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Abstract. A class of semiparametric regression models, called probabilistic index models,

has been recently proposed. Because these models are semiparametric, inference is only valid

when the proposed model is consistent with the underlying data-generating model. However,

no formal goodness-of-fit methods for these probabilistic index models exist yet. We propose a

test and a graphical tool for assessing the model adequacy. Simulation results indicate that both

methods succeed in detecting lack-of-fit. The methods are also illustrated on a case study.

1 Introduction

Recently, Thas et al. (2012) proposed a class of semiparametric regression models, called proba-

bilistic index models (PIM). These models focus on the probabilistic index, which is defined as the

probability P (Y 4 Y ′) ≡ P (Y < Y ′) + 0.5P (Y = Y ′), with Y and Y ′ two independent random
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variables whose distribution may depend on a (fixed or random) covariate vector, say X and X ′

respectively. In particular, let (Y,X) and (Y ′,X ′) be independent and identically distributed

random variables with density fYX . Then a PIM is defined as

P
(
Y 4 Y ′ |X,X ′

)
= m(X,X ′;β) = g−1(ZTβ), (X,X ′) ∈ X . (1)

Here X denotes the set of all possible pairs (X,X ′) for which the model is defined, g is a link

function, and Z is a p-vector depending on (X,X ′); for continuous predictors, often Z = X ′−X.

Because PIMs are semiparametric, inference is only valid when model (1) is consistent with the

data-generating model. In this paper we propose a goodness-of-fit (GOF) test, and a graphical

diagnostic tool which compares the model predictions with a nonparametric estimator of the

probabilistic index.

To illustrate our setting we consider the Childhood Respiratory Disease Study (CRDS), which

is also analysed in Thas et al. (2012, Section 6.1). The response variable is the forced expiratory

volume (FEV in litres). The age (AGE in years) and smoking indicator (SMOKE = 1 if the

child smokes, SMOKE = 0 if the child does not smoke) are recorded for 654 children of ages 3–19

years. When analysing the effect of smoking on the lung capacity, age may be a confounder, and

therefore should be taken into account. A part of the data are illustrated in Figure 1, which shows

nonparametric density estimates of the FEV distributions for several combinations of smoking

status and age. We fit a linear PIM with logit link, i.e.

logit
[
P
{

FEV 4 FEV′ | (SMOKE,AGE), (SMOKE′,AGE′)
}]

= β1(SMOKE′ − SMOKE) + β2(AGE′ −AGE). (2)

It holds that β̂1 = −0.46 (standard error: 0.25 and p = 0.064) and β̂2 = 0.56 (standard error:

0.028 and p < 0.0001); we refer to Appendix A for a summary of the estimation theory. The

estimated probability that FEV is larger for a smoking child as compared to a non-smoker of

the same age is P̂{FEV 4 FEV′ | (0,AGE), (1,AGE)} = expit(−0.46) = 39%. It is unlikely

that a smoker has a better pulmonary function than a non-smoker of the same age. The effect is

not significant at the 5% level of significance, which is surprising, as it is expected that smoking

affects a child’s lungs. So perhaps the data contain no evidence for this hypothesis or the study

is underpowered. However, the lack of significance may also arise when the model does not fit
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the data properly. Before drawing conclusions about the effect of smoking on the lung function,

it is therefore important to first assess the GOF of model (2).

In Section 2 the GOF methods are developed. Section 3 assesses the performance of the GOF

test in a simulation study. In Section 4 the CRDS example is revisited while Section 5 contains

the discussion.

0 2 4 6 8

0
.0

0
.2

0
.4

AGE = 12

FEV

D
en
si
ty

0 2 4 6 8

0
.0

0
.2

0
.4

AGE = 13

FEV

D
en
si
ty

0 2 4 6 8

0
.0

0
.2

0
.4

AGE = 14

FEV

D
en
si
ty

Figure 1: Kernel density estimates of the FEV distributions and individual sample obser-

vations for smokers (O - - -) and non-smokers (◦ —).

2 Goodness-of-fit methods

2.1 Rationale

We start by considering a single continuous predictor; the extension to multiple predictors is

addressed at the end of the section. Let m0(X,X
′) be the PIM which is consistent with the

data-generating model, to be denoted as the true model, and let m(X,X ′;β) be the PIM that

will be fitted to the data, referred to as the working model. The GOF null hypothesis is

H0 : m0(X,X
′) = m(X,X ′;β), (X,X ′) ∈ X , (3)

for some β ∈ Rp. We consider a specific setting where the quadratic probit PIM is the true model

and the linear probit PIM is the working model

m0(X,X
′) = Φ

{
β1(X

′ −X) + β2
(
X ′2 −X2

)}
, m(X,X ′;β) = Φ

{
β(X ′ −X)

}
,
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with Φ the standard normal distribution function. Consider the following settings: β1 = 0.3, β2

takes the values 0, −0.05 and −0.20 and the predictor X takes n equidistant values in [−5, 5].

