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Abstract:

Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool to investigate neural

conduction in motor processes. Most rTMS research has been conducted by targeting the primary motor cortex.

Several studies found also increased psychomotor speed after rTMS of the dorsolateral prefrontal cortex

(DLPFC). However, these studies were mainly performed in psychiatric patients, only targeting the left DLPFC,

and often without sham control. Moreover, psychomotor speed is mostly measured based on tasks that also

require higher executive functions.

Methods: Here, we examined the lateralized effect of one sham-controlled High Frequency (HF)-rTMS session

applied to the left or right DLPFC on fine motor function in thirty-six healthy right-handed females, using the

Fitts‘ paradigm.

Results: We found a significant improvement in psychomotor speed only after actively stimulating the right

DLPFC.

Conclusion: Our results support the assumption of a right prefrontal neural network implicated in visuomotor

behaviour and performance processes, and that the improvement in psychomotor speed is not a secondary effect

of decreased mood.
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1. Introduction

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique used to investigate neural

conduction. Depending on brain location and parameters of its delivery it can either activate or suppress motor,

sensory, or cognitive functions [1-4]. In single TMS and repetitive TMS (rTMS) studies, these

neurophysiological effects are not only dependent of the frequency used, but the net effects are also related to

hemispheric lateralization differences [5-7].

Most studies on healthy subjects examined the impact of TMS on motor functioning by targeting the

primary motor cortex [8-11]. In contrast to most other cortical areas, stimulating the motor cortex results in

immediate behavioural effects and these motor responses are relatively easy to detect visually or by motor

evoked potentials (MEP) [11]. Besides the high or low frequency effects on motor responses, rTMS exerts

different effects dependent on which hemispheric side of the motor cortex is stimulated [12].

The dorsolateral prefrontal cortex (DLPFC) is implied in complex motor planning, cognitive control

and goal maintenance. It plays an important role in cognitive regulation, behavioural action control and working

memory. The relationship of the DLPFC with executive-control adjustment suggests a pivotal in the dynamic

tuning of executive control and, consequently, in behavioural adaptation, within a neurocircuitry including motor

areas, anterior cingulate cortex (ACC) and subcortical circuits [13]. In line with this functional specialization,

many studies have shown that rTMS of the DLPFC has marked effects on higher cortical functions such as

attentional control, both in patients [14, 15] and healthy volunteers [16, 17]. Recent clinical studies in majorly

depressed patients showed a positive impact of high frequency (HF)-rTMS treatment on psychomotor symptoms

by targeting the left DLPFC [18, 19]. Importantly, studies in patients (e.g. depression, schizophrenia) using

experimental tasks found also increased psychomotor speed after rTMS of the DLPFC [4].

A first problem with these findings is that psychomotor speed is mostly measured based on tasks that

also require higher executive functions [4]. A second problem is that the improvement in psychomotor speed

might be a secondary effect of biological changes and decreased symptoms. Gender differences have also been

reported, with improvements observed only in woman [20]. Moreover, most patient studies only applied rTMS

to the left DLPFC, often without a sham control. In order to investigate the possible role of the DLPFC in pure

psychomotor functioning, a straightforward simple fine motor task should be used before and after rTMS of the

left and right DLPFC, using a sham controlled design, in a uniform sample of healthy volunteers. It is intriguing

that, to our best knowledge, there are currently no such studies.

Therefore, we wanted to further examine the lateralized effect of one HF-rTMS session applied to the

left versus right DLPFC on fine motor function in right-handed healthy subjects. To reduce gender and age

variability into the data only young healthy females in the same age range were selected. Two different but

comparable groups of healthy women were studied receiving one suprathreshold sham-controlled HF-rTMS

session applied to the left or right DLPFC. Effects on psychomotor speed were assessed applying the Fitts’ task

[21], a rater-independent fine motor task requiring precise sensori-motor programming, initiation and execution

of the muscle commands [22-24]. All participants also completed a Dutch version of the Profile of Mood States

(POMS [25]) just before (T1) and just after each HF-rTMS session (T2) to exclude interference of possible mood

changes on the Fitts’ task.Because this is the first study in healthy individuals examining the effect of one such a

HF-rTMS session delivered to the dorsolateral prefrontal cortices, we hypothesized that compared to sham one

real stimulation session would improve psychomotor speed regardless of lateralization.
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2. Methods

In accordance with the guidelines laid down in the declaration of Helsinki, the study was approved by

our ethics committee (UZBrussel). All subjects gave written informed consent and were financially

compensated. This study was part of a larger project investigating the effects of HF-rTMS on cognitive

functions.

