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Abstract

This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on
reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-
lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are
described by a generalized Hooke’s law for finite deformations (Seth material). Numerically, the dRDM approach combines a
finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice
system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously
found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency
on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the
spatial distribution of deformation and curvature effects.
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Introduction

Reaction-diffusion (RD) partial differential equations describe

important spatio-temporal phenomena, including waves and

patterns in a variety of chemical, physical, and biological systems.

Important examples of these phenomena include waves in the

Belousov-Zhabotinsky (BZ) reactions [1,2], waves of CO oxidation

on platinum surfaces [3], waves of spreading depression in nerve

tissue [4], and the morphogenesis of Dictyostelium discoideum (Dd)

[5,6]. In the heart, electrical waves of excitation propagate

through the tissue and initiate its contraction. RD-equations have

been successfully applied to model normal and abnormal wave

propagation in cardiac tissue, such as rotating spiral waves, whose

initiation may result in life-threatening arrhythmias [2,7]. In many

of the systems mentioned above, wave propagation is accompa-

nied by a deformation of the medium. Important examples include

the chemotactical motion of cells during Dd-morphogenesis [6],

the swelling and deswelling of a polymeric gel in the BZ reaction

[8] and the contraction of the cardiac muscle [9]. As the heart

contracts, its deformations feed back on the process of wave

propagation. This important phenomenon, called mechano-

electrical feedback, has been extensively studied in cardiac

electrophysiology [10].

To model the effects of deformation on wave propagation in

RD systems, it is necessary to describe the underlying mechanical

phenomena in terms of the RD process. As such, a coupled

reaction-diffusion-mechanics (RDM) framework was introduced in

[11] and applied to study cardiac tissue. In particular, the RD

equations were combined with the equations of finite deformation

continuum mechanics. With this approach several important

effects of deformation on wave propagation were identified such as

self-organized pacemakers, spiral wave drift, and break-up of spiral

waves [12,13].

Continuum mechanics is among the most valuable and widely

used approaches in engineering and modeling studies, however, it

does not explicitly describe the particular micro-organization of a

medium, which might be important for certain aspects of RDM

systems. Cardiac tissue, for example, consists of individual cells

that form layers of muscle fibers, which are tightly packed and

organized by an extra-cellular matrix into branching sheet

structures [14,15]. To study how this affects the elastic properties

of the heart, discrete models with similar micro-structure need to

be developed. Discrete models are computationally efficient and

widely used in various applications such as computer graphics

[16], medical tissue visualization [17], and the development of

elasto-mechanical models of anisotropic materials [18] such as

heart tissue [19,20]. Discrete models are also used to describe

discontinuous deformations in the case of fracture, plastic

deformation, and mass mixing processes [21,22].

In this paper, discrete elastic modeling is coupled with

FitzHugh-Nagumo type RD partial differential equations to study

RDM systems. First, the process of the setting up of the discrete

RDM (dRDM) model is described in detail, and computational

and numerical aspects are addressed to discuss the macroscopic

elastic properties of the medium. Secondly, as an illustration of the

new modeling approach, the dRDM model is applied to study

pacemaking activity in the RDM system shown in [12]. This

illustration demonstrates that the dRDM model adequately
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reproduces all of the important phenomena of pacemaker

dynamics previously found with a continuous RDM model [12].

The computational efficiency of the dRDM approach allows more

detailed investigations into the mechanisms determining important

properties of the pacemaking activity. Next, the factors determin-

ing the period and drift of the pacemakers found in [12] were

identified. Overall, the value of the dRDM modeling approach, as

a tool to study RDM systems, is demonstrated.

Methods

Reaction diffusion model for cardiac excitation
In this paper, as in [12], the Aliev-Panfilov model [23] for

cardiac excitation is used as the RD part of the dRDM model. Of

course the same approach can easily be applied to any RD model

describing cardiac excitation or any other reaction-diffusion

process. The purpose of using a cardiac RD model is to reproduce

the time course of the transmembrane potential. The transmem-

brane potential changes due to ionic currents, which flow through

voltage-gated ion channels of the cardiac cell membrane. The

reaction part of the model describes these currents either in a

general form (in low dimensional models) or on the basis of

detailed experimental data (ionic models). The spatial coupling

between cells in the RD approach is demonstrated by the

Laplacian operator [24]. The Aliev-Panfilov model [23] provides

a low-dimensional description of excitation for cardiac cells. The

equations of this model are

Lu

Lt
~+2u{ku u{að Þ u{1ð Þ{uv{Is ð1Þ

Lv

Lt
~e uð Þ ku{vð Þ, ð2Þ

where u and v are normalized representations of the transmembrane

potential and the conductance of a slow repolarizing current,

respectively. These variables are quantified in this paper in

dimensionless units, for u excitation units [e.u.], and for v recovery

units [r.u.] are used. The term {ku u{að Þ u{1ð Þ in Eq.1 describes

the fast excitation process of the AP. The parameter a represents the

threshold of activation and parameter k controls the magnitude of the

transmembrane current. In this study, a~0:05 and k~8 were used

in all computations. e uð Þ is a step function setting the time scale of the

recovery and the contraction process: we set e uð Þ~1 for uv0:05,

and e uð Þ~0:1 for u§0:05 (also used in Eq.3). The term {uv
describes the repolarizing current of the recovery process. The term

Is is the stretch activated depolarizing current described in Eq.9. In a

non-deforming medium Eqs.1,2 with these parameter values describe

non-oscillatory cardiac tissue providing stable propagation of

excitation waves.

