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Abstract
The simulation of the electroencephalogram (EEG) using a realistic head model
needs the correct conductivity values of several tissues. However, these values
are not precisely known and have an influence on the accuracy of the EEG
source analysis problem. This paper presents a novel numerical methodology
for the increase of accuracy of the EEG dipole source localization problem.
The presented subspace electrode selection (SES) methodology is able to
limit the effect of uncertain conductivity values on the solution of the EEG
inverse problem, yielding improved source localization accuracy. We redefine
the traditional cost function associated with the EEG inverse problem and
introduce a selection procedure of EEG potentials. In each iteration of the
presented EEG cost function minimization procedure, potentials are selected
that are affected as little as possible by the uncertain conductivity value. Using
simulation data, the proposed SES methodology is able to enhance the neural
source localization accuracy dependent on the dipole location, the assumed
versus actual conductivity and the possible noise in measurements.

(Some figures may appear in colour only in the online journal)

1. Introduction

For the presurgical evaluation of patients suffering from refractory epilepsy, it is essential
to have a correct localization of the epileptogenic zone, i.e. the brain region that is
responsible for provoking seizures. Several modalities can be included in this clinical protocol:
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electroencephalogram (EEG), magnetoencephalogram, magnetic resonance imaging (MRI),
positron emission tomography, neuropsychological assessments, etc. In particular, the EEG is
useful because of its high temporal resolution and by performing EEG source analysis, the
epileptogenic zone can be estimated. The estimation of the neural source generators responsible
for e.g. epileptic spikes is however subject to some sources of errors: noise in measurements,
forward modeling errors and the ill-posedness of the inverse problem.

A first class of model-related errors are source modeling errors. A current–dipole source
is suitable because it represents a population of active pyramidal cells at the microscopic
level (de Munck et al 1988), but is only valid if the activity itself is limited to a focal region
and if it stays focal over a period of time. For patients suffering from epilepsy, focal brain
activity is mostly the case. In order to reduce these source modeling errors, it is possible to use
more complex source models. Distributed source models can represent an alternative where
the inverse problem is highly underdetermined and regularization methods are required, e.g.
(Baillet et al 2001). Another source modeling approach consists of limiting the parameters of
the multidipolar sources to be less than the number of electrodes e.g. the Recursively Applied
and Projected–MUltiple SIgnal Classification (RAP–MUSIC) algorithm (Mosher and Leahy
1999). The information criterion method is a possible means for determining the number of
independent sources, as used in Knösche et al (1998) and Bai and He (2006). Steinsträter et al
(2010) also investigated the influence of forward modeling errors on EEG beamformers and
showed the high sensitivity of the solutions to the conductivity profile in the realistic head
model.

A second class of model-related error is the possible inaccurate geometrical modeling
of the head (Vanrumste et al 2002). When using patient-specific head models based on T1-
segmented magnetic resonance images, the geometrical modeling error is limited. A third type
of forward modeling errors can be electrode misplacements (Laarne et al 2000). However, by
using correct EEG electrode placement techniques, it is possible to decrease that source of error
(Sijbers et al 2000), or by using more electrodes in the EEG source analysis problem (Pohlmeier
et al 1997). Laarne et al (2000) evaluated the influence of the electrode misplacement and
concluded that the use of an incorrect skull conductivity leads to the most serious source of
error.

A fourth type of modeling-related errors are head models where the anisotropic behavior
of the conductivity is not incorporated. Using diffusion tensor magnetic resonance imaging it
is possible to estimate the nerve bundle direction. Haueisen et al (2002), Wolters et al (2006)
and Hallez et al (2008) have shown that anisotropically conducting compartments should be
incorporated in the volume–conductor head models. Finally, large errors are introduced due to
the use of inaccurate absolute conductivity values of several tissues in the volume–conductor
head model. The large sensitivity of the EEG measurements to tissue conductivity has been
reported e.g. in Haueisen et al (1997), Laarne et al (1999), Gençer and Acar (2004) and
Vallaghé and Clerc (2009). The uncertain conductivity values, more specifically the ratio of
the skull conductivity to the conductivity values of the soft tissues, have a large influence on
the EEG dipole localization accuracy and are the most dominant source of error (Laarne et al
2000, Vanrumste et al 2000, Plis et al 2007, Chen et al 2010). Many values have already been
suggested in the literature for the scalp, skull, cerebro-spinal fluid (CSF) and brain: Geddes
and Baker (1967) stated that the soft tissue to skull conductivity ratio was 80, Oostendorp et al
(2000) 15, Gonçalves et al (2003) 20–50, while Hoekema et al (2003) measured this value to
be in the interval 10–40 and Lai et al (2005) as 25. Moreover, the conductivity values may be
patient and age dependent; see Gabriel (2005). We assume the conductivity of the soft tissue
to be equal to the conductivity of skin, CSF, gray and white matter. It is also hypothesized
by Brodbeck et al (2009) that lesions are most likely to change conductivity properties and
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to significantly impair the accuracy of electromagnetic source imaging based on the EEG.
Akhtari et al (2010) state that understanding brain electrical conductivity and ways to non-
invasively measure them are probably necessary to enhance the ability to localize EEG sources
from epilepsy surgery patients.

Plis et al (2007) proposed a probabilistic framework for incorporating the uncertain
conductivity values in the reconstruction of neural sources. They concluded that the
conductivity of the skull has to be either accurately measured by an independent technique, or
that the uncertainties in the conductivity values should be reflected in the source localization
estimates. We propose in this paper an alternative solution: a novel technique for limiting the
influence of the uncertain conductivity values on the dipole source localization estimates. We
have no knowledge of such an already existing technique able to decrease this effect. The
presented subspace electrode selection (SES) methodology uses an alternative cost function
and employs a selection procedure of the potentials.

