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Abstract 

Polymeric multilayer capsules have emerged as a novel drug delivery platform.  These 

capsules are fabricated through layer-by-layer sequential deposition of polymers onto a 

sacrificial core template followed by the decomposition of this core yielding hollow capsules. 

The resulting nanometer thin membrane is permselective, allowing diffusion of water and 

ions but excluding larger molecules. Moreover, the sequential fabrication procedure allows a 

precise fine-tuning of the capsules’ physicochemical and biological properties. These 

properties have put polymeric multilayer capsules under major attention in the field of drug 

delivery. In this review we focus on polymeric multilayer capsule mediated delivery of 

biotechnological macromolecular drugs such as peptides, proteins and nucleic acids.  
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1. Introduction 

 Recent advances in molecular biology and biotechnology have lead to the discovery 

of an entirely new gamma of biomolecular therapeutics such as peptides, proteins and 

nucleic acids. [1] These biotherapeutic drugs require special handling as they are often prone 

to degradation or denaturation upon oral intake and often do not easily reach their target 

after mere parenteral injection.[2, 3] In order to be protected before reaching their target and/or 

to assist them reaching their specific target location, advanced drug formulation is of 

paramount importance.  

 

Figure 1.  Schematic representation of the permselective nature of polymeric multilayer 
capsules. The polymeric multilayer membrane is fully permeable to water molecules and the 
inner compartment of the capsules is fully aqueous. Low molecular weight compounds can 
freely diffuse in and out of the capsules while larger species are excluded or remain 
encapsulated.  

For several reasons, microparticulate encapsulation often offers a solution to the 

formulation issues of biotherapeutics: (1) Microparticles can be easily administered both by 

injection, topical administration as well as oral intake. (2) Microparticles offer protection of the 

therapeutics of interest against enzymatic degradation on a microscopic scale. (3) 

Microparticles can be internalized by many different cell types while tailoring the size and 

surface chemistry of the particles can alter their tager cell population. (4) Microparticles can 

be engineered in such a way that they release their payload in a sustained fashion of only 

after a specific physic-chemical stimulus when reaching their target site. [2, 3] 

Polymeric multilayer capsules are fabricated through step-wise adsorption of 

polymers using electrostatics, H-bonding, covalent chemistry, etc… as driving force, followed 

by the dissolution of the core template. [4, 5] One of their most striking properties is their 

permselectivity in aqueous medium.[6]  While the polymeric shell is fully permeable to low 

molecular weight compounds such as ions and small drug molecules, they are impermeable 
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to larger molecules. This property, schematically illustrated in Figure 1, renders polymeric 

multilayer capsules ideally suited for the encapsulation of biotherapeutics such as proteins, 

peptides, and nucleic acids like DNA, siRNA etc… [7-9]  While the aqueous void of the 

capsules should provide physico- and bio-chemical stability to the molecules of interest, the 

capsule surface could be engineered in order to (1) target specific cell populations, (2) 

activate certain cell functions upon binding of the capsules to the cell surface or upon 

intracellular uptake, (3) release the capsule content at the required moment when reaching 

the target site or (4) upon a well-defined stimulus.  

 In this paper we review the recent literature data on the encapsulation and delivery of 

high molecular weight compounds for biomedical applications.    

 

Figure 2. Schematic representation of the procedure for encapsulating biotherapeutics in 
polyelectrolyte microcapsules using porous microparticles as templates: (I) biotherapeutic 
immobilization in mesoporous spheres; (II) LbL assembly of oppositely charged 
polyelectrolytes (PE); (III) dissolution of the microspheres template; (IV) biotherapeutic 
encapsulated in a polyelectrolyte microcapsules; and (V) biotherapeutics release via altering 
the shell permeability.    

2. Encapsulating biotherapeutics 

2.1 Pre-loaded templates 

 Pre-loading procedures make use of sacrificial templates that already contain the 

molecules of interest. For this purpose, emulsions [10, 11] are used to encapsulate hydrophobic 

compounds – these are dissolved into an organic phase which is subsequently coated with a 

multilayer film – while porous inorganic templates can adsorb both hydrophilic as well as 

hydrophobic molecules in their pores. Mesoporous silica (SiO2) [12-14] and calcium carbonate 

(CaCO3) [15-18] microparticles have been used for this purpose. Mesoporous silica (Figure 2) 
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benefits from the advantage that such templates can be obtained in a monodisperse state 

and that they are stable over the whole pH range which allows the use of polyelectrolyte 

solutions with acidic pH. This is e.g. of importance for the construction of hydrogen bonded 

multilayers [19, 20] based on the use of polycarboxylic acids as electron donor, since the 

solution pH has to be lowered in order to keep the carboxylic acid moieties protonated.  An 

important drawback of silica based sacrificial templates however, is the requirement of 

hydrofluoric acid (HF) to dissolve the silica cores. As HF is extremely toxic, extreme caution 

has to be exercised during subsequent washing steps in order to remove all residual HF. So 

far urease, [21] catalase [13] and DNA [22]  haven been loaded into mesoporous silica templated 

PMLC. A number of other components have been encapsulated into non-porous silica 

templated capsule by using them as first layer in the LbL assembly or through covalent 

coupling to on the polyelectrolytes.  [23] 

 

Figure 3. (A) Confocal microscopy image of (PAH/PSS)5 polyelectrolyte capsules loaded 
with FITC-BSA through (A1)  physical adsorption on preformed CaCO3 templates and (A2) 
co-precipitation during CaCO3 synthesis. (B) Scanning electron microscopy images of (B1) 
bare CaCO3 templates and (B2) BSA loaded CaCO3 through co-precipitation. (C) Scanning 
electron microscopy images of (C1) empty and (C2) BSA loaded (PAH/PSS)5 capsules.  

