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Abstract

We consider Hölder continuous circulant (2 × 2) matrix functions G1
2 de-

fined on the fractal boundary Γ of a Jordan domain Ω in R2n. The main
goal is to establish a Hilbert transform for such functions, within the
framework of Hermitean Clifford analysis. This is a higher dimensional
function theory centered around the simultaneous null solutions of two
first order vector valued differential operators, called Hermitean Dirac op-
erators. In [10] a Hermitean Cauchy integral was constructed by means
of a matrix approach using circulant (2× 2) matrix functions, from which
a Hilbert transform was derived in [8], all of this for the case of domains
with smooth boundary. However, crucial parts of the method used are not
extendable to the case where the boundary of the considered domain is
fractal. At present we propose an alternative approach which will enable
us to define a new Hermitean Hilbert transform in that case. As a con-
sequence, we are able to give necessary and sufficient conditions for the
Hermitean monogenicity of a circulant matrix function G1

2 in the interior
and exterior of Ω, in terms of its boundary value g1

2 = G1
2|Γ, extending in

this way also results of [4] and [2], where Γ is required to be Ahlfors-David
regular.
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1 Introduction

In engineering sciences, and in particular in signal analysis, the one–dimensional
Hilbert transform of a real signal u(t), depending on a one–dimensional time
variable t, has become a fundamental tool. For a suitable function or distribution
u(t) its Hilbert transform is given by the Cauchy Principal Value integral

H[u](t) = − 1
π

Pv
∫ +∞

−∞

u(τ)
τ − t

dτ

Though initiated by Hilbert, the concept of a ”conjugated pair” (u, H[u]), nowa-
days called a Hilbert pair, was developed mainly by Titchmarch and Hardy.
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The multidimensional approach to the Hilbert transform usually is a ten-
sorial one, involving the so–called Riesz transforms in each of the cartesian
variables separately. As opposed to this tensor approach, Clifford analysis (see
e.g. [11, 18, 24, 23, 25]) is particularly suited for a treatment of multidimen-
sional phenomena, encompassing all dimensions simultaneously as an intrinsic
feature. Clifford analysis essentially is a higher dimensional function theory of-
fering both a generalization of the theory of holomorphic functions in the com-
plex plane and a refinement of classical multidimensional harmonic analysis. In
the standard case, so–called Euclidean Clifford analysis focuses on monogenic
functions, i.e. null solutions of the rotation invariant vector valued Dirac opera-
tor ∂X =

∑m
j=1 ej ∂xj where (e1, . . . , em) is an orthonormal basis for the vector

space Rm underlying the construction of the real Clifford algebra R0,m. The
multidimensional Hilbert transform in the orthogonal Clifford framework and
the related theory of Hardy spaces are nowadays well established, see [25, 17, 9].
However we want to draw the attention on the paper [27] of Horváth who, to
our knowledge, was the first to define a vector valued Hilbert transform using
Clifford algebra.

More recently Hermitean Clifford analysis has emerged as yet a refinement
of the Euclidean setting, for the case of R2n ∼= Cn. Here, Hermitean monogenic
functions are considered, i.e. functions taking values in the complex Clifford
algebra C2n and being simultaneous null solutions of two complex Hermitean
Dirac operators, which are invariant under the action of the unitary group.
The study of complex Dirac operators (also in other settings) was initiated in
[30, 29, 31]; however, a systematic development of the Hermitean function the-
ory is still in full progress, see e.g. [15, 6, 7, 14, 12, 2, 4, 5, 3].

In [8] a new Hermitean Hilbert transform is introduced, arising naturally as
a part of non-tangential boundary limit of a Hermitean Cauchy integral con-
structed in [10] for domains with C∞ smooth boundaries, using a matrix ap-
proach with circulant (2×2) matrix functions. More recently, see [2], the above
operators were redefined in the context of Ahlfors-David surfaces and applied
to solve boundary value problems for Hermitean monogenic matrix functions.
The case of fractal boundaries, however, is not covered by the method developed
there.

In this paper we introduce an alternative way of defining the Hermitean
matrix Hilbert transform over a fractal surface which bounds a Jordan domain.
We study its properties and apply them to solve boundary value problems for
Hermitean monogenic matrix functions in fractal domains. As a consequence,
also some results of [2] are extended to this more general context.

