prove the first statement, the second
equivalence is proven in a similar way. Clearly, if 7 is a sup-morphism, then 7 is a join-
morphism.



Assume conversely that 7 is a join-morphism. Let € L!, A be an arbitrary non-empty
subset of L’ and a = sup A. Since T is increasing, we have that 7 (z,y) <.: T (z,a), for all
y € A

From Theorem it follows that there exists a sequence (yy,)nen+ in A such that (y,)1 >
al —%, for all n € N*. Let y* = lim,,_, 1 o Yn, then clearly y7 = a; and y5 < as. Similarly, there
exists a sequence (2, )nen+ in A such that (z,)2 > as— %, for all n € N*. Let z* = lim,,—, 1 o 2n,
then 25 = as and 27 < a;. Since T is a join-morphism, 7 (x,a) = sup(T (z,y*), T (z,2*)) =
max((7 (z, y"))1, (T (2, 2%))1), max((T (z, y"))2, (T (x, 2"))2)].

Assume that (7 (z,a))1 = (T (x,y*))1 (the case (T (z,a))1 = (T (x, z*)); is similar). Since
T is continuous, we have in particular that

(Ve1 > 0)(3N € N*)(Vn € N¥)

(n>N = [(T(z,yn)r — (T(z,y" )il + (T2, yn)2 = (T(x,57))2| < e1).
So, for any £; > 0, there exists an n € N* such that (7T (z,y*))1 —e1 < (T(z,yn))1 <
(T(x,y*))1 = (T(z,a));1. Hence, for any ; > 0, there exists an element y € A such that

(T(z,9))1 > (T(x,a))1 — e1. Similarly, for any e > 0, there exists a z € A such that
(T(x,2))2 > (T (x,a))2 — e2. From Theorem it follows that T (x,a) = sup,cy T (z,y). U

In the following theorem the t-norms on £! which satisfy the residuation principle and an
additional border condition are characterized in terms of the class of t-norms 7T, 7, ; given in

Example

Theorem 3.6 [7] Let T : (L')?> — L' be a t-norm such that, for all x € D, yo € [0,1],
(T (x, [y2,y2]))2 = (T(2,[0,y2]))2. Then T satisfies the residuation principle if and only if
there exist two left-continuous t-norms T1 and Ty on ([0,1], <) and a real number t € [0, 1]
such that, for all z,y € L',

T (z,y) = [T1(z1,y1), max(To(t, To(z2,y2)), To(x1, y2), To(y1, 2))],

i.e. T =T, 1y, and, for all x1,y1 in [0, 1],

Ti(x1,y1) = To(z1,31),  if To(z1,y1) > To(t, To(z1,91)),
Ti(x1,y1) < To(x1,y1),  else.

We extend Theorem to t-norms on £! which are join-morphisms. The proof of the
following theorem is analogous to the proof of Theorem 3.6 given in [7].

Theorem 3.7 Let T : (LY)?2 — L! be a t-norm such that, for all x € D, yo € [0,1],
(T (z, [y2,y2]))2 = (T (x,[0,y2]))2. Then T is a join-morphism if and only if there exist two
t-norms Ty and Ty on ([0,1],<) and a real number t € [0, 1] such that, for all z,y € L*,

T (x,y) = [T1(z1,y1), max(Ta(t, To (2, y2)), To (1, y2), T2 (y1, 22))],

i.e. T =T, 1y, and, for all x1,y1 in [0, 1],

Ti(x1,y1) = To(x1, 1), if To(z1,y1) > To(t, To(z1,91)),
Ti(z1,y1) < To(x1,y1),  else.



Now we characterize the t-norms on £! belonging to the class Tr, 1, + which are meet-
morphisms. First we need some lemmas.

Lemma 3.8 Assume that Tr, 1,+ is a meet-morphism. Then Th(t,y1) = min(t,y1), for all
y1 € [0,1].