Excitation-contraction coupling model
Following [12] the excitation-contraction coupling is modeled

using

LTa

Lt
~e uð Þ kT u{Tað Þ, ð3Þ

where Ta modulates the active contraction force in Eq.5 to

associated mass points of the medium. The parameter kT controls

the amplitude of the contraction twitch, where kT~1:5 was used

in all simulations. The identical term Eq.3 was used in the

continuous RDM modeling approach of Panfilov et al. [12] to

account for the active stress. The model formalism of Panfilov et al.

from [12] is an important benchmark for the dRDM model in this

paper, and is referred to in the following text as the PKN

description.

Mass-lattice model
To model the mechanical properties in the dRDM approach a

2D lattice that consists of material points connected by springs

(Figure 1A) is used. The unit cell of this 2D lattice is shown in

Figure 1B. Each mass point is connected to its four nearest

neighbours in horizontal and vertical directions at resting distance

r0 and to its four next-nearest diagonal neighbors at resting lengthffiffiffi
2
p

r0. All springs follow Hooke’s force-displacement relation and

horizontal and vertical springs may produce additional active

contraction forces. Following the continuous PKN approach [11],

elastostatics is assumed in this dRDM model, i.e. the stationary

deformations corresponding to each given configuration of active

forces and boundary conditions are computed. The procedure is

outlined as follows. At steady state, the total force at each node is

zero. If the configuration of the active forces is changed, the force

balance at the mass points will be violated which results in the

motion of the mass points to a new stationary configuration. For

efficient computations of this system, viscous forces were added to

dampen possible oscillations. The formal formulation of the

approach is given below: Figure 1C demonstrates main forces and

the displacements of active and passive lattice springs connecting

the mass point 1 to the mass points 2 and 3. The positions of the

mass points are given by x1, x2, x3, with the corresponding

velocities v1, v2 and v3. Mass points 1 and 2 are connected by an

active spring. The force generated by this spring on the mass

points is given by

f1a~{f2a~ c
l12k k{r0

r0

� �
{d

_ll12
:l12

� �
l12k k

" #
l12

l12k kzF12,

ð4Þ

where l12~x2{x1 is a vector along an active spring, _ll12~v2{v1

is the time derivative of the spring vector l
12

, parameters c and d

are the stiffness and ‘damping’ constants, respectively (c~1 in all

simulations), and F12 is the active force between mass points 1 and

2 given by

F12~
Ta 1ð ÞzTa 2ð Þ

2

� �
l12

l12k k , ð5Þ

where Ta(i) is the value of variable Ta from Eq.3 at mass point i.

Mass points 1 and 3 are connected by a passive spring. The force

generated by this spring is given by

f1p~{f3p~k c
l13k k{

ffiffiffi
2
p

r0ffiffiffi
2
p

r0

 !
{d

_ll13
:l13

� �
l13k k

" #
l13

l13k k ,

ð6Þ

where k~1=2 is the stiffness ratio between active and passive

springs. It is assumed that each node here is subject to Newton’s

law of motion:

XN

a~1

f ia~m€xxi, ð7Þ
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where N is the number of springs connected to mass point i, m is

the mass of a point, and a indicates connected springs. By solving

Eq.7 to mechanical equilibrium (
XN

a~1

f ia~0), the steady state

configuration of the lattice for each given distribution of active

forces generated by the RD process is found. Note that the

‘mechanical’ time variable t, as well as the parameters viscosity d
and the mass of a node m, have no physical relevance in this

model, but each fulfill a pure numerical role. The mass m of each

mass point was set to 1 (dimensionless mass units).

Material properties. The elastic mechanical properties of

the dRDM model are determined by the geometry of the lattice

unit cell and the stiffness of the springs. In classical continuum

mechanics, elastic properties are represented by constitutive

relations between the corresponding stress and strain tensors.

Constitutive relations are successfully used to describe the elastic

properties of many materials including biological tissues. It is

possible to formulate the elastic properties of this paper’s mass-

lattice model in terms of an equivalent continuous material. The

mass-lattice model (Figure 1B) in this paper was extensively studied

for various aspects of elasticity. In most cases the mass-lattice

model was studied under conditions of small deformations (linear

elasticity). The relation between stress and small strain of this

mass-lattice model was shown to be expressible in the form of a 4th

rank elasticity tensor Cijkl , and its coefficients can be directly

derived from the spring constants of the system [25]. Furthermore,

it was demonstrated by Schargott et al., that if the stiffness ratio is

k~1=2, the lattice is macroscopically isotropic [26]. This implies

that the linear elasticity tensor is rotationally invariant. In this case

the constitutive relations simplify to the generalized Hooke’s law

[26]

sij~Cijkl kl~2m ijzl trð Þdij , ð8Þ

where kl are elements of the small-strain tensor , dij is the Kronecker

delta and l and m are the Lamé coefficients, which in this case are

equal to each other [26]. The elastic coefficients of this material are

Young’s modulus E2D~4=3c (where c is the spring stiffness as

defined above), and Poisson’s ratio n2D~1=3 [26]. An extension of

this material relation for finite deformations can be found in [27].

Krivtsov et al. explained in [27], that even for non-linear

deformations, the elastic properties of the mass-lattice model used

in this paper can be approximated by a generalization of Hooke’s law

for finite deformations (Seth material) [28]. The Seth material

relation is similar to Eq.8 but uses the Almansi strain tensor for finite

deformations instead of the small strain tensor . Therefore, for

k~1=2 used in the simulations of this paper, the mass-lattice model is

applicable for the description of an isotropic material undergoing

non-linear deformations.

