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Abstract 12 

The present research describes how microphones could be used as proxies for traffic parameter measurements 13 
for the estimation of airborne pollutant emissions. We consider two distinct measurement campaigns of 7 and 14 
12 days, at two different locations along the urban ring road in Antwerp, Belgium, where sound pressure 15 
levels and traffic parameters were measured simultaneously. Noise indicators are calculated and used to 16 
construct models to estimate traffic parameters. It is found that relying on different statistical levels and 17 
selecting specific sound frequencies permits an accurate estimation of traffic intensities and mean vehicle 18 
speeds, both for light and heavy vehicles. Estimations of R

2
 values ranging between 0.81 and 0.92 are 19 

obtained, depending on the location and traffic parameters. Furthermore, the usefulness of these estimated 20 
traffic parameters in a monitoring strategy is assessed. Carbon monoxide, hydrocarbon and nitrogen oxide 21 
emissions are calculated with the airborne pollutant emission model Artemis. The Artemis outputs fed with 22 
directly measured and estimated traffic parameters (based on noise measurements) are very similar. Finally, a 23 
method is proposed to enable using a model calibrated at one location at another location without the need for 24 
new calibration, making it straightforward to include new measurement locations in a monitoring network. 25 
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 1 

I Introduction 2 

Due to their typically high traffic intensities, urban ring roads are characterized by high noise levels 3 

and high concentrations of airborne pollutants (Lefebvre et al., 2011; Avsar and Talha Gonullu, 2005; 4 

Lawson et al., 2011). These two types of environmental stressors have an adverse effect on the health of 5 

dwellers living in the vicinity of roads, and on drivers during their trips (Maynard, 2004; Fyrhi and 6 

Aasvang, 2010; Namdeo and Bell, 2005). Therefore, these locations are often priority measurement 7 

locations in monitoring networks. Unfortunately, the high purchase and operational cost of most airborne 8 

pollutant sensors severely limits the number of such sensors that can be deployed. This leads to a too 9 

limited spatial resolution for airborne pollutants for exposure assessment.  10 

One possible approach to circumvent this problem is relying on the good correlations generally 11 

observed between noise levels, traffic conditions and pollutant concentrations (Beckerman et al., 2008; 12 

Chen et al., 2008; Hochadel et al., 2006). Good predictions of airborne pollutants have been obtained in Cai 13 

et al. (2009)and Vlahogianni et al. (2011), training artificial neural networks and modular neural 14 

networks respectively, with both traffic and meteorological parameters. This means that the spatial 15 

resolution of air pollutant sensors can be increased through the development of non-homogeneous sensor 16 

networks, with devices of different quality and cost (Can et al., 2011). Indeed, it was shown in Van 17 

Renterghem et al. (2011) that some low-cost microphones (from consumer electronics) can be sufficiently 18 

accurate for typical environmental noise monitoring applications.  19 

The present research describes how microphones could be used as proxies for traffic parameters. The 20 

underlying idea is that modifications in traffic situations (formation of a congestion, increase in the 21 

number of trucks, etc.) will modify noise levels in a way that can be captured through relevant indicators 22 

(Can et al., 2008; De Coensel et al. (2005). The objective is twofold. Firstly, models constructed can be used 23 

to estimate traffic parameters; this might be useful when those are not easily available. This could also 24 

allow limiting the number of traffic sensors to deploy, which can be intrusive or have a limited life-time. 25 

Secondly, traffic parameters can therefore be used to estimate pollutant emissions, resulting in improving 26 

the estimation of pollutant emissions without having to increase the number of pollutant sensors. A first 27 

study has shown the possibility to estimate traffic parameters on a ring road with noise indicators 28 
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focusing on specific sound frequencies and statistical levels (Can et al., 2011). This study is extended here, 1 

by generalizing the approach and proposing a method that accounts for the influence of sound 2 

propagation on noise indicators.  3 

Two separate measurement campaigns of 7 and 12 days are conducted at two different locations along 4 

the urban ring road in Antwerp, Belgium, where noise levels and traffic parameters are measured 5 

simultaneously; see Section II. Noise indicators are calculated and are used to construct models to 6 

estimate road traffic parameters. Carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) 7 

emissions are then calculated with the pollutant emission model Artemis (Boutler et al., 2007). Emissions 8 

are successively calculated with measured and predicted road traffic parameters as input and the results 9 

are compared; see Section III. A method is also proposed to adapt models constructed at one location for 10 

use at another location, by taking into account differences in sound propagation due to different layouts. 11 