2. Materials and methods

We use in this study a realistic head model so that in the simulations the impact of the
geometrical modeling errors is reduced, and assume the placement of the EEG electrodes and
the number of active neural dipoles to be known. We thus assume that the only uncertainty is
related to be the conductivity ratio parameter where we aim at reducing its negative impact
upon the source localization.

The used head model is patient specific and is based on MR image data. The used
head model in the presented simulation study consists of isotropic conductivities where we
want to assess the influence of the absolute conductivity values on the recovered neural
source locations. When using a realistic head model that incorporates the anisotropy of the
conductivity, a closer approximation of reality would be obtained. However, we focus here on
providing a proof of concept of the presented SES procedure in a realistic head model with
respect to the uncertain skull to soft tissue (skin, cerobrospinal fluid, gray and white matter)
conductivity ratio.

In the following we outline the steps for constructing the forward model and in a second
stage, we present the inverse techniques for recovering the neural sources.

2.1. Forward realistic model

2.1.1. Volume–conductor head model: registration and segmentation. In order to calculate
the potentials at the electrodes due to a current–dipole source, a volume–conductor model is
needed. The volume–conductor model describes the geometry and the different tissue types.
Each tissue type is assigned a label, which is then used to assign a conductivity. In this study
we used a realistic head model that was derived from segmented T1-weighted MRI images.
The MRI images were obtained by a 3 Tesla MRI scanner (Siemens Trio, Erlangen, Germany)
using a three-dimensional MP RAGE sequence with a repetition time (TR) of 1550 ms and an
echo time (TE) of 2.48 ms. The result was a 256 × 256 × 176 matrix of isotropic voxels of
0.9 mm × 0.9 mm × 0.9 mm. To construct the brain compartment, SPM8 was used to segment
the white matter, gray matter and CSF (Friston 2007). This resulted in probability values for
each voxel, indicating its probability of belonging to white matter, gray matter or CSF. The
voxels are then assigned to the compartment for which the voxel had the highest probability.
The skull compartment was constructed by a dilation operation of the brain compartment and
was on average 6 mm thick. The scalp compartment was obtained by using opening, closing
and hole filling operation on the thresholded MR image. This way we could make a distinction
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Scalp
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Cerebro-spinal fluid
Grey matter
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Figure 1. The coronal, sagittal and axial plane of the head model. The test dipoles were placed in
each voxel of the gray and white matter. The different compartments are indicated: scalp, skull,
CSF, gray matter and white matter.

between head and air. The skull and brain compartments were then added to the whole head
model. Figure 1 shows an axial, sagittal and coronal plane of the used volume–conductor head
model.

2.1.2. Finite difference method for the forward EEG problem. After defining the head
model, the electrode positions have to be determined. We used a 10–10 standard electrode
setup, consisting of 81 electrodes. The electrodes were projected onto the scalp.

The forward problem relates the electrode potentials to a dipole source in a specified
geometry. This relation can be expressed by solving the Poisson equation.

∇ · (σ (x, y, z) · ∇φ(x, y, z)) = Iδ(r − r1) − Iδ(r − r2) (1)

with φ(x, y, z) being the potential distribution inside the head model. σ (x, y, z) denotes the
conductivity value that is position (r = [x, y, z]) dependent. r1, r2 are the location coordinates
of the monopoles of the dipole: the current source and current sink, respectively. I is the
amplitude of the dipole. The numerical method that is used here for solving (1) is based on the
finite difference method (FDM), elaborated in Vanrumste et al (2001) and Hallez et al (2005).
The method results in the solution of a large sparse linear system of equations that can be
solved using the so-called successive overrelaxation method (Barrett et al 1994). Because the
computation time would become too expensive when using successive overrelaxation for the
solution of the forward problem, the reciprocity theorem is used (Rush and Driscoll 1969). For
an extensive validation and further details of the used isotropic forward model, see Vanrumste
et al (2001). Figure 2 shows a schematic outline of the steps taken for generating the lead
fields using the realistic head model.
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Figure 2. Outline of the forward model: from magnetic resonance images, the geometry of the head
is deduced and for given conductivity values and electrode positions, the lead field is calculated.

The so-called lead field matrix L ∈ Rq×3 links the dipole location, denoted by rd , with
the EEG potentials vm,i, i = 1, . . . , q at the given q electrode positions. We denote the EEG
potentials by the q-dimensional vector vm, which is linear to the dipole orientation d:

vm = L(rd )d. (2)

2.1.3. Influence of conductivity on the EEG forward problem.. The lead fields L(rd ) depend
upon the skull to soft tissue conductivity ratio

ξ = σskull

σsoft
(3)

since the calculated potentials φ in the Poisson equation (1) depend upon σ (x, y, z). We denote
this dependence by L(rd, ξ ), vm(rd, d, ξ ). We assume here the soft tissue to be the brain and
the scalp tissue. When assuming a conductivity ratio (e.g. ξ̃ = 1/10), which is significantly
different from the actual conductivity ratio (ξact = 1/50) of the patient under study, then a
large misfit in the EEG dipole localization can occur because of the effect of ξ on vm.

We can compute the sensitivity of the potentials to the conductivity ratio as follows:

s(rd, d, ξ̃ ) = ∂vm(rd, d, ξ )

∂ξ

∣∣∣∣
ξ=ξ̃

(4)

for a fixed source position and orientation. Some potentials will be highly sensitive to ξ , while
other potentials are less sensitive since different values si (i = 1, . . . , q) will be obtained.
More elaborated studies of the influence of conductivity on the EEG forward potentials have
been carried out by e.g. Haueisen et al (1997) and Laarne et al (1999).