Numerical studies were performed to illustrate the material

properties for conditions used in this paper’s simulations. A

deformation field was created by applying a force at the central

mass point of an extended 2D lattice, whose boundaries were fixed

in space (isometric boundary conditions), leading to finite

displacements and local deformations. Next, Eqs.4–7 were solved

to mechanical equilibrium and the displacement of the mass point

from its initial position and the angle between the force and the

displacement vector were calculated. Similar computations were

performed for different orientations and amplitudes of the force

vector. This comparison (Figure 2A) demonstrates that the 2D

mass lattice model used in this paper can be considered as a good

approximation to a macroscopically isotropic material, at least for

local deformations of up to 24%. The displacement error for 15%
local deformations was 0:6%, and for 24% local deformations

1:7% (Figure 2C). The angle deviation of the displacement vector

and the applied force was v0:6% for maximal local deformations

up to 15% (data not shown). Furthermore, Figures 2A and 2B

demonstrate, that a linear relationship between force and maximal

local deformation, and between force and the displacement of the

central mass point holds true for the whole range of studied force

amplitudes, i.e. up to maximal studied local deformation of 24%.

In summary, the mass-lattice model described here with k~1=2
describes an isotropic medium, which follows a linear force-

displacement relation that can be approximated by the Seth

material relation.

Electromechanical feedback
The deformation of cardiac tissue alters the process of wave

propagation. It has been shown in studies of excised cardiac tissue and

the whole heart that the direct physiological influence of contraction

on cardiac tissue is given by a depolarising stretch-activated current Is

through stretch activated channels [10]. Experimental studies have

shown, that these channels are activated instantaneously with

mechanical stretch and follow a linear current-voltage relationship

[29,30]. Linear models have been proposed for Is [31,32], and have

also been applied in other electromechanical models [12,13].

Following these previous studies the equation

Is~Gs

ffiffiffiffi
A
p

{1
� �

u{Esð Þ ð9Þ

Figure 1. Coupled mechanical and RD mesh. (A) Coupled mechanical and RD mesh. The mass points are indicated as large black dots. The finite
difference points to solve Eqs.(1)-(3),(9) are indicated as small white dots. The lattice springs are indicated as black lines. (B) Unit cell of the 2D lattice.
Mass point 1 and its four horizontal and vertical nearest neighbors and four diagonal next-nearest neighbors are connected with direct active and
diagonal passive springs. Lattice springs are indicated by zigzagging lines (fat lines for active and thin lines for passive springs). Dotted contours
indicate insets for the associated subfigures. (C) Vectors used in Eqs.(4)–(6) for calculating lattice interactions.
doi:10.1371/journal.pone.0021934.g001
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is used where Gs and Es are the maximal conductance and reversal

potential of the stretch activated channels. Following [12,13], Es~1
was chosen. A is the surface area of a quadrilateral formed by 4
neighboring mass points (see Figure 1A) normalized using the

reference surface area of this quadrilateral in undeformed state

(r2
0 s:u:2). The stretch activated current is active only if Aw1 (stretch).

The value of Gs is a main determinant of the effect of Is. The value

Gs~1:5 was used for all computations in this paper unless stated

otherwise.

Numerical methods
The dRDM model was solved using a hybrid approach,

combining an explicit Euler scheme for the RD Eqs.1–3,9 with a

Verlet integration scheme [33] to solve the equations for the

motion of the mass points Eqs.4–7. The position of a mass point i
for the integration time tzmt is computed by

xi tzmtð Þ~2xi tð Þ{xi t{mtð Þz€xxi tð Þ| mtð Þ2,

where mt~0:01 is the Verlet integration time step and t is the

integration time. For the very first computation

xi 0zmtð Þ~xi 0ð Þz 1

2
€xxi 0ð Þ| mtð Þ2

was used. The acceleration of a mass point 2€xxi tð Þ is given by

Eq.7. At each time step the velocities of the mass points are

calculated by

vi tð Þ~ xi tð Þ{xi t{mtð Þ
mt

:

The solution procedure of the dRDM model is as follows: after

esr time integration steps for the RD model and electromechanical

feedback (Eqs.1–3,9), the equations of the mechanical model

(Eqs.4–7) are solved for all of the springs until the sum of forces for

each mass point is under the convergence threshold thr
(dimensionless force units [f.u.]). Euler computations were

performed on a quadratic deforming grid of finite difference

points using no-flux boundary conditions. For all simulations, an

Euler integration time step of ht~0:001 (dimensionless time units

[t.u.]) and a space integration step of hx~hy~0:3 (dimensionless

space units [s.u.]) were used. Each surface area element A consists

of 2|2 directly neighboring mass points and 3|3 electrical grid

points (Figure 1A). For grid points at the boundary of two (or

more) surface area elements A, the average value of these

normalized surface areas was used to compute Is (Eq.9). When

solving the mechanical equations Eqs.4–7, the boundaries of the

medium were fixed in space. This approach is commonly applied

in computational studies on cardiac physiology [12,13]. It

corresponds to the isometric contraction in tissue experiments,

and is similar to the isovolumic phases of the cardiac cycle at the

whole organ level.

Model validation
For the integration of the dRDM model Eqs.1–7, 9 several

parameters of the numerical scheme were chosen. This section

demonstrates how parameters were set to assure accurate and

efficient computations.

RD integration parameters. The RD Eqs.1–3 were solved

using the finite difference approach with an explicit Euler

integration scheme. Previous studies of the Aliev-Panfilov RD

model used space steps of hx~0:6 [12] to hx~1:0 [34]. To assure

high spatial resolution of the dRDM model, a space step of

hx~0:3 was used in this study. A time step of ht~0:001 was

applied to assure efficient computation of the coupled mechanical

model Eqs.4–7 (see following section ‘Electrical and mechanical

grids’).

Damping-stiffness-ratio and Verlet integration time

step. The equations describing the motion of the mass points

Eqs.4–7 represent a system of coupled, driven, damped oscillators.

