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Vertical depth profiles of nematode communities 

Abstract 
 

In this study the spatial heterogeneity of the nematode community on an intertidal flat (the 

Molenplaat) in the Westerschelde estuary (SW Netherlands) was investigated. It was tested to 

what extent macroscale (km’s) variability was more important than microscale (m’s) 

variability. In addition the importance of vertical distribution profile in the sediment in 

explaining the horizontal macroscale variability was evaluated. Differences in structure of the 

community were analysed at a kilometre scale at three sites that differed in chemico-physical 

features. The differences in geochemical and physical conditions on a horizontal scale were 

reflected in species composition and trophic structure of the nematode communities, and to a 

much lesser extent in their total abundance and species diversity.  

Detailed investigation of vertical depth profiles showed more pronounced differences between 

environmentally divergent sites. Sediment granulometry appears to be important in controlling 

the fauna in the upper sediment layers. At depths similar faunal assemblages were found 

irrespective of sediment granulometry, suggesting that other environmental features are more 

dominant.  

Vertically, nematode species showed depth distributions that were indicative of sediment 

characteristics related to the site-specific hydrodynamic regime. Pronounced vertical 

segregation of nematode species was observed within sandy sediment under strong 

hydrodynamic and food-stressed conditions. A surface-dwelling nematode community of large 

predatory enoplids was separated from a deposit feeding xyalid-microlaimid community in 

deeper sediment layers (beneath 2 cm). Causal factors for this segregation are thought to be 

species interactions, feeding strategies and/or physical disturbance. In the finest sediments, 

with high silt content, almost all nematode species were confined to the upper sediment layers 

(1.5 cm). A sharp decline in density and diversity with depth was observed. Key factors for 

this distribution pattern are possibly related with the limited oxygen penetration in surface 

layers and the occurrence of sulphide in deeper sediment layers. At intermediate 

hydrodynamic and granulometric conditions, a gradual shifting nematode community was 

observed with depth, with dominant nematode species maxima present at specific depth 

layers. 
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Introduction 
 

Knowledge of spatial patterns of benthic organisms and the scale of these patterns contribute 

to a better understanding of benthic community structure and functioning. Such information is 

often the best, if not the only way for assessing interspecific interactions, which to a 

considerable extent determine community structure. Comparisons between the spatial patterns 

of consumers and resources provide information on trophic interactions and the spatial scales 

at which these interactions occur (Pinckney & Sandulli 1990, Sandulli & Pinckney 1999).  

On a vertical scale of centimetres, the effect of abiotic characteristics of sediments (e.g. 

oxygen, water content, proximity to surface) on community structure is as important as the 

other abiotic variables (such as salinity, sedimentological and geomorphological variables), 

which act on a horizontal scale of hundreds of metres. Moreover, the ecological understanding 

of the functioning of meiobenthic communities is enhanced by knowledge of animal vertical 

distribution (Soetaert et al. 1994). It has been shown that many nematode species exhibit a 

typical vertical distribution which often relates to a variety of biological, physical and 

chemical variables (Warwick & Gee 1984, Giere 1993, Hendelberg & Jensen 1993, Wetzel et 

al. 1995, Soetaert et al. 1994, Steyaert et al. 1999). It has been argued that the vertical 

segregation of species will reduce the number of (competitive or predative) interactions, and 

this could explain the very high number of species that coexist in a certain small patch (Joint 

et al. 1982). 

The spatial patterns of temperate nematode communities on different horizontal scales have 

already been investigated extensively in different estuaries. Most of these studies related 

structural patterns of the nematode assemblages to environmental variables as sedimentary and 

latitudinal gradients, food resources, salinity, disturbances of different nature (e.g. Warwick & 

Gee 1984, Soetaert et al. 1995, Li et al. 1997, Guo et al. 2001, Neilson & Boag 2002, Tita et 

al. 2002). The spatial patterns of nematode communities are well documented in intertidal and 

subtidal zones of the Westerschelde. Soetaert et al. (1994) found maximum abundance of the 

majority of the species in the intertidal zone. Intertidal communities exhibited a well-

developed community gradient with sediment depth, whereas the subtidal and channel 

communities showed distinct and in some cases distorted community patterns associated with 

large socio-economic pressure by dredging, pollution and consequently oxygen depletion.  

This study deals with the spatial heterogeneity of nematode associations on a small intertidal, 

estuarine flat. Differences in structure of the communities were initially analysed in terms of 
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depth-integrated characteristics for a high number (5) of replicate samples (collected at a m 

scale) at three geographically separated (at km scale) and chemico-physically diverging sites. 

In addition to the comparison of bulk characteristics, spatial differences in community 

structure are established by micro-scaled vertical profile analysis of the same community 

parameters. We examined whether changing environmental conditions over a small system 

like the Molenplaat are reflected in the vertical distribution pattern of nematodes species and 

result in shifting community characteristics with depth in the sediment. 

