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Anna Hristoskova, Enric Junqué de Fortuny, and Filip De Turck

Department of Information Technology, Ghent University - IBBT,
Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium
{anna.hristoskova,filip.deturck}@intec.ugent.be

{enric.junquedefortuny}@ugent.be

Abstract. The field of swarm robotics breaks away from traditional
research by maximizing the performance of a group - swarm - of limited
robots instead of optimizing the intelligence of a single robot. Similar to
current-generation strategy video games, the player controls groups of
units - squads - instead of the individual participants. These individuals
are rather unintelligent robots, capable of little more than navigating and
using their weapons. However, clever control of the squads of autonomous
robots by the game players can make for intense, strategic matches.

The gaming framework presented in this article provides players with
strategic coordination of robot squads. The developed swarm intelligence
techniques break up complex squad commands into several commands
for each robot using robot formations and path finding while avoiding
obstacles. These algorithms are validated through a ’Capture the Flag’
gaming scenario where a complex squad command is split up into several
robot commands in a matter of milliseconds.

Keywords: Swarm robotics, Subsumption, Robot behaviours, Strategic
control, Robot formations, Path finding

1 Introduction

The increasing amount of robotics researchers and technology developers results
in new innovations and opportunities attracting attention outside the factory.
Korea is taking the lead in promoting the use of robots for service applications,
such as elderly care. The United States employs robots to assist soldiers on
the battlefield. Robots are manufacturing solar panels for European companies.
Projects where robots collaborate to successfully complete tasks are becoming
increasingly common. An indicator of this rise in interest is the growing number
of challenges, leagues and participants of the RoboCup initiative [1, 2]. It pro-
motes robotics research by providing appealing scenarios such as robot soccer.

The idea of ’robot gaming’ is not a new one. In the past, however, the ap-
plication of this concept has been rather limited. Current robot games involve
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individual robots fighting each other in a last-robot-standing competition. Oth-
ers are actually robot building and programming competitions, rather than true
games. In swarm robotics, the challenge is to solve problems by using numerous
simple robots by maximizing the performance of the collective behaviour of the
swarm. These robots run on limited hardware supporting basic behaviour lim-
iting their AI. Few swarm robotic systems use small finite state machine as the
core controlling mechanism of the individual robots. This is due to the fact that
most of them are inspired by the behaviour of insects having limited intelligence.

This article presents a framework enabling game players with strategic con-
trol over robot squads. The player has access to a gaming interface managing
the health and power of his robots and the coordination of the squads. A swarm
intelligence component is distributed between the central framework and the
individual robots supporting dynamic real-time autonomous robot movement,
robot formations, path finding, sensor reading, event detection and obstacle
avoidance. Novelty is the implemenation of a subsumption architecture sup-
porting the swarm intelligence. It decomposes a complex squad behaviour into
many basic robot behaviours which are organized into layers and activated based
on priority. Validation of the proposed framework for a ’Capture the Flag’ sce-
nario shows that the swarm intelligence is able to split a single strategic squad
command into several robot commands in 570 ms.

The remainder of the paper is structured as follows. Section 2 presents the
current research in the field of swarm robotics. Section 3 elaborates on the de-
veloped framework with special attention on the swarm intelligence in Section 4.
The swarm behaviour is evaluated for a gaming scenario in Section 5. Finally,
the main conclusions and future improvements are drawn in Section 6.

2 Related Work

Platforms requiring the simultaneous achievement of complex tasks focus on
techniques related to multi-robot coordination and task allocation. RoboSwarm
[3] supports global behaviour through centralized robot orchestration consisting
of task planning and allocation using bidding mechanisms between robots. The
distributed approach of I-Swarm [4] is based on collective behaviours observable
in honeybees. Instead of high-level robot-to-robot communication a network of
weak robot-to-robot interactions (collisions) leads to specific spatial constella-
tions that promote a collective decision. Another insect-inspired (ants) project is
Swarm-bots where teams of robots overcome challenges such as object movement,
path formation and hole avoidance by autonomously attaching to each other and
moving around in coordination [5–7]. Though these s-bots do not talk among
themselves, they receive low-level signals - such as individual push and pull forces
- allowing coordinated group movement. The process of self-assembling is gov-
erned by the attraction and the repulsion among s-bots, and between s-bots and
other objects. The successor to the Swarm-bots project, Swarmanoid, supports
self-assembly through the training of artificial neural networks in order to trans-
port an object [8]. The project focuses on the creation of three kinds of robots;
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eye-bots, hand-bots, and foot-bots. While the foot-bots move back and forth
between a source and a target location, the eye-bots are deployed in stationary
positions against the ceiling, with the goal of guiding the foot-bots [9].