When β2 = 0 there is no quadratic effect and the null hypothesis (3) holds, while when β2 = −0.05

(β2 = −0.20) there is a weak (strong) quadratic effect and the null hypothesis does not hold.
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Figure 2: Quadratic probit PIM P (Y 4 Y ′ | X,X ′) = Φ{β1 (X ′ −X) + β2 (X ′2 −X2)},

with β1 = 0.3 as a function of X. A grey coding is used to indicate the value of

P (Y 4 Y ′ | X,X ′).

Since a PIM depends on (X,X ′), a 3-dimensional plot is needed for visualization; see Figure 2.

Although this plot provides all information, it is difficult to interpret, so that we restrict (X,X ′)

to a number of values which are relevant for the interpretation. Let ∆ be a fixed value, then we

restrict the plot to P (Y 4 Y ′ | X,X ′ = X + ∆), i.e. the probability that the response increases

when the predictor is increased by ∆ units. For the example setting, we can write

P
(
Y 4 Y ′ | X,X ′ = X + ∆

)
= Φ(β̃1 + β̃2X), β̃1 = β1∆ + β2∆

2, β̃2 = 2β2∆. (4)

Equation (4) indicates that the choice of ∆ is important. As ∆ increases, the difference

between m0(X,X
′ = X + ∆) and m(X,X ′ = X + ∆;β) becomes more pronounced; see Fig-

ure 3. Consider the left panel where ∆ = 1. When the linear PIM holds, i.e. β2 = 0,

P (Y 4 Y ′ | X,X ′ = X + 1) is fixed at Φ(β̃1) = Φ(0.3) ≈ 62% and independent of X. How-

ever, with increasing magnitude of β2, this probability depends more strongly on the predictor

X. When β2 = −0.20, for example, it holds that P (Y 4 Y ′ | X,X ′ = X + 1) > 95% for X < −4,

while for X > 4 this becomes P (Y 4 Y ′ | X,X ′ = X + 1) < 7%. The restricted probability pro-
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vides information on the difference between a quadratic and linear PIM, while retaining a simple

interpretation.

If m0 and β are known the plot suggests that comparing m0(X,X
′ = X+∆) with m(X,X ′ =

X + ∆;β) captures information on the adequacy of the model fit. For a point x, consider the

difference R = m0(x, x
′ = x + ∆) −m(x, x′ = x + ∆;β). If the working model provides a good

approximationR will be close to zero; if the models differ substantially, R provides information on

how to improve the working model. For practical use m0 can be replaced with a non-parametric

kernel estimator, say m̂0, and β by a consistent estimator β̂, but a drawback of this approach is

that m̂0 may be biased. We consider a kernel estimator of the residuals

R(X,X ′) = I
(
Y 4 Y ′

)
−m(X,X ′; β̂),

with I (Y 4 Y ′) denoting the pseudo-observations, defined as I (Y 4 Y ′) = 1 if Y < Y ′, I (Y 4 Y ′) =

0.5 if Y = Y ′ and I (Y 4 Y ′) = 0 otherwise. Since the conditional expectation under H0 is zero,

there is no bias (le Cessie and van Houwelingen, 1991; Hardle and Mammen, 1993). We obtain a

graphical tool by plotting the smoothed residuals as a function of the predictor and we construct

a statistical test by considering a quadratic form of these residuals.
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Figure 3: Quadratic probit PIM P (Y 4 Y ′ | X,X ′) = Φ{β1(X ′−X)+β2 (X ′2 −X2)} with

predictors restricted to X ′ = X + ∆ and β1 = 0.3.
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2.2 The goodness-of-fit test

Since a PIM depends on (X,X ′), we need to define appropriate kernels for our setting. Consider

the multiplicative kernel

Kh1,h2(x, x′;X,X ′) = D

(
x−X
h1(x)

)
D

(
x′ −X ′

h2(x′)

)
, (5)

where h1 and h2 are bandwidths and D is a kernel function such as a Gaussian, uniform, or

triangular function. Our kernel provides double smoothing, i.e. for each (X,X ′), we consider

the distance between X and x, and between X ′ and x′. More weight is given to couples for

which X is close to x and X ′ to x′. If no smoothing is desired, which, for example, may happen

when a categorical predictor has sufficient replicates, we write h1 = h2 = 0 and denote by D the

Dirac-delta function. For notional convenience we drop the dependence on h1 and h2 and write

K(x, x′;X,X ′) instead of Kh1,h2(x, x′;X,X ′).