Results are discussed and some directions for future research are given in Section IV. 12 

II Method  13 

II.1 Experimentation 14 

Two similar measurement campaigns were conducted within a one year interval. Both campaigns 15 

consisted in simultaneous measurements of traffic counts, vehicle speeds, and noise levels, on the ring 16 

road of Antwerp, Belgium. The speed limit is 90 km/h, but vehicles often exceed this limit when traffic is 17 

free flowing.  18 

The first campaign lasted from 13/01/2010 to 19/01/2010 at location PE, at the eastern side of the 19 

ring road, between N184 and N1, precisely at 51˚12’21”N, 4˚26’25.50”; see Figure 1. At this location, the 20 

ring road is a 2-by-5 lane road, which carries high traffic intensities and is usually congested during both 21 

morning and evening rush hours. Noise measurements were performed at a height of 4 m, and at a 22 

distance of 30 m from the closest lane. Note that only traffic recordings measured in the East-West 23 

direction, which corresponds to the closest direction seen from the microphone, will be used for the study. 24 

Moreover, the ring road is not the only road in the vicinity of the microphone; nevertheless, as traffic in 25 

other roads is limited and as the microphone is placed on a bank, the ring road can be considered as being 26 

the main noise source.  27 
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The second campaign lasted from 13/01/2011 to 24/01/2011 at location PW, at the western side of 1 

the ring road, between roads N148 and N177, precisely at 51˚11’38.50”, 4˚23’48.50”; see Figure 1. At this 2 

location, the ring road is a 2-by-4 lane road, which carries moderate traffic intensities and is usually highly 3 

congested during evening rush hour; traffic flow is more fluid during the morning. As the second location 4 

is 4.1 km west on the ring road compared to the first one and as traffic intensities are different, one cannot 5 

assume the evolution of traffic conditions to be similar. Noise measurements were performed at a height 6 

of 4 m, and at a distance of 5 m from the closest lane. The difference in layout between the two locations 7 

allows considering the influence of sound propagation on noise indicators. Only traffic parameters 8 

measured in West-East lanes will be used for the study. As the microphone is placed very close to the ring 9 

road, one can assume it to be the main noise source. 10 

The traffic data was made available by the Verkeerscentrum at Antwerp, a service of the Flemish 11 

Department of mobility and public works. Traffic measures consisted of the 1 min evolution of light 12 

vehicle (LV) traffic intensity QLV and mean speed VLV, and heavy vehicle (HV) traffic intensity QHV and mean 13 

speed VHV. Sound pressure levels were expressed in 1/3 octave bands in the audible frequency region, 14 

with an integration period of 1s. High-quality instrumentation was used, consisting of ½” microphone of 15 

Brüel&Kjær (type 4189), in combination with pre-amplifiers and professional weather protecting outdoor 16 

units. Traffic and noise indicators are calculated from the measurements, aggregated over 10 min periods. 17 

This period is sufficiently short to observe the influence on pollutant emissions of the variations in traffic 18 

conditions. Finally, a meteorological station provided information on air temperature, wind speed and 19 

rainfall intensity. All data are used in the study, regardless meteorological conditions. Rain was observed 20 

during one day for the first experiment (17/01/2010), and for two days for the second experiment 21 

(13/01/2011 and 14/01/2011). An effect of rain on some noise indicators can be expected, as it shifts 22 

sound to higher frequencies (Sandberg and Ejsmont, 2002). 23 

II.2 Noise indicators 24 

A large set of potentially useful indicators is calculated from the 1s evolution of 1/3 octave band sound 25 

pressure levels, to cover the range of temporal and spectral variations due to modifications in traffic 26 

situations. For A-weighted sound levels and for each of the 20 1/3 octave bands f in the range 27 