In [10] the construction of a world model plays essential role for determining
the positions of robot players on a soccer field, merging observations from vision,
messages from teammates, and odometry information from motion. The position
estimates are used by different behaviours to decide the robot’s actions. These
behaviours include skills (low-level robot abilities such as kicking the ball), tactics
(behaviour of a single robot), and plays (coordination of the team) [11].

The framework in this article is based on the announce/listen metaphor,
found in current routing protocols. A robot subscribes to and publishes mes-
sages on a specific topic/channel. Novelty is the implementation of a subsump-
tion architecture decomposing a complicated swarm behaviour into many simple
behaviours for each individual robot. It is based on the sliding autonomy [12]
technique which enables humans to interact and take over control of a given sub-
task, while the rest of the system operates autonomously. Interventions include
robots requesting help when a failure occurs or a user requesting robot assis-
tance with some task. Studies show that sliding autonomy provides an increase
in efficiency of 30-50% over teleoperation together with an increase in reliability
of up to 13% over autonomous operation depending on the user’s ability [13].

3 Framework Design and Implementation

<<component>>
Robot

<<component>>
Game Client

<<component>>
Robot Broker

<<component>>
Event Channel

<<component>>
Logger

<<component>>
Game Logic

<<component>>
Swarm Intelligence

Receive message

Logging

Input status updates

Input status updates

Input status updates

Send message Send robot commands

Send squad commandsUpdate changes Send robot commands

Send robot commands

Fig. 1. Architecture of the publish-subscribe gaming framework showing the commu-
nication of the components through the Event Channel.

The proposed framework should be able to adapt dynamically to changing
number of robots, players and most importantly messages as communication is a
key concept required for the intelligent coordination of robot swarms. Therefore
a Publisher-Subscriber pattern extended with an Event Channel is developed,
as presented in Figure 1. Eventing allows for a scalable architecture processing
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and forwarding events generated by the Game Client, robots, Game Logic and
Swarm Intelligence (all discussed in the following paragraphs). This results in a
dynamic real-time control of the robot squads.

The Event Channel is responsible for the communication between the differ-
ent components. As performance is a key issue ActiveMQ [14] is adopted which
is designed for high performance clustering, client-server, and peer-based com-
munication. It is an open sourced implementation of JMS 1.1 as part of J2EE
1.4 and supports a variety of cross language clients and protocols such as Java,
C, C++, C#, Ruby, Perl, Python, PHP.

The Game Client connects the player to the game capturing and transmitting
player actions (e.g. robot, squad and game configuration, chat sessions, strategic
squad commands, status updates, monitoring messages, music) and visualizing
the battlefield. This is supported by a PAC-pattern as a hierarchical structure of
agents, each consisting of a triad of Presentation, Abstraction and Control. The
agents are responsible for the players’ actions communicating with each other
through the Control. The Abstraction retrieves and processes the actions and
the Presentation formats the visual and audio presentation of the battlefield.

The Game Logic sets up a game by connecting players with each other and
with their robots. It manages the battlefield map, player and robot data, game
settings and status, and player-squad communication through the realization of
the player commands by the Swarm Intelligence. Several Game Logic modules
can be connected to each other handling an increasing load of players and robots.

The Swarm Intelligence contains the AI of the framework, safe from the
Robot Intelligence on the robots. It is presented in detail in Section 4.

The Robot has a layered design in Figure 2 keeping hardware dependencies lo-
cal. The upper layer contains the Robot Intelligence, sensors and actuators. The
Robot Intelligence acts as the ”brain” of the robot interpreting orders from the
Swarm Intelligence, gathering information from its sensors and deciding which
sequence of actions has to be performed to execute the orders (detailed descrip-
tion provided in Section 4.4). The sensors and actuators control the robot’s
hardware. The Data Model prevents illegal robot operations by following the
rules defined by the players at the start of the game. It controls the robot’s vital
parameters such as health, firepower, and provides the Robot Intelligence with
a high-level abstraction of the robot’s sensors, actuators and its communication
interface. This Communication layer sends and receives messages and commands
from and to other robots and the Game Logic through the Robot Broker.