Proof. Let arbitrarily y; € [0,1]. Then

7}1,T2,t([07 1]7 inf([yla yl]’ [07 1])) = 7}1,T2,t([0’ 1]’ [Oa yl])
= [O’ TQ(ta TQ(L yl))]
= [O’ TQ(ta yl)]

On the other hand,
Ty, 1,4([0, 1], inf([y1, y1], [0, 1])) = inf(Tz, 7,6 ([0, 1], [y1, v1]), Ty /1,6 ([0, 1], [0, 1]))
= inf([0, max(Tx(t, y1),y1)], [0, ¢])
(

inf ([0, 1], [0, £])
[Ovmln(ylv )}

Hence Ty (t,y1) = min(¢,y1), for all y; € [0, 1]. O

Corollary 3.9 Assume that Tr, 1, 15 a meet-morphism. Then there exists two t-norms Tl
and Ty on ([0, 1], <) such that

Ty = ((0,¢,11), (t,1,T5)).

Proof. Define, for all z,y in [0, 1],

T1(a:,y) = TQ(tj’ty)7 i
To(z,y) = Ty(t+ (1 =tz t+(1—t)y) =t

1-t¢

Then it is easy to see that T 1 is commutative, associative and increasing. Since from Lemma
it follows that Ty(t,y) = min(t,y), for all y € [0,1], we obtain that T} (1,y) = y, for all
y €[0,1]. So T} is a t-norm. Similarly, we obtain that T% is a t-norm on ([0, 1], <).

Let arbitrarily x,y in [0, 1] such that z < t < y (the case y < t < x is similar). Then we
obtain that z = min(t,z) = Ta(t,z) < Ta(z,y) < To(l,z) = x, so Te(x,y) = min(z,y). It
now easily follows that 7% is equal to the ordinal sum of (0, , Tl) and (t, 1, T2> O

Lemma 3.10 Assume that T, 1+ s a meet-morphism. Then the t-norm Tg i the repre-
sentation of Ty given in Corollary[3.9 is equal to the minimum.
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Proof. Let arbitrarily 1, 2 in [t, 1]. From Lemma [3.§)it follows that T5(t, 21) = min(t, z1) =
t. Furthermore, from Corollary it follows that T5(x1,21) > t. So, we obtain

7}17T2,t([3717 1]a lnf([07 1]7 [Zlv Zl])) = 7}1,T27t([‘r1’ 1]’ [0’ Zl])
= [0, max(T5(t, z1), To(z1, 21))]
= [0, max(¢, T (1, 21))]

= [0, Tx(z1, 21)]
and
ﬁl,Tz,t([SUlv 1]’ inf([oa 1]7 [2’1, Zl]))
= inf(’TTLTQ,t([xl? 1]7 [07 1])7 7}1,T2,t([x17 1]’ [Zlv Zl]))
= inf([0, max(t, z1)], [Th (21, z1), max(Ta(t, 21), Ta(x1, 21), 21)])
= inf([O, xl], [Tl(.iCl, 2:1), 21])
= [0, min(zy, 21)].
So Ty(x1,z1) = min(zy, z1). From it easily follows that Ty = min. O

Corollary 3.11 Assume that Tr, 1,+ is a meet-morphism. Then there exists a t-norm Ty on
([0,1], <) such that
Ty = ((0,t,T1), (t, 1, min)).

Lemma 3.12 Assume that there exists a t-norm Ty on ([0,1], <) such that Ty = ({0, t, T1>,
(t,1,min)), then Tr, 1, is a meet-morphism.

Proof. Let arbitrarily z,y,z in L!. If y <;1 z (the case y >;r z is similar), then
Try oz, inf(y, 2)) = Tnmi(z,y) = inf(Try me(x,y), Tr ot (2, 2)). So, let y1 < 2z and

Y2 > zo (the case y; > 21 and yo < 29 is similar). Then we have the following cases:
e max(xy,y1,21) <t

From the fact that 7o < min it follows that Th(z1,22) < ¢ and Ta(x2,y1) < t, so
Tg(l‘l,ZQ) < min(t,TQ(.%'Q,ZQ)) = Tg(t,TQ(xQ,ZQ)). Since TQ(xQ,yl) < TQ(xQ,Zl) <
T5(x2, z2), we obtain similarly that Th(x2,y1) < Ta(t, Ta(x2, 22)). Thus,

7}17T2,t(l‘7 inf(yv Z)) = 771“1,T2,t(-777 [y17 22])
= [T1(z1, y1), max(Ta(t, Ta(w2, 22)), To (21, 22), Ta (22, y1))]
= [Ty (z1, 1), Ta(t, Ta(w2, 22))].