2 Preliminaries

2.1 The Hermitean Clifford analysis setting

Let (e1, . . . , em) be an orthonormal basis of Euclidean space Rm and consider
the complex Clifford algebra Cm constructed over Rm. The non-commutative
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multiplication in Cm is governed by the rules:

e2
j = −1, j = 1, . . . ,m

ejek + ekej = 0, j 6= k

Cm is then generated additively by elements of the form eA = ej1 . . . ejk
, where

A = {j1, . . . , jk} ⊂ {1, . . . ,m} with j1 < · · · < jk, while for A = ∅, one puts
e∅ = 1, the identity element. Any Clifford number λ ∈ Cm may thus be writ-
ten as λ =

∑
A λAeA, λA ∈ C, its Hermitean conjugate λ† being defined by

λ† =
∑

A λc
A eA, where the bar denotes the real Clifford algebra conjugation,

i.e. the main anti-involution for which ej = −ej , and λc
A stands for the complex

conjugate of the complex number λA. Euclidean space Rm is embedded in the
Clifford algebra Cm by identifying (x1, . . . , xm) with the real Clifford vector X
given by X =

∑m
j=1 ejxj , for which X2 = − < X,X >= −|X|2. The Fischer

dual of X is the vector valued first order Dirac operator ∂X =
∑m

j=1 ej ∂xj
,

factorizing the Laplacian: ∆m = −∂2
X ; it underlies the notion of monogenicity

of a function, the higher dimensional counterpart of holomorphy in the complex
plane. The considered functions are defined on (open subsets of) Rm and take
values in the Clifford algebra Cm. They are of the form g =

∑
A gAeA, with

gA complex valued. Whenever a property such as continuity, differentiability,
etc. is ascribed to g it is meant that all components gA show that property. A
Clifford algebra valued function g, defined and differentiable in an open region
Ω of Rm, is then called (left) monogenic in Ω iff ∂Xg = 0 in Ω.

The transition from Euclidean Clifford analysis as described above to the
Hermitean Clifford setting is essentially based on the introduction of a complex
structure J , i.e. an SO(m) element, satisfying J2 = −1m. Since such an element
can not exist when the dimension of the vector space is odd, we put m = 2n
from now on. In terms of the chosen orthonormal basis, a possible realization
of the complex structure is J [e2j−1] = −e2j and J [e2j ] = e2j−1, j = 1, . . . , n.
Two projection operators ± 1

2 (12n ± iJ) associated to J then produce the main
objects of Hermitean Clifford analysis by acting upon the corresponding objects
in the Euclidean setting, see [6, 7]. The vector space C2n thus decomposes as
W+⊕W− into two isotropic subspaces. The real Clifford vector is now denoted

X =
n∑

j=1

(e2j−1x2j−1 + e2jx2j)

with the corresponding Dirac operator

∂X =
n∑

j=1

(e2j−1∂x2j−1 + e2j∂x2j
)

while we will also consider their so-called ’twisted’ counterparts, obtained through
the action of J , i.e.

X| =
n∑

j=1

(e2j−1x2j − e2jx2j−1)

∂X| =
n∑

j=1

(e2j−1∂x2j
− e2j∂x2j−1)
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As was the case with ∂X , a notion of monogenicity may be associated in a
natural way to ∂X| as well. The projections of the vector variable X on the
spaces W± then yield the Hermitean Clifford variables Z and Z†, given by

Z =
1
2

(X + iX|) and Z† = −1
2

(X − iX|)

and those of the Dirac operator ∂X yield (up to a factor) the Hermitean Dirac
operators ∂Z and ∂Z† , given by

∂Z = −1
4
(∂X − i ∂X|) and ∂Z† =

1
4
(∂X + i ∂X|)

The Hermitean vector variables and Dirac operators are isotropic, i.e. (Z)2 =
(Z†)2 = 0 and (∂Z)2 = (∂Z†)2 = 0, whence the Laplacian allows for the de-
composition ∆2n = 4 (∂Z∂Z† + ∂Z†∂Z). These objects lie at the core of the
Hermitean function theory by means of the following definition (see e.g. [6, 15]).