An alternative to HF are calcium carbonate microparticles (CaC03) [16] which are 

formed through mixing of calcium chloride and sodium carbonate. After LbL coating the 
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CaCO3 particles are easily dissolved in an aqueous EDTA solution. This technique is 

especially well suited for the in situ encapsulation of proteins by means of physical 

adsorption of through  a co-precipitation reaction. CaCO3 microparticles exhibit a high 

porosity (SEM image in Figure 3B1) and can therefore adsorb large amounts of 

biotherapeutics. A limitation in this process is the molecular weight of the macromolecules, it 

has been reported that FITC-dextran with a molecular weight of 4 kDa can diffuse through 

the whole interior of CaCO3 particles while 40 kDa FITC-dextran can only diffuse into the 

periphery of the particles. This is demonstrated in Figure 3A1 where FITC-BSA was loaded 

into CaCO3 particles followed by LbL coating and dissolution of the CaCO3 template with 

EDTA. As can be derived from the distribution of the green fluorescence the protein is only 

found in the capsule periphery. To encapsulate higher amounts of protein with a more 

homogeneous intra-capsule protein distribution, a co-precipitation approach is more 

interesting. [15] In this method the precipitation reaction of CaCl2 and Na2CO3 is carried out in 

the presence of the protein of interest. In first instance CaCO3 nanoparticles are formed onto 

which the protein adsorbs followed by aggregation of the nanoparticles into microparticles. 

(SEM image in figure B2). After LbL coating and dissolution of the CaCO3 template a much 

more homogeneous protein distribution throughout the capsule volume is observed (Figure 

3A2).  Moreover, a co-precipitation procedure allows to encapsulate much higher amounts of 

protein compared to physical adsorption. In Figure 3C SEM images are shown of hollow 

capsules that are respectively empty and loaded with BSA. The loaded capsules exhibit a 

pronounced higher density compared to the empty ones. So far the following biotherapeutics 

have been encapsulated in CaCO3 templated PMLC: dextran, a-lactalbumin, lysosyme, 

horseradish peroxidise, glucose oxidase, catalase, ovalbumin, bovie serum albumin, a-

chymotrypsin, insulin DNA and pronase. [15, 17, 18, 24-28]  

 A third category of template particles that have gathered considerable attention in 

literature are hydrogel beads. Hydrogels are strongly hydrated 3D networks which, due to 

their aqueous environment offer good preservation of the biotherapeutics’ bioactivity upon 

encapsulation. The first report of such approach was done by the McShane group who used 

calcium-alginate beads to load oppositely charged proteins through electrostatic interaction 

with the anionic alginate followed by the deposition of an LbL coating onto the calcium 

alginate bead surface. [29]  Encapsulation of glucose oxidase with high yields and excellent 

preservation of enzymatic activity was subsequently demonstrated. [30] De Geest et al. 

elaborated on the use of degradable dextran microgels employing methacrylated dextran 

whose methacrylate groups were connected to the dextran backbone through a hydrolysable 

carbonate ester link. As dextran phase separates from poly(ethylene glycol) in aqueous 

medium at elevated concentrations, microgels could be fabricated in all aqueous conditions 
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through a water-in-water emulsion approach and the preferential distribution of many 

proteins into a dextran phase over a poly(ethylene glycol) favours protein encapsulation into 

the dextran microgels. By engineering the LbL coating of the microgels it was possible to 

equip the capsules with different release properties. [31-33] For example, a strong coating 

yielded stable capsules upon dissolution of the microgel core while a loosely bound coating 

allowed sustained release through pores in the capsule wall. A tightly optimized coating 

composition yielded so-called self-exploding capsules that retained their payload during 

degradation of  the microgel core. [34, 35] However, upon total degradation, when the osmotic 

pressure of the microgel core exceeds the tensile strength of the capsule membrane, the 

capsule explodes and released its payload in a pulsatile fashion. [36] 

 

Figure 4. Schematic diagram illustrating the matrix-assisted colloidosome reverse-phase 
layer-by-layer (MAC RP-LbL) microcapsules fabrication process. 

 Recently the Trau group reported on a novel so-called reverse-phase LbL 

encapsulation technique. [37] This approach is especially suited for very hydrophilic molecules 

and involves non-ionized polyelectrolytes that are dissolved in organic medium (Figure 4). 

Contrary to the traditional aqueous phase electrostatic LbL build-up where coulomb 

interactions are the driving force for polyelectrolyte assembly, the authors hypnotized that in 

reverse-phase LbL a solid phase acid-base reaction occurs between the template surface 

and the non-ionized polyelectrolyte, yielding a thin layer of ionized polyelectrolyte, which 

provoques particle stabilisation through repulsion and also creates a concentration gradient 

between the particle surface and the solution which allows further polyelectrolyte transport 

through diffusion. Initially, bovine serum albumin (BSA) microparticles in ethanol were used 

to demonstrate reverse-phase LbL with non-ionized poly(methactylic acid) and non-ionized 

poly(diallyl dimethyl ammonium chloride). The approach was in subsequent publications 
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further elaborated for the coating of protein loaded agarose hydrogel beads allowing a quasi 

100% encapsulation efficiency of hydrophilic compounds. [38] As schematically depicted in 

Figure 4, a first step comprised the formation of protein loaded agarose hydrogel beads 

formed through an emulsification process involving amino functionalized polystyrene beads 

as colloidal stabilizing agent. Subsequent reverse-phase LbL yields stable microcapsules 

that can be transferred into aqueous medium without losing their integrity nor losing their 

protein payload. Furthermore they demonstrated successful encapsulation of the bi-enzyme 

system based on glucose oxidase (GOx) and horseradish peroxidase  (HRP) where GOx 

consumes D-glucose into D-gluconolactone and hydrogen peroxide which is then consumed 

by HRP to oxidise Ampliflu Red into a UV-active product that can be measured by 

spectrophotometry.      

