
ULTRA HIGH DEFINITION VIDEO DECODING WITH MOTION JPEG XR USING THE GPU

Bart Pieters, Jan De Cock, Charles Hollemeersch

Jeroen Wielandt, Peter Lambert, and Rik Van de Walle

Ghent University – IBBT,

Department of Electronics and Information Systems, Multimedia Lab,

Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

Index Terms— GPU, JPEG XR, massively-parallel,

NVIDIA CUDA, ultra high definition

ABSTRACT

Many applications require real-time decoding of high-

resolution video pictures, for example, quick editing of video

sequences in video editing applications. To increase decoding

speed, parallelism can be exploited, yet, block-based image

and video coding standards are difficult to decode in parallel

because of the high number of dependencies between blocks.

This paper investigates the parallel decoding capabilities of

the new JPEG XR image coding standard for use on the

massively-parallel architecture of the GPU. The potential of

parallelism of the hierarchical frequency coding scheme used

in the standard is addressed and a parallel decoding scheme is

described suitable for real-time decoding of Ultra High Defi-

nition (4320p) Motion JPEG XR video sequences. Our results

show a decoding speed of up to 46 frames per second for Ul-

tra High Definition (4320p) sequences with high-dynamic

range (32-bit/4:2:0) luma and chroma components.

1. INTRODUCTION

JPEG XR [1], formerly known as Windows Media Photo

and HD Photo, is a relatively new still-image compression

standard, originally developed by Microsoft Corporation

and standardized in June 2009. It specifically targets digi-

tal photography and features amongst others state-of-the-art

compression capability, high dynamic range support, loss-

less coding support, and full-format 4:4:4 color coding. The

compression efficiency of JPEG XR is comparable to that of

H.264/AVC intra, yet the standard allows for less complex im-

plementations and is amenable to parallelized implementation

using SIMD instructions. The Motion JPEG XR specifica-

tion, standardized in March 2010 introduced the use of JPEG

XR as a video compressor. According to this standard, each

video picture is to be separately coded using the intra predic-

tion techniques available by JPEG XR such as the spatial or

frequency coding hierarchy and overlapped transforms. One

application of Motion JPEG XR can be found in production

environments as it offers typical features required for those

applications such as high-dynamic range, lossless coding,

and random-access to any frame. Furthermore, it allows for

degradation-free compressed domain cropping, flipping, and

rotation operations [2].

Modern day workstations contain GPUs with hundreds to

thousands of processing cores at their disposal. These GPUs

are capable of addressing fast on-board memory, typically in

the order of gigabytes in size, at rates up to 175 gigabytes

per second (NVIDIA GeForce GTX 480 card). The GPU ar-

chitecture targets data-level parallelism, as current generation

hardware only has limited support for task-level parallelism

because of the underlying SIMD architecture. Hence, enough

parallel tasks are required in order to take advantage of the

processing power of the GPU [3].

With high-definition images, a high number of process-

ing cores suggests a high-number of samples or blocks that

can be decoded concurrently. Yet current block-based im-

age and video coding standards are not amenable to data-

parallel processing. This paper investigates the potential of

parallelism of the hierarchical frequency coding scheme used

in the JPEG XR standard and describes a parallel decoding

scheme suitable for real-time Ultra High Definition (4320p)

Motion JPEG XR video sequences on the massively-parallel

architecture of the GPU. An overview of the coding tools is

given with special attention to maximizing data-parallel pro-

cessing capabilities while minimizing synchronization. Fi-

nally, the parallel decoding scheme is evaluated and decoding

speed is presented as the amount of frames per second (f/s)

and megapixel per second (mp/s) the decoder can process.

This paper is organized as follows. Section 2 briefly de-

scribes previous work done in the field of parallel decoding

of image and video coding standards. Section 3 discusses

the JPEG XR standard and investigates concurrent process-

ing of the decoding tools. Special attention is given to our

solution for concurrent prediction of coefficients in the hierar-

chical prediction scheme. Section 4 shows and discusses our

experimental results. Finally, Section 5 concludes this paper

and proposes future work.



1 2

2

3

3

3

4

4

4

5

5

5

4

5

5

6

6

6

6

6

6

7 8 9 10 11 12

7 8 9 10 11 12

7 8 9 10 11 12

7 8 9 10 11

7 8 9 10

7 8 9

7 8

8 9 10 11 12 13 14

13 14

13

15

Fig. 1. Prediction of blocks using a wavefront algorithm.