Definition 1 A continuously differentiable function g in Ω ⊂ R2n with values
in C2n is called left Hermitean monogenic (or left h-monogenic) in Ω, iff it
satisfies the system ∂Zg = 0 = ∂Z†g or the equivalent system ∂Xg = 0 = ∂X|g.

In a similar way right h-monogenicity is defined. Functions which are both left
and right h-monogenic are called two-sided h-monogenic. The above definition
inspires the statement that h-monogenicity constitutes a refinement of mono-
genicity, since h-monogenic functions (either left or right) are monogenic w.r.t.
both Dirac operators ∂X and ∂X|.

2.2 The transition to a circulant matrix approach

The fundamental solutions of the Dirac operators ∂X and ∂X| are respectively
given by

E(X) = − 1
a2n

X

|X|2n
, E|(X) = − 1

a2n

X|
|X|2n

, X ∈ R2n \ {0}

where a2n denotes the surface area of the unit sphere in R2n. Introducing the
functions

E(Z) = − (E + i E|) =
2

a2n

Z

|Z|2n and E†(Z) = (E − i E|) =
2

a2n

Z†

|Z|2n

these are not the fundamental solutions to the respective Hermitean Dirac oper-
ators ∂Z and ∂Z† . However, introducing the particular circulant (2×2) matrices

D(Z,Z†) =
(

∂Z ∂Z†

∂Z† ∂Z

)
, E =

(
E E†
E† E

)
and δ =

(
δ 0
0 δ

)
,

where δ is the Dirac delta distribution, one obtains that

D(Z,Z†)E(Z) = δ(Z)
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so that E may be considered as a fundamental solution of D(Z,Z†) in a matricial
context, see e.g. [8, 10, 29]. Moreover, the Dirac matrix D(Z,Z†) in some sense
factorizes the Laplacian, since

4 D(Z,Z†)

(
D(Z,Z†)

)† =
(

∆2n 0
0 ∆2n

)
≡ ∆

where ∆2n is the usual Laplace operator in R2n. This observation has lead to
the idea of following a matrix approach in order to establish integral represen-
tation formulae in the Hermitean setting, see [10, 13]. Moreover, it inspired the
following definition.

Definition 2 Let g1, g2 be continuously differentiable functions defined in Ω
and taking values in C2n, and consider the matrix function

G1
2 =

(
g1 g2

g2 g1

)
Then G1

2 is called left (respectively right) H-monogenic in Ω if and only if it
satisfies in Ω the system D(Z,Z†) G1

2 = O (respectively G1
2 D(Z,Z†) = O). Here

O denotes the matrix with zero entries.

Note that the H-monogenicity of the matrix function G1
2 does not imply the

h-monogenicity of its entry functions g1 and g2. However, choosing g1 = g
and g2 = 0, the H-monogenicity of the corresponding diagonal matrix, denoted
G0, is equivalent to the h-monogenicity of the function g. Moreover, calling
a matrix function G1

2 harmonic iff it satisfies the equation ∆[G1
2] = O, each

H-monogenic matrix function G1
2 turns out to be harmonic, whence its entries

are harmonic functions in the usual sense.

Notions of continuity, differentiability and integrability of G1
2 are introduced

through the corresponding notions for its entries. In particular, we will need
to define in this way the classes C0,ν(E) and Lp(E) of, respectively, Hölder
continuous and p-integrable circulant matrix functions over some suitable subset
E of R2n. However, introducing the non-negative function

‖G1
2(X)‖ = max{|g1(X)|, |g2(X)|}

these classes of circulant matrix functions may also be defined by means of the
traditional conditions

‖G1
2(X)−G1

2(Y )‖ ≤ c|X − Y |ν , X, Y ∈ E

and ∫
E

‖G1
2(X)‖p < +∞

respectively. From now on we denote by c a generic positive constant, which
can take different values.