{25Hz,…,20kHz}, the equivalent sound pressure level (LAeq or Lf), and the statistical levels Lmax, L1, L5, L10, 28 
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L50, L90, L95, L99
 and Lmin are calculated. Moreover, LA,x;y and Lx;y,f values are calculated. Lx;y represents the 1 

average of sound levels between the percentiles Lx and Ly determined from the LAeq,1s values, Lx and Ly 2 

being the sound level exceeded x % and y % of the time, respectively. We calculate Lx;y for each y=x+10, 3 

with x varying in steps of 10 from 0 to 90. For example, L0;10,125Hz is the average of the L125Hz,1s values for 4 

the 10% noisiest seconds of the period, determined from the LAeq,1s values; note that they don’t necessarily 5 

correspond to the 10% noisiest seconds at the frequency 125Hz. The total number of indicators calculated 6 

is (20+1)*(1+9+10) = 420.     7 

II.3 Estimation of traffic parameters 8 

Simple regression models are proposed to estimate traffic parameters p {QLV, VLV, QHV, VHV} by using 9 

two noise indicators {I1, I2}. The function log10(p) = a + bI1 + cI2 is used to estimate QLV and QHV because 10 

noise levels evolve linearly with log10 (Q). The linear function p = a + bI1 + cI2 is used to estimate VLV and 11 

VHV. The quality of the estimates is judged by calculating the coefficient of determination R2 and the 12 

coefficient of variation of the root mean squared error CV(RMSE) = RMSE/ p , between the measured and 13 

the estimated values of each parameter. Two different models are compared to estimate traffic 14 

parameters: 15 

- In Model I, LAeq is used to estimate the total traffic intensity Q = QLV + QHV. A ratio of heavy vehicles rHV 16 

= 0.15 is assumed. Default values of VLV = 90km/h and VHV = 80km/h are used. Note that those values 17 

correspond to the average of the values observed during the experiment. Hence the performance of 18 

Model I might be overestimated in this study. 19 

- In Model II, the best set of noise indicators {I1, I2} is selected to estimate each of the four traffic 20 

parameters. Indicators are selected through a stepwise method. At the first step, the indicator I1 that 21 

gives the best estimation of p for both locations, when parameter c=0, is selected. More formally, it is 22 

the indicator that maximizes the sum R2
PE + R2

PW. At the second step, the indicator I2 that gives the best 23 

estimation of the traffic parameter for both locations when combined with I1 is selected. Hence the 24 

procedure does not find the best set of indicators for each location, but the global best one. Note that it 25 

was commonly observed that closely related indicators offered almost equally good results (for 26 

example indicators in adjoining octave bands and similar statistical levels); they are not reported in 27 

the paper for brevity. Once the set of indicators is selected, proper values for parameters {a,b,c} are 28 



6 
 

determined for each location. Hence the parameters of Model II need to be calibrated at both PE and 1 

PW, making it difficult to use in a monitoring network. 2 

 - In Model II’, a method is proposed to enable the use at location PE of Model II with its parameters 3 

calibrated at location PW, which can be used whenever a new noise measurement location is added to 4 

the network. Further details on the method are given in Section III.3.  5 

II.4 Pollutant emissions 6 

Airborne pollutant emissions are calculated with the Artemis model. It yields emission factors (in 7 

g/km) for CO, HC and NOx, using traffic intensities and mean speeds for both light and heavy vehicles as 8 

input (Boutler et al., 2007; Boutler et al., 2009). Emission factors are derived from representative driving 9 

cycles, thus high emissions at low speeds due to congestion are taken into account (André, 2004). 10 

Emission factors have been adapted to the Belgium car fleet, which is composed for 80% of diesel vehicles. 11 

Percentages of vehicles in each European emission standard class are taken into consideration (Logghe et 12 

al., 2006). Figure 2 depicts emission factors used in the study; low speeds yield high emissions, especially 13 

for HC and heavy vehicles. 14 

 15 

 16 

III Results 17 

III.1 Traffic and pollutant time series 18 

Diurnal average patterns of traffic intensities and vehicle mean speeds are shown in Figure 3 for both 19 

locations. Traffic situations are rather different. Firstly, traffic intensities are much higher at location PE, 20 

traversed by more than 117 000 vehicles/day for the East-West direction, than for PW, which is traversed 21 

by 68 000 vehicles/day for the West-East direction. Two highways connect the ring road of Antwerp to 22 

