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Abstract—The Poincaré-Steklov operator provides a direct
relation between the tangential electric and magnetic field at
the boundary of a simply connected domain, and a discrete
equivalent of the operator can be constructed from the sparse
finite element (FE) matrix of that domain by forming the Schur
complement to eliminate the interior unknowns. Identifying the
FE system matrix as a discretized version of the Poincaré-
Steklov operator allows us to describe and analyze FE and hybrid
finite element-boundary integral equation (FE-BIE) formulations
from an operator point of view. We show how this operator
notation provides substantial theoretical insight into the analysis
of spurious solutions in hybrid FE-BIE methods, and we apply
the theory on a TM scattering example to predict the breakdown
frequencies of different hybrid formulations.

Index Terms—Hybrid methods, Electromagnetic scattering

I. INTRODUCTION

The hybrid FE-BIE method is a widely used approach to
numerically solve electromagnetic scattering or radiation prob-
lems. It combines the versatility of the FE method to model
complex inhomogeneous and anisotropic structures with the
accuracy and efficiency of the BIE method to model large ho-
mogeneous and potentially unbounded domains. Traditionally,
the FE formulation is set in a variational framework, which is
extended with the BIE formalism to form a hybrid variational
formulation. However, this approach relies on the internal field
densities in the FE domain, and since the exact method used
to couple both formulations seems to be very important to
avoid spurious solutions, we expect that a hybrid formalism
specifically focusing on the behavior of the formulations at
the boundary will provide more theoretical insights.

In this paper, we use the concept of a Poincaré-Steklov
(PS) operator to describe the FE formulation in a domain
by the relation it provides between the tangential electric and
magnetic fields at the boundary of the domain. Hybrid formu-
lations are easily formed by properly combining the PS and
BIE operators. Unlike the classical variational framework, this
operator notation retains the individual identities of the FE and
BIE operators in FE-BIE formulations, and different properties
regarding spurious solutions are easily derived. After outlining
the general equations in Section II, we use the new operator
notation in Section III to analyze the problem of spurious
solutions in commonly used hybrid FE-BIE formulations. The
theoretical results are then applied in Section IV to compare
the analytical and the simulated breakdown frequencies of the
different FE-BIE formulations for a TM scattering problem
involving a single dielectric cylinder.
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II. GENERAL FORMULATION

Consider the homogeneous and isotropic background
medium Ω0 characterized by the electric permittivity ε0 and
magnetic permeability µ0. Embedded in Ω0 is a cylindrical
scatterer, aligned and invariant along the z-axis, and with
arbitrary cross-section S in the xy-plane. The inhomogeneous
scatterer is characterized by the relative permittivity and
permeability tensors ¯̄εr(ρ) and ¯̄µr(ρ) in each point ρ ∈ S.
At the object boundary ∂S, we define C+ as the closed
contour in Ω0 just large enough to enclose ∂S, and C− as
the contour just small enough to be enclosed by ∂S. Local
orthonormal coordinate systems

(
n̂+, t̂+, ẑ

)
and

(
n̂−, t̂−, ẑ

)
are defined on C+ and C−, respectively, with the unit normal
n̂+ pointing into S and n̂− pointing into Ω0. All fields and
sources are time-harmonic with a time dependency ejωt, and to
describe the governing equations, we focus on pure transverse
magnetic (TM) fields (ez ẑ,ht). To simplify some expressions,
we normalize the magnetic field ht by the characteristic
impedance Z0 =

√
µ0/ε0 of the background medium.

A. Boundary Integral Equation Formulation
In the homogeneous background medium, the fields at an

observation point ρ ∈ Ω0 are related to the tangential electric
and magnetic fields at the boundary C+ by means of an
integral equation containing the Green’s function G0(ρ,ρ′)
as integration kernel. Depending on the observed field, we
differentiate between the electric and the magnetic field inte-
gral equation (EFIE and MFIE). After moving the observation
point ρ towards the boundary C+ and taking the limit, we
obtain the well-known boundary integral equations

einz =
e+z
2
− pv

∮
C+

e+z
∂G0

∂n̂+′
dc′ + jk0

∮
C+

h+
t G0 dc′ (1)

hin
t =

h+
t

2
−
∮
C+

e+z
jk0

∂2G0

∂n̂+∂n̂+′
dc′ + pv

∮
C+

h+
t

∂G0

∂n̂+
dc′, (2)

with e+z ∈ H
1
2 (C+) and h+

t = ht · t̂+ ∈ H−
1
2 (C+) the

tangential electric and magnetic field on C+, and k0 the wave
number of an incoming plane wave in Ω0 with tangential fields
einz and hin

t on C+. The Green’s function is given by

G0(ρ,ρ′) =
j

4
H

(2)
0 (k0 |ρ− ρ′|) , (3)

with H(2)
0 the 0-th order Hankel function of the second kind.