A Nadaraya–Watson kernel estimator (Nadaraya, 1964; Watson, 1964) of the residuals is defined

by

R̂(x, x′) =

∑
(k,l)∈In R(Xk, Xl)K(x, x′;Xk, Xl)∑

(k,l)∈In K(x, x′;Xk, Xl)
, (6)

where In = {(k, l) ∈ N2 | (Xk, Xl) ∈ X}. The asymptotic null distribution is obtained by a

first order Taylor expansion; we refer to Appendix B for details. It holds that, under regularity

conditions and H0, as n→∞,

R̂(x, x′)√
Var{R̂(x, x′)}

d−→ N(0, 1),

where
d−→ is used to denote convergence in distribution. These results hold for linear smoothers

(i.e. linear transformations of the residuals) in general. Therefore, instead of a local constant

smoother (6), which suffers from design and boundary bias, local linear regression may be pre-

ferred (Fan and Gijbels, 1996; Wasserman, 2007). As mentioned in Section 2.1, we focus on the

probability P (Y 4 Y ′ | X,X ′ = X + ∆) for assessing model adequacy, and plot the smoothed

residuals R̂(x, x′ = x+ ∆) as a function of x. These residuals provide information on the bias of

the working model and are bounded in [−1, 1]. Figure 4 shows such a plot, based on random sam-

ples of size n = 150 for the 3 settings described in the left panel of Figure 3 with ∆ = 1. The left

panel of Figure 4 corresponds to the setting under H0 and the residuals are close to 0. For a weak
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quadratic effect, the middle panel indicates that the fitted model gives biased probabilistic index

estimators. For X < −1 the probability is underestimated, while for X > 1 it is overestimated.

The right panel shows a strong quadratic effect for which similar conclusions hold. There is a

multiplicity problem, as n confidence intervals are calculated simultaneously. Therefore, these

intervals are only indicative, but they may be helpful in interpreting the graphical GOF tool.

For formal hypothesis testing we construct a single quadratic form of the smoothed residuals.

Consider a fixed finite number of points, say x1, . . . , xm, within the range of X, with m ≤ n. Let

I denote the |In|-vector of pseudo-observations I (Yi 4 Yj); further let m(X,X ′;β) denote the

|In|-vector with elements m(Xi, Xj ;β) and

V = diag
(
m(Xi, Xj ;β)−m(Xi, Xj ;β)2

)
, H = −∂m(X,X ′;β)

∂βT

(
∂U(β)

∂βT

)−1 ∂m(X,X ′;β)T

∂β
V −1,

with U as defined in (21) and R̂ the m-vector of residuals R̂(xi, xi + ∆). We define the quadratic

form

S = R̂
T

Var(R̂)−1R̂, (7)

with Var(R̂) = K(diag(1)−H)ΣI(diag(1)−H)TKT , where K denotes the (m× |In|)-matrix

of weights K(xi, xi + ∆;Xk, Xl)/
∑

(k,l)∈In K(xi, xi + ∆;Xk, Xl). If n→∞ and m remains fixed

and bounded, under H0

S
d−→ χ2

m, (8)

and a consistent estimator of Var(R̂) can be obtained by replacing ΣI with Σ̂I ; see Appendix

B. The quadratic form S takes the estimated correlations between the residuals R̂(xi, xi + ∆)

and R̂(xj , xj + ∆) into account. In total m(m− 1)/2 correlations need to be estimated. When m

is large relative to the sample size n, the estimated covariance matrix Var(R̂) is not guaranteed

to be positive definite. Therefore m should be chosen small relatively to the sample size n and

the design points x1, . . . , xm should cover the whole range of X so as to increase the likelihood

of detecting departures from the underlying model.

Our methods can be extended to multiple predictors, say XT = (X1, . . . , Xd), by considering

multiplicative kernels

Kh1,h2(x,x′,X,X ′) =

d∏
i=1

Kh1i,h2i
(xi, x

′
i, Xi, X

′
i), (9)
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Figure 4: Smoothed residuals R̂(x, x + ∆) as a function of x according to the different

settings of the left panel of Figure 3 with ∆ = 1, for a random sample of size n = 150, and

Gaussian kernel with h1 = h2 = 1.5. The black dots are the smoothed residuals, and the

grey bars indicate pointwise 95% confidence intervals.

where hT
i = (hi1, . . . , hid). The extension for two predictors is illustrated in Section 3. For

high-dimensional data, however, smoothers based on a multiplicative kernel are not always use-

ful in practice due to the curse of dimensionality and the computational burden. Therefore,

nonparametric smoothers can be restricted to, for example, additive models.

