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Abstract 

We report on Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) inhibitory 

activities of a series of new 3’- and 5’-modified thymidine analogues including α- and β-derivatives. In 

addition, several analogues were synthesized in which the 4-oxygen was replaced by a more lipophilic 

sulfur atom to probe the influence of this modification on TMPKmt inhibitory activity. Several 

compounds showed an inhibitory potency in the low micromolar range, with the 5’-arylthiourea 4-thio-

α-thymidine analogue being the most active one (Ki = 0.17 μM). This compound was capable of 

inhibiting mycobacteria growth at a concentration of 25 μg/mL. 
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1. Introduction 

Worldwide, tuberculosis (TB) remains one of the leading causes of death from infectious diseases. 

About one third of the world’s population is infected with Mycobacterium tuberculosis that causes TB. 

On average 5-10% of these carriers become sick or infectious at some time during their life. Annually, 

more than 9 million new cases are reported and TB claims almost 2 million lives each year.1

TB forms a lethal combination with HIV, each speeding the other's progress. TB is a leading cause of 

HIV-related deaths worldwide. In 2008, there were an estimated 1.4 million new cases of TB among 

persons with HIV infection and TB accounted for 23% of AIDS-related deaths. The global resurgence 

of TB due to HIV infection and the rapid emergence of multidrug-resistant (MDR) and extensively 

drug-resistant (XDR) strains of TB bacilli underscore the importance of developing new 

antimycobacterial drugs against TB.

  

2

Recently, thymidine monophosphate kinase of M. tuberculosis (TMPKmt)

  

3 was put forward as an 

attractive target for new antituberculosis agents.4 TMPK catalyzes the conversion of dTMP to dTDP 

using ATP as phosphate donor and is crucial for maintaining the thymidine triphosphate pools required 

for DNA synthesis and replication of bacteria.  TMPK acts at the junction of the de novo and salvage 

pathways for the synthesis of deoxythymidine triphosphate (dTTP), which is indispensable for growth 

and survival. Therefore, TMPK represents a promising target for developing new TB drugs. 

Experiments with TMPK-deficient mutant of Saccharomyces cerevisiae underscore the criticality of this 

enzyme for DNA replication and cellular growth.5

Although the global folding of TMPKmt is similar to that of other TMPKs, the configuration of its active 

site is unique. Compared to the human isozyme TMPKmt is peculiar in that it is competitively inhibited 

by AZT-MP (Ki = 10 μM), making the latter an attractive starting point for the design of selective 

inhibitors.
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On the basis of the structure of a dinucleoside 1 (Chart 1), discovered by chance to produce significant 

inhibition of TMPKmt (Ki = 37 μM),7 we have prepared a series of 3’-C-arylthiourea derivatives of β-D-

thymidine, which led to the arylthiourea analogue 2 (Ki = 5.0 μM).8
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 Modeling experiments suggested a 

binding mode for these 3’-C-arylthiourea analogues that differs from that of the natural substrate in 

that the sugar ring of the thymidine moiety is tilted over 180° compared to that of dTMP, thereby 

positioning the aromatic 3’-substituent into the phosphoryl donor binding area and the nucleobase 

below the sugar plane (Figure 1). 

 

Figure 1. Suggested inverse sugar binding of 3’-C-arylthiourea-modified β-thymidine 2 and anticipated 

similar relative orientation of the colored moieties in 5’-deoxy-5’-arylthiourea modified α-thymidine 3. 

This unusual binding mode led us to explore if an alternative sugar scaffold could be used to impose a 

similar relative orientation of the thymine and the phenylthiourea moieties for TMPKmt inhibition. It was 

hypothesized that an α-nucleoside in which the 5’-position served as the thiourea anchor might fulfill 

this criterion. From a small library of easily accessible 5’-N-arylthiourea derivatives of α-thymidine, 3 

emerged as one of the most potent TMPKmt inhibitors to date with a Ki of 0.6 µM, a selectivity index 

(versus TMPKh) of 600, and good inhibitory activity on the growing M. bovis (MIC99 20 μg/mL) and M. 

tuberculosis (39% inhibition at 6.25 μg/mL) strains.8 Next to the relative orientation between the aryl 

moiety and the nucleobase, structural exploration of the α-thymidine derivatives revealed the 

importance for aromatic residues at the 5’-position and the positive impact of electronic-withdrawing 

and lipophilic substituents on the aryl moiety for optimal inhibition of TMPKmt. 

