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Delayed feedback systems are known to exhibit a rich dynamical behavior, showing a
wide variety of dynamical regimes. We use this richness to implement reservoir comput-
ing, a processing concept in machine learning. In this paper we demonstrate the proof of
principle on an electronic system, however the approach is readily transferable to pho-
tonics, promising fast and computationally efficient all-optical processing. Using only
one single node with delayed feedback instead of an entire network of nodes, we succeed
in obtaining state-of-the-art results on benchmarks such as spoken digit recognition and
system identification.

Reservoir Computing
Reservoir computing has recently been put forward as the generic name of a new research
line in machine learning [1]. This field combines Echo State Networks, which were first
introduced by Jaeger in ref. [2], and Liquid State Machines, published in ref. [3] by Maass.
The general idea of reservoir computing is that by splitting the neural network into two
separate layers, the training can be simplified drastically compared to traditional feedfor-
ward networks. The first layer is called the reservoir or liquid. This layer contains all the
nonlinear nodes of the network and will transform the original input signal into a high
number of reservoir states, every state corresponding to the value of a node. Different
from the strategy used in traditional neural networks, the coupling weights between the
nodes in the reservoir itself are not trained. They are chosen in a random way and remain
fixed. The training only takes place in the second layer. This second layer does not pro-
vide any additional nonlinear transformation. It will only observe all the reservoir states
in the first layer and subsequently calculate the coefficients of the linear combination that
combines them into the desired target value.

The fact that a reservoir allows to transform a nonlinearly separable input into a lin-
early separable reservoir state is a direct consequence of the difference in dimensionality
between the input layer and the reservoir. Since usually the number of nodes in the reser-
voir is high, this corresponds to a high-dimensional feature space. Inputs with the same



features will tend to cluster together and hence a linear hyperplane can be used to make a
linear separation in the high-dimensional phase space [4]. As a complex nonlinear system
with recurrent connections, the reservoir will store some of the previous inputs. In other
words, they do not need to be remembered externally, the dynamics of the system will
behave as a memory and a processing unit in one.

Delayed feedback systems as reservoirs
We propose a new approach to implement the reservoir or liquid, using delayed feedback
systems [7]. Delay coupled systems have been intensively studied both in nature and
technology. These systems range from the brain [8] to semiconductor lasers [9]. The de-
layed feedback can have a significant impact on the dynamical behavior of the system and
can induce instabilities and synchronization between subsystems [10]. Delayed feedback
systems are complex systems, which have a number of properties that are linked to well-
functioning reservoirs. Because of the delayed states, they imply an infinite-dimensional
phase space, with a fading memory and hence they allow the low-dimensional input to be
mapped into a high-dimensional phase space.
In conventional neural networks, the input is injected in a large number of nodes in the
reservoir. Every node has its proper input scaling, which is multiplied with the input be-
fore the nonlinear transformation takes place. In the case of a delayed feedback system,
there is only one accessible nonlinear node and a delay line, see Figure 1(b). In order
to benefit from all the delayed states in the delay line as nodes and to provide a high-
dimensional mapping, we preprocess the input before injecting into the nonlinear node.
Every sample undergoes a sample-and-hold operation such that every value is kept con-
stant during one delay interval τ. Next, the input scaling factors, also referred to as the
mask, of all the nodes are superimposed on the expanded input. The result can be seen
in Figure 1(a). In this figure the mask consists of two discrete values, randomly assigned
to all the nodes. The nodes are in fact delayed states of the physically present hardware
node and we will refer to them as virtual nodes. The virtual nodes are located along the
delay line and are a distance θ apart. Once the expanded input value, with the mask su-
perimposed, has been completely injected into the nonlinear node, and consequently has
filled the complete delay line, the values of all the virtual nodes are read out.

The hardware node exhibits some inertia in response to a rapidly changing input. When
the virtual node distance θ is large compared to the internal time scale of the oscillator, the
oscillator has the time to reach a steady-state that depends only on the input and the feed-
back signal, the state of the same node one delay time ago. It is completely independent
of the states of the neighboring nodes. When decreasing θ down to values comparable
to or smaller than the internal timescale the steady-state cannot be reached within the
timespan of one node and hence the final value in that node will depend on the last value
that was reached in the previous, neighboring node. This relation between adjacent nodes
results in the construction of a virtual interconnectivity structure.

Results
We opted for a Mackey-Glass oscillator,first introduced by M.C. Mackey and L. Glass to
illustrate the appearance of complex dynamics in physiological control systems by way
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Figure 1: The system consists of one nonlinear node and a delay line that feeds back the
output of that node after storing it for a time τ, as shown in scheme (b). The input gen-
erated by using the masking procedure is illustrated in in (a). A linear training algorithm
determines a set of coefficients that, when multiplied with the reservoir responses, leads
to the desired target time trace (b).

of bifurcations in the dynamics [12], since can be easily implemented electronically [11].
After some renormalizations, the equation is given by

Ẋ (t) =−X (t)+
η · [X (t− τ)+ γ · I (t)]

1+[X (t− τ)+ γ · I (t)]p , (1)

with η the feedback strength, γ the input scaling, p the exponent and τ the delay time. The
mixing of input and feedback signal happens just before the injection into the Mackey-
Glass nonlinearity.

In order to test the performance of the system, several benchmark tasks were tested, but
below only one is discussed in more detail.

Isolated Spoken digit Recognition
The TI46 corpus is commonly used in the field of reservoir computing as a benchmark for
the performance of the system [5] and was introduced by Doddington and Schalk [6]. The
input of the system is constructed by taking five female speakers and letting them utter ten
different digits (0-9) ten different times. This results in 500 spoken words, all sampled at
12.5 kHz. The inputs are subsequently postprocessed using a cochlear ear model, leading
to 86 different frequency bands for each sample. These bands are combined again by
masking the input,as is described in ref. [7].

We use a delayed feedback Mackey-Glass system with τ = 80, containing 400 virtual
nodes with 0.2 separation each. The time was normalized to the internal timescale of the
nonlinear node and hence the virtual nodes can be considered to be close to each other,
which implies a connection with the neighboring nodes. Because for this benchmark non-
linear mixing is more important than linear memory, the exponent p is taken to be 7. A



higher exponent corresponds to a more nonlinear nonlinearity shape. We applied cross-
validation for the training-test set and overfitting was avoided by using ridge regression.
The optimal parameter set was found to be γ = 0.5 ,η = 0.8 and p = 7.The corresponding
word error rate was 0.14% in the simulation and 0.2 % in the experiment, correspond-
ing to 1 misclassified sample out of 500. This result is comparable to state of the art
performance of traditional reservoirs with hunderds of nodes.

Conclusion
We use delayed feedback systems for reservoir computing and our approach allows to
drastically reduce the number of necessary nodes in a neural network. The result we ob-
tain for the NIST TI-46 corpus benchmark is comparable to what is found in conventional
reservoir computing systems. To employ the dynamics induced by delayed feedback, we
create a set of virtual nodes, formed by the delayed states that reside in the delay line.
This facilitates the hardware realization of a network significantly. The dynamics of the
delayed feedback oscillator does not only serve as a way to map the input into a high-
dimensional phase space, but it also allows to create a certain interconnectivity between
the nodes that enables the mixing of the nonlinearly transformed signals.
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