 
Study site 
 

The Molenplaat (51°26 N, 3°57 E) is a small intertidal flat (2 to 3 km²), located in the turbid, 

nutrient-rich and heterotrophic Westerschelde estuary (Fig. 1). Salinity in this region of the 

estuary varies between 20 and 25 psu (Herman et al. 2000). The flat is characterised by a high 

diversity of sediment types over a small distance. The ecology of the tidal flat has been studied 

during the project ‘Eco-metabolism of an estuarine tidal flat’ (ECOFLAT), and detailed 

background information on pigment distributions (Barranguet et al. 1997, Lucas & Holligan 

1999), microphytobenthos production (Barranguet et al. 1998, Barranguet et al. 2000), 

photosynthetic activity (Kromkamp et al. 1998), microphytobenthos resuspension (Lucas et al. 

2000), nematode feeding behaviour (Moens et al. 1999a, 2000, Hamels et al. 2001), nematode 

tidal migration (Steyaert et al. 2001) and microbenthic (Hamels et al. 1998) and macrofaunal 

(Herman et al. 2000) communities is available.  
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Figure 1. Location of the sampling sites on the Molenplaat 

 

The three sites were selected on the basis of their sediment characteristics (Table 1). Site 2 

(57°2 N, 26°3 E) has the finest sediment, Site 3 (56°8 N, 26°4 E) is more dynamic and sandier 

and Site 1 (57°3 N, 26°15 E) has intermediate characteristics (Herman et al. 2000, Widdows et 

al. 2000). Estimated of bottom shear stress (maximal value during a tidal cycle) were 

produced by a hydrodynamic model. Values are 0.36 Pa for Site 2, 0.43 Pa for Site 1 and 1.15 

Pa for Site 3 (Van de Koppel et al. 2001). The average period of emersion varies between 4.5 

h (Site 1) and 7 h (Site 2 and 3) per tidal cycle.  

 
Depth (cm) Median grain size (µm) Fine sand fraction (%) Medium sand fraction (%) 
Site  1 2 3 1 2 3 1 2 3 

0-1 136.79 76.95 169.58 49.31 24.46 80.71 6.13 0.55 6.97 
1-2 147.62 65.61 173.14 57.31 22.78 81.12 7.26 0.53 7.47 
2-3 127.63 44.81 173.14 43.77 12.37 79.18 6.87 0.40 8.46 
3-4 132.13 68.87 167.24 45.98 15.85 78.98 7.06 1.14 7.39 
4-5 132.13 0.01 173.14 46.61 1.57 77.87 6.56 0.04 9.33 
5-6 161.54 87.78 176.78 45.83 22.20 78.52 18.23 1.70 10.18 
6-7 192.11 95.39 171.94 48.11 27.71 77.18 24.94 0.75 9.17 
7-8 196.15 96.72 174.34 49.72 27.80 73.61 25.74 0.88 11.95 

Mean 153.26 67.02 172.41 48.33 19.34 78.40 12.85 0.75 8.87 

 

Table 1. Sediment characteristics for the three sites (data out of the ECOFLAT database,  

Herman et al. 2001) 
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Depth (cm) Silt (%) Very Fine sand fraction (%) 

Site  1 2 3 1 2 3 

0-1 24.13 43.32 3.96 19.74 31.67 8.14 
1-2 11.73 48.67 4.04 no data 28.01 7.20 
2-3 17.05 59.26 3.82 31.44 27.97 8.10 
3-4 15.35 45.51 3.88 30.74 37.49 9.42 
4-5 14.25 0.42 3.68 31.81 no data 8.47 
5-6 9.59 28.34 3.22 26.29 47.58 no data 
6-7 7.24 26.94 3.67 19.71 44.56 9.26 
7-8 6.71 26.61 4.03 17.82 44.66 9.15 

Mean 13.26 34.88 3.79 25.36 37.42 8.53 

 

Table 1. (continued) 

 
Microphytobenthic production (Barranguet et al. 1998), as well as microphytobenthic 

biomass, as reflected in pigment concentrations, was very high for all three sites in June 1996 

(Table 2).  