2.2 Post-loading strategies 

 In a post-loading approach, the molecules of interest are loaded into pre-fabricated 

capsules. This can be done in two ways: (a) by reversibly changing the permeability of the 

capsule shell or (b) by creating a driving force for certain molecules to accumulate inside the 

capsules.  

 Due to their permselectivity, polymer multilayer capsules are permeable to low 

molecular weight species while they exclude high molecular weight ones. [6] Taken this into 

consideration, there is however no rule of thumb nor a theoretical model which allows to 

predict the molecular weight cut-off of the capsule membrane. This is due to several reasons: 

(a) different polyelectrolytes can results in different structures of the multilayer films with very 

large differences in permeability, (b) a high surface roughness of the template  increases the 

amounts of adsorbed polyelectrolytes, and thus a thicker and less permeable membrane and 

(c) due to their ionic nature, polyelectrolytes and their complexes are highly sensitive to 

variations in pH and ionic strength of the surrounding aqueous medium.  

This last property is exploited to reversibly change the permeability of the capsule 

wall, ‘opening’ the capsules during which the capsules are loaded with molecules of interest 

followed by ‘closing’ of the capsules resulting in the entrapment of the molecules of interest. 
[39-41] This is shown in Figure 5 where a combination of adding salt and heating is applied to 

encapsulate 70 kDa FITC-dextran into (PDADMAC/PSS)4 microcapsules. [42] Figure 5a 

demonstrates that under conditions of low ionic strength the FITC-dextran cannot diffuse 

through the polyelectrolyte shell. However, in the presence of 50 mM salt (NaCl; Figure 5b) 

the polyelectrolyte shell becomes permeable and the capsules fill with FITC-dextran. In order 

to re-seal the capsule shell, the capsules are heated above the glass transition temperature 
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of polyelectrolytes. This leads to a shrinkage and by consequence thickening and 

densification of the polyelectrolyte shell, providing a stable encapsulation of FITC-dextran 

into the polyelectrolyte capsules. Figure 5c illustrates the importance of the addition of salt to 

allow encapsulation of high molecular weight species into PMLC through heat treatment. The 

microscopy images in Figure 6, obtained with various techniques (i.e. confocal laser 

scanning microscopy, scanning electron microscopy and transmission X-ray microscopy), 

further illustrates what happens with the polyelectrolyte shell during this heat treatment. [43-48] 

All three microscopy techniques show a shrinkage of the capsules with higher temperatures 

of the heat treatment. Note that the same trend can also be obtained at a fixed temperature 

with variation of the treatment time. The scanning electron microscopy images demonstrate 

the transition from an inflated structure of the hollow capsules upon drying of the sample, to a 

hardened structure which can maintain its spherical shape upon drying. The transmission X-

ray microscopy images give final evidence of the increase in shell thickness as a function of 

temperature. These images also point out the powerfulness of this technique to characterise 

objects in water with a resolution higher than conventional confocal microscopes, avoiding 

the use of fluorophores and without the extensive sample preparation that is required for 

electron microscopy methods.  

  

Figure 5. Confocal micrographs of (PDADMAC/PSS)4 capsules incubated for one hour in 1 
mg/mL FITC-dextran 70 kDa (a) without NaCl and (b) with 50 mM NaCl. (c) Comparison of 
the encapsulated amount of FITCd-extran 70 kDa per (PDADMAC/PSS)4 capsule as a 
function of dextran concentration during heating in 0 and 50 mM NaCl. 
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 Heat shrinkage is definitely an elegant method to encapsulate a wide variety of 

molecules that is applicable to both small (i.e. 1 to10 kDa) as well as larger molecules. Note 

that smaller ones do not need additional salt to further permeabilize the capsule shell. 

However, one does have to take into account that many biotherapeutics are sensitive to heat 

and therefore extreme caution should be exercised to avoid denaturation. Moreover, 

encapsulation efficiencies in post-loading methods are inherently very low as the majority of 

the material to be encapsulated will be outside the capsule shell.  

 

Figure 6. (A) Confocal, (B) scanning electron an (C) transmission X-ray microscopy images 
(PDADMAC/PSS)4 capsules: non-heated (left), heated at 50 °C, heated at 70 °C, and heated 
at 90 °C (right) for 20 min. 

3. Engineering the capsules to release biotherapeutics 

 In order to play a role as drug delivery system, it is evident that polymeric multilayer 

capsules should not only be able to encapsulate and transport drug molecules but they 

should also be able to release their payload, preferably in a desired fashion. [8] Therefore, 

numerous release mechanism have been incorporated within these capsules. Inherent to 

their polyionic nature, polyelectrolyte capsules are prone to ionic strength and pH. The 

presence of ions in the surrounding medium shields the attractive forces between the 

successive polyelectrolyte layers, loosening their structure allowing outwards diffusion of 

encapsulated payload through the capsule membrane. Similarly, when changing the pH of 

the medium the charge density of the individual polyelectrolytes is also altered. By changing 

the charge balance between attractive and repulsive forces in the successive polyelectrolytes 

a rearrangement of the membrane structure is induced, often leading to increased or 
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decreased permeability towards macromolecules. [49] However alterations in pH (e.g. the 

shift from extracellular pH of 7.4 to intracellular ph of 5.2 in phagosomes) and ionic strength 

are very common in living tissue, they are most often too weak to alter major changes in the 

structure of polyelectrolyte capsules in order to induce release of encapsulated compounds.  