2. PREVIOUS WORK

To the authors’ knowledge, no previous work targets the

use of the GPU for decoding UHD Motion JPEG XR video

sequences. However, an extensive number of publications

has investigated decoding the H.264/AVC standard on the

GPU [4–6]. These show how data dependencies introduced

in the H.264/AVC decoding scheme (especially with the intra

prediction and deblocking tools) introduce a high number of

synchronization points and do not allow a sufficient amount

of parallelism for massively-parallel architectures. A typical

way of dealing with dependencies to the left and top is using

a wavefront algorithm [4–6], as visualized in Fig. 1. Each

block in a certain wave is independent of the other blocks in

the wave. Therefore, all coefficients in a wave can be pro-

cessed in parallel, yet synchronization points are introduced

between each wave. Also, parallelism within a wave is lim-

ited by the image dimensions, and is typically not enough

for massively-parallel architectures. As an example, Pieters

et al. [5] show that the wavefront algorithm used for parallel

intra prediction barely allows for real-time deblocking of a

1080p video picture. The next section shows how JPEG XR

eliminates the use of wavefront decoding in all but one de-

coding tool thanks to its frequency hierarchy and transform

coefficient predictions, thereby enabling a more data-parallel

approach to decoding than other block-based standards.

3. PARALLEL DECODING OF MOTION JPEG XR

VIDEO PICTURES

In this section, all JPEG XR decoding steps are discussed with

respect to their optimal parallel decoding algorithm. JPEG

XR supports both a spatial and frequency coding mode. The

frequency mode is more suited for parallel processing as it

groups all coefficients per band per tile. It is this prediction

mode that is targeted in this paper.

3.1. Tile Configuration and Entropy Decoding

In JPEG XR, the image is divided into tiles, two-dimensional

groups of adjacent macroblocks (MBs), which can be de-

coded largely independent from other tiles. One way to en-

able parallel decoding is to limit the amount of dependencies

within each tile by decreasing its size. Each processing core

can now target a single tile and process the tile, if required,

with further limited parallelism. However, Fig. 2 shows this

0

5

10

15

20

25

0 20 40 60 80 100 120

A
v
er

a
g
e 

B
it

st
re

a
m

 I
n

cr
ea

se
 (

%
) 

Macroblocks per Tile 

Fig. 2. Impact of tile size on coding rate.

DC LPs HPs

Fig. 3. Frequency hierarchy of the luma component of a MB.

to decrease compression efficiency. For example, the bit-

stream increases in size with up to 23.5% in case of a small

tile configuration of nine MBs per tile. Occupying 480 cores

to decode an image with size 1080p on the latest NVIDIA

GTX480 graphics cards require tiles of sixteen MBs accord-

ing to Fig. 2, which creates a bitstream increase of 14.6%.

Some GPUs require even more parallism, typically in the or-

der of thousands of threads. It is clear that there is a need to

process large tiles efficiently in parallel.

Because of the context adaptivity, concurrent entropy de-

coding and coefficient scanning is only possible on the tile

level. This way, each processor core can be assigned a tile for

entropy decoding, coefficient scanning, and can prepare the

output data for further GPU processing. Next in the decoding

phase, coefficients are predicted and transformed.

3.2. Inter-coefficient Prediction

JPEG XR employs a frequency hierarchy as depicted in

Fig. 3. Here, coefficients are predicted in three bands, start-

ing from DC coefficients (one per MB), to LP (Low Pass

Coefficients – 16 per MB), and ending with HP (High Pass

– 256 per MB) coefficients. As the number of coefficients to

calculate increases from DC to HP, so does the opportunity

for parallel processing. In other words, the more calculation

dependencies, the less deep the sequential calculation path

is. This reflects the parallel processing ability inherent to

the JPEG XR standard and stands in contrast to other coding

standards such as H.264/AVC and VP8 intra. Each coefficient

is predicted using its surrounding coefficients in the same co-



efficient band and those of the higher band. Afterwards, these

coefficients are reconstructed using the stored coefficient

deltas from the bitstream. Next, coefficient dequantization

is done on each sample independently. Afterwards, all de-

quantized coefficients are transformed using the inverse PCT

(Photo Core Transform) transformation. A second optional

inverse transformation, inverse POT (Photo Overlap Trans-

form), is done on edges of MBs to prevent blocking artifacts.

Each DC coefficient is predicted using either the DC

above the current DC, the DC left to the current DC or a

combination of the top and left DC. The prediction mode is

not described in the bitstream, but is derived from the direc-

tion of the similarity of the previously-decoded DC values.