 
Depth (cm) Chlorophyll a Chlorophyll c Fucoxanthin 

Site  1 2 3 1 2 3 1 2 3 

0-1 939.39 175.20 16.48 123.77 22.95 2.96 465.62 140.34 8.55 
1-2 79.14 94.88 22.42 15.10 16.33 4.89 48.53 64.05 12.63 
2-3 130.06 50.14 10.03 23.53 7.18 2.77 68.46 30.92 7.90 
3-4 195.93 25.96 6.29 34.79 2.48 1.12 93.23 14.84 5.61 
4-5 51.03 11.42 2.59 8.30 0.98 0.31 23.60 7.16 2.61 
5-6 103.12 7.13 1.35 16.61 0.62 no data 44.03 4.30 1.20 
6-7 12.89 1.15 0.72 2.23 0.06 no data 9.38 2.37 0.78 
7-8 12.36 5.50 1.48 1.66 0.35 no data 10.04 4.66 1.31 

mean 190.49 46.42 7.67 28.25 6.37 2.41 95.36 33.58 5.07 

 

Table 2. Photosynthetic pigments for the three sites (in mg m-²); chlorophyll a data from Hamels et al. 
(1998) 

 
The distribution of chlorophyll a in the sediment was reported by Hamels et al. (1998). All 

pigments (chlorophyll a, chlorophyll c, fucoxanthin) were negatively correlated (p < 0.05) 

with depth in the sediment. Maximum chlorophyll a concentrations were recorded at Site 1; 

Site 2 had intermediate values and Site 3 had the lowest values. For the three sites, the bulk of 

the algal pigments was present in the top 2 cm of the sediment. For Site 2 and 3 pigment 

concentrations decreased gradually with depth whereas for Site 1 a more distorted depth 

pattern was recorded (Hamels et al. 1998). 
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Materials and methods 
 

In June 1996, the three sites (at km scale) were sampled during low water at daytime 

(sediments were exposed to air). At each of the three sites, 5 cores (3.6 cm diameter) were 

taken at 10 m intervals. The samples were divided into 12 horizontal slices (0-0.5 cm, 0.5-1 

cm, 1-1.5 cm, 1.5-2 cm, 2-3 cm, 3-4 cm, 4-5 cm, 5-6 cm, 6-8 cm, 8-10 cm, 10-15 cm, 15-20 

cm) immediately after sampling and fixed in a hot, neutral  (70° C) 4 % formaldehyde 

solution. Meiofaunal organisms retained on a 38 µm sieve were extracted from the sediment 

by centrifugation with Ludox (density 1.18) (Heip et al. 1985). All macrobenthos were 

excluded by a 1 mm sieve. For each slice, all nematodes were counted after staining with Rose 

Bengal and 120 nematodes were picked out randomly and mounted on Cobb slides for 

identification to species level. The nematodes were grouped into 4 feeding guilds, according to 

the feeding type classification of Wieser (1953).  

Samples for the pigment analyses were taken from contiguous cores for meiofauna samples. 

Particle size distribution was determined by laser diffraction using a Malvern particle sizer. 

Analytical techniques for determination of the pigment content were described in Hamels et 

al. (1998), for the organic carbon content in Herman et al. (2000).  

Horizontal and vertical patterns in nematode abundance and community composition were 

analysed using ordination techniques from the PC-ORD for Windows package (version 4.20, 

McCune & Mefford 1999). Through ordination samples are ordered along axes according to 

their resemblances. A detrended correspondence analysis (DCA) was applied on vertically 

integrated densities (summation of all depth layers) to test the variability between replicates. 

Subsequently, another DCA was used to assess total community variability based on non-

transformed relative abundances. Species rarer than Fmax/5 (Fmax is the frequency of the 

commonest species) down-weighted in proportion to their frequency. Nematode diversity was 

expressed as Hill indices N0 and N1 (Hill 1973). In order to test for significant differences in 

depth integrated (total sediment column) density and diversity between the three sites, the 

non-parametric Kruskal-Wallis analysis by rank and pairwise multiple comparison tests were 

used (Conover 1971). If assumptions were met, a univariate two-way analysis of variance 

(ANOVA) was used to test for significant differences in depth distribution between the three 

sites. A ‘split-plot’ design was constructed with replicates nested within ‘site’, however, not 

within ‘depth’, following Steyaert et al. (2001). All data were log (x+1) transformed prior to 
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analysis. Non-parametric Spearman rank correlation coefficients were calculated to determine 

relationships between diversity and environmental variables along a depth gradient.  

 
Results 
 
Density and species composition  
 
Horizontal. A significant difference in total (depth-integrated) nematode densities (p ≤ 0.05) was 

found when comparing all three sites (Table 3). A post hoc multiple comparison revealed only 

significant differences between Site 1 and 2.  
 