 The presence of metabolites such as glucose could also be used as trigger, 

potentially for insulin release in the treatment of diabetes mellitus patients. Several research 

groups have reported on polymeric multilayer capsules containing glucose responsive 

components. The first one was demonstrated by De Geest et al. using a copolymer 

containing phenylboronic acid moieties that undergo a glucose dependent shift in charge 

density. [50] Several other groups also reported on phenylboronic acid based systems, 

however, a major drawback of this approach was the restriction to work above physiological 

pH values. [51] Alternatively, protein based systems employing  glucose oxidase or 

Concanavalin A have been reported as well but all suffered from low sensitivity and 

robustness under physiological conditions. [52-54] 

 Two major breakthroughs in putting polyelectrolyte capsules en route towards 

biomedical applications were reported by Zelikin et al. and De Geest et al., taking advantage 

of the of the change in oxidative state, respectively enzymatic activity when crossing the 

cellular membrane. Zelikin et al. designed capsules based on thiolated poly(methacrylic acid) 

as hydrogen bond donor in conjunction with poly(N-vinylpyrrolidone) as hydrogen acceptor 

for the formation of H-bond based multilayer capsules. [55, 56] Cross-linking of the 

successive thiolated poly(methacrylic acid) layers is performed by chloramine T mediated 

oxidation of the pending thiol moieties to form disulfide linkages. Due to the reductive 

environment (gluthathione) upon intracellular uptake in phagosomal vesicles, these disulfides 

become reduced to thiols leading to disassembly of the capsules and release of the 

encapsulated payload. Based on this principle the Caruso group has reported several 

modifications, further engineering the physcio-chemistry of the capsules onto the nano-scale. 

[55, 57-60]  

 Alternatively to exploiting glutathione mediated reduction, De Geest et al. took 

advantage of the proteolytic activity within intracellular acidic vesicles to trigger capsule 

disassembly. [24] First they showed that capsules composed of oppositely charged 

polysaccharides and polypeptides, such as dextran sulfate and poly-L-arginine, decomposed 

gradually when incubated with a mixture of proteases. Secondly, these capsules were found 

to degraded intracellularly upon incubation with a cancer cell line (VERO – African green 

monkey kidney cells), whereas by contrast non-degradable PSS/PAH capsules stayed intact 

intracellularly for several days.  
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Both strategies paved the road towards applying polymeric multilayer capsules for 

intracellular delivery of therapeutic molecules as they could retain their payload stably 

encapsulated in the extracellular environment, but readily allow release of their payload upon 

cellular entry. Besides using triggers offered by nature itself also several systems are under 

investigation where external physical sources such as laser light, [61] magnetic field [62] or 

ultrasound [63] have been used to trigger release from polyelectrolyte capsules.  Intracellular 

laser triggered release has shown to be possible within living in vitro cultured cells but so far 

no therapeutic applications have been demonstrated. 

4. Targeting specific cell populations with polymeric multilayer 

capsules 

Since many biotechnological molecules have a specific target tissue, biospecific 

interactions between PMLC and cells are important when PMLC are applicated in vivo. 

Functionalization of drug loaded PMLC with cell-targeting structures allows delivery of the 

cargo to a cell type of interest avoiding unwanted uptake. In this way, high drug 

concentration can be obtained in the target tissue using a minimum amount of drug loaded 

carriers and undesirable effects in other tissues or cells are avoided. To target PMLC to a 

specific cell type, carriers have been functionalized with monoclonal antibodies, [64, 65] 

carbohydrates [66, 67] or magnetic particles [68] in the past. 

Monoclonal antibodies have a remarkable specificity which makes them extremely 

promising as cell recognition tool. When envisioning anti-cancer therapy, it would be 

beneficial to target chemotherapeutic loaded PMLC to tumour tissue using antibodies 

recognizing the cancer cells. Targeting PMLC to human colorectal tumour cells was 

performed by Cortez et al. by functionalizing the carriers through non-covalent (adsorption) 

or covalent (click-chemistry) interaction with humanized A33 monoclonal antibody which 

binds to the human A33 antigen, expressed by 95 % of the targeted cell type. [64, 65, 69] A 

preferential binding of the functionalized particles compared to non-functionalized particles to 

colorectal cancer cells was demonstrated. Zebli et al. demonstrated magnetic targeting of 

PSS/PAH capsules coated with magnetic metal nanoparticles using a flow-channel set-up. 

PMLC were trapped by a magnetic field resulting in higher uptake of the carriers by breast 

cancer cells growing in the proximity of this magnetic field. [68] Since liver parenchymal cells 

contain asiaglycoproteinreceptors which are recognized by galactose, Zhang et al. fabricated 

PMLC composed of PSS and a galactose-bearing cationic polymer in the perspective of 

targeting hepatocytes. [66, 67] Specific interaction of the PMLC with peanut agglutinin lectin 
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rather then concanavalin A lectin suggested the potential of the PMLC to interact specifically 

with hepatocytes. 

Administration of PMLC in the body results in adsorption of opsonic proteins on the 

surface of the carriers followed by uptake by phagocytic cells. This unspecific clearance is 

undesirable and it would be beneficial to reduce adsorption of proteins to obtain a prolonged 

circulation time. Therefore, PMLC were equipped with a protein-resistant coating composed 

of polyethylene glycol (PEG). Several factors contribute to reduced adsorption of proteins to 

PEG coated PMLC. The hydrophilic character of PEG avoids hydrophobic interactions with 

proteins. Additionally, PEG shields charges of the PMLC thereby minimizing potential 

electrostatic interactions with proteins and flexible PEG chains provide steric repulsion. [70] 

Wattendorf et al. investigated the effect of PEG grafted polymers incorporated within PMLC 

on the internalization by phagocyting cells. [71] PAH/PSS PMLC were functionalized with 

PGA-g-PEG or PLL-g-PEG. Their findings demonstrated that PGA-g-PEG did not have a 

significant effect on cellular uptake which could be caused by an insufficient PEG density. In 

contrast, PLL-g-PEG could block internalization of the carriers by phagocyting cells. To 

combine both specific interaction and reduction of protein adsorption Heuberger et al. 

produced PAH/PSS capsules and functionalized them with biotinylated PLL-g-PEG. [70] The 

functionalized PMLC exhibited a severe reduction of protein adsorption compared to 

PAH/PSS carriers in addition to an interaction with streptavidin which was 40-fold higher 

compared to PMLC coated with non-functionalized PLL-g-PEG. 