2.3 Automatic bandwidth selection

It is known that the choice of bandwidth is often more important than the choice of kernel.

Bandwidths may be selected in a data-driven fashion by using, for example, cross-validation

(CV). The properties of the leave-one-out CV for independent responses has been examined by

many authors; see for example Wong (1983). This CV can result in poor bandwidths if responses

are dependent and several modifications have been proposed; see for example Chu and Marron

(1991). We propose a modification of the leave-one-out CV score, accounting for the sparse

correlation of the pseudo-observations. The bandwidth is chosen as the minimizer of

CV(h1, h2) = |In|−1
∑

(i,j)∈In

{
R(Xi, Xj)− R̂−(i,j)(Xi, Xj)

}2
, (10)

with R̂−(i,j)(Xi, Xj) the smoothed residual obtained by omitting all residuals containing (Yi, Xi)

or (Yj , Xj).
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3 Simulation study

Theoretical properties of S are empirically evaluated by means of simulations. The effect of

the choice of bandwidth and ∆ on the size and power of the test is examined for single and

multiple predictors. The properties of the test with automatic bandwidth selection are also

briefly examined.

3.1 A single predictor

3.1.1 Empirical sizes

To examine the null distribution of S more closely we generate data with the simple linear model

Y = αX + ε, ε ∼ N(0, σ2), (11)

which embeds the PIM

P
(
Y 4 Y ′ | X,X ′

)
= Φ

{
β(X ′ −X)

}
, β = α/

√
2σ2, (12)

see Thas et al. (2012, Section 4.1). The following parameters are fixed: α = 0.9
√

2 and σ2 = 9.

The null distribution is examined for different values of the bandwidth h1 and h2, where we

restrict to h1 = h2 and denote this by h, different values of ∆, and different sample sizes n. The

statistic is based on three design points: X = −3, X = 0, and X = 3 with Gaussian kernel.

Based on 1000 Monte Carlo simulation runs, the empirical rejection rates are compared to the

nominal significance levels of 1%, 5%, and 10%. The asymptotic chi-squared distribution is used

for p-value calculation. Table 1 shows all results.

For a sample size n = 100 and a small bandwidth h = 0.5 the test is highly conservative,

while for a large bandwidth h = 2.5 the test is highly liberal. Best results are obtained for an

intermediate bandwidth h = 1.5. For n = 250 and h = 0.5 the test is too conservative for ∆ = 1

and slightly less conservative for ∆ = 2. With h = 1.5 the test has approximately a correct size

for all ∆, while for h = 2.5 the test remains too liberal. For a sample size n = 500 and h = 0.5

the test is conservative for ∆ = 1 and has approximately a correct size for ∆ = 2. For h = 1.5

the test has approximately a correct size, while for h = 2.5 the test remains liberal.

In conclusion, best results are obtained for an intermediate bandwidth of h = 1.5, while the choice

of ∆ is less important.
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h ∆ n = 100 n = 250 n = 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

0.5 1 0.0 0.7 3.8 0.2 3.1 7.3 0.3 3.5 7.7

0.5 2 0.0 1.7 5.1 0.3 3.2 9.0 0.5 4.9 9.9

1.5 1 0.5 4.4 8.8 0.4 5.1 9.5 1.2 4.4 11.1

1.5 2 0.3 3.6 9.3 0.6 4.7 11.2 1.2 5.8 11.7

2.5 1 3.4 9.6 15.4 2.6 8.0 14.1 2.3 7.7 13.4

2.5 2 2.3 7.4 14.4 1.9 7.8 13.8 1.8 7.5 13.0

Table 1: Empirical rejection rates (%) at the 1%, 5%, and 10% level of significance and

based on 1000 Monte-Carlo simulations for model (12).

3.1.2 Empirical powers

The results of Section 3.1.1 suggest that good results were obtained for a medium bandwidth.