On the other hand, we obtain similarly that

inf(ﬁl,T%t(x’ y)? 7}1,T2,t(x’ Z))
= inf([T1 (21, y1), Ta(t, Ta(w2, y2))], [T1(21, 21), To(t, T2(z2, 22))])
= [T1(z1,y1), Ta(t, To(x2, 22))],

using the fact that 75 is increasing, y; < z1 and yg > 29.
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e max(zy,y1) <t <z

Similarly as in the previous case, we have that
Try 15 (%, inf(y, 2)) = [T1 (21, y1), Ta(t, Ta(w2, 22))]
and

inf(7-T1,T2,t(-Ta Y), ﬁ“l,Tz,t(x: z))
= nf([T1 (21, 91), To(t, To(22, y2))], [T1 (21, 21), max(Ta(t, Ta(z2, 22)), Ta (22, 21))])
= [T1(z1,y1), min(To(t, To (72, y2)), max(min(t, Ty (2, 22)), T2 (22, 21)))]-

We have two cases:

1. x9 < t: in this case, we have that Th(z2, 21) = min(ze, 21) = z2 < t, 80 Ta(we, 21) <
min(t, To(x2, 22)) = Ta(t, Ta(x2, 22)). Hence

inf(%17T27t (.CC, y)7 7-T1,T2,t($; Z))
— [Tl(xl, yl), min(TQ(t, TQ(Q?Q; y2))7 Tg(t, TQ(«TQ, ZQ)))]
= [Ty (21,91), Ta(t, Ta(xa, 22))].

2. xg > t: in this case, Th(z2,21) = min(xa,21) > t, so Ta(za,y2) > Ta(xg,22) >
Ts(z2,21) > t. Thus,

inf(ﬁ17T2¢($, y): 7}1,T2,t($7 Z))
= [T1 (71, y1), min(min(t, To (w2, y2)), Ta(z2, 21)))]
= [T1(z1,91), 1]

and
7}17T2,t(x’inf(yaz)) = [Tl(xlvyl)vmin(thQ(xQ’22))] = [Tl(xhyl)?t]'

o x1 <t <y (<2):

We have that Ta(x1,22) < x1 <'t, so Ta(x1, 2z2) < min(t, Th(z2, 22)) = To(t, Ta(xa, 22)).
‘We obtain

Try 1o (2, inf(y, 2)) = [T1(x1, y1), max(Ta(t, To(x2, 22)), T2 (w2, y1))]
and similarly

inf (77, 1.6 (%, y), Try 10 (2, 2)) = inf([T1 (21, y1), max(Ta(t, Ta(z2, y2)), T (22, y1))],
[Tl (1’1, 21), maX(TQ(t, TQ(Z‘Q, ZQ)), T2 (.232, Zl))])

We have two cases:

1. m9 < t: in this case, we have that Ta(z2,y1) < t, so, using the fact that y; < 23 <
22, To(x2,y1) < min(t, To(w2, 22)) = Ta(t, T2(x2, 22)). Thus,

7}1,T2,t(337 inf(yv Z)) = [Tl (1’1, y1)7 Tg(t, T3 («T27 22))]-

Similarly, we obtain that inf(77, 7, (2, y), Try 1t (x, 2)) = [T1(x1, y1), To(t, To(z2,

22))]-
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2. w9 > t: from the representation of Ty it follows that Th(z2,y2) > Ta(x2,22) >
Tr(x2,21) > t. So, using the fact that T5(¢,a) = min(¢,a) for all a € [0, 1], we
obtain

7}1,T2,t(x7inf(y) Z)) = [Tl(xlayl)vmax(thQ(x%yl)ﬂ

and

inf (77, 1.0 (7, y), Ty 1ot (, 2))
= [T1(z1,y1), min(max(t, To(x2, y1)), max(t, To(x2, 21)))]
= [Ty (1, y1), max(t, Ta(w2,91))]-

o (Y1 <) z1 <t<ux:

Similarly as in the previous case, we obtain that

Tty 15 (%, inf(y, 2)) = [T1(21, Y1), max(Ta(t, Ta(z2, 22)), Ta (71, 22))]

and

inf(ﬁl,Tmt(xv y)7 7}1,T2,t($a Z)) = inf([Tl ($1, y1)> maX(TQ(t7 TQ("E% y2))a TQ(xlv y2))]a
[Tl (l‘l, Zl), maX(TQ(t, Tg(xg, 22)), T2 (561, 22))])