5.  Intracellular fate of polymeric multilayered capsules 

5.1. In vitro behaviour of LbL capsules and their cargo 

Despite their relatively big size, LbL capsules are readily internalized not only by 

professional phagocytes (DCs [25, 72, 73] and macrophages[74]), but also by numerous 

other cell types including breast cancer cells, hepatoma cells, fibroblasts, [75] epithelial 

kidney cells (VERO), human embryonic kidney cells… How particles are internalized by cells 

strongly impacts their intracellular trafficking and hence the fate of the encapsulated cargo. 

Although the exact mechanism of cellular uptake of LbL capsules still remains largely 

unexplored, several papers have recently begun to address this issue. In general, 

microcapsule internalization appears not only to be dependent on microcapsule intrinsic 

factors (size, composition, charge…) but also on the cell type taking up the particles. 

Dendritic cells (DCs) are specialized in the continuous sampling of antigens and pathogens 

by macropinocytosis, phagocytosis and receptor mediated endocytosis. Using TEM and 

confocal microscopy (Figure 7A-B), De Koker et al. demonstrated that DCs form large 
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cytoplasmatic extrusions to engulf polyelectrolyte microcapsules composed of dextran-

sulfate/poly-L-arginine (DS/pARG) bilayers. Uptake of these microcapsules by DCs was 

largely reduced by cytochalasin D, indicating particle internalization involves an actin 

dependent process. Furthermore, particle uptake was reduced by incubation with rottlerin, 

suggesting macropinocytosis as the predominant route of uptake in DCs. [25] To a lesser 

extent, membrane ruffling and the formation of plasmamembrane protrusions were also 

observed following incubation of colorectal LIM1899 cells with disulfide stabilized 

poly(methacrylic acid) capsules (PMA), consistent with particle uptake by phagocytosis or 

macropinocytosis. Nevertheless, while uptake of DS/pARG microcapsules by DCs [25] but 

also by VERO cells appears to be lipid raft mediated, [24] the uptake of the PMA capsules by 

various epithelial cell lines in contrast is clathrin dependent, pinpointing to important 

differences that might be both cell and particle dependent. [76] Zelikin et al. suggested that 

these discrepancies in internalization route might be due to the hydrogel nature and inherent 

softness of the PMA particles as the uptake of rigid PMA particles with a SiO2 core in contrast 

was totally clathrin independent. Intriguingly, uptake of the hydrogel particles by RAMOS B 

cells was also not dependent on clathrin, stressing the fact that different cell types might use 

different pathways for internalizing and processing the particles. [76] 

 

Figure 7. Images of BM-DCs taking up dextran sulfate/poly-l-arginine microcapsules. The 
TEM image (A) shows a BM-DC forming cytoplasmic protrusions to engulf the microcapsules 
(black arrow), which are visible as hollow disks with a dark, electron dense wall. Scale bar: 3 
mm. (B) Confocal microscopy images showing the formation of actin-rich protrusions. The 
actin cytoskelet was stained with alexa 488 phalloidin (green). Microcapsules were labelled 
red by incorporation of RITC–poly-L-arginine. Nuclei were stained blue with Hoechst 33258. 
Scale bar: 10 mm. (C) Confocal images of the effects of cytochalasin D and rottlerin on 
microcapsule uptake by BM-DCs. 
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Once internalized, most authors now agree that LbL capsules end up in acidic 

compartments, although partial escape to the cytosol has been occasionally reported. Co-

localization of fluorescently labelled microcapsules with lysotracker, a dye that selectively 

stains acidic vesicles, has been described for DS/pARG capsules internalized by DCs and 

VERO cells and for capsules composed of poly-lysine (PLL) and hyaluronic acid (HA) in 

RAW macrophages. [74, 77] Most strikingly, PLL/HA capsules promptly deform and rupture 

upon cellular internalisation (Figure 8) while this process appears to be much slower for other 

types of capsules. Encapsulation of the dextran labelled with the pH sensitive fluorophore 

SNARF-1 constitutes an elegant approach to visualize trafficking of LbL capsules to acidic 

compartments. Following excitation at 488 nm, the fluorescence intensities of SNARF-1 at 

580 nm and 640 nm are dependent on the local pH environment, with the 580 nm intensity 

decreasing while the 640 nm intensity increasing as the pH increases. Using this approach, 

Parak et al. were able to demonstrate the localisation of PEM inside acidic vesicles. [77, 78] 

Several groups have investigated the intracellular fate of LbL capsules following cellular 

uptake by immunostaining for the early endosome antigen 1 (EEA1) and the lysosome-

associated membrane protein 1 (LAMP-1). Partial or total co-localisation with the lysosomal 

marker LAMP1 was observed, further demonstrating the phago-lysosomal fate of LbL 

capsules following uptake . None of these studies was however able to demonstrate co-

localisation with the early endosomal marker EAA1, a feature which may however also be 

due to the late time intervals following particle uptake generally assessed in these studies.  

