
Accurate and Conforming Mixed Discretization of

the MFIE
K. Cools, F. P. Andriulli, D. De Zutter, and E. Michielssen

Abstract—In this contribution, a novel discretization scheme
for the magnetic field integral equation is presented. The new
scheme is designated “mixed” because it uses Rao-Wilton-Glisson
functions to expand the current density and Buffa-Christiansen
functions to test the magnetic field radiated by the candidate
solution. The convergent nature of the proposed mixed MFIE
is theoretically proven and numerical results showing that the
proposed method yields more accurate results than the classical
one are presented.

I. INTRODUCTION

Scattering of time-harmonic electromagnetic waves by per-

fect electrically conducting (PEC) surfaces can be modelled by

many boundary integral equations, the electric and magnetic

field integral equations (EFIE and MFIE) being the most

prominent ones [1]. These equations typically are discretized

by expanding the current density in terms of Rao-Wilton-

Glisson (RWG) functions defined on a triangular mesh that

approximates the scatterer’s surface and testing the equations

using the same RWG functions [2].

The EFIE often yields highly accurate results, is applica-

ble to both open and closed structures, and extendable to

impedance sheets. Regrettably, the linear systems that result

from its discretization have unbounded condition numbers in

the dense mesh regime, leading to prohibitive solution times.

This problem can be solved by Calderón preconditioning (see

[3] and references therein), i.e. by exploiting the EFIE op-

erator’s self-regularizing property. A Calderón preconditioned

EFIE system basically represents a discretized second kind

integral equation and thus is amenable to efficient iterative

solution. Alternatively, a multi-resolution basis can be used

for the finite element spaces of expansion and testing functions

(see [4] and references therein). The singular value spectrum of

the resulting linear system once again is bounded from above

and below, thus facilitating its efficient iterative solution.

The MFIE, in contrast, upon discretization yields well-

conditioned systems without further manipulations. Unfortu-

nately, the MFIE’s solution is less accurate than that of the

EFIE, with a numerical error that can be up to several orders of

magnitude larger than that of the EFIE. In the past, strategies

to reduce the error in the solution of classically discretized

MFIEs have been proposed [5], [6], [7].

In this work, starting from the function space mapping

properties of the MFIE operator, a novel discretization scheme

is proposed. The convergence properties of the new scheme are
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rigorously investigated and numerically verified. The accuracy

improvements realized by the new discretization scheme over

the classical one are quantified. Very preliminary results,

without proof, were included in conference proceedings [8].

II. EQUATIONS AND DISCRETIZATION

Consider a closed PEC scatterer with surface Γ and ex-

terior normal n̂, embedded in a background medium with

permittivity ǫ and permeability µ. The scatterer is illuminated

by an incident electromagnetic field
(

ei,hi
)

. Enforcing the

boundary conditions for the tangential traces of the electric

and magnetic fields on Γ leads to the following EFIE and

MFIE for the induced current density j:

− n̂× n̂× ei (r) = ηS [j] (r)
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To solve this EFIE and MFIE via a Galerkin boundary element

method, the surface Γ is discretized by a mesh of planar

triangles with mesh parameter (i.e. largest triangle diameter)

h. The current j is approximated as

j (r) ≈

N
∑

i=n

Infn (r) (3)

where the functions fn are RWG basis functions defined

on the N interior edges of the mesh [2]. Equation (3) is

substituted in (1) and (2) and the Galerkin procedure is

completed by testing the two equations with N appropriately

chosen basis functions.

The choice of the testing basis functions should follow the

following rationale: if the operator to be discretized with a

Galerkin procedure maps function space X to function space

Y , then the testing functions should be in function space Y ∗,

viz. the dual of Y [9].