Therefore we restrict the power study to h1 = h2 = 1.5 in a Gaussian kernel with design points

X = −3, X = 0 and X = 3. We generate data according to the model

Y = α1X + α2f(X) + ε, ε ∼ N(0, σ2). (13)

We fix α1 = 0.9
√

2 and σ2 = 9 and consider three cases: a quadratic model with f(X) = X2

and α2 = −0.05
√

2 or α2 = −0.125
√

2; a sine model with f(X) = sin(X) and α2 = −0.6
√

2 or

α2 = −1.2
√

2; an exponential model with f(X) = exp(X) and α2 = 0.02
√

2 or α2 = 0.04
√

2. The

parameter values are chosen so that most empirical powers are bounded away from the trivial

powers of 5% and 100%. The PIM corresponding to model (13) is given by

P
(
Y 4 Y ′ | X,X ′

)
= Φ

[
β1(X

′ −X) + β2{f(X ′)− f(X)}
]
, βi = αi/

√
2σ2, i = 1, 2. (14)

We analyse the data with the incorrect working model P (Y 4 Y ′ | X,X ′) = Φ{β(X ′ −X)}.

The three panels starting from the left of Figure 5 show the probability P (Y 4 Y ′ | X,X ′ = X + 1)

as a function of X for the three different models and for different β2 values.

Table 2 gives the empirical rejection rates based on 1000 Monte Carlo simulations for the

different data-generating models at the 5% level of significance. The test succeeds in detecting
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Figure 5: Conditional PIM for X ′ = X + 1 over different values of β2

for the quadratic, sine, and exponential versions of model (14), and probability

P (Y 4 Y ′ | X ′1 = X1 + ∆1, X
′
2 = X2 + ∆2) as a function of X1 + X2 for different values

of β3.

lack-of-fit. Under the conditions of the simulation study, for the quadratic and sine model highest

powers are obtained with ∆ = 1 while for the exponential model this is ∆ = 2.

β2 n = 100 n = 250 n = 500

∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2 ∆ = 1 ∆ = 2

quadratic model

−0.017 12.0 11.0 42.1 40.7 78.2 75.5

−0.042 73.2 68.9 99.8 99.5 100.0 100.0

sine model

−0.2 14.6 8.7 53.6 36.3 89.2 70.5

−0.4 64.9 39.6 99.7 94.9 100.0 100.0

exponential model

0.007 14.0 14.2 49.6 57.2 82.4 89.7

0.013 38.1 42.1 96.9 98.6 100.0 100.0

Table 2: Empirical rejection rates (%) at the 5% level of significance and based on 1000

Monte-Carlo simulations for model (14).

We examined the power of detecting a misspecified link function by simulating data with
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model (11) and analysing this data with P (Y 4 Y ′ | X,X ′) = expit{γ(X ′−X)}. The simulation

results indicated low to moderate powers (results not shown).

3.2 Multiple predictors

3.2.1 Empirical sizes

Consider the data-generating model

Y = α1X1 + α2X2 + ε, ε ∼ N(0, σ2),

with embedded PIM

P
(
Y 4 Y ′ | X1, X2, X

′
1, X

′
2

)
= Φ

{
β1(X

′
1 −X1) + β2(X

′
2 −X2)

}
, βi = αi/

√
2σ2, i = 1, 2.

(15)

The following parameters are fixed: α1 = α2 = 1 and σ2 = 9, corresponding to β1 = β2 =

0.24. The predictor X1 takes n equidistant values in the interval [−5, 5], while X2 ∼ N(0, 4).

The statistic is based on three design points: (X1, X2) = (−3,−2.5), (X1, X2) = (0, 0), and

(X1, X2) = (3, 2.5), with Gaussian kernel and with bandwidths h1 = h2 = (1.5, 1.5). Different

values for ∆ and n are considered. Based on 1000 Monte Carlo simulation runs, the empirical

rejection rates are compared to the nominal rejection rates for significance levels of 1%, 5%,

and 10%. The results are presented in Table 3. For a sample size n = 100 our test is highly

conservative, while it becomes less conservative when the sample size increases. For n = 500 our

test has approximately a correct size for all choices of ∆.