2.2. Traditional EEG inverse problem

The EEG inverse problem aims at recovering the neural source locations and orientations that
correspond with a certain set of measured EEG potentials vmeas. For clarity, vm is the set of
potentials simulated by the forward solver (vm,i is the simulation of the electrode potentials
at a certain ith electrode location), while vmeas is the set of measured potentials (vmeas,i is the
measurement at the ith electrode location). As given previously, vector vm depends on the
dipole location, orientation and conductivity ratio defined by the user, while vector vmeas arises
because of dipole(s) at a certain location, orientation and conductivity ratio that is specific to
the patient.



1968 G Crevecoeur et al

Several source localization approaches exist, depending on the assumed source model:
single-dipole localization based on the minimization of a least-squares cost function (de
Munck et al 1988), limited number of multiple dipoles (<q) recovered using multiple signal
classification algorithms (Mosher and Leahy 1999) and distributed source models where a
highly underdetermined system of linear equations needs to be solved (Pascual-Marqui 1999).
In this paper, the nonlinear inverse problem, i.e. nonlinear dependence of scalp potentials vm

with respect to the dipole location(s) rd , is considered. We are not considering distributed
source models where the set of scalp potentials is linear to the dipole moments in each source
voxel.

The inverse problem for a single dipole is nonlinearly solved by iteratively minimizing a
cost function Y

r∗
d = arg min

rd

Y(rd ) (5)

which yields recovered dipole location r∗
d . In (5) a reduction of the number of parameters was

performed since it is possible to consider the optimal dipole components in the least-squares
sense (see e.g. Baillet et al 2001):

dopt = L†vmeas. (6)

L† is the pseudo inverse of the lead field matrix. For a recovered dipole location r∗
d , we can

calculate the orientation as d∗ = L(r∗
d )†vmeas. Y is the following least-squares cost function:

Y(rd ) = ‖vmeas − L(rd )L(rd )†vmeas‖
‖vmeas‖ (7)

when using the optimal dipole components (6) with ‖·‖ the L2 norm. For solving (5) the widely
used Nelder–Mead simplex is used here as in Huang et al (1998) and Crevecoeur et al (2008).
The above inverse problem is formulated for solving the EEG inverse problem at a single time
instant and can be extended (for multiple time instances) in a spatio-temporal way.

The solution of the EEG inverse problem for multiple dipoles (with number of dipoles
less than the number of channel measurements) can be obtained using the RAP–MUSIC
methodology (Mosher and Leahy 1999). We denote here the so-called spatio-temporal data
matrix as

Fm = [L(rd,1), . . . , L(rd,p)][DT
1 , . . . , DT

p ]T (8)

for p dipoles (with locations rd,i, i = 1, . . . , p). The 3 × n-matrix Di (i = 1, . . . , p) represents
the time course of the ith dipole moment. n is the number of samples registered by the EEG.
The following cost function needs to be maximized for each dipole:

r∗
d,k = arg max

rd

(
subcorr

(
�⊥

Ak−1
L(rd ),�⊥

Ak−1
�sig

)
1

)
, (9)

with �⊥
Ak−1

= (
I − Ak−1A†

k−1

)
being the projection matrix constructed by Ak−1, a matrix

containing in each column the topographies of the already found k − 1 sources (Mosher
and Leahy 1999). �sig is the signal subspace of the spatio-temporal measurement matrix.
The signal subspace must be compared with the entire span of the gain matrix L(rd ),
which is possible through the use of principal angles or the cosines of the principal angles
(canonical correlations). The principal angles reflect the similarity between the subspaces
spanned by the columns of the two matrices. The elements of the subspace correlation vector
are ranked in decreasing order. The largest subspace correlation is denoted by subcorr(·, ·)1.
If subcorr(S1, S2)1 = 1, then the two subspaces S1 and S2 have at least a one-dimensional
subspace in common. If subcorr(S1, S2)1 = 0, then S1 and S2 are orthogonal. For more details
with respect to the subcorr(·, ·)1 definition (see Mosher and Leahy 1999).
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The effect of uncertain brain tissue conductivity values onto the inverse solutions can be
quantified e.g. using Monte Carlo simulations (Chen et al 2010), stochastic Cramér Rao Bound
technique (Plis et al 2007) and polynomial chaos decomposition (Gaignaire et al 2010). We
can theoretically express this effect on the inverse solution by redefining (5)

r∗
d (ξ ) = arg min

rd

Y(rd, ξ ), (10)

where the cost function depends on ξ because L(rd, ξ ). The corresponding influence on the
dipole orientation can be determined by d∗ = L(r∗

d(ξ ), ξ )†vmeas. For the case of recovering a
limited number of dipoles, (10) can be iteratively used:

r∗
d,k(ξ ) = arg min

rd

Yk(rd, ξ ) (11)

Yk(rd, ξ ) = −subcorr(�⊥
Ak−1

L(rd, ξ ),�⊥
Ak−1

�sig)1 (12)

for the recovery of the k = 1, . . . , p dipoles.
If one would include the unknown conductivity ratio as a fully nonlinear additional

unknown parameter in the cost function, or if one would perform simultaneous optimization
over dipole parameters and the conductivity, i.e. solving

{r∗
d, ξ

∗} = arg min
rd

Y(rd, ξ ), (13)

then the localization results would not improve nor would they produce reliable conductivity
estimates. This was extensively demonstrated in Plis et al (2007). This approach of extracting
the conductivity together with the dipole location was also suggested in Lew et al (2007) and
Vallaghé et al (2007).