Therefore, dependencies are introduced in the DC prediction

algorithm as to predict a DC value, all previous DC values

need to be decoded. For DC prediction, we propose the use

of a wavefront algorithm as visualized in Fig. 1. Each DC

coefficient in a wave is independent of the other DC coeffi-

cients in the wave and can therefore be processed in parallel

on the GPU. As there is only one DC coefficient per MB, the

DC coefficient plane is limited in size, e.g. 64×64 for a one

megapixel picture. The number of waves is determined by

w + h − 1, where w and h stand for the width and height of

the tile in MBs respectively. For a tile of 1024×1024 in size,

this calculates to 127 waves.

The NVIDIA CUDA architecture exposes two levels of

synchronization barriers, global and local synchronization.

Local synchronization is fast as this is mapped onto opera-

tions on a single Streaming Multiprocessor (SM). Each SM

exposes 32 hardware threads through 8 Streaming Processors

(SPs). Because of the amount of synchronization and the

limited concurrency possibilities, DC prediction of one tile is

mapped on a single SM. Hence, each SP of the SM will target

one 32th of a wave.

As with DC prediction, prediction of LP coefficients

uses previously-decoded coefficients, in this case LP coeffi-

cients to the left or top of the current LP coefficients. Fig.

4 shows this prediction scheme. It can be seen that every

horizontally-aligned LP coefficient (LPa) is predicted from

its left neighbor. Alternatively, the coefficient can be not

predicted at all. Vertically-aligned LP coefficients (LPb) are

predicted using LP coefficients directly above. LPa and LPb

calculations share no dependencies and can therefore be pre-

dicted in parallel. Also, each row or column of LPa or LPb

respectively is not dependent on calculations of the rows or

columns above or to the left respectively. Therefore, all rows

and columns of LP coefficients can be calculated in parallel.

For a tile with size 1024×1024 samples, this means a total

number 512 CUDA threads can be initialized, calculating

256 LP rows and 256 LP columns in parallel. Each row or

column will be calculated by one SM. Within the SM, all SP

will calculate the prediction by using local synchronization.

HP coefficients can be calculated in parallel very easily.

Unlike DC and LP prediction, HP prediction uses no other

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

1 2 3

4

8

12

0 1 2 3

4

8

12

0

LPa

LPb

Fig. 4. Prediction of LP coefficients.

previously-decoded HP predictions, but only resides on sur-

rounding previously-decoded LP predictions. As a result,

each MB provides a total number of 144 jobs, well suffi-

cient for massively-parallel hardware. Here, we propose a

one-on-one mapping of CUDA thread and HP coefficient.

3.3. Inverse Transformation, Quantization, and Color-

space conversion

The Photo Core Transform (PCT) can be well executed in par-

allel. First, on each 4×4 HP block, four Hadamard transforms

are applied. From these blocks, LP coefficients are gathered

and are again transformed. Here, each CUDA SP will trans-

form a 4×4 HP block allowing up to 65,536 threads for a

1024×1024 image. Next, a new kernel will use each CUDA

thread to transform a 4×4 LP block allowing up to 24,576

threads for the same image. The POT (Photo Overlap Trans-

form) occurs over tile boundaries to counteract block artifacts

introduced by the PCT transform. This transform is not dis-

cussed in this paper. Finally, a kernel executes inverse quan-

tization and converts the output from the YCoCg to the RGB

color space. We refer to previous work in [7] for the most ef-

ficient way to do this transformation. The RGB data resident

in GPU memory can then be visualized on screen.

3.4. CPU and GPU Pipelined Architecture

Because of the limited opportunities for parallel processing,

entropy decoding and coefficient scanning is done on the CPU

in system memory. All decoded information is then uploaded

to GPU memory and asynchronous decoding on the GPU is

commenced. As the decoded output is visualized using the

GPU, bus communication is limited to one way. Note that the

GPU’s pci-express bus interface bandwidth currently limits

the maximum throughput in our pipelined scenario. Indeed,

in this scenario, throughput is limited to roughly 4:2:0 UHD

resolution with 32 bit channels at thirty hertz. Hence, in the

next section we focus on the GPU processing speed.



Table 1. Performance results for a NVIDIA GeForce GTX480.

Image Size Kernel Time (ms) mp/s f/s

352x288 0.27 370 3652

720x480 0.48 714 2067

1280x720 0.82 1124 1219

1920x1080 1.41 1475 711

4096x2160 5.21 1697 192

7680x4320 21.63 1534 46

DC 

28% 

LP 

17% HP 

16% 

PCT 

39% 

Fig. 5. Workload distribution of the GPU kernels for 2160p images.