 Site 1 Site 2 Site 3 
Total number of species 52 41 54 
Nematodes density 2990   ±   818 1560   ±   699 2090   ±   666 
N0 diversity 28.4  ±  3.58 25.2  ±  1.92 32.0  ±  2.90 
N1 diversity 9.1  ±  0.94 8.0  ±  2.15 8.6  ±  0.77 

Table 3. Total number of species, vertically integrated nematode density (ind. 10 cm-2) and vertically 
integrated nematode diversity for the three sites (mean values from 5 samples ± standard deviation) 

 

Highest abundances were recorded at Site 1, lowest abundances at Site 2 and intermediate 

abundances at Site 3. In addition, detrended correspondance analysis, based on species densities 

of bulk samples, separated all three sites and illustrated the high similarity between the five 

replicates of each site (Fig. 2). Eigenvalues were 0.71 and 0.05 for respectively the first and 

second axes. 
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Figure 2. Results of Detrended Correspondence Analysis axes 1 and 2, based on species abundances (Site 1 

triangles, Site 2 squares, Site 3 circles, letters represent replicates) 

 
Total species number was in the same range at all three sites. In total, 76 nematode species 

were identified: 52 at Site 1, 41 at Site 2 and 54 at Site 3. Site 1 had 11 species exclusive to 

that site while Site 2 and 3 had respectively 9 and 17 unique species. Average relative 

abundances for the dominant species are shown in Table 4.  
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 Feeding type Site 1 Site 2 Site 3 

Theristus blandicor 1B 20.1 0.6 30.5 
Viscosia viscosa 2B 9.5 15.3 4.0 
Ascolaimus elongatus 1B 26.0 2.6 3.1 
Eleutherolaimus amasi 1B 14.4 0.2 3.9 
Theristus pertenuis 1B 5.2 0.1 5.6 
Microlaimus marinus 2A 2.7  2.7 
Trefusia helgolandica 1A 1.0  2.3 
Enoploides longispiculosus 2B 0.5 0.1 30.1 
Daptonema riemanni 1B 0.1 0.2 3.9 
Microlaimus acinaces 2A 0.3  2.2 
Tripyloides gracilis 1B 2.9 40.1 0.2 
Ptycholaimellus ponticus 2B 0.3 12.4 0.1 
Daptonema tenuispiculum 1B 0.8 9.7  
Calyptronema maxweberi 2B 1.6 2.8  
Theristus acer 1B 0.1 3.1 0.1 
Sabatieria pulchra 1B 1.4 0.9 0.1 

Table 4. Relative abundances and feeding type (Wieser 1953) of the dominant species (values in bold are 
the dominant species per site) 

 

Nematode species were termed dominant when present in at least 25 of the 180 slices or in at 

least 7 slices with a minimum relative abundance of 40 % (restrictions based on practical 

considerations). Based on the dominant species, three different species assemblages could be 

recognised at the three sites: Theristus blandicor, Ascolaimus elongatus and Eleutherolaimus 

amasi were most dominant in Site 1 (60.5% of total community); Tripyloides gracilis, 

Viscosia viscosa and Ptycholaimellus ponticus in Site 2 (67.8%); T. blandicor and Enoploides 

longispiculosus in Site 3 (60.6%). 

 

Vertical profiles. ANOVA ‘split-plot’ analysis (Table 5) showed significant differences in depth 

distribution of total nematode densities (Fig. 3) and of densities for each dominant species (Fig. 

4, 5, 6) among the three sites. Nematode density at Site 1 (Fig. 3) was highest at the sediment 

surface and decreased gradually with depth. The maximum density of each of the dominant 

species at Site 1 occurs at different depth layers (Fig. 4), which indicates a gradual shifting of 

the nematode community with depth in the sediment at Site 1. Maximum abundance of V. 

viscosa was found in the upper sediment layer (0-0.5 cm). Ascolaimus elongates, E. amasi and 

Theristus pertenuis showed peak abundance at 0.5 to 1 cm depth; Microlaimus marinus and T. 

helgolandica at intermediate sediment depths (respectively 2-3; 6-8 cm), and finally T. 

blandicor at 5 to 10 cm depth in the sediment (Fig. 4). 
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  Site Depth Site × Depth 
  F p F p F p 
Nematode community 8.982 0.009 32.725 0.000 11.301 0.000
Ascolaimus elongatus 58.182 0.000 47.698 0.000 26.079 0.000
Calyptronema maxweberi 16.247 0.002 12.628 0.000 3.637 0.000
Daptonema tenuispiculum 107.517 0.000 23.619 0.000 13.099 0.000
Eleutherolaimus amasi 30.397 0.000 5.511 0.000 7.896 0.000
Enoploides longispiculosus 147.509 0.000 34.552 0.000 18.075 0.000
Microlaimus acinaces 20.651 0.001 3.320 0.005 2.763 0.001
Microlaimus marinus 57.632 0.000 8.647 0.000 8.104 0.000
Ptycholaimellus ponticus 205.658 0.000 49.261 0.000 28.031 0.000
Sabatieria pulchra 10.489 0.006 5.446 0.000 3.431 0.000
Theristus acer 40.125 0.000 14.292 0.000 16.890 0.000
Theristus blandicor 12.632 0.003 22.656 0.000 7.444 0.000
Theristus pertenuis 41.311 0.000 6.514 0.000 5.858 0.000
Theristus riemanni 9.746 0.007 5.386 0.000 4.449 0.000
Trefusia helgolandica 9.802 0.007 8.781 0.000 2.823 0.000
Tripyloides gracilis 23.913 0.000 49.971 0.000 15.236 0.000
Viscosia viscosa 17.188 0.001 40.367 0.000 7.210 0.000
              