Following the operator notations of [1], we write the EFIE (1)
and the MFIE (2) compactly as

P
(

e+z
h+
t

)
≡
(
−K0 + 1

2 G0
−J0 K′0 + 1

2

)(
e+z
h+
t

)
=

(
einz
hin
t

)
. (4)
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We remark that the Calderón operator P in (4) is an oblique
projector with eigenvalues {0, 1} [1]. At the boundary C+,
the tangential electric and magnetic fields (e+z ,h

+
t ) satisfy

1

jk0

∂e+z
∂n̂+

= Y0e+z = h+
t , (5)

which is a direct consequence of Maxwell’s curl equation
for the electric field. In (5) we introduced the PS operator
Y0 : H

1
2 (C+) → H−

1
2 (C+), also known as the Dirichlet-to-

Neumann (DtN) operator. Details on this self-adjoint operator
can be found in [1]. Here, we just repeat that Y0 satisfies,
among others, Y0 = G−10

(
K0 − 1

2

)
and J0 = Y0

(
K0 + 1

2

)
.

Next to P , we also define the complementary Calderón
projector P̃ , which represents the BIE formulation in the
complement of the domain of P (i.e. Ω0 → S, C+ → C−,
n+ → n−), with the complement filled with the same homo-
geneous material. From (1) and (2), it follows that this operator
P̃ is closely related to the operator 1−P , which represents the
same complementary Calderón projector, but now for fields on
C+. Comparing both and using the tangential field continuity
(e+z ,h

+
t ) = (e−z ,−h−t ) reveals the identity Y0 + G−10 = −Ỹ0,

which in turn leads to the identity Ỹ0 = −G−10

(
K0 + 1

2

)
.

B. Finite Element Formulation

The FE formulation consists of a weak boundary value
problem (BVP) for the electric or magnetic field in S, with
boundary conditions given by the equivalent sources on C−.
The solution and test function space is the finite subspace
Wh ⊂ H(curl;S), which is equal to the span of the set of
curl-conforming basis functions w defined on a geometrical
partitioning (mesh) of S with characteristic element size h.
With u,v ∈ Wh, we define the scalar product over S and
C− as 〈u ,v〉S =

∫
S
u · v dS and 〈u ,v〉C− =

∮
C−

u · v dC,
respectively. The weak form of the BVP for the electric and
magnetic field is given by〈
∇t × wnẑ , µ

−1
r · ∇t × ez ẑ

〉
S
− k20 〈wnẑ , εr,zzez ẑ〉S

= jk0
〈
wnẑ , n̂

− × ht
〉
C−

(6)〈
∇t ×we , ε

−1
r,zz∇t × ht

〉
S
− k20

〈
we , µr · ht

〉
S

= jk0
〈
we , ez ẑ× n̂−

〉
C−

, (7)

where we assumed S to be source-free. The scalar node basis
functions wn in the electric field formulation (EFF) (6) and
the vector-valued edge basis functions we in the magnetic field
formulation (MFF) (7) ensure tangential field continuity along
mesh element boundaries for the ez and ht fields, respectively.

To model the influence of S on the scattered and radiated
fields in and around S, we can express the relation between
the tangential electric and magnetic field at C− in terms of
a PS operator Y1 associated with S. Similarly as in (5), we
have Y1e−z = h−t , and for ¯̄µr isotropic at C−, we find again
the DtN operator. Although the EFF (6) and its sparse FE
system explicitly depend on the inner electric field distribution,
an equivalent direct relation between e−z and h−t is found
after forming the Schur complement to eliminate the interior
degrees of freedom in the sparse FE matrix. Formally, this
elimination does not change the total field solution, hence the

sparse and the compressed FE matrices associated with (6) can
be interpreted as being different discretizations of the same PS
operator Y1. It follows that we can represent the EFF and MFF
analytically by the operator equations

F
(

e−z
h−t

)
≡
(

0 Y−11

Y1 0

)(
e−z
h−t

)
=

(
e−z
h−t

)
. (8)

Remark that the Hamiltonian operator F satisfies F2 = 1, with
eigenvalues {−1, 1}. Unlike the variational approach, the new
operator notation for the FE formulation does not depend on
any definition of mesh or basis function, which allows us to
make abstraction of all discretization issues while analyzing
the FE and hybrid FE-BIE formulations.