4. EXPERIMENTAL RESULTS

Table 1 shows the performance results for JPEG XR-coded

images with various sizes using a test system with an Intel

i7 950 CPU and an NVIDIA GeForce GTX480 GPU. Each

image contains exactly one slice to simulate a worst-case sce-

nario. Images are coded using 32-bit luma and chroma com-

ponents with 4:2:0 chroma sub sampling. The table shows

the GPU time to execute coefficient prediction, transforma-

tion, and inverse quantization, the amount of megapixels pro-

cessed per second (mp/s), as well as the amount of frames

processed per second (f/s).

The results show the amount of megapixels processed per

second to increase with larger images or tiles as the occu-

pancy of the GPU streaming processors increases. As such,

large tiles have become more beneficial to processes in a data-

parallel fashion. To predict and transform one 4320p video

picture, it takes 21.63 milliseconds. This enables real-time

prediction of 4320p at thirty hertz in a Motion JPEG XR sce-

nario. Next, Fig. 5 shows the workload distribution of the

different CUDA kernels for a 2160p image. The figure shows

how DC prediction and PCT take the most time as they pro-

vide respectively the least parallel processing opportunity and

process the most data. Notice how the mp/s in Table 1 starts

to lower for 4320p as the weight of the prediction of DC co-

efficients increases. Fortunately, the hierarchical prediction

scheme of JPEG XR limits the size of the DC band.

5. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the parallel decoding capabilities

of the Motion JPEG XR video coding standard. We pro-

posed a parallel decoding scheme suited for the massively-

parallel architecture of the GPU using the NVIDIA CUDA

platform. Using this scheme, we implemented a GPU de-

coder and showed how JPEG XR images can be decoded on

the GPU in a highly-efficient manner. A decoding speed of

1697 megapixels per second was achieved enabling the use

of Motion JPEG XR for Ultra High Definition (4320p) at 46

frames per second. Future work will target further optimiza-

tions and parallelization of the entropy decoding phase for

one or multiple tiles to limit bus communication to the GPU.

6. ACKNOWLEDGEMENTS

The research as described in this paper was funded by Ghent

University, the Interdisciplinary Institute for Broadband Tech-

nology (IBBT), the Institute for the Promotion of Innovation

by Science and Technology in Flanders (IWT), the Fund for

Scientific Research-Flanders (FWO-Flanders), and the Euro-

pean Union.

7. REFERENCES

[1] ITU-T Rec. T.832 – ISO/IEC 29199-2, “Informa-

tion technology – JPEG XR image coding system

– Image coding specification.” [Online]. Available:

http://www.itu.int/rec/T-REC-T.832

[2] S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan,

“HD Photo: A New Image Coding Technology for Digi-

tal Photography,” in Proc. of SPIE: Applications of Digi-

tal Image Processing XXX, vol. 6696, September 2007.

[3] W. chun Feng and S. Xiao, “To gpu synchronize or not

gpu synchronize,” in Circuits and Systems (ISCAS), Pro-

ceedings of 2010 IEEE International Symposium on, June

2010, pp. 3801–3804.

[4] Z. Zhao and P. Liang, “Data partition for wavefront par-

allelization of h.264 video encoder,” in Circuits and Sys-

tems, 2006. ISCAS 2006. Proceedings. 2006 IEEE Inter-

national Symposium on, May 2006, p. pp. 2672.

[5] B. Pieters, C.-F. Hollemeersch, J. De Cock, W. De Neve,

P. Lambert, and R. Van de Walle, “Parallel Deblocking

Filtering in MPEG-4 AVC/H.264 on Massively Parallel

Architectures,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 21, no. 1, pp. 96 –100, jan. 2011.

[6] J. C. A. Baeza, W. Chen, E. Christoffersen, D. Dinu,

and B. Friemel, “Real-Time High Definition H.264 Video

Decode Using the Xbox 360 GPU,” in Proc. of SPIE: Ap-

plications of Digital Image Processing XXX, no. 1, 2007.

[7] W. De Neve, D. Van Rijsselbergen, C. Hollemeersch,

J. De Cock, S. Notebaert, and R. Van de Walle, “GPU-

assisted decoding of video samples represented in the

YCoCg-R color space,” in MULTIMEDIA ’05: Proceed-

ings of the 13th annual ACM international conference on

Multimedia. New York, USA: ACM, 2005, pp. 447–450.