2.3. Subspace electrode selection methodology

The aim of the SES methodology is to reduce the effect of the uncertain ξ values on the inverse
solutions, i.e. bringing the recovered r∗

d (ξ̃ ) with the assumed conductivity ratio ξ̃ closer to
the actual dipole location rd,act for a patient with the actual conductivity ratio ξact and EEG
measurements vmeas. In the notations used below, ‘∗’ denotes values that are obtained through
numerical inversion, while ‘act’ is used to denote actual values.

The SES methodology is based on two major ideas: (i) redefinition of the traditional cost
function and (ii) selection of potentials in each iteration of the minimization procedure.

2.3.1. Redefinition of the traditional cost functions. In the ideal case (no noise, no electrode
mislocations, correct geometry and isotropic conductivities), we can theoretically state that
the measured potentials equal the simulated potentials for the actual conductivity ratio ξact at
the actual dipole position and orientation {rd,act, dact}:

vmeas ≡ vm(rd,act, dact, ξact) (14)

≡ L(rd,act, ξact)dact (15)

≡ L(rd,act, ξact)L(rd,act, ξact)
†vmeas, (16)

where the optimal dipole components (6) are used to obtain (16). When using however an
assumed conductivity ratio ξ̃ �= ξact, then a dipole location r∗

d �= rd,act corresponds with the
measurement vector:

vmeas 	 vm(r∗
d, d∗, ξ̃ ), (17)
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where 	 is a symbolic notation for the closest vm to vmeas, meaning that ‖vmeas −vm(r∗
d, d∗, ξ̃ )‖

is minimal for r∗
d . r∗

d is thus the dipole location obtained when solving the inverse problem;
see (5) or (9). So, when recovering a single dipole,

r∗
d = arg min

rd

‖vmeas − L(rd, ξ̃ )L(rd, ξ̃ )†vmeas‖
‖vmeas‖ (18)

may thus differ from the actual dipole location rd,act because of noise in the measurement vmeas

or due to the use of wrong ξ̃ . rd can be any dipole location in the brain.
The term on the right in (14) can be written as a first-order expansion (up to order

O(‖ξact − ξ̃‖2)):

vmeas = vm(rd,act, dact, ξ̃ ) + (ξact − ξ̃ )
∂vm(rd,act, dact, ξ )

∂ξ

∣∣∣∣
ξ=ξ̃

, (19)

where the second right-hand side term depends on the effect of the uncertainty on the forward
problem; see equation (4). If one uses a certain assumed conductivity ratio ξ̃ , then (19) would
be a sufficient forward model, but ξact is however unknown and thus the Taylor coefficient.
More concretely, if one patient’s EEG is measured and its conductivity ratio is ξact (unknown),
while the one that is used in the modeling is ξ̃ , then we use a wrong forward model vm(rd, d, ξ̃ ).
The linear model (19) is a more correct approximation of the true model where the Taylor
coefficient is estimated using the methods described here below.

The Taylor coefficient ξact − ξ̃ can be approximated by fitting the data set

y = vmeas − vm(rd, d, ξ̃ ) (20)

with

s = ∂vm(rd, d, ξ )

∂ξ

∣∣∣∣
ξ=ξ̃

, (21)

defined by

α∗ = arg min
α

‖y − αs‖. (22)

But since in the iterative minimization, rd �= rd,act, this fitting is not linear so that errors are
made with respect to the fitting (i.e. α∗ is different from the correct ξact − ξ̃ ) but when rd

approaches rd,act this Taylor coefficient is better determined.
Figures 3–6 illustrate the impact of the fitting constant on the SES cost function. We

start from ‘measured’ potentials vmeas that are generated with actual ξact and actual dipole
locations rd,act = [xd,act, yd,act, zd,act]. We look closer to the fitting (22) as a function of rd

(see dependence in vectors y and s in equations (20) and (21), respectively) for a certain fixed
assumed conductivity ratio ξ̃ .

Figure 3 depicts the percentage error of fitting constant α∗ compared to the true ξact − ξ̃ :

Efit = α∗ − (ξact − ξ̃ )

ξact − ξ̃
× 100% (23)

is depicted for varying rd − rd,act. From this figure, we can observe that the fitting constant
can significantly differ from the true ξact − ξ̃ . The root-mean-square error between the fitted
data sets y and α∗s is also rising for rd further away from rd,act; see figure 4.

It is important to determine the impact of wrongly estimated fit constants α onto the linear
model or onto the cost function

‖vmeas − (vm(rd, d, ξ̃ ) + αs)‖
‖vmeas‖ (24)
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Figure 3. Percentage error Efit (%) of fitting constant α and rd − rd,act in a two-dimensional (2D)
slice for a certain constant yd ≡ yd,act. ξact − ξ̃ is 0.0259 in this simulation study.
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Figure 4. Root mean square error between fitted data sets y and α∗s in a 2D slice for a certain
constant yd ≡ yd,act. The residual error corresponds with the α fitted from figure 3.

and compare this with the cost function with true α = ξact − ξ̃ . Figures 5 and 6, respectively,
show the cost function surface when using the wrongly fitted α coefficients and when using
the true α = ξact − ξ̃ . It is clear from these figures that even an Efit of 100%–400% yields a
cost that is high enough. So, the further away rd from rd,act, the higher the error between the
fitted α and true ξact − ξ̃ but also the higher the cost function error (even for wrongly fitted
coefficients). This is because the zeroth-order term in the linear model has a large impact
compared to the first-order term onto the cost function.

