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Abstract—In this paper the approach followed by Chilton et all.
to develop a provably passive and stable 3D FDTD subgridding
technique, is adapted to Body-Of-Revolution (BOR) FDTD. To
this end a new set of basis functions is presented together
with the mechanism to assemble them into an overall mesh
consisting of coarse and fine mesh cells. To preserve the explicit
nature of the leapfrog time stepping algorithm, appropriate mass-
lumping concepts, again specifically adapted to the BOR-FDTD
situation, are invoked. Numerical examples for toroidal cavities
demonstrate the stability and accuracy of the method.

I. I NTRODUCTION

Amongst nowadays numerical techniques to solve
Maxwell’s equations, the Finite Difference Time Domain
(FDTD) method [1] is one of the most powerful tools. It
is massively parallelizable, matrix-free in contrast to finite-
element (FE) techniques, does not require the knowledge
of suitable Green’s functions, as is the case for integral
equation methods and can handle complex geometries. In
the past decades a lot of advances have been made with
respect to absorbing boundary conditions, dispersion-relation
preservation, subgridding, unstructured grids etc. For a review
on these advances we refer to [2], [3] and the references
therein and to the huge body of literature on these topics.
The research presented below is motivated by the study of
complex wave phenomena in Tokamak plasmas [4], [5] such
as to be used in ITER. In order to be able to predict all
relevant wave phenomena in such plasmas, one must be able
to correctly model transition regions where the solutions of
the dispersion relation can change quite abruptly, involving
the sudden and localized appearance of solutions with a
wavelength many times shorter than the usual wavelength,
the so-calledmode conversion [5]. Subgridding is mandatory
in order to take these crucially important, but very different
length scales, into account.
Here, a brief account is given of our efforts to develop a
suitable BOR-FDTD subgridding technique which can of
course also be used outside the context of plasma research.
For an introduction to BOR-FDTD we refer to Chapter 12
of [1] and to a.o., [6], [7]. Subgridding has been thoroughly
investigated in the past e.g. in [8], [9], [10], [11].

II. BOR-FDTD DISCRETISATION

The classical BOR-FDTD representation of [1] is used as
our starting point. Fig. 1 shows a unit BOR-FDTD cell with
material parametersǫ andµ centered on theBθ component,
extending fromr = R0 to r = R0 +∆ and fromz = Z0 to

Fig. 1. A Yee-like unit cell in BOR-FDTD showing the anchor points of the
basis functions.

z = Z0+∆. For each angular mode numberM , the following
8 new basis functions~En for the electric field are introduced:
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These basis functions are zero outside the considered cell.The
corresponding basis functions~Bn for the magnetic induction
are:
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Crucial to the method is that these magnetic induction basis
functions have thecurl inclusion property, i.e.

∀αn∃βn : ~∇×

∑

n

αn
~En =

∑

n

βn
~Bn (7)

meaning that the curl of every electric basis function (and,
by extension, of any linear combination of electric basis
functions) can be written as a linear combination of magnetic
basis functions.

Next, the electric fieldE and the magnetic inductionB are
expanded in the basis functions~En resp. ~Bn. The expansion
coefficients, which still depend on time, are collected in the
column vectorseandb. As a consequence of the curl inclusion
property, Faraday’s law within a single BOR-FDTD cell can
now be satisfied exactly. This is not the case for Ampere’s
law. This law is enforced in theweak sense by testing both
sides of Maxwell’s second curl equation with the electric field
basis functions. This finally leads to the following discretised
form of Maxwell’s equations:

Ce(t) = −
db(t)
dt

(8)

[⋆ǫ]
−1CT [⋆−1

µ ]b(t) =
de(t)
dt

(9)

The discrete curl matrixC depends explicitly on the mode
numberM and the radial cell position,as is expected from
the behaviour of the continuous curl operator in cylindrical
coordinates. Explicitly,CT is given by
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The curl inclusion property, together with the existence ofa
left inverse of theCT matrix, implies that every magnetic
induction basis function can be written as a linear combination
of the curl of the electric basis functions.
[⋆−1

µ ] and[⋆ǫ] are the mass matrices obtained by integrating
scalar products of basis functions over the whole problem
volume.