The Logger monitors the game actions through the use of the open source
program log4j [15]. It enables detection of conflicts and determines their source.
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<<component>>
Robot

<<component>>
Robot Intelligence

<<component>>
Sensors

<<component>>
Actuators

<<component>>
Data Model

<<component>>
Communication

Execute

Get sensor dataGet command Get actuator data

Get dataSet command

Fig. 2. The Layered Pattern of the Robot.

4 Detailed View on the Robot and Swarm Intelligence

While designing the Swarm Intelligence two main resource-related obstacles arise
when working with limited devices such as robots. On one hand it is undesirable
to have a huge amount of state information on each robot due to limited memory
and communication overhead. Furthermore, not all robots posses enough com-
putational resources required to perform advanced swarm behaviours. Therefore
the designed architecture employs the sliding autonomy principle that is split
into two distinct parts working together: reflexive behaviours or simple com-
mands reside on the robot itself (Robot Intelligence), whereas complex swarm
coordination computations are ’outsourced’ to the server (Server-side Swarm
Intelligence). The outcome is an architecture where the amount of intelligence
residing on the robots is adaptable to their hardware capabilities. Before dis-
cussing them in detail, we will first focus on a description of the subsumption
principle and path finding in combination with robot formations.

4.1 Subsumption and Behavioural Layers

The core of the Robot and Swarm Intelligence is built using the subsumption
architecture in Figure 3. Subsumption is a way of decomposing a complicated
intelligent behaviour into many simple behavioural modules which in turn are
organized into layers. An Arbitrator activates one and only one behaviour having
the highest priority when a choice between several behaviours is presented.

The cooperating parts on the server (Swarm Intelligence) and on the robot
(Robot Intelligence) consist of different behavioural layers, stacked on top of
each other. A user can easily add a behaviour by implementing the provided
interface and adding it to the Arbitrator who will then include the behaviour in
the arbitration procedure. The following main behavioural layers are defined:

– Squad behaviours have the lowest priority and are usually sequences of com-
mands, performed by a squad of robots as a group. They are always initiated
by a player command and processed at the server.
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Fig. 3. Behavioural layers.

– Robot behaviours consist of basic individual robot commands such as GoTo(x,y),
PickUp(object) and are a resultant of squad behaviours.

– Reflexes have the highest priority. Examples include last-minute collision
avoiding and staying within map boundaries.

4.2 Formations

A critical part in any robotics application is path finding. In the presented archi-
tecture, the A∗-algorithm1 is adopted for swarm navigation on the battlefield.
Swarm navigation coordinates a group of robots to get into and maintain a for-
mation with a certain shape [16, 17]. The Swarm Intelligence guides the robots
into composing several formations depending on the situation at hand. The fol-
lowing are provided (Roboti with diameter d, number of robots n):

– Line (horizontal):

Destination D = (Dx, Dy)

Roboti,x = Dx + d(i−
n− 1

2
)

Roboti,y = Dy

– Circle for defending objects:

Destination D = (Dx, Dy)

Radius R = nd

Roboti,x = Dx + R cos

(
i 360◦

n

)
Roboti,y = Dy + R sin

(
i 360◦

n

)

– Half Circle for attacking enemy robots/squads:

Destination D = (Dx, Dy)

Radius R = nd

Roboti,x = Dx + R cos

(
i 270◦

n

)
Roboti,y = Dy + R sin

(
i 270◦

n

)

– (Inverse) Wedge: combination of two diagonal line formations.

1source: http://www.gamegardens.com/
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4.3 Server-side Swarm Intelligence

During game flow a player orders a robot squad to execute a certain high-level
command (e.g. ”Attack!”, ”Defend the base!”) through the Game Client. These
commands are posted on the Event Channel and processed by the Swarm Intel-
ligence on the server before being passed on to the respective squads. A Squad
Arbitrator, which acts as a squad leader decision intelligence, activates the cor-
rect Squad Behaviour. This behaviour breaks down the high-level commands
into Robot Behaviours, smaller (Sequence)Commands, for each individual squad
member. The following main Squad Behaviours are defined:

R1

R3

R4

R5

R2

R1

R5

R4

R3

R2

Fig. 4. Gathering robots in a wedge formation at a central point (black dot). Before
gathering (white) and after gathering (black).