‘We have two cases:

1. yo < t: we obtain that Th(x1,22) < Ta(x1,y2) < t, so Ta(z1,y2) < min(t, Ta(x2,
y2)) = To(t, Ta(z2, y2)) and similarly for T5(x1, 22). Thus

7}1,T2,t($a inf(ya Z)) = [Tl (‘/Elv yl)v TQ(ta T2($2a 22))]

and

inf(ﬁl,Tz,t(x’ y)7 7}17T2,t(55, Z))
= inf([T1 (21, y1), To(t, To(z2,y2))], [T1 (21, 21), To(t, To(x2, 22))])
= [T (w1, 1), Ta(t, T (w2, 22))].

2. yo > t: we have that To(z1,y2) > t > min(t, To(z2, 22)) and Ta(z1,y2) > To(x1,
22), SO
inf(,7EF1,T2,1t (x’ y), 7}1 ,T27t(x7 z))
= [T1 (21, 1), min(T2(z1, y2), max(Ta(t, Ta(z2, 22)), Ta(21, 22)))]
= [T1(z1, 1), max(Ta(t, To(w2, 22)), Ta(71, 22))]
= 7-T1,T2,t($, inf(y, 2)).

o y; <t < min(zy,z2):
We have that Ty (7o, 91) < y1 < t < Th(z1, 22) < To(x1,92), S0

Try 1o (z,inf(y, 2)) = [T1(z1, 1), max(min(t, To(x2, 22)), To(z1, 22))]
= [T1(w1,y1), Ta(21, 22)].
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Similarly,

inf (77,10 (2, y), Try 1,6 (@, 2))
= inf([T1(z1,y1), max (T2 (21, y2), To(z2, y1))],
[T1(x1,21), max(Ta(x1, 22), Ta(x2, 21))])
= [T1(z1,y1), min(T(z1, y2), max(Ta(x1, 22), Ta(x2, 21)))].

‘We have two cases:

1.

x1 < min(zg,z1): in this case, we have that Th(z1,22) = min(z1,22) = x1 <
min(xg, 21) = Ta(x2, 21) (using Corollary , SO

min(Ts(z1,y2), max(Tz(21, 22), T2(w2, 21)))

= min(T2(z1,y2), T2 (w2, 21))

= min(r1, Y2, T2, 21)

= 21 = min(z1, 22) = Ta(x1, 22).

. x1 > min(zg, z1): since zo > 21 > min(zg, 21), we have that Th(z1, 2z2) = min(zq,

z9) > min(xg, 21) = Ta(x2, 21), SO

min(75(x1, y2), max(Ta(x1, 22), To(x2, 21)))
= min(T2(x1,y2), T (w1, 22))

= Ta(x1, 22),

since yg > 22.

e { < min(z1,y1,21):
From Lemma [3.8 and Corollary 3.11] it follows that

7}1,T2,t($, lnf(ya Z)) = %1,T2,t(xv [yh 22])

= [T (x1,y1), max(min(¢, To(x2, 22)), min(z1, 22), min(ze, y1))]

= [T1(z1,y1), max(min(z1, 22), min(xz, y1))].

On the other hand, we obtain similarly that

inf(,]?lﬁ,Tmt(xa y)v 7:f1,T2,t($7 Z))
= inf([T1 (w1, y1), max(min(z1, y2), min(z2, y1))],

[T1(x1, 21), max(min(z1, 22), min(z2, 21))]).

Clearly, it holds that (77, 1, (2, inf(y, 2)))1 = Ti (21, y1) = min(T1 (21, 91), Ti(x1, 21)) =
(inf (77, 1y.¢(x, y), Try 10 ¢ (2, 2)))1. For the second projection, we have two cases:

1.

x1 < min(xg,21): in this case, we have that min(x,22) = 1 < min(zg,21) <
2o < y2. S0, (Try 14 (x,inf(y, 2)))2 = max(x1, min(z2,y1)). On the other hand

(inf(ﬁﬁ,Tz,t(% y)) 77T1,T2,t(1137 Z)))Q = min(max(l‘l, Hlin(ZL‘2, yl))’ min(:EZ’ Zl))
= max(z1, min(ze, y1))