Brussels between PE and PW, explaining the different traffic volumes. Secondly, the decrease in mean 23 

speed during rush hours is different for both locations: speed drops to 45 km/h and 60km/h at PE for 24 

morning and evening rush hours respectively, while it drops to 80 km/h and 40km/h at PW during the 25 

same periods. However, the proportion of heavy vehicles only slightly differs, with an average of 15% and 26 
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17% of heavy vehicles for PE and PW, respectively. Moreover, this proportion follows the same profile for 1 

both locations: it is very high around 5:00 (where HV make up around 40% of total traffic), decreases 2 

during morning rush hour as the number of LV increases, then increases again to reach 20% from 10:00 to 3 

15:00 when LV are less numerous; it finally decreases when the evening rush hour is finished. 4 

These differences in traffic characteristics result in differences in pollutant emissions. Figure 4 depicts 5 

diurnal average patterns of CO, HC and NOx emissions for both locations, calculated with measured traffic 6 

parameters. Patterns differ substantially from one pollutant to the other. For HC and NOx, heavy vehicles 7 

are responsible for the majority of emissions though they are less numerous, because of much higher 8 

individual emissions; see Figure 2. On the contrary, light vehicles are the main source of CO emissions, as 9 

difference between light and heavy vehicle emissions is less pronounced for this pollutant. Moreover, 10 

patterns differ significantly between the two locations. Pollutant emissions are lower at PW, mainly 11 

because of lower traffic intensities. At PE, the morning and evening drops in speed do not result in an 12 

increase in emissions; indeed, the increase of emissions due to the drop in speed is balanced by a decrease 13 

in the number of heavy vehicles, whose emissions predominate. On the contrary, at PW the very 14 

pronounced drop in speed in the evening corresponds to an increase in CO and HC emissions; emissions of 15 

these two pollutants are indeed strongly affected by speed variations; see Figure 2.   16 

 17 

III.2 Comparison of Model I and Model II  18 

Model I and Model II are compared for the estimation of traffic parameters and pollutant emissions. 19 

The first three days of measurement are used to determine optimal parameter values; the remaining days 20 

(that is 4 days at PE and 9 days at PW) are used to determine the accuracy of the models. The results are 21 

shown in Table 1. Unsurprisingly, Model I, which only relies on LAeq, does not allow an accurate estimation 22 

of traffic intensities on the ring road: values of R2 of 0.42 and 0.44 are obtained for the estimation of Q at 23 

PW and PE, respectively, and measures of errors CV(RMSE) reach 0.39 and 0.44, respectively. Indeed, it is 24 

known that high traffic intensities result in a decrease in vehicle speeds, which produce lower noise levels: 25 

the linearity between log10(Q) and LAeq is only valid when traffic is free flowing. As a result, pollutant 26 

emissions are estimated with a very low accuracy. The discrepancy is much higher for the estimation of 27 

pollutant emissions than for the estimation of traffic parameters: CV(RMSE) ranges between 0.50 and 1.08 28 
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according to the location and pollutants, and the values of R2 do not exceed 0.40. This is due to fact that 1 

pollution emission modelling is very demanding, and more specifically to: (i) the strong variability of 2 

pollutant emissions with speed shown in Figure 2, (ii) the strong differences between emissions for light 3 

and heavy vehicles (for example, HC emissions are 6 times more important at 50km/h for heavy vehicles 4 

than for light vehicles); both parameters are not captured by the model. These results discredit the simple 5 

approach proposed in Model I for assessing pollutant emissions.  6 

In contrast, Model II is based on a refined description of the noise environment, which allows for the 7 

estimation of flow rates and mean speeds for both light and heavy vehicles with a satisfactory accuracy: 8 

QLV, VLV, QHV and VHV are estimated at PW with R2 of 0.81, 0.89, 0.92 and 0.88, respectively, and with R2 of 9 

0.85, 0.85, 0.87 and 0.85 at PE, respectively. The estimation of the traffic parameters is slightly more 10 

accurate at PW; this can be explained by a shorter distance to the road, which limits the influence of other 11 

noise sources. Interestingly, errors are lower for mean speed estimations, with CV(RMSE) ranging 12 

between 0.06 and 0.10, than for flow rate estimations, where CV(RMSE) range between 0.23 and 0.27. 13 