Figure 7 illustrates equation (19) with potential values for actual ξact = 0.0422 and
estimated potential values using the linear model with assumed ξ̃ = 0.025 and estimated
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Figure 5. SES-based cost function with fitted α constants (see figure 3) in a 2D slice for a certain
constant yd ≡ yd,act. The α corresponds with the one that was calculated for figure 3.
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Figure 6. SES-based cost function with true α = ξact − ξ̃ constants in a 2D slice for a certain
constant yd ≡ yd,act.

potential values using the model vm(rd,act, dact, ξ̃ ). The Taylor coefficient was determined
using the above-mentioned fitting procedure. We can observe that the estimated potentials
based on the linear model are a closer approximation of the actual potentials, compared to the
estimated potentials based on vm(rd,act, dact, ξ̃ ) versus the actual potentials.

It is also possible to write (14) as a second-order expansion

vmeas = vm(rd,act, dact, ξ̃ ) + (ξact − ξ̃ )
∂vm(rd,act, dact, ξ )

∂ξ

∣∣∣∣
ξ=ξ̃

+ (ξact − ξ̃ )2

2

∂2vm(rd,act, dact, ξ )

∂2ξ

∣∣∣∣
ξ=ξ̃

, (25)
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Figure 7. Calculated EEG potentials for ξ = 0.0422 using L(rd , ξ )d that corresponds with the
EEG potentials (actual ξ = 0.0422), estimated EEG potentials using ξ = 0.0250 and estimated
potentials using linear model (19) for assumed conductivity ratio ξ = 0.0250.

Here, α can be determined by performing the following:

α∗ = arg min
α

‖y − αs − α2h‖ (26)

with h = 1
2

∂2vm(rd,act,dact,ξ )

∂2ξ

∣∣
ξ=ξ̃

.
A different fitting procedure needs to be performed when a limited number of multiple

dipoles need to be recovered. Indeed, the cost function (12) has no longer an m-dimensional
measurement vector as input but an m × r-dimensional signal subspace matrix with r being
the number of topographies in the signal subspace. A different sensitivity than (4) needs to
be defined. We consider in the spatio-temporal case the use of the principal vector u that
is associated with the principal angle of the subspace correlation function. This principal
vector can be calculated following Golub and Loan (1996) and depends in the lth iteration of
the minimization procedure (11) of the kth dipole upon �sig and the conductivity dependent
L(rd, ξ ). Therefore, the following sensitivity to the conductivity ratio is calculated in each
iteration:

ssub = ∂u
∂ξ

∣∣∣∣
ξ̃

(27)

and can be approximated by finite differentiation. α is now approximated by fitting u with ssub.
Using the above, we are able to adapt the traditional cost functions for single-dipole

localization (7) and for multiple-dipole localization (12): Y → YSES. The following basic
operation needs to be performed in these traditional cost functions:

L(rd, ξ̃ ) → L(rd, ξ̃ ) + αT (28)

for the first-order case with the above-mentioned fitting procedures. T is similar to s

Ti j = ∂Li j

∂ξ
, i = 1, . . . , q; j = 1, . . . , 3, (29)



1974 G Crevecoeur et al

i.e. s is the derivative of the potential values to the conductivity ratio, while matrix T is the
derivative of the lead field matrix to the conductivity ratio. Cost function (7) becomes

YSES(rd, ξ ) = ‖vmeas − (L(rd, ξ ) + αT)(L(rd, ξ ) + αT)†vmeas‖
‖vmeas‖ (30)

and (12) becomes

YSES
k (rd, ξ ) = −subcorr(�⊥

Ak−1
L(rd, ξ ) + αT,�⊥

Ak−1
�sig)1. (31)

2.3.2. Selection of electrodes. During the minimization (10) or (11), iterations r(l)
d are

evaluated in the forward model and due to the uncertain conductivity values, the minimization
path is affected by the uncertainty. Therefore, we select in the lth iteration those potentials with
the lowest sensitivity to conductivity. Potentials with the highest sensitivity are eliminated in
that iteration since they carry information that is affected by the uncertain conductivity. There
are two possibilities to select the potentials: either select the potentials on the basis of a
threshold: si < ε with ε being a predefined threshold value or select each time a fixed
limited number of potentials. At each evaluation of the forward model, the following selection
operation is carried out upon the data sets:

vmeas ∈ Rm → vS
meas ∈ Rs (32)

�sig ∈ Rm×r → �S
sig ∈ Rs×r (33)

vm ∈ Rm → vS
m ∈ Rs (34)

L ∈ Rm×3 → LS ∈ Rs×3 (35)

T ∈ Rm×3 → TS ∈ Rs×3 (36)

with s < q being the number of selected electrodes out of the total of q electrodes. Since
the sensitivity is taken into account in the cost function, selection is also carried out on the
sensitivity matrices. Taking operations (32) and (28) into account, the SES cost functions
YSES(rd, ξ ) in (30) and (31) become∥∥vS

meas − (LS(rd, ξ ) + αTS)(LS(rd, ξ ) + αTS)†vS
meas

∥∥∥∥vS
meas

∥∥ (37)

and

−subcorr
(
�⊥

Ak−1
LS(rd, ξ ) + αTS,�⊥

Ak−1
�S

sig

)
1, (38)

respectively. The above can be extended to a second-order SES cost function.
Figure 8 outlines the SES methodology: in a first stage the potentials and sensitivities are

calculated. In a second stage, selection is carried out on the calculated and measured EEG
data set with the internal fitting procedure. Thirdly, using this data set, the SES cost functions
(37) and (38) are calculated leading to an update of the dipole parameters. The update can be
carried out using a given minimization procedure. Here, the Nelder–Mead simplex method is
used. The ‘subspace’ in the SES method refers to the use of a subset of electrodes that are used
in the iterative procedure: i.e. the set of measured potentials used in the iterative procedure:
vS

meas ⊆ vmeas and the set of simulated potentials vS
m ⊆ vm (or lead field operators). The used

subset of potentials or subspace can vary iteratively.
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Figure 8. Schematic overview of the iterative SES methodology.