= (7}1,T2,t($a il’lf(y, Z))Z

using the fact that y; < z; and z1 < min(zg, 21).
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2. x1 > min(xg, 21): in this case, we have that x; = x9 or x; > 21, so min(z1, 2z2) >

min(xg, 21). If 21 = a9, then (Tp, 1,4(x,inf(y, 2)))2 = min(z, 22), because 2o >
z1 > y1. On the other hand, (inf(77, (2, y), Try 1 ,6(2, 2)))2 = min(min(zq, y2),
min(x1, 22)) = min(x1, 22).
If x1 > 2, then (77, 1, +(x, inf(y, 2)))2 = max(min(xy, 22),y1) = min(zq, 22), be-
cause y; < z1 < 1 < x2. On the other hand, (inf(77, 1, (2, y), Tr. 100 (2, 2)))2 =
min(max(min(xi,y2),y1), min(x, 22)) = min(z, 22), using the fact that zo < ya.
So again (inf (77, 1,,4(2,Y), Try, 154 (2, 2)))2 = (Try 154 (2, inf (y, 2))) 2.

O

Now we obtain the main result.

Theorem 3.13 For any t-norms Ty and T on ([0,1], <) and t € [0,1], Tr, 1+ iS a meet-
morphism if and only if there exists a t-norm Th on ([0, 1], <) such that

Ty = (0,t,11), (t, 1, min)).
Proof. This follows immediately from Corollary and Lemma 0

If we assume that T7 = T5, then we do not only obtain that 77 is the ordinal sum of two
t-norms on ([0, 1], <), but we can also write the t-norm 77, 7, + = T, + as an ordinal sum of
two t-norms on £!. This is shown in the next theorem.

Theorem 3.14 For any t-norm T on ([0,1],<) and t € [0,1], Tr is a meet-morphism if
and only if there exists a t-norm Ty on ([0,1],<) such that

Trp = (2 [ QOcr, [t 8] Ty ) / ([E52], 1ers Tnin)),
where, for all x,y in L',
7}17:@ (z,y) = [Tl(mlayl)ufl(x2ay2)])
Tinin (2, y) = [min(z1,y1), max(min(z1, y2), min(zz, y1))].

Proof. Assume first that 77 is a meet-morphism. From Theorem [3.13]it follows that there
exists a t-norm T} on ([0,1], <) such that T = (<O t,71), (t,1, min)).
Let ¢:[0,¢] — [0,1] : 21 — %+ and T! = ¢~ ' oTy o (¢ x ¢). Define for all z,y in L',

Dy (2) = [p(21), p(22)],

I —t fL'Q—t
[0)) =
2(2) [11&’14’
7;:1,,111 7} ((1)1 X q)l),
Tonin = @2 0 Tnin © (P2 x ).

Note that 7. defined by the formula above is a transformation of T, and not a member

of the class of t-norms 77 given in Example Then, for all z,y,2’,y" in L’ such that
x <pr[tt], y <pr [t t], @' >0 [t,t] and o >;1 [8, ],

Ti, 4, (@) = [T1(z1,31), T{ (22, 92)];
Tonin (¢ 9') = [min(a, 1), max(min(z7, y5), min(zs, y))].

We consider the following cases:
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1. max(x2,y2) < t: using Lemma we obtain

Tri(x,y) = [T (21, y1), max(min(t, T(22, y2)), T'(x1,y2), T (x2, y1))]
= [T(21,y1), max(T (22, y2), T(z1,y2), T (2, y1))]
= [T{($1,y1),T{($2,y2)]~

2. max(x9,y1) < t < yo (the case max(y2,z1) < t < x9 is similar): we obtain in a
completely similar way that Tr(x,y) = [T7](z1,y1), min(xe, y2)] = [1](x1,v1), 22] =
[T{($1ayl)vT{(m27t)]'

3. max(z1,y1) < t < min(zg,y2): we obtain that T'(t,T(z2,y2)) = min(t,z2,y2) =
th T(x17y2)A§ xp <t and T(x27y1) < U1 < t So TT,t(JU;y) = [T(l’l,yl),t] =
[T{($1,y1),T{(t,t)].