2.3 Box dimension and d-summable sets in R2n

Let E be an arbitrary subset of R2n. Then for any s ≥ 0 its Hausdorff measure
Hs(E) may be defined by

Hs(E) = lim
δ→0

inf

{ ∞∑
k=1

(diam Bk)s : E ⊂
∞⋃

k=1

Bk, diam Bk < δ

}
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the infimum being taken over all countable δ-coverings {Bk} of E with open or
closed balls. For s = 2n, the Hausdorff measure H2n coincides, up to a positive
multiplicative constant, with the Lebesgue measure L2n in R2n. Now, let E be
compact. The Hausdorff dimension αH(E) of E is then defined as the infimum
of all s ≥ 0 such that Hs(E) < +∞. For more details concerning the Hausdorff
measure and dimension we refer to [20, 21]. Frequently however, see [28], the
so-called box dimension is used, defined for a compact set E ⊂ R2n as

α(E) = lim
ε→0

sup
log NE(ε)
− log ε

where NE(ε) stands for the minimal number of ε-balls needed to cover E. Note
that the limit above remains unchanged if NE(ε) is replaced by the number of
k-cubes, with 2−k ≤ ε < 2−k+1, intersecting E. A cube Q is called a k-cube if
it is of the form [l12−k, (l1 + 1)2−k]× · · · × [l2n2−k, (l2n + 1)2−k], where k and
l1, . . . , l2n are integers. The box dimension and the Hausdorff dimension of a
given compact set E can be equal, which is for instance the case for the so-called
(2n − 1)-rectifiable sets (see [22]), but in general we have that αH(E) ≤ α(E).
The following geometric notion was in [26], and is essential in their method of
integrating a form over a fractal boundary.

Definition 3 The compact set E is said to be d-summable iff the improper
integral

∫ 1

0
NE(x) xd−1 dx converges.

Lemma 1 It holds that

(i) any d-summable set E has box dimension α(E) ≤ d;
(ii) if α(E) < d, then E is d-summable;
(iii) if E is d-summable, then it is also (d + ε)-summable for every ε > 0.

In what follows, we will take Ω ⊂ R2n to be a Jordan domain, i.e. a bounded
oriented connected open subset of R2n, the boundary Γ of which is a compact
topological surface. For our purpose, we will assume that the Hausdorff and box
dimensions of Γ satisfy 2n − 1 ≤ αH(Γ) ≤ α(Γ) < 2n. Note that this includes
the case when Γ is fractal in the sense of Mandelbrot, i.e. when 2n−1 < αH(Γ).
Under these conditions, there will always exist d ∈ [2n − 1, 2n[ such that Γ is
d-summable, see Lemma 1.

We will also need the so-called Whitney decomposition of Ω, which we will
only recall briefly; for details we refer to [32]. Consider the lattice Z2n in R2n and
the collection of closed unit cubes defined by it; let M1 be the mesh consisting
of those unit cubes having a non-empty intersection with Ω. We then recursively
define the meshes Mk, k = 2, 3, . . ., each time bisecting the sides of the cubes of
the previous one. The cubes in Mk thus have side length 2−k+1 and diameter
|Q| =

√
2n2−k+1. We then define, for k = 2, 3, . . .,

W1 = {Q ∈M1 | all neighbour cubes of Q belong to Ω}
Wk = {Q ∈Mk | all neighbour cubes of Q belong to Ω, and

6 ∃Q∗ ∈ Wk−1 : Q ⊂ Q∗}

6



for which it can be proven that

Ω =
+∞⋃
k=1

Wk =
+∞⋃
k=1

⋃
Q∈Wk

Q ≡
⋃

Q∈W
Q

all cubes Q in the Whitney decomposition W of Ω having disjoint interiors. We
then have the following relation between the d-summability of the boundary Γ
and the Whitney decomposition of Ω.

Lemma 2 [26] If Ω is a Jordan domain of R2n and its boundary Γ is d-
summable, then the expression

∑
Q∈W |Q|d, called the d-sum of the Whitney

decomposition W of Ω, is finite.

3 A Hermitean Hilbert transform on d-summable
surfaces

For further use, we introduce the notations Ω+ ≡ Ω, and Ω− ≡ R2n \ Ω. From
now on we reserve the notations Y and Y | for Clifford vectors associated to
points in Ω±, while their Hermitean counterparts are denoted by V = 1

2 (Y +i Y |)
and V † = − 1

2 (Y − i Y |). By means of the above matrix approach, the following
Hermitean Borel-Pompeiu formula was established in [10], however for the case
of a domain with smooth boundary.