As elastostatics was assumed in this work, the damping-stiffness

ratio d=k in this case is just a numerical parameter that controls

the rate of convergence of the lattice mass points to their

equilibrium positions. It seems logical to use the largest possible

value of d=k to assure the fastest possible convergence. However,

large values of d=k lead to numerical instabilities, because of the

counter-play of the elastic and viscous forces. It was found that the

use of d=k~30 resulted in fast convergence of Eq.7, with no

numerical instabilities and convergent results, so this ratio was

used for all simulations in this paper. For solving the mechanical

equations Eqs.4–7 an integration time step of mt~0:01 was used,

which was found as the maximal time step that allowed fast stable

convergence of the lattice mass points to their new configuration.

Electrical and mechanical grids. In RDM systems, the

deformation is more smoothly distributed in space compared to

the state variables of the RD equations [11]. It is therefore possible

to use a coarser grid for the solution of the elastostatics equations

Figure 2. Seth material relation. A force was applied at the center point for different amplitudes and 32 orientations h between 0 and p=2. An
angle of h~0 corresponds to a force perpendicular to the border. (A) Isotropy: displacement is approximately constant for different force angles h
over a range of force amplitudes. (B) Displacement of the center point vs force amplitude (at h~p=4). (C) Error of displacement (relative to
displacement at h~0) vs force angle h. For these simulations a system size of 79:2 s:u: and thr~1e{6 f :u: were applied.
doi:10.1371/journal.pone.0021934.g002
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compared to the integration of the RD equations. Furthermore,

the slower mechanical dynamics enabled the update of the

mechanical configuration after a number of RD integration steps

had been performed [11]. To appropriately choose the parameters

that define the relation between the mechanical and RD grids, one

must understand how they affect the accuracy of the simulations.

These parameters include: the ‘mechanical update rate’ esr
(number of RD integration steps after which the new

mechanical configuration is computed), and the ‘spatial

resolution’ of the mechanical grid (the relative resolution of the

mechanical and RD grids). The spatial resolution is expressed as

the ratio of the total number of mechanical nodes to the total

number of RD nodes. This means, that if the mechanical grid is

twice (emr~2) as coarse as the RD grid, then the ratio of total

numbers of nodes will be 1 : 4 (in general 1 : emr2 in 2D).

Additionally, the accuracy of the solution of equation Eq.7 also

affects the mesh coupling and the accuracy of the dRDM model.

The accuracy for the solution of Eq.7 is characterized via a

threshold parameter thr, which determines the convergence of the

system to elastostatics (the sum of forces at each mass point must

be smaller than thr f :u:). In order to determine how these

parameters affect the accuracy of the dRDM model, the following

numerical experiment was performed: First, deformation patterns

that occurred during the stable rotation of a spiral wave for the

duration of 10 t:u: (which is & 1/3 period) were selected as the

reference solution. These reference patterns were calculated with

the integration parameters listed in the caption of Figure 3. Next,

an investigation of how less accurate parameter settings affect the

accuracy of the solutions was performed. This procedure was

applied for various parameter sets and the trajectories of M~49
mass points equally distributed in the medium were traced

(Figure 3A). The deviation of these trajectories was computed from

the reference solution for each simulation time step t. To estimate

the mean absolute error of the mass points for a time step t an

‘instantaneous’ error norm MEt was defined as

MEt : ~

XM
m~1

x
ref
tm {xtm

			 			
XM
m~1

x
ref
tm {x0

m

			 			
, for

XM
m~1

x
ref
tm {x0

m

			 			=0, ð10Þ

where xtm is the position of mass point m at time step t for a given

solution, x
ref
tm is the corresponding position of this mass point for

the reference solution, and x
ref
tm {x0

m

			 			 is the displacement of the

point m from its initial position for the reference solution, and

x
ref
tm {xtm

			 			 is the difference between the given and the reference

solution for point n at time step t. To estimate the total mean

error, an error norm TME for the whole experiment over T time

steps was defined as

TME : ~
XT

t~1

MEt, for
XM
m~1

x
ref
tm {x0

m

			 			=0: ð11Þ

Note that for testing patterns used here, the instantaneous error

norm MEt did not vary significantly during the studied time

period (data not shown). Therefore, it is adequate to use TME to

approximate the total mean error. In Figure 3B the effect of thr on

TME is shown. For thr~2e{5 f :u: the estimated total mean

error due to this parameter variation was about 1%. Figure 3C

shows the influence of the mechanical update rate esr on the

accuracy of the model. As a result, the total mean error due to this

parameter is expected to be less than 0:2% when esrv10.

However, for this study we chose to fix esr~1, because of the

observation that the more frequent update of the mechanical grid

(together with a small time step to integrate the RD equations)

resulted in significantly faster convergence of the iteration

procedure and hence decreased the overall simulation time (data

not shown). Figure 3D shows the effect of the relative spatial

resolution of the mechanical and electrical grids on TME. For

emrƒ2, the TME is around 0:3%. Based on that the parameters

were chosen to: thr~2e{5 f :u:, esr~1 and emr~2. In

summary, this parameter choice is expected to cause a total mean

error of around 1% mainly due to the choice of the mechanical

threshold thr.

Computational performance
This section analyses and compares the computational perfor-

mance of the dRDM and PKN approaches. In particular, the

scaling of the computational times for the two modeling schemes

versus the number of mechanical nodes NMN was investigated

using the following simulations. A radially spreading wave was

initiated at the center of an excitable medium using a point

stimulus and the subsequent activity was simulated for a duration

of 10 t:u: using serial processing on a personal computer with a

3:33GHz Intel Xeon X5680 processor. To compare the

computational scaling, we used identical mechanical and electrical

grids for both models, with hx~0:6 s:u: and emr~2. Even though

a direct comparison of the nodal resolutions of both modeling

approaches (mass points for dRDM and finite elements for PKN)

is difficult in terms of mechanical accuracy, it is important to note

that the calculation of stretch activated current Is (Eq.(9)) is

directly affected by he resolution of the mechanical nodes.