Using TEM (Figure 11A), a detailed picture of the fate and structural integrity of DS/pARG 

LbL capsules following uptake by DCs was recently provided by De Koker et al. Following 

uptake, the microcapsules could be distinguished as hollow particles with an electron dense 

shell which was clearly surrounded by a membrane. After a 24 hours incubation period, the 

microcapsules’ shell ruptured, possibly as a consequence of enzymatic degradation, and 

cytoplasmatic content invaginated the microcapsules’ hollow core, which however remained 

separated from the cytoplasm at all times by a membrane. [25] 
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Figure 8. Confocal microscopy images of (A) cross-linked HA/PAH and (B) cross-linked 
HA/PLL capsules after 2 h co-incubation with RAW mouse macrophages. Capsules are 
stained green fluorescent using HAFITC, while the cellular lysosomes are stained using 
LysoTracker Red.The left pane gives the overlay of the green and red channel, the middle 
pane is the DIC channel and the right pane is the overlay of green, red and DIC. Co-
localization between the green and red channel is observed as a yellow/orange colour. When 
capsules are taken up by the RAW cells – as visual from the yellow/orange co-localization 
signal between green capsule fluorescence and red lysosomal fluorescence –   they are 
readily deformed. 

The most important question when using LbL capsules for the intracellular delivery of 

macromolecules obviously remains the fate of the capsules’ cargo itself. Recently, the Parak 

and De Geest group jointly compared the accessibility of encapsulated proteins for proteases 

between non-degradable PSS/PAH and biodegradable DS/pARG capsules (Figure 9). 

Accessibility to proteases is of paramount importance when using capsules to deliver inactive 

pro-drugs that need to be enzymatically cleaved in order to become active. In addition, 

proteolytic cleavage is also crucial when delivering antigens for immunisation, as will be 

discussed later on. To address these issues, Parak et al. used DQ-ovalbumin (OVA), which 

is composed of OVA extensively labelled with bodipy dyes. Due to the close proximity of the 

dyes, their fluorescence becomes self-quenched. When OVA gets degraded into small 

peptides by enzymatic digestion, the quenching is relieved and a bright green fluorescence is 

emitted. After uptake by NIH/3T3 fibroblasts, OVA-DQ encapsulated inside biodegradable 

DS/pARG LbL capsules got readily degraded, while the protein remained intact when 

encapsulated in non-degradable PLL/PAH particles, thereby clearly showing the importance 
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of using degradable polymers which can be eroded and cleaved by intracellular proteases. 

[79] 

 

Figure 9. Enzymatic cleavage of protein cargo. Embryonic NIH/3T3 fibroblasts were 
incubated with (a) non-degradable PSS/PAH or (b) degradable DEXS/pARG capsules filled 
with the fluorogenic protein cargo, DQ-OVA. Images were taken immediately after addition of 
the capsules (t ) 0 h)over time up to 120 h with a confocal microscope in different channels, 
green, red, and transmission.  An overlay of the different channels is presented in the figures. 
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Figure 10. ( A) Flowcytometric analysis of the uptake of FITC-dextran containing PEMs by 
BAL cells at different time intervals post instillation. Alveolar macrophages/ DCs were stained 
with CD11c-PE-Cy5. The respective percentages of cells are depicted in each quadrant. (B) 
Confocal images of BAL cells at different time intervals post instillation of FITC-dextran 
(green) containing microcapsules. Cells were stained with the macrophage/DC marker 
CD11c-PE-Cy5 (red). Nuclei were stained with DAPI (blue). C, Confocal images of lung 
sections at different time intervals after instillation of FITC-dextran (green) containing PEMs. 
Nuclei were stained with DAPI (blue). Figures show an overlay of differential interphase 
contrast, green and blue fluorescence, with the right panel being an enlarged picture of the 
R1 region of the left panel. Microcapsule structures are indicated by full arrows, whereas 
leaked FITC-dextran is indicated by dotted arrows. 

5.2 In vivo fate and biocompatibility of LbL capsules  

Obviously, the first prerequisite for LbL capsules to be applied in vivo is their 

biocompatibility. In this respect, capsules composed of biodegradable components such as 

polypeptides and polysaccharides have the best potential to reach in vivo application, 

whether it may be for the delivery of anti-cancer drugs or as antigen carriers in vaccination. 
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Up to date, relatively few papers have explored the in vivo behaviour of LbL capsules. 

Following subcutaneous injection in mice, DS/pARG microcapsules evoked a moderate and 

localised inflammatory reaction, characterized by the fast recruitment of granulocytes and 

monocytes which gradually infiltrated the microcapsule mass. Over time, microcapsules were 

taken up by mononuclear cells, most likely macrophages. Importantly, the DS/pARG 

capsules retained their structural integrity before cellular uptake, but got rapidly degraded 

after internalization. [80] DS/pARG capsules were also explored as antigen delivery vehicles 

for pulmonary immunisation, [72] which recently has draw a lot of attention as it allows a non-

invasive route of delivery and might harbour the benefit of inducing local mucosal immune 

responses in addition to systemic immunity. Pulmonary delivery of DS/pARG capsules 

induced a transient inflammatory response with recruitment of mainly monocytes and 

granulocytes. Particles were rapidly taken up by alveolar macrophages, but also by DCs that 

transported them to the draining mediastinal lymph nodes. By encapsulating high molecular 

weight FITC-dextran, the capsules’ fate was followed over time. As depicted in Figure 10, 

intact capsules were visible inside alveolar macrophages two days following instillation. One 

week after instillation however, most of the capsules had leaked their content although some 

heavily deformed capsule debris could still be distinguished. Two weeks after delivery, no 

capsules were visible anymore and the FITC-dextran appeared spread throughout the cells. 