3.2.2 Empirical powers

Consider the data-generating model with interaction

Y = α1X1 + α2X2 + α3X1X2 + ε, ε ∼ N(0, σ2). (16)

We fix α1 = α2 = 1 and σ2 = 9 and consider different values of α3. The corresponding PIM is

P
(
Y 4 Y ′ | X1, X2, X

′
1, X

′
2

)
= Φ

{
β1(X

′
1 −X1) + β2(X

′
2 −X2) + β3(X

′
1X
′
2 −X1X2)

}
. (17)

The data are analyzed with the incorrect working model

P
(
Y 4 Y ′ | X1, X2, X

′
1, X

′
2

)
= Φ

{
γ1(X

′
1 −X1) + γ2(X

′
2 −X2)

}
. (18)
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∆ n = 100 n = 250 n = 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

(1, 1) 0.0 0.9 3.4 0.3 2.4 6.1 0.9 4.7 9.0

(1, 2) 0.0 1.1 4.5 0.2 2.3 6.9 1.1 4.3 10.2

(2, 1) 0.0 1.1 4.3 0.3 3.1 6.6 0.8 3.9 9.3

(2, 2) 0.0 0.7 5.3 0.3 3.6 6.8 0.9 3.4 10.8

Table 3: Empirical rejection rates (%) at the 1%, 5%, and 10% level of significance and

based on 1000 Monte-Carlo simulations for the model (15).

The right panel of Figure 5 plots P (Y 4 Y ′ | X ′1 = X1 + ∆1, X
′
2 = X2 + ∆2) as a function of the

sum ∆2X1 + ∆1X2 when ∆ = (1, 1) and for different values of β3. Table 4 gives the empirical

rejection rates at the 5% significance level, based on 1000 Monte Carlo simulation runs. The

statistic is based on three design points: (X1, X2) = (−3,−2.5), (X1, X2) = (0, 0), and (X1, X2) =

(3, 2.5), with Gaussian kernel and bandwidth h1 = h2 = (1.5, 1.5).

The test succeeds in detecting an omitted interaction and under the conditions of the simu-

lation study highest powers are obtained for ∆ = (1, 2) or ∆ = (2, 2).

∆ (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

β3 n = 100 n = 250 n = 500

0.05 1.7 2.8 1.6 2.9 28.4 52.4 21.7 44.8 58.3 83.2 54.4 82.6

0.15 42.9 71.6 40.1 75.8 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0

Table 4: Empirical rejection rates (%) at the 5% level of significance and based on 1000

Monte-Carlo simulations for model (17).

3.3 Automatic bandwidth selection

To examine the null distribution of S when the bandwidth is selected based on the modified

cross-validation score (10), we reconsider the simulation step-up from Section 3.1.1 with ∆ = 1.

13



Because |In| = O(n2), which is computationally very demanding for large samples, we restrict

the sum in (10) to the subset Isub = {(i, j) | ∆ − 0.05 < Xj − Xi < ∆ + 0.05}. For n = 250

and n = 500 the sum is even restricted to a random sample of size 100 from Isub. The candidate

set of bandwidths is restricted to {0.5, 1.5, 2.5} with h1 = h2. To examine the empirical powers,

we reconsider the quadratic model from Section 3.1.2 with ∆ = 1. Table 5 gives the empirical

rejection rates. For all sample sizes the test is liberal. As compared to Table 1 the results are

slightly better with h1 = h2 = 1.5 and worse with h1 = h2 = 0.5 or 2.5. For n = 500 the empirical

rejections rates are close to their nominals for 1% and 5% but too liberal for 10%. The automatic

cross-validation results in some power loss as compared to Table 2.

n = 100 n = 250 n = 500 β2 n = 100 n = 250 n = 500

Empirical type I error Empirical power quadratic model

1% 5% 10% 1% 5% 10% 1% 5% 10% −0.017 14.5 37.5 67.9

2.9 7.4 14.1 2.1 5.5 12.0 0.9 5.8 12.6 −0.042 68.4 87.6 96.1

Table 5: Empirical type I error (%) at the 1%, 5%, and 10% level of significance and

empirical powers (%) at the 5% level of significance when the bandwidth is automatically

selected with the modified cross-validation score. All results are based on 1000 Monte-Carlo

simulations.

3.4 Assessing goodness-of-fit with the graphical tool

In Figure 6 we show the GOF plots for 4 simulated dataset with sample size n = 150 for the

quadratic, sine, exponential, and interaction model respectively; the Gaussian kernel is used with

h = 1.5 and ∆ = 1. The GOF plots show similar shapes as Figure 5, indicating that GOF plots

are informative on how the true model differs from the working model.