4. 9 < t < y1 (the case yo < t < =z is similar): we obtain that T'(¢,T(z2,y2)) =
min(t, xe,y2) = x2, T(71,y2) = min(z1,y2) = v1 and T'(x2,y1) = min(xa,y1) = 2. So
TT,t(fUay) = [T'(w1,y1), v2] = [min(x1, y1), min(w2, y1)] = [min(z1, y1), min(zz, y2)].

5. 21 < t < min(xe,y1) (the case y; < ¢t < min(ys,x1) is similar): we obtain that
T(t,T(z2,y2)) = min(t,r2,y2) = t, T(21,y2) = min(z1,y2) = 21 and T'(22,y1) =
min(zg,y1) > t. So Tri(z,y) = [T(x1,y1), min(xz, y1)] = [min(z1, 1), max(min(t, y2),
min(xg,y1))].

6. t < min(x1,y1): we obtain that T'(¢t,T(x2,y2)) = min(¢,x2,y2) = t, so Tri(x,y) =
[min(z1, y1), max(min(z1, y2), min(zz, y1))].

We see that

Tll(xhyl)u if (xlvyl) € [07t]27
min(x1,y1), else.

(%,t(.%’,:l/))l = T(ml’yl) — {

So, the first projection of 77, is determined by the ordinal sum of (0,#,77) and (¢, 1, min).
The second projection of 77 is given by

(Tr4(,9))2

(T4, 3. (o2, min(es. 1), [y min(ya, ) o
if z9 > 0 and 1 <t and yo >0 and y; <,
(Toin ([max(z1, t), z2], [max(y1, 1), y2]))2,
if (1 €]t,1] and yo >t and y; < 1)
= or (y1 € Jt,1] and xo >t and z; < 1),
min(xg,ys2), if the previous conditions do not hold
and (z2 <0 or yo <0),

min(ze,y1), if the previous conditions do not hold and z; < yi,
)

min(yg, 1), else.

This corresponds to the formula in Theorem in which A = {1,2}, a1 = 0zr, €1 = ag =
[t,t],ea=1,r, k=1, Ac = @ and A = {2}. Hence 77, is the ordinal sum of the summands
(Opr, [t,t],7'T1’Tl) and ([t,t], 1,1, Tmin), With & = 1.
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Conversely, assume that 7r, is the ordinal sum of the summands (0.1, [t,t], 77 7 ) and
([t,t], 1 o1, Tmin), with & = 1. Then from Theorem it follows that T is the ordinal sum of
(0,t,T1) and (t,1, min). Using Theorem we obtain that 77, is a meet-morphism. O

Corollary 3.15 Let T be a t-norm on ([0, 1], <).
o Ift =0, then Tro is a meet-morphism if and only if Tro = Tmin-
o Ift=1, then Tra1 = Trr is a meet-morphism for any T.
By combining Theorems |3.6| and we obtain the following result.

Theorem 3.16 Let T : (L')? — LI be a t-norm such that, for all x € D, yo € [0,1],
(T (z,[y2,y2]))2 = (T (2,]0,92]))2. Then T is a join-morphism and a meet-morphism if and
only if there exist two t-norms Ty and Ty on (]0,1], <) and a real number t € [0,1] such that,
for all z,y € L',

T(JJ, y) = [Tl(xh y1)7 maX(TZ(ta TQ(x% y2))7 T2(x17 y2)7 TQ(yh .%'2))],

Ty is the ordinal sum (<O,t,T1>, (t,1,min)), where Ty is a t-norm on ([0,1], <), and, for all
T1,Y1 m [07 1]}
Ti(z1,y1) = Ta(z1,91), if To(z1,91) > t.

4 Conclusion

In this paper we investigated t-norms in interval-valued fuzzy set theory which are meet-
morphisms. First we showed that for continuous t-norms the notions of sup- and join-
morphism, respectively the notions of inf- and meet-morphism, collapse. We considered a
general class of t-norms (given in [7]) and investigated under which conditions t-norms be-
longing to this class are meet-morphisms. We also showed that there exist non-trivial examples
of t-norms in this class, i.e. t-norms which belong to this class but not to the class investigated
in [5, 18]. Finally we gave a characterization of the t-norms which are both a join- and a
meet-morphism and which satisfy an additional border condition.
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