This result is important as mean traffic speeds are often more difficult to obtain through traffic sensors 14 

than traffic intensities.  15 

Figure 5, which depicts the time series of measured and estimated traffic parameters at PE, confirms 16 

that the evolution of traffic characteristics is well reproduced by the model. Drops in speed are captured; 17 

the one for the morning rush hour of 18/01 is nonetheless underestimated. Moreover, the difference in 18 

patterns for the two first days, which are week-end days, when no pronounced speed decrease and only a 19 

limited number of heavy vehicles are observed, is reproduced by the model. However, the number of 20 

heavy vehicles during the week-end is clearly overestimated by the model. Moreover, the estimates of QLV 21 

and QHV are less accurate than in Can et al. (2011). This can be explained by the compromise choice of a set 22 

of indicators suitable for both locations. Indeed, in Can et al. (2011), the model was optimized for only one 23 

location. Moreover, the noise indicator δ1dB,LAeq, which describes 1s noise variations and was used in Can et 24 

al. (2011), is perfectly suitable to assess QLV; however, its use is difficult here since this noise indicator will 25 

be influenced by transmission loss during propagation between the road and the microphone positions. 26 

Note that the accuracy could probably also be improved by extending the training periods.   27 

Table 1 reports the noise indicators selected by the procedure to estimate traffic. The physical 28 

explanation of their suitability is given below:   29 
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- Estimation of QLV: an increase in QLV globally results in an increase in noise levels. However indicators 1 

are not all affected in the same way: an increase in QLV shifts noise to lower frequencies, by provoking a 2 

decrease in mean speeds, and limits the intensity of peaks of noise by reducing the distance between 3 

vehicles. The combination of L50;60,250Hz (with b < 0) and L10;20,500Hz (with c < 0), is sensible to the 4 

influence of the increase in QLV on both spectral variation and peaks of noise frequencies. Consequently 5 

it is suitable to assess variations in QLV with a good accuracy.     6 

- Estimation of VLV: low frequency noise which mainly arises from engines, is important at low speeds 7 

and becomes less important as vehicle speed increases, which is captured by the indicator L50Hz (thus b 8 

< 0). On the other hand, the highest percentiles of the noise distribution, which are affected by the 9 

noisiest vehicles, contain more mid-frequencies when speed increases, as they correspond to rolling 10 

noise; this is captured by the indicator L0;10,800Hz (thus c > 0). Hence the combination of L50Hz and 11 

L0;10,800Hz is well suitable to estimate VLV. 12 

- Estimation of QHV: very low frequencies are mainly emitted by heavy vehicles, thus their global 13 

number, expressed by L50Hz, is highly correlated with the number of heavy vehicles; this is reinforced 14 

by the fact that the increase in number of heavy vehicles coincides with a drop in speed that gives 15 

more low frequencies. Moreover, the correlation between QHV and QLV is not very high (Rpearson=0.61), 16 

mainly because QHV is very low during week-ends; see Figure 5. As traffic is less congested and contains 17 

smaller numbers of heavy vehicles during the week-ends, low frequencies are smaller. This explains 18 

why L20;30,125Hz helps in estimating QHV. 19 

- Estimation of VHV: as the correlation between VLV and VHV is very high (Rpearson = 0.98), indicators used 20 

to estimate VLV can also be used to estimate VHV. Thus the combination of L50Hz and L10;20,800Hz offers 21 

satisfying results. Note that the procedure selects L10;20,800Hz for the estimation of VHV and L0;10,800Hz for 22 

the estimation of VLV; however those two indicators are highly correlated (Rpearson = 0.98). 23 

Consequently, as the bias in the estimation of traffic parameters is small, time series of pollutant 24 

emissions estimated with the measured and the estimated traffic parameters are very similar. CO, HC and 25 

NOx are estimated with an R2 of 0.81, 0.80 and 0.87 at PW and with an R2 of 0.92, 0.91 and 0.93 at PE, 26 

respectively. Note that estimations are less accurate at PW compared to PE, despite a better estimation of 27 

the traffic parameters. This can be explained by the sharpest peaks of pollutant emissions, which are more 28 

difficult to precisely estimate. Indeed, drops in speed at PE are very pronounced during evening rush 29 
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hours, and result in high peaks of emissions; see Figure 4. Small errors in the estimation of those very low 1 

speeds result in high errors in the estimation of pollutant emissions, as they yield very high emissions; see 2 