In this contribution we report on the TMPKmt inhibitory activities of a series of new thymidine 

analogues. Analogues 4 and 5 represent close analogues of 3’-C-arylthiourea 2, in which the 

methylene group between C-3’ and the (thio)urea group has been omitted.9 Analogues 8-11, derived 

from AZT (6), were selected to investigate if a 1,4-disubstituted 1,2,3-triazole motif can act as a 

bioisostere for the 3’-C-thiourea linker of 2 as previously found to be the case for TK-2 inhibition.10 The 

aminotetrazole isomers 12 and 13 were recently synthesized in the context of TK-2 inhibition11

To assess the inhibitory activity of anomeric variants of 3, its β-anomer 14, as well as two heterocyclic 

analogues 15 and 16 are included in this study. Compounds 18-20 are derived from 5’-azido-5’-deoxy-

α-D-thymidine (17) and synthesized in an effort to improve the activity of compound 3. To further 

 and are 

also characterized by the presence of a heterocyclic linker to connect the aromatic moiety to position 3 

of the 2’-deoxyribofuranose ring.  
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investigate the influence of the relative orientation between the aryl moiety and the nucleobases, 

compound 21, which is the α-analogue of 9, was synthesized and evaluated. 

Based on earlier reports of 4-thiothymidine analogues showing promising antimycobacterial potency 

against M. bovis and M. tuberculosis in vitro and thus capable of entering the bacillus,12

2. Results and discussion 

 several 

analogues were synthesized in which the 4-oxygen of the thymine moiety was replaced by a more 

lipophilic sulfur atom (e.g., 7, 10, 19 and 20) to probe the influence of this modification on TMPKmt 

inhibitory activitity.  

2.1. Chemistry 

With the exception of compounds 7, 10, 14-16, 18-20 and 22, the chemical synthesis of all other final 

compounds has been reported before.9,10,11 For the preparation of 4-thio-AZT (7), 5’-O-acetylated AZT 

2313 was treated with Lawesson’s reagent to generate the corresponding 4-thio pyrimidine 24, 

followed by hydrolysis of the acetate ester (Scheme 1). A CuAAC reaction14,15
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chloro-4-ethynylbenzene, followed by thionation of the resulting 1,4-disubstituted 1,2,3-triazole 25 

gave analogue 10 after final deprotection.   
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Scheme 1. Reagents and conditions. (a) Lawesson's reagent, toluene, 80 °C, overnight, 20%; (b) 

7N NH3 in MeOH, rt, 6 h, 42%, (c) 1-chloro-4-ethynylbenzene, CuSO4·5H2O, sodium ascorbate, H2O/t-

BuOH 2:1, rt, 24 h, 41%; (d) Lawesson's reagent, toluene, 80 °C, overnight, 49%; (e) 7N NH3 in 

MeOH, rt, 6 h, 66%. 

Coupling of amine 2716

11

 with 4-chloro-3-(trifluoromethyl)phenyl isothiocyanate gave thiourea derivative 

28 which was deprotected using TBAF in THF. A mercury(II)-promoted reaction of 28 with NaN3 and 

Et3N gave access to aminotetrazole 15 after final desilylation (Scheme 2).  
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Scheme 2. Reagents and conditions: (a) 4-chloro-3-(trifluoromethyl)phenyl isothiocyanate, DMF, 0 

°C → rt, 1 h, 76%; (b) 1M TBAF in THF, THF, rt, 1 h, 53-60%; (c) NaN3, HgCl2, Et3N, DMF, 0 °C → rt, 

overnight, 83%.  