Finally, we remark that at frequencies where one of the PS
operators (i.e. Y1) becomes singular, its inverse Y−11 is not
uniquely defined, which is reflected in a singular submatrix
for the interior-to-interior interactions that makes the Schur
complement undefined. Hence, to obtain a valid representation
for Y−11 at the operator level when Y1 is singular, we implicitly
assume the extension of C− with some line segment at
the interior of S, which is the equivalent of leaving some
unknowns uneliminated while forming the Schur complement.

III. ANALYSIS OF HYBRID FE-BIE FORMULATIONS

Considering that (4) and (8) each consist of two independent
equations, different options are available to combine (some of)
these into a hybrid FE-BIE formulation. While the individual
EFIE or MFIE is almost always sufficient to properly enforce
the BIE formulation at C+, at specific frequencies both are
needed to guarantee uniqueness. Consequently, we will always
use both the EFIE and the MFIE in the FE-BIE formulations.

Expressing the tangential field continuity between C− and
C+ simply as e−z = e+z and h−t = −h+

t , we can substitute
the EFIE into the right hand side of (7) and combine the
result with the MFIE. By splitting e−z in the right-hand side
of (7) in two before substitution, a symmetric hybrid FE-BIE
formulation is found. In our operator notation, we obtain(

−J0 K′0 + 1
2

K0 + 1
2 −G0 + Y−11

)(
e+z
h+
t

)
=

(
hin
t

−einz

)
. (9)

While the variational or discrete equivalent of (9) was
repeatedly mentioned in literature, it suffers from spurious
solutions in the e+z field component at certain resonant fre-
quencies, while the h+

t component remains unaffected. This
was also observed in [2], and a sound theoretical explanation
follows after careful analysis of the operators in (9). From
J0 = Y0

(
K0 + 1

2

)
, it follows that the elements of the null

space of K0 + 1
2 (denoted N

(
K0 + 1

2

)
) are eigenvectors of

J0 with 0 as eigenvalue. Consequently, at specific resonant
frequencies, the solution of (9) will only be defined up to
a spurious tangential electric field proportional to espz ∈
N
(
K0 + 1

2

)
. Since Ỹ0espz = −G−10

(
K0 + 1

2

)
espz = 0, we

find that these resonant frequencies are eigenfrequencies of the
Neumann eigenmodes of S filled with background material.

A formulation dual to (9) can be found by substituting
the MFIE into (6) and combining the result with the EFIE.
This formulation has equivalent problems as (9), but now at
Dirichlet eigenfrequencies with G0 and K′0− 1

2 singular, giving
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rise to a spurious tangential magnetic field. Between both, (9)
is preferred since the dispersion error due to the finite mesh
in S is smaller for edge element basis functions [3].

It seems that spurious solutions in (9) exist because the
MFIE is not coupled with a FE counterpart. Similarly as for
the BIE formulation, one would expect that uniqueness follows
after using both the EFF and the MFF in S. We obtain(

−J0 − 1
2Y1 K′0

K0 −G0 + 1
2Y
−1
1

)(
e+z
h+
t

)
=

(
hin
t

−einz

)
. (10)

While simulations with (10) confirm that no spurious solutions
are present at the Dirichlet and Neumann eigenfrequencies,
resonances do exist elsewhere. This unexpected result can
again be explained by careful analysis of the FE and BIE
operators and their interactions. After rewriting (10) as(

P − 1

2

(
1 + F

))(e+z
h+
t

)
=

(
einz
hin
t

)
,

the spurious solutions seem to be the elements of the null-
space N

(
P − 1

2 (1 + F)
)
. Since P and 1

2 (1 + F) both have
eigenvalues {0, 1}, spurious solutions to (10) will exist if we
can find a couple (espz ,h

sp
t ) that satisfy either

P
(

espz
hsp
t

)
= 0 = (1 + F)

(
espz
hsp
t

)
, (11)

or
(1− P)

(
espz
hsp
t

)
= 0 = (1−F)

(
espz
hsp
t

)
. (12)

The left and right equalities in (11) are satisfied when hsp
t =

Y0espz and hsp
t = −Y1espz , respectively. Hence, non-trivial

solutions will exist if the null-space N (Y0 + Y1) is non-
empty. Equivalently, from (12), it follows that the correspond-
ing spurious solutions must simultaneously satisfy hsp

t =(
Y0 + G−10

)
espz and hsp

t = Y1espz , which in turn is feasible if
the null-space N

(
Ỹ0 +Y1

)
is non-empty. Simulations suggest

that only spurious solutions that satisfy (12) can be found.
To prove this, we show that null-space N

(
Y0 +Y1

)
is always

empty by applying the same steps as above for the well-known,
resonance-free PMCHWT formulation(

P −
(
1− P̃1

))(e+z
h+
t

)
=

(
einz
hin
t

)
, (13)

with the BIE formulation in S represented by P1 for fields on
C−, or equivalently, by 1− P̃1 for fields on C+. Analysis of
the eigensolutions of P and 1−P̃1 shows that the elements of
the null-space N

(
Y0 +Y1

)
are spurious modes of (13). Since

this PMCHWT formulation is known to be resonance-free,
we conclude that this null-space will be empty, at least for S
formed by isotropic and piecewise homogeneous materials.