Figure 2.  3 

Moreover, Figure 6 shows that the evolution of pollutant emissions is reproduced with a very 4 

convincing accuracy. It can therefore be concluded that noise measurements can be used as proxies, 5 

leading to sufficiently accurate traffic parameter estimations to be used for airborne pollution emission 6 

modelling. 7 

 8 

III.3 Estimation with Model II’ 9 

The previous section showed the possibility to build models able to estimate traffic parameters with a 10 

good accuracy, which are however location dependent. The differences in the parameters can be explained 11 

by different layouts and different distances from the road, which affect noise indicators. However, it is 12 

necessary for operational purposes to rely on models that can be used for any location without requiring a 13 

new training period. Moreover, those models must capture the influence of the position of the microphone 14 

on the value of the noise indicators, as it is not always possible in practice to install microphones in similar 15 

conditions. 16 

Such a model is constructed in this section. We assume that relations built at point PW are valid all 17 

along the ring road. Point PW is used as reference; because it is located 5 m from the road, it offers a 18 

greater ability to assess traffic conditions than point PE, as shown by the better results at this point; see 19 

Table 1. Note that more accurate relations could probably be obtained by relying on several points instead 20 

of one, and using longer training periods to assess relations. A Model II’ is built, which deduces from 21 

measurements at any location P along the ring road, the value of noise indicators at a virtual location P’. P’ 22 

is situated at the same cross-section on the road, but only 5 m from the road; hence it mimics the layout at 23 

point PW. Then, the Model II calibrated at PW is used to assess traffic parameters at P. The Model II’ is 24 

tested for location PE. 25 

Deducing the corresponding value of any noise indicator at 5 m from the road, based on measurements 26 

at 30 m at the same cross-section on the road, is a tedious task. Even for LAeq estimation, this would 27 

require detailed modelling of sound propagation, taking into account geometric attenuation, the 28 
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interaction between sound waves and the ground, and important reflections on vertically erected objects. 1 

Furthermore, noise contributions from different locations on the road have to be considered. The 2 

estimation of statistical indicators would even be more difficult, as it would require complex assumptions 3 

regarding the distribution of vehicles along the network. To circumvent this problem, the method 4 

proposed is directly based on noise measurements on both sites. To determine the difference in noise 5 

indicators between PE and PE’, one relies on the variations of L10 values between the two points PE and PW 6 

over [3h-5h] periods during the experimentation. Indeed, traffic is very low and homogeneous along the 7 

ring road during this period; thus differences in noise indicators between PE and PW are then mainly due 8 

to propagation effects. The indicator L10 is chosen because it filters out non traffic noise. Finally, the 9 

correction applied is the difference in L10,[3h-5h] between PW and PE, at the 1/3 octave band of the indicator 10 

of interest. For example,  the value deduced at PE’ for the indicator L50;60,250Hz based on measurements at PE 11 

is: L50;60,250Hz (PE’) =  L50;60,250Hz (PE) + L10,250Hz,[3h-5h] (PW) - L10,250Hz,[3h-5h] (PE). Finally, once the 10-minute 12 

evolution of each noise indicator is obtained at PE’, the Model II, with parameters of location PW, is used. 13 

Note that the current approach is not limited to measured noise level differences between the assessment 14 

points in the network. However, additional uncertainties might be introduced resulting from the 15 

propagation modeling. 16 

The results are shown in Table 1. Though Model II’ is a bit less precise than Model II used with 17 

parameters calibrated on location PE, the accuracy of the prediction is still remarkably good, with R2 of 18 

0.80, 0.86, 0.72 and 0.86 for the estimation of QLV, VLV, QHV and VHV, respectively. Hence it seems possible to 19 

use noise measurements as proxy for traffic parameters, as long as traffic parameters stay within the same 20 

range of values along the ring road. However, in this example the estimation of QHV is deteriorated by the 21 

method. It might be that the correction applied to estimate L20;30,125Hz or L50Hz is not accurate enough. Such 22 

correction could be improved by relying on a higher number of reference points.    23 

Finally, the estimation of pollutant emissions with Model II’ reaches a good accuracy as well, with R2 of 24 

0.88, 0.85 and 0.84 for CO, HC and NOx, respectively, though here also it is slightly less accurate than the 25 

use of Model II with parameters calibrated at PE.  26 
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IV Conclusion 1 