6. Delivery of biotherapeutics 

6.1 Antigens 

Recently, nano- and microparticles have gained a lot of interest as antigen delivery 

vehicles to selectively target antigens towards professional antigen presenting cells. [81] 

Most importantly, particulate antigen delivery has the capacity to elicit CD8 cytotoxic T cell 

(CTL) responses, a feature hardly achievable when using soluble antigens. Induction of such 

CTL responses is crucial to kill virally infected cells or even tumour cells. As they combine an 

efficient antigen encapsulation with an efficient uptake by DCs and monocytes, LbL capsules 

appear appealing antigen delivery systems for vaccination. Sexton et al. have nicely 

demonstrated that encapsulation of OVA in disulfide stabilized PMA capsules indeed is 

capable of stimulating antigen presentation by DCs in vitro. PMA particles however mainly 

increased antigen presentation to CD4 T cells (5.7- 42 fold), while CD8 T cell proliferation 

was enhanced by merely a factor 3.8 to 7.9, which is at best moderate compared to other 

particles such as PLGA or acid degradable particles. These observations were extended in 

vivo, with OVA loaded PMA capsules predominantly stimulating CD4 T cell responses (70-

fold increase) and to a lesser extent also CD8 T cell proliferation (6-fold). [82] 
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Figure 11. (A) TEM images of BM-DCs that have internalized dextran sulfate/poly-L-arginine 
microcapsules at the indicated time intervals. Microcapsule shell: dotted arrows; membranes 
surrounding the microcapsules: open arrows. In the encircled area, microcapsule rupture and 
cytoplasmic invagination are clearly distinguishable. Lysosomes, endoplasmatic reticulum 
(ER), and a mitochondrion are indicated by the solid arrows. (B) Processing of dextran 
sulfate/poly-larginine microcapsule encapsulated OVA was analyzed using DQ-OVA. 
Confocal microscopy images of BM-DCs incubated with OVA-DQ microcapsules for 0, 4 and 
48 h (overlay of green fluorescence and DIC). (DQ-OVA is ovalbumin oversaturated with 
BODIPY dyes. Upon proteolytic cleavage, quenching is relieved and green fluorescence 
appears. (C) Antigen presentation by BM-DCs after uptake of soluble and encapsulated 
OVA. Proliferation of OT-I cells was used as a measure for MHC-I-mediated cross-
presentation of OVA (left graph), proliferation of OT-II cells as a measure for MHC-II 
mediated presentation (right). 

Similarly, DS/pARG capsules have been exploited to deliver OVA to DCs. Using DQ-

OVA (Figure 11B), De Koker et al. have demonstrated that antigens inside these particles 

become readily available for enzymatic processing, even before visual rupturing of the 

particles’ shell as seen by TEM. In contrast to the PMA particles however, DS/pARG 

particles appeared to mainly promote CD8 T cell proliferation in vitro, although there was 

also a clear increase in CD4 T cell proliferation (Figure 11C).  

OVA loaded DS/pARG capsules were also used to further characterize the immune 

response following pulmonary delivery. [72] Instillation of these particles supported a strong 

humoral and cellular immune response. Strikingly, capsules with encapsulated OVA were 

much more potent in eliciting immune responses compared to mixtures of empty capsules 

and soluble antigens, stressing the fact that antigen encapsulation is crucial to obtain better 

targeting of DCs. On the level of the CD4 T cell response, a strong polarization towards IL-17 
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secreting Th17 cells was observed. Given the recent insights in the role of Th17 responses in 

combating extracellular bacteria such as Pseudomonas aeruginosa but also against the 

intracellular pathogen Mycobacterium tuberculosis it would be of great interest to examine 

the potential of DS/pARG capsules as antigen carriers to evoke protective immune 

responses against these insidious pathogens. Whether these particles also elicit Th17 

responses following more conventional routes of immunization (intramuscular or 

subcutaneous) remains to be established. Finally, considering the high versatility of the LbL 

technique, modifying the capsules with immunopotentiators that activate DCs might be an 

interesting approach not only to further increase the strength of the induced response but 

also to modulate the type of response generated.  

6.2 Peptides 

In an attempt to restore tissue structure and/or function, the implantation of tissue 

engineered constructs developed by seeding cells onto a biodegradable synthetic scaffold 

was proposed as a promising approach. [83] To fabricate those constructs signalling 

molecules such as growth factors to regulate cellular activities i.e. proliferation, differentiation 

and migration are pivotal elements. [84] Successful administration of these proteins involves 

their delivery to the target site while maintaining biological activity and retention of the 

proteins in the tissue during a period in which their activity can be exerted. [83, 85] 

Bolus injection of growth factors to the target site is generally not effective due to the short 

half-life of the growth factors and their fast diffusion from the injection site with concomitant 

toxicity in other tissues caused by non-specific distribution. [86] As a consequence controlling 

the release of the growth factor in terms of concentration and time span is an important 

issue. [87] Therefore, administration of growth factor loaded centres releasing their cargo in a 

controlled fashion at the target site has attracted attention. 

PMLC have been loaded with growth factors and the in vitro and in vivo activity of the 

cargo were investigated. Itoh et al. established a mitogenic stimulation of mouse fibroblasts 

during a prolonged period by basic fibroblast growth factor (bFGF) released in a controlled 

fashion from PMLC compared to bFGF in solution. [88] Caruso et al. embedded the growth 

factors bone morphogenic protein 2 and transforming growth factor beta 1 in the multilayer 

film of PMLC composed of poly-L-lysine and poly-L-glutamic acid. After having demonstrated 

in vitro successful induction of bone formation from stem cells incubated with active 

capsules, osteogenic differentiation of embryoid bodies (EB) was shown in mice after 

subcutaneously implanting a mixture of an alginate gel containing growth factor loaded 

capsules and EBs. PMLC protected the growth factors against degradation and acted as 
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growth factor reservoir, since in vivo experiments with free growth factor resulted in absent 

mineralization. [89] These results demonstrated the potential of PMLC as growth factor 

delivery systems in the process of tissue engineering. 