For this ‘single’ blind sham-controlled crossover HF-rTMS study, in total thirty-six right-handed never-

depressed female students were recruited (mean Beck Depression Inventory [26] score= 2.05±2.03). Before

inclusion in the study, psychiatric disorders were excluded using the Mini-International Neuropsychiatric

Interview [27]. Exclusion criteria were current or past history of epilepsy, neurosurgical interventions, having

metal or magnetic objects in the brain, and being pregnant. A trained neurologist screened the MRI’s also used

for localization purposes for possible neurological disorders. No drugs were allowed, except birth-control pills.

Right-handedness was assessed with the Van Strien Questionnaire [28].

The female volunteers were randomized into two groups. One group received one sham-controlled HF-

rTMS over the left DLPFC (n=18, mean age= 21.20±1.44 years) and the other received one sham controlled HF-

rTMS over the right DLPFC (n=18, mean age= 24.50±2.49 years). For both groups we used a counterbalanced

cross-over design. If a given volunteer received first an active session, the second session was sham. The

volunteer receiving initially a sham session received active HF-rTMS the second time. To avoid carry-over

effects from the previous stimulation, the second session was planned after a one week interval. HF-rTMS (10

Hz) was applied at 110% MT (1560 pulses), by using a figure-of-eight-shaped double 70mm coil (Magstim

Company Limited, Wales, UK). For the sham condition, the coil was held at an angle of 90°. In order to

accurately target the left and the right DLPFC (Brodmann area 9/46), taking into account individual anatomical

brain differences, the precise stimulation site and position of the coil was determined using MRI non-stereotactic

guidance (see also [29]). Perpendicular to this point the precise stimulation site on the skull was marked and

stimulated. The study was conducted conform the current safety guidelines [30].

All participants were asked to complete a Dutch version of the POMS [25], a 32-item inventory that

assesses five mood dimensions: ‘depression’ (8 items: minimum score 0; maximum score 32), ‘fatigue’ (6 items:

minimum score 0; maximum score 24), ‘tension’ (6 items: minimum score 0; maximum score 24), ‘anger’ (7

items: minimum score 0; maximum score 28) and ‘vigor’ (5 items: minimum score 0; maximum score 20).

Ratings were made on four-point scales: a rating of 0 indicates a low level and a rating of 4 indicating a high

level for a given mood. These tests were taken just before (T1) and just after (T2) each stimulation session.

Just before and after stimulation, participants performed the Fitts’ task (Figure 1A; for a detailed

description see [31]). They received 2 trials consisting each of six pairs of circles to be connected. Participants

performed the Fitts’ task on sheets of paper placed on a digitizer (WACOM1218RE) in front of them, using a

pressure-sensitive inking ballpoint pen. Subjects had to connect two vertically placed circles, depicted on the

sheet of paper, by drawing a line of about one cm. They were instructed to start in the middle of the top circle

and to end in the middle of the lower circle, and to draw as quickly as possible. The accuracy of movement was

varied by changing the circle diameter from 0.50 cm (see a) in trial 1 to 0.25 cm (see b) in trial 2. Movement

time (MT) was recorded, i.e. the time between the start and the completion of each separate line drawing

movement. The movement times of inaccurate line drawings, i.e. when the line was drawn from the lower to the
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upper circle and/or when the start/endpoint of the connecting line was situated outside the circle diameter, were

not inserted in the analyses.

All results were analysed using the SPSS for Windows 16.0 software package. Statistical analyses were

performed using mixed (M)ANOVA’s. The significance level was set at p≤0.05 for all analyses. First, to

examine whether possible mood changes by the rTMS application could influence our results, mood changes

were analyzed with a mixed 2X2X2 MANOVA. Within-subject factors were Session (pre vs. post stimulation)

and Stimulation (active vs. Sham). The between-subjects factor was Group (left vs. right stimulation). The five

POMS mood scales were the multiple dependent variables.

To evaluate whether one sham-controlled HF-rTMS session influences psychomotor speed we

performed a 2X2X2 ANOVA with Session (pre vs. post stimulation) and Stimulation (real vs. sham) as within-

subject factor and Group (left vs. right stimulation) as between-subject factor. Mean movement time (MT) on the

Fitts’ task was the dependent variable.
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3. Results

3.1. Mood results

For an overview for all POMS subscales values see Table 1.