Figure 4 illustrates computation time s½ � plotted against the

system size for the different approaches. For the PKN model, the

computation time increased non-linearly with the number of finite

element mesh nodes. This was primarily due to the N-squared

scaling for the solution of the linearised equations, whilst the

element stiffness calculations scaled approximately linearly (data

not shown). On the other hand, for the dRDM models the total

CPU-time increased approximately linearly with the number of

lattice mass points for the system sizes considered here (linear

regression analyses showed R2 values better than 0:98). Further-

more, the positions of the mechanical nodes for the dRDM

simulations (ht~0:001 t:u:, esr~1) were updated 90 times more

frequently than the nodes of the PKN model (ht~0:03 t:u:,
esr~3). Despite this, the dRDM model with 361 mechanical

nodes (system size 21:6 s:u:) computed the results 38:2 times faster

than the PKN model with the same nodal resolution, whilst the

dRDM model with 1089 mechanical nodes (system size 38:4 s:u:)
solved 177:5 times faster than the PKN approach. Figure 4 also

illustrates that the resolution the dRDM model can be substan-

tially increased (here shown up to 11:11 NMN



s:u:2 with

hx~0:3 s:u: and emr~1), whilst its computational performance

allows such computations for larger RDM systems.

Figure 4 compares the computational performance of PKN and

dRDM simulations with a mechanical node density of

0:69 NMN



s:u:2 (hx~0:6 s:u: and emr~2). For the main results

simulations presented in this paper, a 4 times higher mechanical

node density 2:78 NMN



s:u:2 (dRDM hx~0:3 s:u: and emr~2)

was used with the dRDM model. Compared to these dRDM

simulations previous PKN research used simulations with up to 49
times lower node density (0:06 NMN



s:u:2 with hx~0:6 s:u: and
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emr~7) [12]. If we compare the computational performance for a

typical simulation in this paper (e.g. large system in section

‘Mechanisms of pacemaker drift’, which contains 2601 mechanical

nodes with a medium size of 30 s:u:), then we estimate that the

dRDM approach will be &3 magnitudes faster than the PKN

model (PKN requires 40716:8 s, and dRDM requires 39:3 s for

the upper experiment with that number of mechanical nodes).

Thus, the application of the PKN model for higher resolutions and

larger system sizes is not computationally tractable for studying

extended duration model simulations. It is possible to use

advanced numerical techniques to improve the numerical

performance of finite element methods such as the PKN approach,

however that is beyond the scope of this study. The primary aim of

this study was to develop a simple and efficient alternative to the

PKN approach for the study of basic effects of deformation on

wave propagation in excitable media. The dRDM approach

provides a computationally tractable method for studying large

RDM systems with high temporal and spatial numerical

resolutions. The usefulness of the dRDM approach is illustrated

in the following results section.

Results

We have introduced a discrete modeling framework to study the

basic properties of RDM systems. We first show that the dRDM

approach is able to reproduce some previously reported results on

pacemaking activity, which were identified using the PKN model

[12]. The RD model in [12] is identical to Eqs.1–3 in this paper.

In addition, no flux boundary conditions for the RD equations and

fixed boundaries of the mechanical mesh were used in the present

study, as reported in [12]. On the other hand, [12] uses a

continuum mechanics formulation that follows the Mooney-Rivlin

material relation. The Mooney-Rivlin relation shares similarities

with the Seth material relation used in this dRDM model, because

both constitutive relations describe isotropic elastic mechanical

response. However, the Mooney-Rivlin material relation describes

a nonlinear force-displacement relationship for finite deforma-

tions. Therefore, we did not seek an exact correspondence of the

two approaches, but rather a qualitative agreement as a reflection

of the underlying basic mechanisms determining pacemaker

dynamics.

Figure 3. Determining mesh parameters. (A) Experimental setup: trajectories of 49 mass points (large big dots) are traced during a spiral wave
rotation during 10 t:u: in a medium size of 43:2 s:u: along each side. The color spectrum indicates (local) dilatation (scaled) in the medium
(10|

ffiffiffiffi
A
p

{1
� �

). Maximal local deformations 15%. (B) TME vs thr with emr~2, esr~1 and using thr~1e{6 f :u: to compute reference trajectories.
The dotted horizontal line indicates the parameter chosen for further computations (thr~2e{5 f :u:). (C) TME vs. esr with thr~1e{5 f :u:, emr~2,
and esr~1 to compute reference trajectories. (D) TME vs. 1 : emr2 with thr~1e{5 f :u:, esr~1 and emr~1 to compute reference trajectories.
doi:10.1371/journal.pone.0021934.g003
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Pacemaker drift
In [12], Panfilov et al. reported on the phenomenon of

automatic pacemaking activity in coupled RDM systems. The

main objective of this section is to test if the dRDM approach

reproduces important mechanisms on self-organized pacemakers

that were identified with the continuous PKN modeling

framework [12].

To begin, the phenomenon of self-organised pacemaking

activity is described. It has been found that a single electrical or

mechanical point stimulus can cause the formation of a pacemaker

in a RDM medium with non-oscillating RD kinetics. Pacemaking

activity occurs because the contraction of the medium that follows

a radially propagating wave of excitation subsequently stretches

the medium in the neighborhood of the initiation site. This stretch

induces a depolarizing stretch activated current Is (Eq.9) that

initiates a subsequent excitation wave. The location of this

pacemaker may drift over the course of time depending on the

position of the initial stimulus [12]. Two main drift directions were

identified: to the center of the medium (for larger medium sizes)

and to the boundary (for smaller medium sizes) with an

intermediate regime involving multiple symmetric attracting

points.