 N0 diversity 3.929 0.065 8.664 0.000 6.227 0.000
 N1 diversity 5.806 0.028 10.686 0.000 5.605 0.000

Table 5. Univariate ANOVA tests (df = 2, 11, 18 for respectively Site, Depth, Site × Depth) 

 
At Site 2, the total nematode density was very high at the sediment surface and decreased 

gradually with depth (Fig. 3). Here 95 % of the nematode community was confined to the 

upper 2 cm of the sediment, compared to 73 % in Site 1. This steep gradient in depth is also 

reflected in the individual species distributions (Fig. 5). All dominant species, Calyptronema 

maxweberi, Daptonema tenuispiculum, P. ponticus, Theristus acer, T. gracilis and V. viscosa, 

showed maximum abundances in the top 1 cm of the sediment, except for Sabatieria pulchra 

and T. blandicor, which were more uniformly distributed downcore. For Site 3, total nematode 

density remained low and relatively constant until 10 cm depth (Fig. 3). 
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Figure 3. Nematode abundance, nematode diversity and feeding type distribution with depth 

 

Deeper down, the abundance tended to decrease very slowly. The individual species (Fig. 6) 

belong to two vertically segregated species assemblages. The ‘Enoploides longispiculosus-

assemblage’ situated at the top 1.5 to 2 cm of Site 3, is characterised by high abundances of E. 

longispiculosus, with a maximum abundance recorded at 0.5 to 1 cm depth and other species 

that also conform to this zonation. The ‘Theristus blandicor-assemblage’ is located in deeper 

sediment layers (from 3 cm onwards). The most important species here is T. blandicor, which 

has its maximum abundance at 5 to 6 cm depth. A similar feature is found for the less 

numerous species A. elongatus, E. amasi, M. marinus, M. acinaces, T. helgolandica, T. 

pertenuis and Theristus riemanni however species’ preferences are not monotonic in this zone. 

Their maximum abundance is between 8 to 10 cm. All species, except V. viscosa, can be 

attributed to one of both subcommunities. V. viscosa has highest abundance between 1.5 and 2 

cm depth. 
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Figure 4. Depth distribution of the dominant species in Site 1 (note different width in sediment slices on Y 
axes) 
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Figure 5. Depth distribution of the dominant species in Site 2 (note different width in sediment slices on Y 
axes) 
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Figure 6. Depth distribution of the dominant species in Site 3 (Note different width in sediment slices on Y 
axes) 
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The existence of three different nematode assemblages at the three sites (based on dominant 

species and depth profiles) is confirmed by the DCA (Fig. 7). The first ordination axis has an 

eigenvalue of 0.787; the second axis has an eigenvalue of 0.42.  
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Figure 7. Results of Detrended Correspondence Analysis axes 1 and 2, based on relative abundances (Site 1 
triangles, Site 2 squares, Site 3 circles) 

 

The third axis (not depicted) has a low eigenvalue (0.098) and yields no additional 

information. Site 1 consists of a gradually shifting nematode community with depth. This is 

illustrated by the samples, which are placed along a depth gradient parallel to the first axis. It 

should be noticed that depth layers are plotted relatively far from each other (especially in 

upper depth layers). The samples of upper sediment layers of Site 3 (0-0.5; 0.5-1; 1-1.5 cm) 

appear separate from those of deeper sediment layers (Fig. 7), pointing again to the existence 

of two vertically separated subcommunities at Site 3. The analysis further indicates that there 

is a similarity between deeper layers of Site 1 and 3 (beneath 2 cm) and the deepest layer of 

Site 2 (15-20 cm), all dominated by T. blandicor. Site 2 is characterised by a surface nematode 

association that declines with depth. Vertically sectioned samples, exclusive the deepest 

 15



Vertical depth profiles of nematode communities 

sediment layer (15-20 cm), of Site 2 are clustered closely together and species associations 

seem to be similar at all depth layers. 

 

Feeding type distribution 
 

Non-selective deposit feeders dominated Site 1. In the surface layer of the sediment, non-

selective deposit feeders are slightly less important, due to the presence of 

predators/omnivores, and to a lesser degree, epistratum feeders (Fig. 3). Selective deposit 

feeders and epistrate feeders form a small fraction of the nematode community in all depth 

layers. At Site 2, two feeding types are well represented: non-selective deposit feeders and 

predators/omnivores. Selective deposit feeders were only important in deeper layers. At Site 3, 

the communities inhabiting the top layers (to about 1.5 cm) are dominated by the 

predator/omnivore Enoploides longispiculosus. The deeper layers, from 2 cm onwards are 

characterised by the dominance of the non-selective deposit feeder, Theristus blandicor. The 

changes in trophic strategy with depth reflect the change in single species dominance at Site 3. 