The MANOVA showed a significant main effect for Session (F(5, 30)= 4.25, p< .01), a trend towards

significance for Group (F(5, 30)= 2.45, p= .06), but not for Stimulation (F(5, 30)= 1.92, p=.12). Also the

interaction effects between Session and Group (F(5, 30)= 1.54, p= .21), between Stimulation and Group (F(5,

30)=.42, p= .83), and between Session and Stimulation (F(5, 30)=.65, p= .66) did not reach significance.

Importantly, The crucial interaction effect between Stimulation, Session and Group was not significant (F(5,

30)=1.46, p= .23).1

Therefore, it can be concluded that no significant mood changes occur after neither left nor right

dorsolateral prefrontal cortical HF-rTMS.

3.2. Fitts’ task

See also Table 2. Because MT values were not normally distributed, square root transformation was

used for data normalization. Mean MT values were analyzed using SPSS 16.0 (significance level p≤0.05). An

The 2X2X2 ANOVA with Stimulation (real vs. sham) and Session (pre vs. post stimulation) as within-

subject factor and Group (left vs. right stimulation) as between-subject factor showed no significant main effect

for Stimulation (F(1,34)<.01, p=.93) or for Group (F(1,34)=.06, p=.82). We observed a significant main effect

for Session (F(1,34)=18.47, p<.01). The interaction effects between Session and Stimulation (F(1,34)=2.03,

p=.16), between Stimulation and Group (F(1,34)=.29, p=.59) and between Session and Group (F(1,34)=1.87,

p=.18) were not significant. However, the crucial three-way interaction effect was significant (F(1,34)=4.33,

p=.045). To follow-up this interaction effect, separate ANOVA’s for each group were conducted

The ANOVA for the left-sided stimulated group showed no main effect for Stimulation (F(1,17)=.16,

p=.70). Although the main effect for Session was significant (F(1,17)=7.64, p=.01), the crucial interaction effect

between Stimulation and Session was not (F(1,17)=.36, p=.56).

The ANOVA for the right-sided stimulated groupshowed again no main effect for Stimulation

(F(1,17)=.14, p=.71) but the main effect for Session was significant (F(1,17)=11.16, p<.01). Here, the

interaction effect between Stimulation and Session reached significance (F(1,17)=4.41, p=.05). No active versus

sham stimulation MT differences were observed before stimulation (t(17)=.89, p=.39). Paired t-tests revealed a

significant improvement of MT only after real HF-rTMS (t(17)=3.38, p<.01), but not after sham (t(17)=.86,

p=.36).

1 To ensure that the absence of mood effects would not be related to power problems, we also performed
separate paired tests (pre vs. post stimulation) in the real and sham stimulation condition for both groups
separately and for each POMS subscale. No significant effects on mood were found (all p’s > .05)
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4. Discussion

We investigated the lateralized effect of one HF-rTMS session applied to the left versus right DLPFC

on fine motor function in right-handed healthy female subjects, using the Fitts’ task, which is designed to

evaluate sensori-motor programming, initiation and execution of the muscle commands, not requiring higher

order cognitive processes [31]. Firstly, one sham-controlled HF-rTMS session applied to the left or right DLPFC

did not result in a subjectively aware mood change in our healthy female subjects, which means that mood

changes cannot account for the effect.

Secondly, although stimulating the left DLPFC did not facilitate or inhibit fine motor performance,in

essence our results follow the findings of Grosbras and Paus [32], who reported a decrease in reaction times

predominantly after (single pulse) stimulation of the right frontal eye field (FEF) and not the left FEF, indicating

that TMS over the right FEF facilitates visual detection resulting in reduced reaction times. It has to be noted that

neuroanatomically the right DLPFC is closely connected with the right FEF (Brodmann area 8) [33].

Interestingly, Woolley and colleagues [34] reported that on a functional level the right visuomotor areas were

integrated with somatosensory guidance to produce well-coordinated movements. Further, in a recent study,

improved double pulse TMS induced motor response patterns were predominantly observed after stimulation of

the right primary motor cortex [35]. Here, the authors suggested that the goal-directed motor behaviour was

related to activation of the right anterior hemisphere.