Simulations with the dRDM and the PKN models were

performed, which showed that all effects found with the PKN

model [12] were qualitatively reproduced by the dRDM

approach. In particular, the dRDM model reproduced the

phenomena of pacemaking activity as well as the dependence of

pacemaker drift on the location of the initial stimulus and the size

of the medium. Figure 5A shows typical drift patterns for a large

dRDM model. The pacemaker drifted to the center of the medium

from all initialization locations. Figure 5B shows the same

experiment performed with the PKN model. Both approaches

describe one spatial attractor in the center of the medium.

Figure 6A shows the drift patterns for a smaller system size in

the dRDM model with peripheral attractors and attractors on the

diagonals of the medium. It should be noted that the diagonal

attractors were not previously reported in [12]. However, we

performed the same experiment using the PKN model (Figure 6B)

and found that these attractors indeed existed using the continuous

PKN approach. Thus all spatial attractors were present in both

modeling approaches.

We also studied how the location of the peripheral attractors

depended on the medium size. Figure 7 demonstrates the distance

of the peripheral attractor from the center on a graph similar to

that in [12]. Although the elastic properties of PKN and the

dRDM model are not identical, the drift patterns showed

qualitative agreement. Both modeling approaches demonstrated

that there is a shift of peripheral pacemaker attractor locations to

the center of the medium as the size of the model is increased.

Additionally, this transition occurs at comparable sizes of the

medium: 30{35 s:u:. Therefore, we conclude that the dRDM

model reproduces the same phenomena on pacemaker activity as

reported in [12].

The increased resolution of the dRDM model (compared to

[12]) allows one now to study this system in greater detail. In

Figure 4. Comparison of computational performance of dRDM
and PKN. Calculation time is plotted against medium size. A radially
spreading wave was initiated at the center of the medium of PKN and
dRDM models and simulated for a duration of 10 t:u:. Parameters for
PKN were as in [12], but emr~2 was used to achieve same mechanical
node density as the dRDM with emr~2 and hx~0:6 s:u:
(0:7 NMN



s:u:2). Models with increased mechanical node densities

were also analysed using the dRDM approach with emr~2, hx~0:3 s:u:
(2:8 NMN



s:u:2), and emr~1 hx~0:3 s:u: (11:1 NMN



s:u:2).

doi:10.1371/journal.pone.0021934.g004

Figure 5. Pacemaker drift in large medium (size 38:4 s:u:). Small black dots indicate positions of point stimuli and the arrows indicate drift
directions and the estimated positions of sequential action potentials (slow drift is indicated by short arrows). Attractors are indicated as big black
dots. (A) dRDM model with Gs~1:5 (B) PKN model with emr~5, other parameters as in [12].
doi:10.1371/journal.pone.0021934.g005
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particular, we shift the focus now onto the following open issues:

the effects of change of medium size on the pacemaker period; and

the mechanisms underpinning pacemaker drift.

Pacemaker period. This section is devoted to the cases of

pacemaking activity that result in a static pacemaker located at the

center of the medium. The aim of this section is to understand the

factors that determine the period of the pacemaker and its

dependency on the medium size. This investigation commenced

with the study of the spatial and temporal transient processes

leading to the steady state configuration of a pacemaker with a

constant period located at the center of the medium. Figure 8

illustrates how the period of a pacemaker of the large system

shown in Figure 5 evolves during the drift of the pacemaker to the

center of the medium. The results of two simulations are shown:

for a pacemaker that was initiated at the center of the medium (the

red line) and for a pacemaker that was initiated at the boundary of

the medium (the black line). In both cases, the pacemakers initially

had a long period that rapidly decreased over 3–5 cycles.

Following this transition phase, the period of the centrally

located pacemaker rapidly settled to the value of 11:2 t:u. For

the peripherally located pacemaker, its period rapidly decreased

during the transition phase to 11:9 t:u: and then the period slowly

decreased further during the drift process. By the time the

pacemaker had reached the center of the medium, its period had

approached the same value of 11:2 t:u. Therefore, the drift of a

pacemaker to the center can be described as drift to a region of

shorter period.

The results on the study of how the medium size affects the

equilibrium period of a stationary pacemaker located in the center

of the medium are shown in Figure 9A (upper panel). Biphasic

behavior was observed. For system sizes larger than 40 s:u:, the

equilibrium period decreased with a decrease in the medium size.

On the other hand, for system sizes smaller than 40 s:u:, the

steady-state period increased with a decrease in the medium size.

This biphasic behavior is explained in the following. The first

regime is the result of an increase in the maximal stretch of the

Figure 6. Pacemaker drift in smaller medium (size 26:4 s:u:). Notations are as in Figure 5. (A) dRDM model with , Gs~1:5 (B) PKN model with
emr~5, other parameters as in [12].
doi:10.1371/journal.pone.0021934.g006

Figure 7. Spatial location of the attractor. Relative shift (location
of the peripheral attractors as a proportion of the distance from the
center to the boundary of the medium) against medium size. 0
corresponds to the attractor located at the center of the medium and 1
to the attractor located at the border of the medium. Computations
with the dRDM model (black symbols, continuous black lines) were
performed using thr~2e{5 f :u:, Gs~1:5, Es~1 and a~0:05. The
results from the PKN model (red squares, dotted red line) are from [12].
doi:10.1371/journal.pone.0021934.g007

Figure 8. Spatio-temporal study of pacemaker period. Pace-
maker period for a pacemaker drifting from the boundary of the
medium (initiated 18 s:u: from the center for the medium size of
38:4 s:u:) to the center, in comparison to the period of a pacemaker that
was initiated at the center.
doi:10.1371/journal.pone.0021934.g008
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medium. Figure 9A (lower panel) shows that the maximal stretch

monotonically increased with a decreasing medium size. This

observation was qualitatively reported in a previous study using

the continuous PKN description [12]. The larger stretch resulted

in a larger stretch-activated current Is, which in turn resulted in a

shorter period. The second regime occurred due to a different

mechanism. The decrease in medium size also resulted in a

decrease of the size of the pacemaker. Figure 9A (middle panel)

shows the monotonic increase of the curvature of a new forming

pulse of a pacemaker with decreasing medium size. This resulted

in an increasing influence of the curvature on wave propagation.