Theorem 1 Let Ω be a Jordan domain in R2n with piecewise C∞ smooth
boundary Γ, and let G1

2 ∈ C(Ω; C2n). It then holds that

CΓG1
2(Y ) + T ΩD(Z,Z†)G

1
2(Y ) =

{
(−1)

n(n+1)
2 (2i)nG1

2(Y ), Y ∈ Ω+

0, Y ∈ Ω−

where CΓG1
2 is the Hermitean Cauchy integral, given by

CΓG1
2(Y ) =

∫
Γ

E(Z − V )N(Z,Z†)G
1
2(X) dH2n−1, Y ∈ Ω±

The circulant matrix

N(Z,Z†) =
(

N −N†

−N† N

)
contains (up to a constant factor) the Hermitean projections N and N† of the
unit normal vector n(X) at the point X ∈ Γ. Furthermore, T Ω denotes the
Hermitean Téodorescu transform, given for F 1

2 ∈ C1(Ω) by

T ΩF 1
2(Y ) = −

∫
Ω

E(Z − V )F 1
2(X) dW (Z,Z†)

where dW (Z,Z†) is the associated volume element, given by

dV (X) = (−1)
n(n−1)

2

(
i

2

)n

dW (Z,Z†)

reflecting integration in the respective underlying complex planes.
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Based on the above definition of the Hermitean Cauchy integral, which is in
fact defined for any G1

2 ∈ L2(Γ), a matricial Hermitean Hilbert transform was
introduced in [8], by taking non-tangential boundary limits.

Theorem 2 Let Ω be a Jordan domain in R2n with piecewise C∞ smooth
boundary Γ, and let G1

2 ∈ L2(Γ). Then the non–tangential boundary values
of the Hermitean Cauchy integral CΓG1

2 are given by

lim
Y→U

Y ∈Ω±

C[G1
2](Y ) = (−1)

n(n+1)
2 (2i)n

(
±1

2
G1

2(U) +
1
2

H[G1
2](U)

)
, U ∈ Γ

which take the form of the usual Plemelj-Sokhotski formulae and where H is the
matrix operator

H =
1
2

(
H + H| −H + H|

−H + H| H + H|

)
defined in terms of the Clifford-Hilbert operator H and its twisted analogue H|.

It was also shown that H has all usual properties of a Hilbert operator.

In [1], the result of Theorem 1 was extended to the case of domains with
d-summable surface, by means of the following definition.

Definition 4 Let Ω be a Jordan domain in R2n with d-summable boundary Γ,
with d ∈ [2n−1, 2n[. Let moreover d−2n+1 < ν ≤ 1 and consider G1

2 ∈ C0,ν(Γ).
Then, for Y ∈ R2n \ Γ the Hermitean Cauchy integral of G1

2 is defined by

(C∗ΓG1
2)(Y ) = (−1)

n(n+1)
2 (2i)nχΩ(Y )G̃

1

2(Y )− T ΩD(Z,Z†)G̃
1

2(Y ) (1)

χΩ being the diagonal matrix version of the associated standard characteristic
function χΩ of Ω.

Here, G̃
1

2 denotes a Whitney type extension of G1
2, as meant in the extension

theorem below, see [32].

Theorem 3 (Whitney Extension Theorem) Let E ⊂ R2n be compact and

G1
2 ∈ C0,ν(E). Then, there exists a compactly supported matrix function G̃

1

2

satisfying

(i) G̃
1

2|E = G1
2;

(ii) G̃
1

2 ∈ C∞(R2n \E);

(iii) ‖D(Z,Z†) G̃
1

2(X)‖ ≤ cdist(X,E)ν−1, for X ∈ R2n \E.

Direct verification shows that C∗ΓG1
2, being Hermitean monogenic in R2n \ Γ,

vanishes at infinity, while, in cases where Γ is sufficiently regular (e.g. Ahlfors-
David regular), the Hermitean Cauchy integral (1) reduces to the one considered
in [2]. Furthermore, Definition 4 is legitimate, since the right hand side of (1)
exists for any Y ∈ R2n \ Γ and does not depend on the particular choice of the

Whitney type extension G̃
1

2. A proof of this last assertion can be found in [1].
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A natural question is whether C∗ΓG1
2 admits a continuous extension to Ω =

Ω∪Γ, in which case, following the traditional structure of the Plemelj-Sokhotski
formulae, a ”fractal” Hermitean Hilbert transform could be introduced as fol-
lows:

H∗
ΓG1

2(X) = 2
(−1)

n(n+1)
2

(2i)n
(C∗ΓG1

2)
+(X) − G1

2(X), X ∈ Γ (2)

(C∗ΓG1
2)

+ denoting the trace on Γ of the continuous extension of C∗ΓG1
2 to Ω.