– Gather: The gather mechanism is presented in Figure 4. When a squad is
initially created or is dispersed, the robots need to gather in their respective
positions in a chosen formation. This is achieved by sending all robots to a
central formation point. When no central point has been given, a centroid
is calculated. Hereafter each robot is assigned a point in the final formation
(based on minimal distance) and a path is calculated using the A∗-algorithm:
1. D(x, y) = central point.
2. Calculate the best path P to D(x, y) using A∗.
3. Convert P into n turn-points Pi(xi, yi).
4. Create sequence of commands using the points from Step 3.

SequenceCommand = {GoTo(x1, y1),GoTo(x2, y2), ...,GoTo(xn, yn)}

5. Send SequenceCommand to the robots.
– GoTo(x,y): moves a group of robots from their respective locations to the

given coordinates. First the robots in the squad are gathered in formation.
Following the path P is calculated for the squad as a whole since moving in
a straight line could lead to collisions. The player can also define the given
path using click and drag or just individual commands.

– Defend(object): consists of:
1. Get object’s coordinates as P (x, y).
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2. GoTo(x, y) using circle or half-circle (moving object) formation.
– Attack(object): similarly to Defend(object) it consists of:

1. Get object’s coordinates as P (x, y).
2. GoTo(x, y) using half-circle formation.

A problem that might occur is that targets will often be moving. This is
solved by recalculating the path which is fairly efficient given that only the
action-radius of the target object has to be taken into account. On receiving
a movement of the target:
1. Do a partial A∗ on the battlefield map given the old data and the current

position of the attacker.
2. Update the old data entry on the map to the recent version.
3. Send the new command to the robots.

– Shoot(object): is automatically done when an enemy robot is in range. The
attacker ’shoots’ at a preconfigured shooting rate with preconfigured damage.
This damage is deducted from the enemy robot’s health.

– Avoiding Collisions: For static objects on the battlefield map A∗ is used to
avoid collisions. Furthermore, close range collision prevention is covered in
the robot (Reflex Behaviour). It is however important to realize the dangers
of moving objects such as enemy robots. These are not accounted for in
path-finding algorithms due to exponentially high complexity. A mitigation
strategy of the Squad Behaviour is to check for inbound collisions in a specific
range for each squad. Once a possible inbound collision has been found, the
squad’s path is adjusted (Figure 5).

S2

S1 S1

S1S2

S2

(a) (b) (c)

Fig. 5. Avoid collisions for dynamic objects Squad1 and Squad2; (a) a collision sit-
uation occurs, (b) mitigation vectors are calculated and commands are adjusted, (c)
avoidance commands are performed, previous path is resumed.

4.4 Robot Intelligence

The robot is where all behaviours resulting from the Squad Behaviours of the
server-side Swarm Intelligence eventually end up. It also adopts the subsump-
tion architecture consisting of SequenceCommands, Commands and Reflexes.
Reflexes are instantly activated and always get control when required. The fol-
lowing in Table 1 are defined:

– Avoiding collisions: Although the server-side Swarm Intelligence calculates
a big part of path-finding and collision avoidance some collisions could still
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occur. Therefore a basic collision behaviour for the individual robot is nec-
essary in order to prevent any unwanted collisions or even possible damage.

– Respecting borders: Robots should not move beyond the gaming area or
ignore physical map boundaries, such as water, while executing commands.

Table 1. Avoiding collisions and Respecting borders behaviours

Name Avoid collision Respect border

Trigger Collision detected by
the touch sensors (front
and rear)

Object with d(R,O) <
dcrit detected by the
sonar (viewing angle α)

Border-line detected
by the infrared sensor
(front)

Behaviour Turn the robot 90◦

away from the point of
contact.

Turn the robot 90◦

and move forward for a
length of dcrit tan(α).

Turn the robot 90◦

away from the border.

Commands (Table 2) received from the server-side Swarm Intelligence are
performed on exactly one robot. They can be interrupted by Reflexes or over-
ridden by new commands. There is always at most one command present in
the robot. If a complex behaviour using multiple commands is required (e.g.
Attack(object)), a SequenceCommand is used.

Table 2. Defined basic Command behaviours.

Name Command behaviour

Beep Produces a short beep, useful for shooting at enemies and testing.
Rotate(α) Rotates the robot over α-degrees.
GoTo(x,y) Rotates the robot and moves it in a straight line to the given point.
Shoot(enemy) Shoots at an enemy robot at a preconfigured shooting rate and damage.