Administration of hormones through injection suffers from low protein stability in vivo 

requiring multiple administrations. This limitation can be overcome by encapsulating the 

hormones in PMLC which act as a protein reservoir and release their cargo in a controlled 

fashion. Benkirane-Jessel et al. loaded poly-L-lysine replica particles with alpha-melanocyte-

stimulating-hormone through adsorption and demonstrated successful stimulation of melanin 

production from murine melanoma cells after incubation with the functionalized particles 

compared to untreated cells. [90] 

6.3 Nucleic acids 

 Intracellular delivery of DNA, siRNA, oligonucleotides etc… is the primal goal for gene 

therapy, aiming to introduce new genes or replace defect genes. [91] Due to its polyionic 

nature, DNA has frequently been used in the past as building block in LbL films. Through 

condensation with the small cationic molecule spermidine, Schuler et al. demonstrated the 

possibility to construct multilayer capsules, however with limited stability under physiological 

salt concentrations. [92] Shchukin et al. condensed DNA with spermidine onto the surface of 

sacrificial manganese carbonate microparticles followed by polyelectrolyte coating and 

dissolution of the core templates leading to the liberation of freely floating DNA in the 

microcapsule cavity. [93] Direct incorporation of DNA by co-precipitation into calcium 

carbonate (CaCO3) microparticles followed by LbL coating and dissolution of the CaCO3 

templates by EDTA has been shown by the Sukhorukov group. [28] 

 Alternatively to the use of electrostatic interactions, the Caruso group has elaborated 

on the use of hydrogen bonding to incorporate oligonucleotides either in the cavity or in the 

wall of polyelectrolyte capsules. Amine modified mesoporous silica microspheres could 

accumulate oligonucleotides through electrostatic interactions into their pores and multilayer 

build-up of hydrogen bonded poly(methacrylic acid) and poly(vinylpyrrolidone) followed by 

etching of the silica core templates yielded hollow capsules with oligonucleotides stably 

encapsulated within their cavity. [23, 60] Also DNA hybridization based on hydrogen bonding 

between homopolymeric oligonucleotide blocks has been explored to construct multilayered 

capsules. [94-96] 

 Although the feasibility to incorporate nucleic acid based macromolecules into 

polyelectrolyte capsules or to use them as wall constituent, there are only few reports of 

functional biological experiments with polyelectrolyte capsule mediated gene delivery. The 
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Donath group has reported on the incorporation of pDNA encoding for green fluorescent 

protein into the membrane of LbL coated silica colloids followed by transfection onto an in 

vitro cancer cell line. [97, 98] Selina et al. reported on the in vivo use on a swine fever DNA 

vaccine by incorporating plasmid DNA into CaCO3 based degradable bio-polyelectrolyte 

(dextran sulfate / carragenan) capsules. [99] Recently Zhang et al. reported on single-

polyelectrolyte capsules based on mesoporous silica particles infused with poly-L-lysine 

(PLL) followed by cross-linking of the PLL’s amine groups with a reduction prone disulfide 

cross-linker. [90] These so-called PLL replica particles could accumulate plasmid DNA 

through electrostatic interaction and successful transfection experiments were conducted by 

transfecting an in vitro melanoma cell line with SPT7pTL plasmid DNA encoding for a nuclear 

transcription factor. 

 Despite these early reports, applications of polyelectrolyte capsule mediated gene 

therapy are still in a very early stage. An important drawback of polyelectrolyte capsule so 

far, is the fact that they end up upon cellular internalization in acid phagosomal vesicles and 

do not escape into the cellular cytoplasm. Although, for gene therapy phagosomal escape is 

essential and for plasmid DNA delivery, even the cell nucleus needs to be reached. 

Therefore, further developments in the field of LbL capsules with respect to gene therapy 

should focus on the incorporation of mechanisms to concur the intracellular phagosomal 

barrier.  

7. Conclusions  

 In conclusion, we have reviewed in this paper the recent advances in encapsulation 

and delivery of biotherapeutics mediated by LbL capsules. Polymeric multilayers are an 

emerging field with application opportunities in numerous disciplines. Whereas in the 

nineties, mostly physicochemical characterization was conducted in order to gain 

understanding into the fundamental aspects of multilayer formation, during the first decade of 

the 21st century, many applications including those in drug delivery started to emerge. 

However, so far polyelectrolyte capsules did not reach a clinical stage yet. This is due to 

several reasons: 

(1) Polyelectrolyte capsules contain polycations as a building block while these are often 

considered as toxic. However, several studies have pointed out that both planar films 

as well as capsules consisting of polyelectrolyte complexes do not exhibit significant 

toxicity. [7, 100, 101] Therefore, a thorough debate should be performed in order to 

assess in which conditions polycation related toxicity might be an issue or not. On the 

other hand, there are several research groups switching from the use of electrostatic 
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interactions to the use of hydrogen bonding as driving for multilayer assembly, thus 

avoiding the use of polycations. [19, 102, 103]     

(2) Nano- and micro-technology are omnipresent in the contemporary drug delivery 

literature and many nano/micro-scale drug delivery systems have been or are being 

developed. [2, 3]Therefore, it is a major challenge for scientists active in the field of 

LbL-films to define those specific areas where polyelectrolyte capsules are beneficial 

compared to other drug delivery systems.  

(3) Due to the inherent sequential manufacturing procedure, involving many batch 

operation steps, polyelectrolyte capsules are laborious and time-consuming to 

fabricate. This fact further emphasizes the necessity, as mentioned above, to focus to 

those cases where LbL technology offers sufficient added value. On the other hand, 

several recent studies from pioneering groups in the LbL field report on novel 

strategies that dramatically reduce the amount of batch operations while till aiming to 

mimic as much as possible the highly versatile concept of LbL technology. [104-106] 

Taking into account the above mentioned considerations we are convinced that there 

is a bright future for polymeric multilayer capsules, providing that several important issues 

are being addressed the coming decade. 
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