In line with these assumptions, it has been stated that non-primary motor cortices are capable of

influencing motor cortical output [36]. On the other hand, although the repetitive stimulation of the motor

cortices in healthy individuals has revealed to influence motor performance, targeting the DLPFC did not always

result in similar motor effects [37]. Other methodological issues besides the targeted area, such as subthreshold

stimulation and a limited number of delivered pulses could, to some extent explain the discrepant results found

in HF-rTMS motor performance paradigms [38, 39]. In our current study, we used a suprathreshold HF-rTMS

design generating 1560 pulses per session which compares to a clinically more effective session performed in

depressed patients [40]. The choice of more potent HF-rTMS parameters might result in enhanced facilitatory

neuronal effects on surrounding cortical areas [41, 42]. However, without concomitant brain imaging techniques

these assumptions should be interpreted cautiously at this point.

Because heterogeneous subject sampling such as age and gender could be an important methodological

issue in TMS research, the choice of more ‘homogeneous’ group of young female right-handed subjects should

be considered as a major advantage [43]. Albeit we used a more ‘homogeneous’ sample of young female

subjects and targeted the DLPFC under 3D-MRI guidance, our study is limited in that the interpretation cannot

be generalized to a broader population. Further, although we observed no effect of sham stimulation, tilting the

coil at a 90° angle could have lead to a partially active effect [44].

In conclusion, stimulating the right DLPFC with one suprathreshold HF-rTMS session influenced fine

motor functioning in right-handed healthy females. Importantly, the observed effects on fine motor functioning

cannot be attributed to possible induced mood changes. Our current observations further extend the role of the

right DLPFC on fine motor functioning in healthy subjects. Because rTMS at a site distant from the motor cortex

can change the excitability of circuits intrinsic to the motor cortex [45], our findings support the assumption of a

right (dorsolateral) prefrontal neural network implicated in visuomotor behaviour and performance processes
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[46]. Future (r)TMS research should integrate brain imaging to further elucidate the neurobiological mechanisms

implicated in right prefrontal cortical control on fine motor functioning.
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Figure and Table legends

Fig 1. Visualization of the Fitts’ task.

Participants performed the Fitts’ task on sheets of paper placed on a digitizer (WACOM1218RE) in front of

them, using a pressure-sensitive inking ballpoint pen. Subjects had to connect two vertically placed circles,

depicted on a normal sheet of paper, by drawing a line of about one cm. They were instructed to start in the

middle of the top circle and to end in the middle of the lower circle, and to draw as quickly as possible. The

accuracy of movement was varied by changing the circle diameter from 0.50 cm (see upper circles) in trial 1 to

0.25 cm (see lower circles) in trial 2.
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Active HF-rTMS Sham HF-rTMS

T1 T2 T1 T2

Left DLPFC

POMS
Depression

.80 (2.07) ..25 (.64) .80 (1.96) .15 (.49)

POMS Anger 1.10 (1.94) 1.20 (3.00) 1.75 (1.97) .85 (1.50)

POMS Tension 1.25 (2.02) .15 (.49) 1.30 (2.54) .35 (.93)

POMS Fatigue 4.40 (4.62) 3.25 (2.94) 3.70 (4.38) 2.50 (3.10)

POMS Vigor 11.30 (4.67) 10.40 (3.53) 12.65 (4.42) 11.90 (3.31)

Right DLPFC

POMS
Depression

.35 (.81) .50 (1.15) .15 (.49) .20 (.70)

POMS Anger .85 (1.84) 2.10 (3.64) 1.00 (1.97) 1.15 (2.78)

POMS Tension 1.05 (1.96) .85 (1.42) 1.15 (1.63) .80 (1.44)

POMS Fatigue 2.50 (2.95) 1.60 (2.19) 1.45 (1.70) 1.25 (1.94)

POMS Vigor 9.60 (4.99) 8.75 (4.33) 10.95 (3.95) 11.10 (3.88)

Table 1. Mean ratings and standard deviations for all POMS subscales before (T1), and immediately

(T2) after HF-rTMS (active stimulation or sham condition) on the left and right DLPFC.
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Left HF-rTMS Right HF-rTMS

Real HF-rTMS Sham HF-rTMS Real HF-rTMS Sham HF-rTMS

Before After Before After Before After Before After

.157

(.033)

.149

(.030)

.155

(.039)

.144

(.043)

.172

(.050)

.140

(.054)

.163

(.058)

.155

(.055)

Table 2. Mean pre- and post active/sham stimulation psychomotor outcomes (with standard deviation) in msec

for the Fitts’ task (untransformed data).