 

Diversity 
 

For total (integrated depth layers) number of species (N0), a significant difference (p ≤ 0.05) 

was found between Site 2 and 3 (Table 3). No significant differences between sites existed for 

N1 diversity. The ANOVA ‘split-plot’ analysis demonstrated significant differences between 

the three sites with respect to the variation in diversity with depth (Fig. 3, Table 5). Site 3 is 

clearly different from the other sites. At Site 3, N0 and N1 are low at the surface of the 

sediment and a maximum diversity exists at around 3 to 4 cm depth precisely where there is a 

change from a surface community to a deeper community. At Sites 1 and 2, species diversity 

within the sediment exhibited a different profile. At both sites, diversity was highest at the 

sediment surface and decreased with depth. At Site 2, there was a sharper decrease of diversity 

below 8 cm compared to Site 1; this can be linked to a decrease in density.  

At Site 1 there was positive correlation between diversity and chlorophyll a, silt and a 

negative correlation between medium sand content (Table 6). At Site 2, diversity was 

positively correlated with chlorophyll a and silt content. At Site 3, no significant correlations 

were found between diversity and any of the environmental factors. 
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  Site 1 Site 2 Site 3 
  Spearman R p Spearman R p Spearman R p 

Chlorophyll a N0  diversity 0.865 0.003 0.728 0.026 0.134 0.731 
Chlorophyll a N1  diversity 0.762 0.017 0.711 0.032 0.251 0.515 

Organic C N0  diversity 0.470 0.202 0.117 0.764 -0.287 0.454 
Organic C N1  diversity 0.371 0.325 0.134 0.731 -0.226 0.558 

Silt N0  diversity 0.848 0.004 0.828 0.006 -0.444 0.232 
Silt N1  diversity 0.895 0.001 0.862 0.003 -0.326 0.391 

Fine sand N0  diversity -0.136 0.728 0.142 0.715 0.251 0.515 
Fine sand N1  diversity -0.134 0.731 0.126 0.748 0.318 0.404 

Medium sand N0  diversity -0.763 0.017 -0.176 0.651 -0.159 0.683 
Medium sand N1  diversity -0.828 0.006 -0.192 0.620 -0.226 0.559 

       

Table 6. Spearman Rank Order Correlations for the three sites 
 

 

Discussion 
 
Nematode densities 
 

Previous studies addressing nematode community structure on intertidal flats, deal with 

diversity, distribution on different scales and production (Ott 1972, Warwick & Price 1979, 

Van Es et al. 1980, Hogue & Miller 1981, Joint et al. 1982, Pickney & Sandulli 1990). In 

general, extremely high abundances of meiofauna, with nematodes always the dominant 

taxon, are characteristic of sheltered muddy regions of estuaries (Heip et al. 1985). This study 

shows a significant difference in total nematode abundance between the muddy site (Site 2, 

lowest densities) and Site 1, which has fine sandy sediment with high silt content and the 

highest nematode densities. The higher densities in Site 1, together with the higher benthic 

primary production (Herman et al. 2001), the higher autotrophic biomass (Hamels et al. 1998) 

and the larger macrobenthos stock (Herman et al. 2000), all point to a higher productivity in 

Site 1. This site is located at the border of the tidal flat and the open water and it is therefore 

exposed to stronger hydrodynamic forces compared to Site 2 (Widdows et al. 2000). As such 

it is likely that the input and output of fresh organic material may be larger and is the basis of 

the highly productive system. 

Also the presence of macrofauna may affect the nematode densities although in different 

ways. Besides alterations of the chemical and physical properties of the sediment by 

macrobenthos, their effect be also linked to feeding activities (e.g. Ólafsson et al. 1993, 
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Austen et al. 1998). Site 3, and in minor degree, Site 1, with higher current velocities and 

bottom shear stress (Van De Koppel et al. 2001) are characterised by higher densities of 

surface deposit feeders, while Site 2, where sedimentation rates were high (Schmidt et al. 

1999 in Herman et al. 2001), is characterised by suspension feeders (Herman et al. 2001). 

Deposit feeders may have a predatory effect due to coincidental consumption of nematodes 

whilst feeding. Alternatively, the disturbance activity may stimulate microbial growth and 

increased sediment oxygenation, providing an increase in food and spatial resources, which in 

turn stimulated the nematodes (Reise 1983). Suspension feeders may stimulate nematode 

abundance through biodeposition of organic carbon. However it remains unclear what the 

macrofauna-meiofauna interaction is at the Molenplaat. 