In classical implementations both the EFIE and the MFIE

are tested by the same RWG basis functions used to expand the

current. It is well-known that the RWG basis functions belong

to function space H−1/2 (div; Γ), viz. the space of functions



j for which

∫∫

Γ×Γ

j (r) · j (r′)

R
dS′dS+

∫∫

Γ×Γ

divj (r) div′j (r′)

R
dS′dS,

(4)

is finite. Here, the bar indicates complex conjugation. It

can be shown that the dual of the space H−1/2 (div; Γ)
is H−1/2 (curl; Γ) [10], viz. the space of functions j for

which n̂× j belongs to H−1/2 (div; Γ). Likewise, the dual of

H−1/2 (curl; Γ) is H−1/2 (div; Γ) [10]. Another well-known

result from operator theory [10] is that the EFIE operator

S maps H−1/2 (div; Γ) into H−1/2 (curl; Γ), so that the

testing should be done using functions in H−1/2 (div; Γ),
in accordance with the classical choice of RWGs as testing

functions for the EFIE. For the MFIE, however, the situation

is different: the MFIE operator 1

2
− K maps H−1/2 (div; Γ)

into itself (as is suggested by the presence of the identity)

and a conformal testing requires that the testing functions

are in H−1/2 (curl; Γ). The RWG functions, commonly used

to test the MFIE, do not reside in H−1/2 (curl; Γ), but in

H−1/2 (div; Γ). In this paper we present a method for testing

the MFIE that, in contrast to the commonly used procedure,

uses testing functions in H−1/2 (curl; Γ).
As stated above, in the classical discretization scheme,

RWG functions fn (that reside in H−1/2 (div; Γ)) are used

to test the MFIE, the rationale being that this choice renders

the matrix discretizing the identity operator well-conditioned.

Since the testing functions should instead have been selected in

H−1/2 (curl; Γ), it may appear befitting to use “rotated” RWG

functions n̂ × fn (that reside in H−1/2 (curl; Γ)) as testing

functions. However, this choice renders the matrix discretizing

the identity operator singular, resulting in an ill-conditioned

discretization of the MFIE. To achieve a conforming and well-

conditioned discretization of the MFIE, it suffices to find a set

of testing functions that resides in H−1/2 (curl; Γ) and results

in a well-conditioned discretization of the identity operator

when used in combination with RWG expansion functions.

The set of “rotated” Buffa-Christiansen (BC) functions n̂×gn,

defined on the barycentric refinement of the original barycen-

tric mesh, constitutes such a set. For brevity the reader is

referred to [11] for the definition and properties of these

functions.

The above described discretization scheme of the MFIE

gives rise to the following boundary element formulation. The

current density is approximated as

jh (r) =

N
∑

i=n

Infn (r) (5)

such that
(

1

2
G+K

)

· I = H, (6)

where (I)n = In,

(G)m,n =

∫

Γ

(n̂× gm (r)) · fn (r) dS, (7)

(K)m,n = −
1

4π
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gm (r)·

(

∇
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R
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(8)

and

(H)m =

∫

Γ

gm (r) · hi (r) dS. (9)

In [11], the well-conditioned nature of the discretized identity

operator G was proven. Equation (8) reveals another advantage

of the proposed discretization scheme used. Since the cross

product with the normal vector, present in classical MFIE

formulations, has disappeared, it is easy to transfer the gradient

operator from the Green function onto the testing function

using the methods described in [12]. By doing this, the

logarithmic singularity appearing in the magnetic field radiated

by an RWG function can be avoided. It is this singularity that,

when using classical schemes, prohibits the accurate evaluation

of the MFIE system matrix’ elements.

The proposed scheme is convergent. To prove this, assume

that j is the exact solution of the MFIE, that jh is the solution

of the discretized equation (6), that j′ is a generic function

in the space of RWG functions, and that k′ is a generic

function in the space of BC functions. In what follows the

spaces of RWG and BC functions are denoted as RWG and

BC, respectively. Also, let σmin denote the minimum singular

value of K − 1

2
G. Then, using the min-max characterization

of singular values [13], it can be seen that the following

inequality holds

‖j′ − jh‖ .
1

σmin

sup
k′

∈BC

(

k′, {K − 1

2
}(j′ − jh)

)

‖k′‖
. (10)

Using this inequality, the discretization error, i.e. the distance

between the solution jh of the discretized MFIE and the exact

solution j of the MFIE can be bounded as

‖j − jh‖ ≤ ‖j − j′‖+ ‖j′ − jh‖ (11)

with
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1
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2
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)

‖k′‖

=
1
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sup
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∈BC

(

k′, {K − 1

2
}(j′ − j)

)

‖k′‖
(12)

.
1

σmin

sup
k′

∈BC

‖k′‖‖{K − 1

2
}‖‖(j′ − j)‖

‖k′‖

.
1

σmin

‖j′ − j‖ ∀j′ ∈ RWG.