5 Validation of the Swarm Intelligence

The implemented swarm gaming2 framework is executed using Lego Mindstorms
NXT [18], a robotics toolkit for building different robots. Building instructions
for 4 main models (Shooterbot, Colour Sorter, Alpha Rex, Robogator) ranging in
complexity are supplied. All measurements are performed on a DELL Latitude
E5400 notebook with 2.40 GHz Intel Core 2 Duo, and 4 GB RAM.

During normal game flow the game and robots (health power based on bud-
get, squad division, robot type: scout, tank, infantry, amphibian) are configured.
Several scenarios, such as ’Capture the Flag’ and ’Death Match’, are executed
depending on the players’ preferences. Measurements of the Swarm Intelligence

2http://ciri.be/blog/?p=234
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Team A

Team B

Fig. 6. ’Capture the Flag’ battlefield including a water obstacle between the two teams.

are performed on squad A of 3 robots capturing the flag of an enemy team B.
Figure 6 displays the robot positions and path taken in wedge formation by the
bottom Team A. Player A selects squad Team A and indicates flag B. Recog-
nized as an enemy flag by the Swarm Intelligence, this results in an GoTo(flag B)
squad command. The Squad Behaviour breaks the command up into several (in
this case 10 GoTo and a PickUp(flag B)) robot commands, Sequence Command,
for the 3 robots. The robots are gathered in wedge formation and a path is cal-
culated for the squad. The water and border obstacles are avoided both during
squad path calculation and individual robot navigation. Results in Table 3 show
the performance of the different architectural components between the assign-
ment of the strategic order by the player and sending the separate commands
to the robots. As expected the main bottleneck is the Swarm Intelligence where
the path finding for each robot in the squad is calculated. While the average
execution time (x) out of 20 measurements is 570 ms, the standard deviation
(σ) is quite large (109 ms) due to the large variation displayed by the arbitration
procedure of the subsumption loop checking the different behavioural priorities.

Table 3. Swarm Intelligence performance for a player command sent to a squad.

ms Player → SI Swarm Intelligence SI → Robot Squad

x 9 570 7
σ 3 109 6
Min 6 365 2
Max 15 756 24

Scalability of the Swarm and Robot Intelligence subsumption functionality is
measured for a squad of 3 robots moving in line formation. A Squad GoTo(x,y)

command is sent at different intervals ranging from 100 to 5000 ms. The average
out of 10 measurements is presented for each interval in Table 4. In order to
optimize the path finding algorithm the Swarm Intelligence waits for 300 ms
before processing the player commands. This results in longer execution time
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for short intervals (100 and 250 ms) as more information is computed. Due to
the possible recalculations of the Swarm Intelligence and consistency reasons,
the Robot Intelligence considers only the last received command for execution
by the robot as mentioned in Section 4.4 keeping the processing time stable.

Table 4. Scalability of the Swarm and Robot Intelligence subsumption framework.

Interval(ms) 100 250 500 750 1000 1500 2000 2500 5000

Swarm Intelligence(ms) 1059 740 362 270 375 173 182 314 190

Robot Intelligence(ms) 629 696 603 657 500 627 597 587 551

The average Round Trip Time (RTT) in Table 5 for the physical NXT robots
is measured when sending 100 messages between PC to NXT while an overload-
ing thread constantly calculates the product of 2 random 10x10 matrices to
simulate other calculations on the robot. Results show delays of up to 2 seconds.

Table 5. Round Trip Time from PC to NXT and back in ms.

(ms) Number of bytes sent

# overloading threads 140 200 240 300

5 1007 1014 1293 1388
10 1034 1162 1516 1640
15 1176 1324 1732 1898
20 1326 1607 2042 2240

6 Conclusion

This article presents a swarm-intelligent framework achieving meaningful be-
haviour at swarm-level, instead of the individual robot-level. Keeping in mind the
physical robot squads, the designed framework decomposes strategic player com-
mands into individual robot actions using a layered subsumption architecture.
Validation through a ’Capture the Flag’ scenario shows that a squad command
is split up into several robot commands in a matter of 570 ms.

In the future the robots will be enriched with semantics enabling dynamic
discovery of their capabilities. This will result on one hand in run-time plan-
ning and assignment of tasks depending on the available robot functionality
and on the other in automatic distributed interactions between the robots and
their environment enabling seamless communication with devices such as sen-
sors, computers, and cameras.
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