If one used electrode selection with the traditional cost function, then the same results
would be obtained. Indeed, in the theoretical limit k → ∞, the traditional solutions given by
equation (5) (with (7))

r∗
d = arg min

rd

‖vmeas − L(rd )L(rd )†vmeas‖
‖vmeas‖ (39)

would be the same as the solutions obtained with selection (with same formulation of the cost
function)

r∗,S
d = arg min

rd

∥∥vS
meas − LS(rd )LS(rd )†vS

meas

∥∥∥∥vS
meas

∥∥ . (40)

Indeed, the potentials corresponding to the recovered r∗
d approximate best the measured

potentials vmeas, while the potentials corresponding to r∗,S
d also approximate best the subset

selected measured potentials vS
meas. vS

meas is a subset of vmeas. That was the original reason
for modifying the cost function. When using the modified cost function (30), different dipole
locations will be recovered than (39) and are closer to the actual dipole locations because the
modified forward model based on (19) is a better approximation of reality. Moreover, when
using selection with cost function (37), the recovered dipole locations will be even closer to the
actual dipole locations because the α coefficient in (37) is better determined (i.e. less affected
by the uncertain conductivity ratio) than the one in (30).

3. Results and discussion

The methodology presented in this paper is dedicated to the accurate localization of focal
epileptic zones. These neural sources can be represented by one or multiple dipoles where
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Figure 9. Dipole position error of a single dipole when using traditional method and selection
methodology (s = 20) of the first and second order. The dipole is located in the hippocampus.

the EEG inverse problem is nonlinear. The accuracy is of clinical importance since resection
of the epileptic zone follows the presurgical evaluation. The extension of the methodology
toward linear EEG inverse methodologies is not addressed in this paper.

Note that the used nonlinear dipole reconstruction methods are known to have poor
performance with respect to multiple dipoles (Pascual-Marqui 1999) and that subspace source
localization (RAP–MUSIC) methods have poor performance with respect to correlated sources
(Liu and Schimpf 2006). The SES methodology based on the nonlinear cost function (30) and
the subspace cost function (31) will have the same behavior, respectively.

3.1. Single-dipole localization

3.1.1. No noise case.. In order to investigate the influence of assuming an incorrect
conductivity, we first solve the forward problem using actual dipole specifications rd,act, dact

for a certain actual conductivity ratio ξact. Starting from these potentials vm(rd,act, dact, ξact)

(without adding noise), we solve the inverse problem using a forward model with assumed
conductivity ratio ξ̃ . We evaluate the dipole position error using the Euclidean distance between
the original dipole location rd,act and the estimated dipole location r∗

d : ‖r∗
d − rd,act‖. Since we

are using a numerical realistic head model, the lead field is not a continuous function of
ξ but needs to be calculated for different discrete conductivity ratio values. The sensitivity
s and second-order term h are approximated using finite differentiation of these lead fields
to the conductivity ratio. Lead field matrices were calculated for the following values of ξ :
0.0164 + n 0.0086 for n = 0, . . . , 8. In this way, we cover the interval 1/60 until 1/10. The
values in this interval are usually used as possible values for the conductivity ratio.

Figure 9 shows the single-dipole localization error where the actual conductivity ratio is
assumed to be around ξact = 1/20. We observe from this figure that the SES methodology
decreases the dipole position error. Indeed, when assuming a conductivity value ξ̃ = 1/60,
the error is decreased from 8 to 1.5 mm when using the first-order SES methodology. The
dipole position error is even more decreased when using the second-order SES, especially for
assumed conductivity ratios far from the actual conductivity ratio. This can be explained
by the fact that the validity region of the linear first-order model is smaller than the
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second-order model. The impact of the fitted Taylor α coefficients (that may differ from
ξact − ξ̃ ; see figure 3) onto the recovered solutions can be observed in figure 9 since there is
still a dipole position error.

In a next stage, we investigated the global efficiency of the methodology. We placed in
each voxel of the gray matter a certain dipole and calculated its corresponding EEG potential
for ξact = 1/20. The inverse problem was then solved using an assumed conductivity ratio
of ξ̃ = 1/40. The dipole position errors in the axial plane are shown in figures 10(a)–(c) for
dipoles oriented in the x, y and z directions, respectively. In these figures, the x (y)-axis is
the horizontal (vertical) axis ((x, y)-plane defines the transverse plane of the geometry, (y, z)
defines the coronal plane and (x, z) defines the sagittal plane).

We observe an overall decrease in dipole position error where errors of up to 1 cm are
decreased to less than 4 mm. Figures 11(a)–(c) illustrate the corresponding dipole orientation
errors. The angle between the vector components of the original dipole dact and estimated
dipole orientation d∗ is calculated using the cosine rule

∠(d∗, dact) = arccos

(
d∗dact

‖d∗‖ ‖dact‖
)

. (41)

3.1.2. Noise case. Contrary to the previous simulation study, we added noise n to the
previously calculated potentials: vm(rd,act, dact, ξact) + n. The noise is white Gaussian with a
certain standard deviation σn. The noise level in the data set is determined by σn

vm,RMS
with vm,RMS

being the root-mean-square value of the no noise simulated potentials vm(rd,act, dact, ξact). In
order to determine in an average way the influence of noise at a certain noise level, the inverse
problem is solved 50 times with random noise added to the potentials.