Definition (2) would then provide an alternative for the matricial Hermitean
Hilbert transform H introduced in [8] for domains with C∞ smooth boundaries,
see Theorem 2 above. Now, under an additional condition on the regularity
of the considered matrix function G1

2, this question indeed has an affirmative
answer, as stated in the following theorem.

Theorem 4 Let Ω be a Jordan domain in R2n with d-summable boundary Γ,
with d ∈ [2n − 1, 2n[. Furthermore, let d − 2n + 1 < ν ≤ 1 and consider
G1

2 ∈ C0,ν(Γ). If moreover

ν >
d

2n
(3)

then C∗ΓG1
2(X) admits a continuous extension to Ω. Moreover, it then holds that

the Hilbert transform H∗
ΓG1

2, defined by (2), belongs to C0,µ(Γ), whenever

µ <
2nν − d

2n− d

Proof.
Since ν > d

2n implies that 2n < 2n−d
1−ν , we may choose p such that 2n < p < 2n−d

1−ν .

We will now first show, for any such p, that D(Z,Z†)G̃
1

2 ∈ Lp(Ω). To this end,
let W =

⋃∞
k=1Wk be the Whitney decomposition of Ω. Then we have∫

Ω

‖D(Z,Z†)G̃
1

2(Y )‖p =
∑

Q∈W

∫
Ω

‖D(Z,Z†)G̃
1

2(Y )‖p

≤ c
∑

Q∈W

∫
Q

dist(Y ,Γ)−p(1−ν)dV (Y )

the last inequality following from Theorem 3(iii). By construction of the Whit-
ney decomposition of Ω, we have that, for any Q ∈ W,

dist(Y ,Γ) ≥ |Q|√
2n

, ∀Y ∈ Q

see also [32], whence∫
Ω

‖D(Z,Z†)G̃
1

2(Y )‖p ≤ c
∑

Q∈W
|Q|2n−p(1−ν)

The finiteness of the last sum follows, on account of Lemma 2, from the d-
summability of Γ, together with the fact that 2n − p(1 − ν) > d. Hence we

indeed have that D(Z,Z†)G̃
1

2 ∈ Lp(Ω), so that the integral term in (1), viz

Φ(Y) = T ΩD(Z,Z†)G̃
1

2(Y)
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represents a continuous function in R2n, see e.g. [23]. This clearly forces C∗ΓG1
2(X)

to admit a continuous extension to Ω, whence H∗
ΓG1

2 is well defined. Moreover,
Φ ∈ C0,p−2n

p (R2n), which implies that H∗
ΓG1

2 ∈ C0,µ(Γ) for any µ satisfying
µ < 2nν−d

2n−d . �

Remark 1 Observe that, still under condition (3), H∗
ΓG1

2 may be rewritten as

H∗
ΓG1

2(X) = G1
2(X)− 2

(−1)
n(n+1)

2

(2i)n
T ΩD(Z,Z†)G̃

1

2(X)

on account of Theorem 1.

Remark 2 Similar results may be obtained for the case of right-hand versions
of the above Hermitean Cauchy integrals and Hilbert transforms. To that end
we only need to introduce the alternative definitions

(G1
2H

∗
Γ)(X) = G1

2(X)− 2
(−1)

n(n+1)
2

(2i)n
(G̃

1

2D(Z,Z†)T Ω)(X)

and

(G1
2C

∗
Γ)(Y ) = (−1)

n(n+1)
2 (2i)nχΩ(Y )G̃

1

2(Y )− (G̃
1

2D(Z,Z†)T Ω)(Y )

where for a matrix function F 1
2

(F 1
2T Ω)(Y ) = −

∫
Ω

F 1
2(X)E(Z − V )dW (Z,Z†)

4 Boundary value theory

In what follows, we will assume Γ to be d-summable with 2n− 1 ≤ d < 2n and
we will take ν ∈]d− 2n + 1, 1] such that condition (3) is fulfilled.