Curvature effects are well known in the theory of excitable

media [35] and can be explained using the following formal

consideration. If a polar coordinate system (r,w) is used to describe

the dynamics of a radially expanding wave front, then the

expression for the Laplacian will be given by:

Du~
L2u

Lr2
z

1

r

Lu

Lr
~Idiff :

For an expanding wave front
Lu

Lr
v0, and thus the curvature

related term
1

r

Lu

Lr
results in a negative diffusive current. This

negative diffusive current reduces the velocity of wave propagation
and for higher curvature results in the critical curvature
phenomenon, i.e. the inability of the wave front to propagate, if
its curvature exceeds a critical value. However, for the wave back
Lu

Lr
w0, which results in a positive diffusive current that tends to

prolong the action potential. Both of these effects are important to

understand the second branch of Figure 9A (upper panel). Indeed,

comparing the shapes of action potentials for medium sizes 27:6
s:u: and 40:8 s:u: as shown in Figure 9B (black lines), one sees that

the upstroke of the action potential was slightly slower in the

smaller medium compared to the larger medium (due to negative

curvature related current). The recovery process in the smaller

medium was also slower (due to the curvature effect on the wave

back). This is also illustrated in Figure 9B via the diffusive current

(red lines), which showed a larger amplitude for the smaller

medium that in turn slowed down the upstroke and prolonged the

action potential duration. This prolongation increased the period

of a pacemaker (see Figure 9A). When the medium size was

decreased below 27:6 s:u:, the firing area became smaller than the

critical size and the pacemaker activity disappeared. Indeed, for

the medium described with the dRDM model (without deforma-

tion) the critical curvature found was &0:33 (s:u:){1, which is

close to the curvature 0:26 s:u:ð Þ{1
below which a block of the

pacemaking activity was observed. Therefore, one can conclude

that there are two regimes of dependency of the period of a

pacemaker on medium size: the ‘stretch regime’, where the

decrease of the period for a decreasing medium size is a result of

the increase in maximal stretch; and the ‘curvature regime’, where

for a decreasing medium size the period increases and finally the

pacemaking activity is blocked due to curvature effects.

Mechanisms of pacemaker drift. This section focusses on

pacemaker drift. Figure 10 demonstrates a representative example

of pacemaker drift to the center of an RDM medium. It illustrates

the formation of the 26th pulse after initiation of pacemaking

activity near the boundary of the medium. The lower panel reveals

the distribution of local dilatation in the medium and the upper

panel illustrates the time course of the main variables of the

dRDM model along the pacemaker drift line, which is indicated as

a thick black horizontal line in the lower panel. This line indicates

the route of the pacemaker during its drift to the center of the

medium. The formation of pulse 26 in the tail of the previous

(25th) wave is shown. The following reasoning is based on the

stretch distribution in the medium (the green line) generated by

this wave. Initially, the stretch is reasonably symmetric around the

new forming pulse (see the green line near the arrow in

Figure 10A). However, a clear gradient is evident with higher

stretch directed to the center of the medium at a later stage of

pulse formation (see the green line near the arrow in Figure 10B).

As higher stretch produces a higher stretch activated current Is,

this gradient in stretch leads to a slightly faster depolarization and

subsequent excitation closer to the center of the former excitation

point (Figure 10C). As a result the subsequent pacemaker position

is shifted towards the center of the medium and so on until the

Figure 9. Pacemaker period. (A) The ‘stretch regime’ and the ‘curvature regime’ of the pacemaker period (separated by a dotted line in each
panel). (Upper panel) Pacemaker period vs medium size. (Middle panel) Curvature of a new forming pulse vs medium size. (Lower panel) Maximal
stretch (scaled using 10|

ffiffiffiffi
A
p

{1
� �

) vs. medium size. (B) Excitation variable u and diffusive current (scaled by 4|Idiff ) for the center point for one
pulse of a pacemaker in a system of size 27:6 s:u: and a system of size 40:8 s:u:.
doi:10.1371/journal.pone.0021934.g009
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pacemaker ended up at the center of the medium. From this, one

can conclude that the main driving force of the drift in this case is

the asymmetry of the stretch pattern. But why does this asymmetry

occur? To study the influence of curvature on the stretch

distribution and the pacemaker drift, we compared two cases: a

pacemaker initiated by a point stimulus; and a pacemaker initiated

by a line electrode. Figure 11 shows the stretch distribution and

main variables along the drift line immediately prior to the first

pacemaker pulse following the stimulus. Again, a gradient in

stretch was evident following the point stimulus (Figure 11A).

However, this asymmetry was not present for the line stimulus

(Figure 11B). This indicates, that indeed the curvature of the

wavefront causes the spatial asymmetry in stretch. Yet, we could

not further study a ‘line-shaped’ pacemaker, because after a

transient process the initial line-excitation pattern fused to an

excitation pattern similar to that following the point stimulus.

To show that the stretch activated current Is is not important for

the formation of the stretch gradient we did similar simulations in

the absence of Is. Figure 12A shows the stretch-contraction pattern

in this situation. A formation of a gradient in stretch in the vicinity

of the previous pacemaker position (around the vertical dotted line

in Figure 12A), without stretch activated current is shown. Since

stretch is the elastic response to a spatial contraction pattern, we

studied of how the shape of the wave front affects the formation of

this gradient in stretch. For this study, the wave was initiated by

linear electrodes with increasing size, which resulted in the

generation of waves with progressively decreased curvature

(Figure 12, lower panel). A decrease in curvature decreased the

stretch asymmetry until it disappeared for a plane wave stimulus

(Figure 12D). Therefore, we conclude that a gradient in stretch in

the studied system is formed by the curvature of the wave.