Figure 12 shows the average dipole position error for various noise levels when using the
traditional methodology and when using the SES methodology with fitting procedure based
on s and y, as mentioned in section 2.3.1. It is clear that the advantage of SES is counteracted
by the noise. The reason for the bad noise robustness of this procedure is because the residual
of the fitting becomes very high when noise is available in the measurements, i.e. the cost
function is no longer correct. For very high noise levels, the SES methodology is even worse
than the traditional methodology. Therefore, we used instead the fitting procedure based on
the principal vector of the subspace correlation function:

subcorr(L(rd, ξ ), vmeas)1. (42)

A more accurate fit was achieved since the principal vector is much less affected by the noise
than the absolute values of the calculated potentials. Indeed, figure 13 shows the average dipole
position error when using the traditional cost function and when using the SES methodology
with fitting of data sets u and ssub.

The reason why the methodology is failing for higher noise levels (figure 12) when using
the nonlinear cost function (30) is twofold. Information about the dipole positions and strength
that hold important information can be eliminated in the selection procedure. But this is not the
only reason since the subspace-based SES cost function is robust to noise as can be observed
in figure 13 when reconstructing the same dipole as in figure 12. The second reason is that
the fitting procedure based on y and s sets (for cost function (30)) is not so robust to noise as
when the fitting is performed on sets u and ssub (for cost function (31)). This is illustrated by
figure 14 where the Efit is shown in the case of noise with noise level 0.2.

We can observe that the SES of second order has little advantage compared to the SES
of first order when noise is included in the measurements. This result shows that it is possible
to use the SES methodology in the realistic noise case, provided that a correct internal fitting
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(a) Dipole position errors (mm) of dipoles oriented in the x-direction when using
traditional method (left) and when using Subspace Electrode Selection (right).
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(b) Dipole position errors (mm) of dipoles oriented in the y-direction when using
traditional method (left) and when using Subspace Electrode Selection (right).
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(c) Dipole position errors (mm) of dipoles oriented in the z-direction when using
traditional method (left) and when using Subspace Electrode Selection (right).

Figure 10. Dipole position errors for (a) x-directed dipoles, (b) y-directed dipoles and (c) z-directed
dipoles.
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(a) Dipole orientation errors of dipoles oriented in the x-direction when using
traditional method (left) and when using Subspace Electrode Selection (right).
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(b) Dipole orientation errors of dipoles oriented in the y-direction when using
traditional method (left) and when using Subspace Electrode Selection (right).
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(c) Dipole orientation errors of dipoles oriented in the z-direction when using
traditional method (left) and when using Subspace Electrode Selection (right).

Figure 11. Dipole orientation errors for (a) x-directed dipoles, (b) y-directed dipoles and (c)
z-directed dipoles.
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Figure 12. Dipole position error using the traditional methodology and SES methodology to the
first and second order with incorporation of noise in simulation study. The fitting procedure in SES
consists in fitting the data sets y to s. The used data sets were generated for actual conductivity
ratio ξact = 1/20 and the inverse problem is solved for each data point 50 times using a forward
model with assumed conductivity ratio ξ̃ = 1/60.
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Figure 13. Dipole position error using the traditional methodology and SES methodology to the
first and second order with incorporation of noise in simulation study. The fitting procedure in
SES uses data sets ssub and u. The used data sets were generated for actual conductivity ratio
ξact = 1/20 and the inverse problem is solved for each data point 50 times using a forward model
with assumed conductivity ratio ξ̃ = 1/60.

procedure is used that is based on the principal vectors of the lead field and measured EEG
potentials.

3.2. Multiple-dipole localization

We also investigated the errors made by a limited number of multiple dipoles. For given p test
dipoles, which are simultaneously active, with certain positions rd,act,k and time-varying dipole
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Figure 14. Efit of α as a function of rd − rd,act along the x-axis for yd ≡ yd,act and zd ≡ zd,act.
ξact − ξ̃ is 0.0259 in this simulation study and the constants were fitted for 50 different data samples.
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Figure 15. Dipole position errors for two dipoles using the traditional RAP–MUSIC algorithm and
the first-order SES methodology.

orientations Dact,k (k = 1, . . . , p), the forward problem was solved for the actual conductivity
ratio in the realistic head model, yielding a spatio-temporal EEG potential set. We assumed
the time courses of the multiple dipoles as epileptic spikes or as sinusoidal time courses (with
frequency 10, 12 or 15 Hz). n = 200 time steps were considered, which corresponds with 1 s
of EEG data. The inverse problem is then solved using a certain assumed conductivity ratio
value. In this simulation study, inverse problems were solved for two dipoles (one spike and
one sinusoidal varying dipole of frequency 10 Hz), three dipoles (one spike and two sinusoidal
with frequencies 10 and 12 Hz), four dipoles (two spikes and two sinusoidal with frequencies
10 and 15 Hz) and five dipoles (two spikes and three sinusoidal with frequencies 10, 12 and
15 Hz) each time equally distributed in the head.

Figures 15 and 16 show the errors made when recovering two dipoles using the traditional,
SES of first and second orders. We observe again a decrease in dipole position error and the
advantage of using the second order versus the first order is relatively negligible. The results for
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Figure 16. Dipole position errors for two dipoles using the traditional RAP–MUSIC algorithm and
the second-order SES methodology.