The differences in sediment characteristics, hydrodynamical conditions (reflected by current 

velocity and bottom shear stress) and productivity did not affect diversity of the three 

investigated sites and only partially total nematode abundance (only two of the three sites 

differed in nematode abundance). Detailed investigation of vertical depth profiles however, 

revealed differences that may relate to environmental factors. 

Generally, the vertical distribution pattern of nematodes in silty sediments is well established: 

abundances are extremely high at the sediment surface or subsurface and subsequently 

decrease steeply with depth (for an overview, see Heip et al. 1985). This trend was evident in 

Site 1 and was even more pronounced in Site 2 of the Molenplaat. In the more sandy 

conditions of Site 3, nematode abundance remains generally lower and fluctuates greatly with 

depth. Oxygen penetration and the occurrence of sulphide have been coupled many times to 

the depth distribution of nematodes (Platt 1977, Heip et al. 1985, Giere 1993, Hendelberg & 

Jensen 1993, Wetzel et al. 1995). In the sediment of Site 3, which is highly bioturbated by 

macrobenthos, oxygen penetration might be several centimetres in the proximity of burrows, 

whereas Site 2 is the least bioturbated (pers. comm. C. Barranguet).  Besides a number of 

biotic (e.g. resource availability and distribution) and abiotic (e.g. compaction of sediment) 

interactions, oxygen distribution is thought to be one of the important regulating factors in 

explaining the obvious discrepancy in vertical distribution patterns on the Molenplaat. 

 

 

Community composition 
 

Some studies have dealt with the vertical distribution of free-living nematodes at the species 

level (e.g. Joint et al. 1982, Blome 1983, Warwick & Gee 1984, Jensen 1987, Hendelberg & 
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Jensen 1993, Soetaert et al. 1994, Steyaert et al. 1999). From these studies it is clear that some 

nematode species show a consistent depth distribution in different areas, which suggests 

species-specific depth preferences. As the auto-ecological information on free-living 

nematodes is still very scarce, the causal factors for this depth preference are not yet 

completely clear. It has been suggested that the biogeochemical properties of the sediment 

might control the depth distribution of some species (Jensen 1981, 1987, Bouwman et al. 

1984, Platt & Lambshead 1985, Jensen & Aagaard 1992, Steyaert et al. 1999). This might 

explain the surface dominated community of the silty sediment (Site 2), where oxygen 

penetrated only into the upper millimetres of the sediment (pers.comm. C. Barranguet).  

The factors determining the vertical distribution in the fine sandy sediments may act in 

combination with biotic interactions. Joint et al. (1982) argued that interspecific competition 

gives rise to vertical niche segregation. As such, fine scale vertical stratification may play a 

role in allowing species with similar food requirements and feeding behaviour to co-exist in 

the same locality. This study supports this finding for the highly productive system of Site 1. 

Here, a gradual shifting of the nematode community was recorded, as a result of the 

succession of maximum density peaks of dominant species with depth. This sediment was 

characterised by a high percentage of non-selective deposit feeders (e.g. Theristus blandicor, 

Ascolaimus elongatus, Eleutherolaimus amasi, Theristus pertenuis). 

In the sediment of Site 3, two vertically segregated species assemblages were observed. The 

upper assemblage (to about 1.5 cm depth) was dominated by Enoploides longispiculosus. The 

lower assemblage (below 2 cm) was dominated by T. blandicor and a number of less common 

species (Fig. 6). In earlier studies, these consistent depth profiles were also reported for some 

species: E. longispiculosus being a true surface-dweller (Soetaert et al. 1994) while T. 

blandicor, M. marinus, T. pertenuis and T. riemanni were considered as ‘deep-dwelling’ 

species (Blome 1983, Soetaert et al. 1994). The existence of these two vertically segregated 

assemblages on the Molenplaat is probably due to a combination of factors, of which the most 

important might be related to food preferences and the strong hydrodynamic regime at the site. 

As sediment granulometry appears to be of more importance in controlling the fauna in the 

upper sediment layers, the similarity of the deeper nematode communities - caused by the 

dominance of T. blandicor - at Sites 1 and 3 is particularly interesting. The environmental 

regime at depth seems to result in similar faunal assemblages irrespective of sediment 

granulometry. From its dominance in deeper sediment layers at Site 1 and 3 and the apparent 

lack of depth preference in Site 2 it can be concluded that T. blandicor persists in sediments 

with restrictive conditions for other nematode species. It appears that this species is capable of 
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surviving anoxic conditions and is able to exploit the available food resources at depth. Such 

life conditions have often been described for Sabatieria species, which are typical inhabitants 

for deeper sediment layers of muddy intertidal and subtidal sediments (Hendelberg & Jensen 

1993, Soetaert & Heip 1995, Steyaert et al. 1999). One Sabatieria species, S. pulchra, is also 

observed in this study. 