4 Case study

We return to the CRDS example. Since most (89%) of the smoking children are between 10 and

16 years old, we restrict the conclusion to that age class. In model (2) the effect of the smoking

14



−4 −2 0 2 4

−
0
.3

−
0
.1

0
.1

0
.3

Quadratic model with β2 = −0.042

X

sm
o
o
th

e
d
 r

e
si

d
u
a
ls

−4 −2 0 2 4

−
0
.2

0
.0

0
.1

0
.2

Sine model with β2 = −0.4

X

s
m

o
o
th

e
d
 r

e
s
id

u
a
ls

−4 −2 0 2 4

−
0
.2

0
.0

0
.2

Exponential model with β2 = 0.013

X

sm
o
o
th

ed
 r

es
id

u
al

s

−5 0 5

−
1
.0

0
.0

0
.5

1
.0

Interaction model with β3 = 0.15

X1 + X2

s
m

o
o
th

e
d
 r

e
s
id

u
a
ls

Figure 6: GOF plots for the quadratic, sine, exponential, and interaction models (14) and

(17) respectively, for a random sample of size n = 150.

status on the pulmonary function of a child is not significant. Smoothed residuals were constructed

with a Gaussian kernel, ∆ = (1, 1) and bandwidths h1 = h2 = (h, 0) with h ∈ {0.5, 1, 1.5}, for

which the optimal bandwidth was selected based on the cross-validation score (10) with the

sum restricted to a random sample of size 100 of Isub = {(i, j) | AGEj − AGEi = 1}. The

binary predictor SMOKE has sufficient replicates, and smoothing is unnecessary. Similar to the

right panel of Figure 6, the left panel of Figure 7 plots the residuals as a function of the sum

SMOKE+AGE for model (2) with h = 1. This plot indicates that for the younger children, the

probability P{FEV 4 FEV′ | (0,AGE), (1,AGE + 1)} is underestimated, while for the older it

is overestimated. The statistical test with design points (SMOKE,AGE) = (0, 10) and (0, 14)

confirms this: S = 10.1 and p = 0.006. The plot suggests that this probability depends on the

sum SMOKE+AGE. Therefore we fit an interaction model which takes this into account

logit
[
P{FEV 4 FEV′ | (SMOKE,AGE), (SMOKE′,AGE′)}

]
(19)

= β1(SMOKE′ − SMOKE) + β2(AGE′ −AGE) + β3(SMOKE′ ×AGE′ − SMOKE×AGE),

with estimates β̂1 = 5.3 (standard error: 1.04 and p < 0.0001), β̂2 = 0.61 (standard error: 0.03

and p < 0.0001), and β̂3 = −0.46 (standard error: 0.08 and p < 0.0001). All effects are now

highly significant. The middle panel of Figure 7 gives the GOF plot with h = 1. Based on the

GOF test there is no convincing evidence for lack-of-fit: S = 0.36 and p = 0.84. It may well be

that including additional predictors further improves the model fit. Figure 1 suggested that an

interaction effect should be included in the model. The estimated effect of smoking, in terms of
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the probabilistic index, is given by

logit
[
P̂
{

FEV 4 FEV′ | (0,AGE), (1,AGE)
}]

= 5.3− 0.46AGE. (20)

The probability for having a better pulmonary function for the smoking child decreases with

increasing age. The right panel of Figure 7 shows this probability as a function of AGE. At the

age of ten, for example, the estimated probability is 68% with confidence interval [53%, 80%].

This probability indicates that the lung function is better for smoking children, which seems

unreasonable. However, children who smoke at the age of ten likely only just started smoking

and the smoking did not affect the lungs yet. By the age of 16 this probability decreased to 12%,

indicating it is highly unlikely that a smoking child has a better lung function, demonstrating

the adverse effects of smoking; the confidence interval for this probability is [7%, 21%].
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Figure 7: Left: GOF plot for model (2); middle: GOF plot for model (19); right: P{FEV 4

FEV′ | (0,AGE), (1,AGE)} as a function of AGE for model (19). The grey bars indicate

the pointwise 95% confidence intervals.

5 Discussion

An informative GOF plot together with a formal GOF test for PIMs is proposed. The GOF

test has good power properties and the plot provides information on how the model can be

improved. The GOF tools are consistent with the interpretation of a PIM, where the probability

P (Y 4 Y ′ |X,X ′ = X + ∆) serves as a basis. The parameter ∆ should be chosen such that this

16



probability has a meaningful interpretation; for future research it can be interesting to focus on an

adaptive selection of ∆. The residuals are based on smoothers and the size of the test particularly

depends on the choice of bandwidth. For an intermediate bandwidth, the empirical type I error is

close to its nominal value. We proposed a modified cross-validation score to select the bandwidth

automatically. The corresponding size remains slightly liberal, even for large sample sizes. It may

be of interest to extend the wild bootstrap method of Hardle and Mammen (1993) to our pseudo-

observations setting, as this might improve the small-sample behaviour of the test. Our test has

good power for detecting an omission of a quadratic, sine, and exponential term as well as an

omission of an interaction effect, while having low to moderate power for detecting a misspecified

link function. However, for most PIMs the interpretation of the parameters is independent of the

link function.