4.1 Criteria for Hermitean monogenicity

Theorem 5 Let G1
2 ∈ C0,ν(Ω) with trace g1

2 = G1
2|Γ. Then the following state-

ments are equivalent:

(i) G1
2 is H-monogenic in Ω;

(ii) G1
2 is harmonic in Ω and H∗

Γg1
2 = g1

2.

Proof.
Assume G1

2 to be H-monogenic in Ω, then it also is harmonic in Ω. Now, let

G̃
1

2 be a Whitney type extension of G1
2 ∈ C0,ν(Ω). Since D(Z,Z†)G

1
2 = O, we

have that G̃
1

2 also is a Whitney type extension of g1
2 = G1

2|Γ, whence we may
use it when applying Definition 4 for C∗Γg1

2. We obtain

C∗Γg1
2(Y ) = (−1)

n(n+1)
2 (2i)nG1

2(Y ), Y ∈ Ω (4)

10



Next, we conclude from (4) that

(C∗Γg1
2)

+(X) = (−1)
n(n+1)

2 (2i)ng1
2(X)

from which we eventually obtain that H∗
Γg1

2 = g1
2. Conversely, assume (ii) to

hold, and define

Ψ =
{ C∗Γg1

2(Y ), Y ∈ Ω,

(−1)
n(n+1)

2 (2i)ng1
2(X), X ∈ Γ

Clearly the function Ψ is H-monogenic, and hence harmonic in Ω. For X ∈ Γ,
it follows that

(C∗Γg1
2)

+(X) = (−1)
n(n+1)

2 (2i)ng1
2(X)

since H∗
Γg1

2 = g1
2. Therefore, Ψ also is continuous on Ω. On the other hand, as

G1
2 −Ψ is harmonic in Ω and (G1

2 −Ψ)|Γ = 0, we have that G1
2(Y ) = C∗Γg1

2(Y )
for Y ∈ Ω. This clearly forces G1

2 to be H-monogenic in Ω. �

Remark 3 Observe that the above formula (4) constitutes a small improvement
of [1, Theorem 4], where it is a priori assumed that G1

2 ∈ C1(Ω).

For right H-monogenic functions the following analogue is obtained.

Theorem 6 Let G1
2 ∈ C0,ν(Ω) with trace g1

2 = G1
2|Γ. Then the following state-

ments are equivalent:

(i) G1
2 is right H-monogenic in Ω;

(ii) G1
2 is harmonic in Ω and g1

2H
∗
Γ = g1

2.

4.2 A conservation law for two-sided H-monogenic func-
tions

This subsection is devoted to establishing a connection between the two-sided H-
monogenicity of a matrix function G1

2 in Ω and the Hermitean Hilbert transforms
of its trace on Γ. The result established here extends the so-called ”conservation
law” obtained in [2] to the present more general context of fractal domains.

Theorem 7 Let G1
2 ∈ C0,ν(Ω) with trace g1

2 = G1
2|Γ be left H-monogenic in Ω.

Then the following statements are equivalent:

(i) G1
2 is two-sided H-monogenic in Ω;

(ii) H∗
Γg1

2 = g1
2H

∗
Γ.

Proof.
Assume that G1

2 is two-sided H-monogenic in Ω. Then, a combination of the
Theorems 5 and 6 yields

H∗
Γg1

2 = g1
2 = g1

2H
∗
Γ

Conversely, assume that H∗
Γg1

2 = g1
2H

∗
Γ. From the assumed left H-monogenicity

of G1
2, we have on account of (4), that

(−1)
n(n+1)

2 (2i)nG1
2 = C∗Γg1

2, in Ω

11



Consequently, for X ∈ Γ we have

(−1)
n(n+1)

2 (2i)ng1
2(X) = (C∗Γg1

2)
+(X)

=
1
2
(−1)

n(n+1)
2 (2i)n

(
g1

2(X) + H∗
Γg1

2(X)
)

or, equivalently, g1
2(X) = H∗

Γg1
2(X). In view of the assumption made, we thus

obtain that g1
2(X) = g1

2H
∗
Γ(X). The two-sided H-monogenicity of G1

2 in Ω is
now implied by Theorem 6. �
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