We proved that the elements of the null-space N
(
Ỹ0 +Y1

)
will be spurious modes of (10), and for some specific cross-
sectional shapes S with closed-form analytic expressions for
Ỹ0 and Y1, the breakdown frequencies of (10) can be pre-
dicted. This is demonstrated in Section IV for a circular cross-
section S, and the simulations of the cylindrical TM scattering
example confirm that all resonances occur at singular frequen-
cies of Ỹ0 + Y1, with the spurious modes satisfying (12).

Finally, for reference, we provide a resonance-free for-
mulation that uses the Robin-to-Robin boundary conditions

20 40 60 80 100 120 140 160 180
−4
−2
0
2
4
6

Row Index

=
( Y−

1
1

) :,
9
5

Y−1
1 (BIE)

Y−1
1 (FE)

Fig. 1. Imaginary part of the 95th column of the discretized Y−1
1 PS operator

for S, f0 = 300MHz, obtained from the BIE method (solid) and the FE
method after compressing the system matrix (dotted).

e−z + h−t = e+z − h+
t and e−z − h−t = e+z + h+

t between C−

and C+. As described in [4], the hybrid FE-BIE formulation
using the MFF with Robin boundary conditions is given by
−1
2

−1
2

1
2

−1
2

−1
2 Y−11 + 1

2
−1
2

1
2

1
2

−1
2

−1
2 − J0 K′0

−1
2

1
2 K0

1
2 − G0




e−z
h−t
e+z
h+
t

=


0
0

hin
t

−einz

. (14)

Besides (14), other, unsymmetric resonance-free formulations
exist, like the formulation used in [5].

IV. NUMERICAL RESULTS

To illustrate the above concepts, consider a dielectric cylin-
der, embedded in free space and with a circular cross-section
S of radius R = 1 m. The cylinder is formed by the
homogeneous and isotropic material with relative material
parameters (εr, µr) = (2, 1), allowing us to compare with
the BIE-only PMCHWT formulation in terms of robustness
and accuracy. The boundary is approximated by 189 segments
of equal length l, while the interior of S is triangulated into
a high-quality mesh featuring 6705 faces of typical element
size l. To discretize the BIE operators, we employ a consistent
Petrov-Galerkin method, with linear rooftop functions wt as
basis for e+z and piecewise constant basis functions wp for h+

t ,
and test (1) and (2) with wp and wt, respectively. In the FE
method, we use scalar node basis and testing functions wn for
the EFF and edge basis and testing functions we for the MFF.

To illustrate the numerical equivalence between the com-
pressed MFF FE system matrix and the discretized PS operator
Y−11 , we use the BIE formalism in S to obtain

Y−11 = G1 −
(
K1 − 1

2

)
J−11

(
K1 + 1

2

)
. (15)

Fig. 1 compares the 95th column of the compressed FE matrix
and the discrete PS operator from (15) for f0 = 300 MHz, and
the link between the FE system matrix and the PS operator is
confirmed. The small error at row index 95 is due to numerical
issues with the hypersingular self-patch contribution.

To verify the theory of Section III, we illuminate the
cylinder with a time-harmonic plane wave with wave number
k0 = 2πf0

√
ε0µ0, traveling along the positive x-axis. An

analytical expression for Y1 or Ỹ0 is easily found from
the eigensolutions of the Laplace operator ∇2

t in cylindrical
coordinates (ρ, φ). Writing e+z and h+

t as a complex Fourier
series with respective coefficients cnJn(k1R) and cnJ ′n(k1R),
the equivalent Y1 operator for the n-th term is

Y1,n = −j
√
εr
µr

J ′n(k1R)

Jn(k1R)
, (16)
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TABLE I
THEORETICAL RESONANCE FREQUENCIES AND CORRESPONDING MODE

NUMBERS n;m OF THE DIFFERENT FE-BIE FORMULATIONS.