Many GOF statistics use all residuals to form a Cramér–von Mises, Anderson–Darling or

Kolmogorov–Smirnov type of test. Because the pseudo-observations are sparsely correlated, the

distribution theory of such test statistics is much harder than for many other types of regression

models. By constructing our test statistic as a quadratic form which uses only a limited number

of design points, some technical difficulties are avoided. Future research may focus on extending

our method so as to use all residuals. It is anticipated that this would make the method even

more sensitive for detecting a wider range of model departures.

As PIMs are a relatively new class of regression models, non-parametric regression estimators

have not been described yet. In this paper an initial step is taken by considering kernel smoothers

for the construction of the test statistic. In future work this will be studied in more detail so that

PIMs can include genuine nonparametric regression estimators.
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Appendices

A Estimation theory

Let (Y1,X1), . . . , (Yn,Xn) denote a random sample from a distribution with density fYX , then

a consistent estimator of β, say β̂, can be obtained by solving the estimating equations

Un(β) =
∑

(i,j)∈In

U ij(β) =
∑

(i,j)∈In

∂m(Xi,Xj ;β)

∂β

I (Yi 4 Yj)−m(Xi,Xj ;β)

m(Xi,Xj ;β) {1−m(Xi,Xj ;β)}
= 0. (21)

The estimator β̂ has an asymptotic multivariate normal distribution and a consistent estimator

of the corresponding variance-covariance matrix, say Σ ˆβ
, is provided by the sandwich estimator

Σ̂β̂ =

 ∑
(i,j)∈In

∂U ij(β̂)

∂βT

−1 ∑
(i,j)∈In

∑
(k,l)∈In

φijklU ij(β̂)UT
kl(β̂)

 ∑
(i,j)∈In

∂U ij(β̂)

∂βT

−1T ,
where the indicator φijkl is defined as φijkl = 1 if I (Yi 4 Yj) and I (Yk 4 Yl) are correlated, and

φijkl = 0 otherwise; we refer to Thas et al. (2012, Section 3) for more details.

B Smoothed residuals

Let I denote the |In|-vector of pseudo-observations I (Yi 4 Yj), m(X,X ′;β) the |In|-vector with

elements m(Xi, Xj ;β), and V the diagonal matrix with elements m(Xi, Xj ;β){1−m(Xi, Xj ;β)}.

Following le Cessie and van Houwelingen (1991), we consider two first order Taylor approxima-

tions; using the notation introduced in Appendix A,

I−m(X,X ′; β̂) ≈ I−m(X,X ′;β)−∂m(X,X ′;β)

∂βT
(β̂−β), 0 = U(β̂) ≈ U(β)+

∂U(β)

∂βT
(β̂−β).

Consequently I −m(X,X ′; β̂) ≈ (diag(1)−H){I −m(X,X ′;β)}, where

H = −∂m(X,X ′;β)

∂βT

(
∂U(β)

∂βT

)−1 ∂m(X,X ′;β)T

∂β
V −1,

which is a generalization of the hat-matrix. If K(Xi, Xj) denotes the |In|-vector with elements

K(Xi, Xj ;Xk, Xl)/
∑

(k,l)∈In K(Xi, Xj ;Xk, Xl), then

R̂(Xi, Xj) = K(Xi, Xj)
T {I −m(X,X ′; β̂)} ≈K(Xi, Xj)

T (diag(1)−H){I −m(X,X ′;β)}.
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It holds that

E{R̂(Xi, Xj)} ≈ 0, Var{R̂(Xi, Xj)} ≈K(Xi, Xj)
T (diag(1)−H) Var (I) (diag(1)−H)T K(Xi, Xj).

The central limit theorem of Lumley and Hamblett (2003, p. 13) guarantees that, under H0

R̂(Xi, Xj)√
Var{R̂(Xi, Xj)}

d−→ N(0, 1).

A consistent estimator for Var{R̂(Xi, Xj)} can be obtained by substituting β by β̂ and Var (I)

by Σ̂I , where

(
Σ̂I

)
(ij),(kl)

=


{

I (Yi 4 Yj)−m(Xi, Xj ; β̂)
}{

I (Yk 4 Yl)−m(Xk, Xl; β̂)
}
, if φijkl = 1,

0, if φijkl = 0.

All results also hold when Xi is a d-dimensional predictor.
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