 

 

Diversity 
 

Nematode community diversity has been associated with sediment composition, oxygen, 

salinity, stress and organic enrichment (Giere 1993, Warwick & Clarke 1993, Soetaert et al. 

1994, Warwick et al. 1997, Austen et al. 1998, Essink & Keidel 1998, Steyaert et al. 1999). 

This study documented a high nematode species richness on a small area (the Molenplaat) of 

approximately 2-3 km². This high diversity may be largely the result of the heterogeneous 

geochemical and physical characteristics on the tidal flat. Moreover, the twofold difference in 

total (over the whole sediment column) number of species and averaged (over five replicates) 

total number of species per site, illustrates also the importance of small-scale effects. Thus, 

besides the mean differences, found on a large scale (between the three sites), local effects (on 

10-m scale) of sedimentological characteristics are evident.  

The difference in vertical profile of species richness found between Site 3 and both Site 1 and 

2, is expected as a result of the wider range of microhabitats available for meiofauna in sandy 

sediments (Site 3) compared to muddy sediments (Site 1 and 2) (Heip & Decraemer 1974). 

Within the sediment column diversity in Site 3 is strongly variable and is only high at a depth 

of 2 to 5 cm. These higher values can be explained by the occurrence of both species from the 

upper ‘Enoploides longispiculosus-community’ and the lower ‘Theristus blandicor-

community’. The lower diversity values in the uppermost layers of the sediment are related to 

low densities and probably result from the strong hydrodynamic regime and the tidal 

disturbance that prevail at the upper 2 cm of the sediment at Site 3 (Herman et al. 2000, 

Widdows et al. 2000). Therefore it is suggested that the hydrodynamic regime, which 

influences sediment granulometry, will predominantly affect the number of nematode species 

at the Molenplaat.  

In many studies, correlation tests have been used to illustrate possible relationships between 

meiobenthos, in particular nematodes and copepods, and possible food sources (e.g. Findlay 

1981, Blanchard 1990, Pickney & Sandulli 1990, Danovaro et al. 1995, 1996 Santos et al. 
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1996, Moens et al. 1999a, Steyaert et al. 1999). These studies considered, in most cases, 

horizontal variation. When visualising vertical distribution patterns in the sediment, 

correlations between individual nematode species or feeding types and biotic variables are in 

many cases misleading. Moreover, correlation does not imply causation. The vertical 

distributions of factors such as pigments, bacteria and nutrients often change with depth in the 

sediment. Therefore caution needs to be used when correlating depth profiles of different 

variables. In this study the diversity indices of Site 1 and 2, both sediments characterised by a 

high silt content, were positively correlated with this silt content. Such a strong positive 

correlation of diversity and silt content with depth has also been found in muddy sediments of 

the Belgian coastal zone (Steyaert et al. 1999). In general, sediment granulometry exerts an 

important influence on the diversity of nematode communities. On a broad, horizontal scale, 

coarser sediments will enhance nematode diversity by creating a broad range of microhabitats 

(Heip & Decraemer 1974). Diversity on a small spatial scale, within the sediment, is inversely 

related to the sediment granulometry of muddy sediments. The finer the sediment becomes, 

the more diverse the nematode community.  

 

 

Conclusions 
 
Differences in sediment composition in association with different hydrodynamic conditions at 

separate sites of an estuarine intertidal flat are reflected in total nematode abundances and in 

species composition. The heterogeneity was much higher at km than at m scales, at which 

level environmental conditions seemed more consistent. Species richness in combination with 

equitability did not differ among the three sites, when integrated over 20 cm depth in the 

sediment. In contrast, microscale vertical profile analysis illustrated the presence of three 

distinctly different distribution patterns of species associations on the tidal flat: (1) in sandy 

sediment under strong hydrodynamic and food-stressed conditions a surface-dwelling 

nematode community of mainly a large predatory enoplid was observed living above a deposit 

feeding xyalid - microlaimid community in deeper sediment layers. These extreme 

environmental conditions resulted in low density and diversity. Diversity was highest at the 

interface between the two vertically separated communities as a result of co-existence of 

species from the upper and lower community. (2) In the finest sediment most nematode 

species were confined to the surface layers. Only a few could occasionally penetrate into 
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deeper layers, resulting in a sharp decline in diversity and density with depth in the sediment. 

(3) At intermediate hydrodynamic and granulometric conditions there is a gradual shift from a 

diverse and abundant nematode community at the surface to a less diverse and less abundant 

one in the deeper sediment layers. The vertical changes in nematode composition resulted in a 

community similar to that found in the deeper sediment layers of the sandy site in terms of 

abundances, diversity and composition. Vertical profile analysis provides additional 

information over bulk sampling that is key to understanding horizontal patterns and their 

relation with environmental characteristics in nematode communities.  
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