Table 1. Dipole position error with the number of dipoles p varying from 2 to 5. The percentage
decrease in dipole position error of the used first-order SES compared to the traditional methodology
is depicted in the case of no noise and noise of level 0.2 in the data set.

p % decrease (no noise) % decrease (0.2 noise level)

2 68.49 63.32
3 64.28 59.63
4 61.30 57.10
5 62.51 55.98

resolving more than two dipoles are shown in table 1 for clarity. We depict here the percentage
decrease in the dipole position error, which is calculated as 100 ETrad−ESES

ETrad
with ETrad being the

average dipole position errors of the p used dipoles. ESES is calculated in the same way. The
added noise set is again white Gaussian noise.

From this table we can observe that the decrease in error is smaller for a larger number
of dipoles but remains stable. The reason for this stability is because the RAP–MUSIC-based
SES methodology uses in each maximization of the RAP–MUSIC cost function the whole set
of electrodes where selection is then carried upon. The noise robustness of the methodology
is shown in the third column where the percentage decrease stays stable. The inverse problem
was solved starting from 20 noisy data sets with same noise level of 0.2.

This paper validates the methodology using a simulation study on a patient-specific head
model. An experimental validation could be performed in the following way: application of
the presented methodology onto measured EEG potentials in patients that were suffering from
focal refractory epilepsy where the epileptic zone was surgically resected and the patient
rendered seizure free. Comparison of the SES-based recovered zone with the resected zone
can give an experimental validation of the methodology.

3.3. Cost function surface and minimization path

Due to the use of the SES cost functions (37), (38), the landscape is different than the
traditional cost functions. Figures 17 and 18 show the cost function surface of the traditional
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Figure 17. Traditional RRE lognormal cost function surface near actual dipole rd,act =
[68, 118, 130] (arrow) with the EEG sample generated by actual ξact = 1/20 and solved using
assumed ξ̃ = 1/40. This 2D slice is calculated at z = 130.
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Figure 18. SES lognormal cost function surface near actual dipole rd,act = [68, 118, 130] (arrow)
with the EEG sample generated by actual ξact = 1/20 and solved using assumed ξ̃ = 1/40. This
2D slice is calculated at z = 130.

least-squares cost function and of the SES cost function surface, respectively. These measured
EEG potentials vm(rd,act, dact, ξact) were generated for dipole location rd,act = [68, 118, 130],
dipole orientation dact = [0.5, 0.4, 0.7] with actual conductivity ratio ξact = 1/20. The
traditional cost function Y(rd, ξ̃ ) and the first-order SES cost function YSES(rd, ξ̃ ) were
calculated for every voxel in the neighborhood of rd,act with assumed ξ̃ = 1/40. When
comparing these figures, we can observe that the landscape of the cost function is altered.
Moreover, the minimum of the cost function is located in the SES case closer to the actual
dipole location.

Moreover, figure 19 shows the path of the iterations r(l)
d during the minimization of the

traditional and SES cost functions. SES follows a certain minimum path of uncertainty, i.e.
the iterations are least affected by the uncertainty.
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Figure 19. Path followed by the minimization procedure when minimizing the traditional and SES
cost function.

3.4. Drawbacks of SES

The major drawback of the proposed methodology is that the minimization is highly sensitive
upon the start value of the dipole. This is also the case when using the traditional minimization
method since the traditional cost function is non-convex and may contain many local minima
(Crevecoeur et al 2008). In the SES cost function this is also the case where additionally
due to the internal fitting procedure, the cost function is significantly altered. Indeed, if the
α parameter is changed to a large extent from one iteration to another, the changed SES cost
function has difficulty to reach the global minimum. Further theoretical work is needed for
stabilizing the minimization. A possible means is the use of trust region methodologies. A
second drawback of the SES methodology is that it is much more time demanding compared
to the traditional approach. The needed computational time for the minimization procedure
is on average 28 s on a 2.4 GHz PC, approximately 44% larger than the traditional method
due to the internal fitting procedure and the calculation of the sensitivities in each iteration.
For the second-order SES, the time is even more time demanding. Thirdly, the SES procedure
needs more memory because the sensitivity calculations are based on the finite differentiation
of lead fields that are calculated for different conductivity ratios in the neighborhood of the
assumed conductivity ratio.

4. Conclusion

When solving the EEG inverse problem, a cost function needs to be minimized. For EEG
dipole source reconstruction this is the widely used traditional least-squares cost function of
the measured EEG potentials versus the calculated EEG potentials. Because the calculated
EEG potentials are sensitive to the conductivity values, the uncertain conductivity values
influence the recovered source estimates. In this paper, we introduced the subspace electrode
selection (SES) methodology for the reduction of the effect of the uncertain conductivity values
on the inverse solutions. SES uses the following basic operations: (a) redefinition of the cost
function with inclusion of the sensitivity of the forward model to the uncertain conductivity
ratio and (b) the selection of electrodes that are least affected by the conductivity ratio. The
results show that the method enhances the source localization depending on the position of
the dipoles, noise in measurements and the deviation of the assumed conductivity ratio value to
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the actual conductivity ratio. Special care is needed with respect to the internal fitting procedure
within the redefined cost function, but fitting the principal vector to their sensitivities of the
subspace correlation function of the measured EEG potentials and the lead field matrix.

Further research can be concentrated on decreasing the influence of multiple uncertainties
on EEG dipole analysis and on incorporating other uncertainties such as electrode
misplacements, and geometrical and source modeling errors. However, the uncertainty of
the conductivity has the largest impact onto EEG source analysis. More research can be
done when incorporating anisotropic conductivities in the head model with uncertain absolute
conductivity values. The methodology has the potential to be applied onto other imaging
modalities where the measurements need to be interpreted with a numerical model where
uncertainties are included. The presented method can be valuable for brain research where as
accurate as possible neural source specifications need to be recovered starting from EEG.
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