The present research describes how noise measurements could be used as proxies for traffic 2 

parameters, in turn allowing high resolution estimation of pollutant emissions. Simultaneous 3 

measurements of traffic counts and noise levels were taken, during distinct measurement campaigns of 7 4 

and 12 consecutive days at two different locations along the ring road of Antwerp, Belgium.  5 

Well-chosen noise indicators, which are based on different statistical levels and specific sound 6 

frequencies, permit the estimation of traffic flow rates and mean speeds of both light and heavy vehicles 7 

with a very satisfying accuracy. In this study, only one direction of traffic flow was considered. Hence an 8 

interesting conclusion is that the selected noise indicators help in estimating traffic parameters in the 9 

closest lanes near the microphone, independent of the traffic conditions in the other direction.  10 

The resulting estimation of pollutant emissions, tested with the emission model Artemis fed with both 11 

estimated and measured traffic parameters, is consequently very accurate. Moreover, it is possible to use a 12 

model calibrated at one location at another location of the ring road, without requiring a new training 13 

period. Instead, it is sufficient to characterize spectral sound pressure level differences. This is illustrated 14 

in this study by simply relying on measured differences in L10 at two microphone locations. Sound 15 

propagation models could be used as well to perform this task. 16 

Hence the model proposed can easily be integrated into a monitoring network with meteorological 17 

parameters, to estimate airborne pollutant concentration (Nagendra and Khare, 2006; Ziomas et al., 18 

2000). However, further measurement campaigns would be required to test the robustness of the 19 

relations on different types of roads. It can be expected that new calibrations are required for roads with 20 

different pavements or different traffic conditions. The robustness of relations could easily be improved 21 

by extending training periods and increasing the number of measurement points.  22 
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Table 1. Estimation of traffic parameters, and corresponding pollutant emissions, for 

both models and pollutant emissions 

   
Q QLV VLV QHV VHV CO HC NOx 

function log log lin. log lin. - - - 

indicator 1 

LAeq 

L50/60,250Hz L50Hz L20/30,125Hz L50Hz - - - 

indicator 2 L10/20,500Hz L0/10,800Hz L50Hz L10/20,800Hz - - - 

PW 

Model 

I 

R2 0.42 - - - - -1.56 -4.13 -0.54 

Cv(RMSE) 0.39 - - - - 0.76 1.08 0.62 

Model 

II 

R2 - 0.81 0.89 0.92 0.88 0.81 0.80 0.87 

Cv(RMSE) - 0.27 0.09 0.23 0.10 0.39 0.55 0.29 

a - 1.75 -239.80 -2.56 -147.41 - - - 

b - 0.11 -3.64 0.08 -3.73 - - - 

c - -0.07 6.18 0.03 4.95 - - - 

PE 

Model 

I 

R2 0.44 - - - - 0.36 -0.05 0.40 

Cv(RMSE) 0.44 - - - - 0.50 0.67 0.58 

Model 

II 

R2 - 0.85 0.87 0.87 0.85 0.92 0.91 0.93 

Cv(RMSE) - 0.25 0.06 0.25 0.06 0.17 0.20 0.16 

a - 1.42 -60.35 -2.34 -59.45 - - - 

b - 0.17 -3.74 0.08 -3.22 - - - 

c - -0.11 3.92 0.03 3.60 - - - 

Model 

II' 

R2 - 0.80 0.86 0.72 0.86 0.88 0.85 0.84 

Cv(RMSE) - 0.22 0.07 0.33 0.07 0.18 0.25 0.22 

 

  



 

Figure 1. Experimental site. 

  



 

 

 

Figure 2. Pollutant emissions in terms of vehicle speed, with Belgian traffic fleet 
composition. 

  



 

 

Figure 3. Diurnal average traffic patterns for locations PE and PW; only data from 

Monday to Friday are used. 

  



 

Figure 4. Diurnal average patterns of CO, HC and NOx emissions, for locations PE and PW; 
only data from Monday to Friday are used. Emissions are calculated with the Artemis 

emission model and measured traffic parameters. 

 
  



 

Figure 5. Time series of traffic parameters measured and estimated with Model II, at 

location PE. 

  



 

Figure 6. Time series of pollutant emissions calculated with measured and estimated 
traffic parameters, at PE.  

 