Ỹ0 Ỹ−1
0 Ỹ0 + Y1

f0 [MHz] n;m f0 [MHz] n;m f0 [MHz] n;m
87.8492 1;1 114.7425 0;1 70.9312 1;1

145.7282 2;1 182.8239 1;1 96.2430 0;1
182.8239 0;1 245.0383 2;1 116.7053 2;1
200.4532 3;1 263.3820 0;2 150.1211 0;2
253.7188 4;1 304.4195 3;1 152.8110 1;2
254.3815 1;2 334.7379 1;2 159.4760 3;1

50 75 100 125 150 175
10−3

10−2

10−1

100

101

operating frequency f0 [MHz]

∑ |X
e
rr
|

Fig. 2. L1-norm of the combined error Xerr in (e+z , h+t ) w.r.t. the
reference PMCHWT solution for the FE-BIE formulations (10) (solid) and
(14) (dashed), and the theoretical resonance frequencies (dotted).

with k1 = k0
√
εrµr and J ′n the derivative with respect to

the argument of the n-th order Bessel function of the first
kind. From (16), the Neumann and Dirichlet eigenfrequencies
for the exterior resonances are easily obtained as the roots of
J ′n(k0R) and Jn(k0R), respectively. In a similar manner, the
breakdown frequencies of (10) are found as the roots of

J ′n(k0R) Jn(k1R) +
√

εr
µr
Jn(k0R) J ′n(k1R) ,

and in Table I, the first 6 resonance frequencies of Ỹ0, Ỹ−10

and Ỹ0 + Y1 are listed together with the corresponding mode
number n;m (m-th zero of order n). In Fig. 2, we observe
that the theoretical breakdown frequencies of Ỹ0+Y1 (dotted)
indeed correspond to the frequencies where the solution error
for (10) is maximized (solid), while the formulation with
Robin boundary conditions (dashed) remains unaffected.

Besides the solution error due to the spurious modes, a
frequency dependent dispersion error is introduced by the
finite mesh in S. Compared to the node basis functions, the
edge basis functions provide a better approximation of the
inner field interactions, hence the MFF will generally provide
more accurate results than the EFF. In Fig. 3, we compare
the combined error in e+z and h+

t with respect to the reference
PMCHWT solution for different FE-BIE formulations. Besides
the spurious solutions in some formulations, it is observed
that all formulations introduce an increasing dispersion error
as a function of frequency, and that the edge basis functions
in the MFF indeed provide the most accurate results, which
follows from comparing the formulation with the EFF and
Robin boundary conditions (dash-dotted) with the formulation
with the MFF and Robin boundary conditions (dashed).

Without Robin boundary conditions, spurious solutions in-
troduce large errors in the neighborhood of specific breakdown
frequencies. For the EFF- and MFF-only formulations, these
neighborhoods are very small, and these formulations are

250 275 300 325 350 375 400
10−2

10−1

100

101

102

operating frequency f0 [MHz]

∑ |X
e
rr
|

Fig. 3. L1-norm of the combined error Xerr in (e+z ,h+t ) w.r.t. the reference
PMCHWT solution for the FE-BIE formulations with EFF+MFF (solid),
MFF−1+MFF (dotted), EFF Robin (dash-dotted) and MFF Robin (dashed).

therefore rather robust. However, when the EFF and the MFF
are combined as in (10), the influence of the spurious solutions
are observed in a much larger frequency interval, as shown in
Fig. 3 for formulation (10) (solid). For the same mesh, the edge
and node basis functions have a different interaction pattern,
hence the field propagation in S is approximated differently,
and the small difference between the numerical wave numbers
broadens the frequency range over which spurious modes
can exist. This effect can be avoided by discretizing only
the operator Y−11 in the MFF, after which we can invert
the resulting system matrix to form the discrete equivalent
of Y1, but now with the same approximated wave number.
As observed in Fig. 3, the resulting formulation (denoted
MFF−1+MFF) (dotted) is indeed more robust and has an
equivalent dispersion error as the MFF-only formulation with
Robin boundary conditions. However, besides the fact that the
breakdown frequencies are still present in the MFF−1+MFF
formulation, the matrix inversion can lead to numerical prob-
lems when the compressed MFF system matrix is singular.

V. CONCLUSION

By identifying the FE formulation with a PS operator, an
operator notation for hybrid FE-BIE formulations can be con-
structed that provides remarkable theoretical insight regarding
accuracy and the existence of breakdown frequencies. We
showed the equivalence between the compressed FE matrix
and the discretized PS operator, and verified the theory on a
TM scattering problem where we successfully predicted the
breakdown frequencies of a specific FE-BIE formulation.
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