In deriving (12) we used the continuity of the operator {K− 1

2
}

and the fact that
(

k′, {K −
1

2
}jh

)

=

(

k′, {K −
1

2
}j

)

∀k′ ∈ BC. (13)

The latter follows immediately from the construction in (6) of

the discrete solution jh. It can thus be concluded that

‖j − jh‖ .

(

1 +
1

σmin

)

‖j − j ′‖ ∀j ′ ∈ RWG. (14)

The best approximation of j in the RWG space involves errors

in the order of h [14], i.e.

inf
j′
∈RWG

∥

∥j′ − j
∥

∥ . h ‖j‖ . (15)



By combining (14) with (15), we obtain

‖j − jh‖ . h

(

1 +
1

σmin

)

‖j‖. (16)

This means that if σmin is bounded from below, uniformly

with respect to the mesh parameter h, the discretized solution

jh converges to the exact solution j as h → 0. Since the

MFIE is a second kind equation [15] and the matrix G is

well-conditioned regardless of the mesh parameter h [11], the

above two conditions are satisfied provided that the scatterer

does not support resonances at the simulation frequency.

III. NUMERICAL RESULTS

The proposed scheme was applied to the analysis of scat-

tering from a sphere of radius 1m, modelled in terms of

increasingly dense meshes. The coarsest mesh involves N =
147 degrees of freedom and has mesh parameter h = 0.86m,

while the finest mesh has N = 2430 and h = 0.22m. The

sphere is illuminated by the plane wave

ei (r) = x̂e−j 2π

λ
z (17)

with λ = 2 meters. The scattering problem was solved using

the EFIE, the classic (non-conformingly discretized) MFIE,

and the mixed (conformingly discretized) MFIE. The relative

L2(S) error of the radar cross section relative to the Mie series

solution shows that the mixed MFIE yields results comparable

in accuracy to the EFIE, and smaller than that of the classic

MFIE (Fig. 1(a)). Next, a mesh with fixed mesh parameter

h is chosen, and the scattering problem again solved using

the EFIE, the classical MFIE, and the mixed MFIE for a

set of frequencies in the band from 15 to 480 MHz. For

every frequency considered, the mixed MFIE yields results

comparable in accuracy to the EFIE, but more accurate than

those of the classical MFIE.

Finally, the above exercise was repeated for a cube with side

length of 1m. The coarsest mesh has N = 210 and h = 0.28m,

while the finest mesh has N = 4896 and h = 0.04m. The cube

is illuminated by the field in (17). Since no analytical solution

is available for this problem, the L2(S) errors were computed

w.r.t the EFIE’s solution for the finest mesh. It is again clear

that the mixed MFIE outperforms the classic one, this both

when the mesh is refined (Fig. 2(a)) and, for a fixed mesh,

when the frequency is varied (Fig. 2(b)).

IV. CONCLUSIONS

A novel “mixed” discretization scheme for the MFIE has

been presented. The new scheme uses Rao-Wilton-Glisson

functions to expand the current density and Buffa-Christiansen

functions as testing functions. The convergence properties of

the proposed MFIE have been rigorously proven and numerical

results have been presented showing that the proposed mixed

MFIE yields more accurate solutions than the classical one.

Future investigations will concentrate on the application of the

mixed discretization strategy, proposed here, to the discretiza-

tion of the combined field integral equation for PEC scatterers,

the Muller and PMCHWT integral equations for penetrable

objects, and integral equations for scatterers characterized by

an impedance boundary condition.
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Fig. 1. The relative L2(S)-error of the RCS for a sphere as a function of
the mesh parameter (a) and as a function of the simulation frequency (b)
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Fig. 2. The relative L2(S)-error of the RCS for a cube as a function of the
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