Qualitatively this can be understood from the fact that plane wave

excitation (contraction) produces stretch mainly in one direction,

however, circular contraction ‘pulls’ a point behind a wave front

into many directions producing higher maximal stretch than a

plane front. This effect is different for points at different distances

from the front, which generates a gradient in stretch. A detailed

study of the effects of front shape on deformation patterns will be

presented as a separate study. The conclusions that can be drawn

here is that the drift of a pacemaker to the center in the

mechanical setup introduced in [12] is driven by the asymmetry of

the stretch pattern, which in turn, is strongly influenced by the

shape of the wave front.

As demonstrated in Figure 7, pacemaker drift was directed

towards the boundaries of smaller models. There is yet to be a

comprehensive understanding of the mechanisms of this drift, but

we believe it is related to the ‘curvature regime’ of the period

variation as described above. In smaller media the influence of the

diffusive current is increased, and it starts affecting the duration of

the action potential by inducing a gradient in action potential

duration towards the center of the medium. However, to date the

authors were unable, to quantify the effects of the diffusive current

in relation to drift direction and discriminate them from other

observed factors, such as elliptical shape of the firing region, etc.

This may serve as a good starting point for follow-up studies.

Discussion

In this paper, we introduce a discrete modeling framework for

the study of reaction-diffusion-mechanics systems. The model is

Figure 10. Mechanism of pacemaker drift towards center of the medium. (A) emergence of the 26th pulse (at 303:0 t:u:). (B) The same
pulse after 2:5 t:u: (at 305:5 t:u:) and (C) after 4:0 t:u: of its emergence (at 307:0 t:u:). The traces in the upper panels illustrate main state variables in
the medium along the pacemaker drift lines (thick black horizontal lines in the lower panels): the excitation variable (u) (black), recovery state (scaled
using v=3) (red), and regional dilatation (scaled using 10|

ffiffiffiffi
A
p

{1
� �

) (green). The locations of the emergence of the 1st and 26th pulse are marked
by vertical dotted lines in the upper panels. The maximum voltage is marked with an arrow. The lower panel indicates the regional dilatation in the
medium (scaled using 10|

ffiffiffiffi
A
p

{1
� �

) by a color spectrum. The point of initial stimulation is indicated by a white dot. Medium size 30:0 s:u:.
doi:10.1371/journal.pone.0021934.g010
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based on the coupling of a mass-lattice model with reaction-

diffusion equations. Mass-lattice models are widely used in various

areas of computational mechanics research and application

[16,20]. There are several advantages of the dRDM approach

presented in this paper. Firstly, its implementation does not

require finite element methods, but can be achieved using explicit

methods, which allow for a more frequent update rate and higher

spatial resolution of the mechanical mesh configuration. Further-

more, the explicit numerical scheme used in this paper to solve the

mechanics equations is very effective in studying large systems as

the computational speed scales approximately linearly with the

number of mass points in the system. The main disadvantage of

this approach is that it can not easily be connected to known

continuous material properties. However, this does not pose a

problem, as we have shown in this paper, that an isotropic Seth

material can be used to study basic mechanisms of RDM systems.

For more complex materials, it may be necessary to apply

homogenization techniques to formulate their constitutive rela-

tions. An example of the application of homogenization techniques

to derive constitutive relations for a mass-lattice model and its

relation to cardiac tissue is given in [36]. It is important to note the

possibility to relate discrete mechanics modeling to continuum

mechanics by obtaining forces in the mass-lattice model directly

from the corresponding constitutive relations [20].

Discrete mechanics modeling and thus our dRDM model is not

limited to isotropic material relations. Bourguignon et al. showed

that discrete mechanics modeling can be applied to describe elastic

properties of anisotropic materials [18]. This approach was further

extended to model cardiac elasticity [19,20]. The extension of the

dRDM approach by coupling a RD-model for cardiac excitation

to these existing discrete models for anisotropic and hyperelastic

cardiac tissue [19,20] is an interesting approach for the

engineering of efficient whole heart models. Furthermore the

discrete mechanics description of the dRDM model allows an

extension to describe discontinuous deformations [21,22].

Although cardiac tissue is anisotropic, our isotropic approach

can still be applied to several experimental systems. For example

the dRDM model is suitable to describe electromechanical

processes in cultures of cardiac cells. The tissues produced in

these experiments do not show electrical or mechanical anisotropy.

In this work, a discrete mechanical model was coupled with a

low-dimensional RD model for cardiac excitation to study the

effect of mechano-electrical feedback on cardiac excitation. The

phenomenon of pacemaking activity due to stretch activated

Figure 11. Curved wave front causes stretch asymmetry. Pacemaker stimulation with a point stimulus and a line electrode (shown in white in
the lower panels). Snapshots taken at (A) 14:3 t:u:, and (B) 11:1 t:u:. System size and notations are the same as in Figure 10.
doi:10.1371/journal.pone.0021934.g011
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current was studied, which was previously done using a continuous

RDM approach [12]. The dRDM approach not only reproduced

all phenomena found with the continuous system, but also allowed

us to study them with higher numerical resolution. As a

consequence, new properties of pacemakers were identified, such

as dependency of the pacemaker period on its location and on

medium size. Furthermore, factors that affect the drift of a

pacemaker were also identified.

In the continuous modeling approach, the Laplacian in Eq.1

was formulated as a function of the metric tensor to model the

influence of deformation on diffusibility [12]. In this paper,

however, it is assumed that the main resistance between cardiac

cells is not affected during deformation. In the end, this issue was

found to be non-essential for the particular problem studied here.

Several test simulations using the continuous approach used in

[12] were performed and no effects of the different representation

of the Laplacian on pacemaker dynamics were found.
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