[⋆−1
µ ]n,m =

∫

µ−1 ~Bn · ~BmdV (11)

[⋆ǫ]n,m =

∫

ǫ ~En · ~EmdV (12)

The integration overθ is performed analytically, yielding a
factor ofπ. The remaining integration overr andz is done us-
ing trapezoidal integration (mass lumping [12]) with sampling
points at the 4 cell corners. This makes these matrices diagonal
and positive definite. IfO(∆4) terms in [⋆−1

µ ] are neglected,
this method reduces exactly to classical BOR-FDTD.

III. SUBGRIDDING BASIS FUNCTIONS

Suppose that subgrids of size∆/N × ∆/N , with N an
integer, are introduced. In order to be able to apply the
theory of [13], asserting that the resulting scheme is indeed
conservative and stable, the basis functions on the fine grid
much be such that a linear combination of them yields the
basis functions of the coarse grid (thenesting property). It is
easy to verify that the basis functions defined above have this
nesting property.

In general, we can combine disjoint cells usingrestriction
operators, which map disjoint basis functions (defined on a
single cell) onto joint basis functions defined in the entire
simulation domain, and with appropriate continuity properties.
These joint basis functions cover several cells but still remain
localized. As the joint basis functions are linear combinations
of disjoint ones, the restriction operators can be written in
matrix form.

Let AE be the restriction operator for the electric fields and
AB for the magnetic inductions. Using these operators, the
Maxwell curl equations for thecomplete mesh become

Cjointe(t) = −
db(t)
dt

(13)
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T
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T
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T
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In 2D TE problems, the joint mass matrix[⋆ǫ] remains
diagonal after restriction. In BOR-FDTD, this is still truefor
all components except for theθ-component of the electric field
which has to be restricted in both ther and thez directions.
Details will be given at the oral presentation.

IV. N UMERICAL EXAMPLES

To give the reader an indication on the stablity of the
method, an explicit calculation of the eigenvalues of the update
matrix for a very small problem (Figs. 2 and 3) shows that the
eigenvalues are all on the unit circle provided that the Courant
condition for the smallest cells is respected or in this caseeven
for a slightly higher value.

As a second example, consider a perfectly conducting torus
with a square cross section fromr = 2 m to r = 4 m and a
height of 2 m (Fig. 5),∆coarse = 1 cm, ∆small = 1/3 cm.
The fine grid is a square fromr = 2.6m z = 0.6 m with sides
of 34 cm, as indicated by the rectangle. The cavity is partly
filled with a dielectric material withǫ = 9ǫ0 at r > 3.5 m. The
mode numberM = 5 and the source has a Gaussian spectrum
centered atω0 = 3.3 GHz. The resulting spectrum is shown in
Fig. 4, and the typical behaviour of the electric field in figure
5. The presence of the subgrid area barely disturbs the vertical
symmetry of the situation and does’t significantly change the
resonance spectrum. Further examples will be provided in the
oral presentation.
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Fig. 2. A simple configuration for the exact eigenspectrum calculation.
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Fig. 3. The eigenspectrum of the discrete amplification matrixfor the simple
configuration of Fig. 2 and for various values of∆t.

V. CONCLUSION

We have extended the provably stable subgridding method
of [14] to BOR-FDTD. Using appropriate mass-lumping tech-
niques yields an explicit and stable time-stepping algorithm
provided the Courant limit of the fine mesh cells is respected
(although the mass-lumping can lead to a relaxing of this
limit). Examples, using toroidal cavities, have demonstrated
that the proposed subgridding is indeed stable.
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Fig. 4. Comparison between a subgridded and a non-subgriddedcavity for
a toroidal M=5 mode with a resonance frequency near 3.25 GHz
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Fig. 5. |Eθ| after 104 steps. The rectangle indicates the boundary of the
subgridded domain.
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