The synthesis of the 5’-substituted β-thymidine analogue 16 started from 5’-azido-5’-deoxy-β-

thymidine17 (Scheme 3). “Click chemistry” followed by HPLC purification allowed to isolate enough 

pure material of 16 for testing. 
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Scheme 3. Reagents and conditions: (a) 1-chloro-4-ethynylbenzene, CuSO4·5H2O, sodium 

ascorbate, H2O/t-BuOH 1:2, rt, 7 d, 2%. 

For the synthesis of compounds 18 and 19, 3’,5’-O-diacetyl-α-D-thymidine 3118 was first thionated 

using Lawesson’s reagent followed by deprotection and conversion to the monomesylate ester 34 

(Scheme 4). Upon treatment with NaN3, 34 was converted into azide 35, which was reduced to afford 

the 5’-amino-5’-deoxy-4-thio-α-D-thymidine 36. Final treatment of this amine with the appropriate 

isothiocyanate analogues afforded derivatives 18 and 19.  
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Scheme 4. Reagents and conditions. (a) Lawesson's reagent, anhydrous 1,4-dioxane, reflux, 4 h; 

(b) 7N NH3 in MeOH, rt, 4 h, 37% over 2 steps; (c) MsCl, pyridine, -78 °C → 0 °C, 1 h, 70%; (d) NaN3, 

DMF, 60 °C, overnight, 89%; (e) PPh3, THF, H2O, rt, 1 d, 89%; (f) appropriate isothiocyanate, DMF, 0 

°C → rt, 3 h, 42-69%. 

Starting from 5’-azido-5’-deoxy-α-D-thymidine 17,8 compound 20 was synthesized using the same 

method as described for triazole 16 (Scheme 5). 
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Scheme 5. Reagents and conditions. (a) 1-chloro-4-ethynylbenzene, CuSO4·5H2O, sodium 

ascorbate, H2O/t-BuOH 2:1, rt, 4 d, 31%. 

The synthesis of 3’-modified α-thymidine analogue 21 started with the anomerisation of 5’-O-

acetylated AZT 36.13 Deprotection of 37 followed by CuAAC with 1-chloro-4-ethynylbenzene afforded 

triazole 21 in moderate yield (Scheme 6). 
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Scheme 6. Reagents and conditions: (a) acetic anhydride, H2SO4, CH2Cl2, rt, 2 h, 20% (b) 7N NH3 

in MeOH, rt, overnight, 72%, (c) 1-chloro-4-ethynylbenzene, CuSO4·5H2O, sodium ascorbate, H2O/t-

BuOH 1:3, rt, 24 h, 47%. 
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Table 1. Kinetic Parameters of TMPKmt with Compounds 3-22. 
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Compound X R Ki (μM) 
TMPKmt 

Ki (μM) 
TMPKh 

SI (Ki TMPKh/ 
Ki TMPKmt) 

MIC99          
M. bovis 
(μg/mL) 

3 O 3-CF3-4-Cl-phenylthiourea 0.6    

4 O 3-CF3-4-Cl-phenylurea 2.8 95 34  

5 O 3-CF3-4-Cl-phenylthiourea 9.9    

6 (AZT) O N3 28    

7 S N3 ≥ 100    

8 O 4-(Phenyl)-triazol-1-yl 4.2    

9 O 4-(p-Chlorophenyl)-triazol-1-yl 2.1    

10 S 4-(p-Chlorophenyl)-triazol-1-yl 15    

11 O 4-(Benzyl)-triazol-1-yl 2.7 N.I.b > 100  

12 O 1-(3-CF3-4-Cl-phenyl)-
tetrazol-5-amine 45    

13 O 5-(Aminobenzyl)-tetrazol-1-yl 2.3 N.I.b > 100  

14 O 3-CF3-4-Cl-phenylthiourea 14.5    

15 O 1-(3-CF3-4-Cl-phenyl)-
tetrazol-5-amine 73    

16 O 4-(p-Chlorophenyl)-triazol-1-yl 201    

17 O N3 26.5    

18 S Phenylthiourea N. I.a    >> 100 

19 S 3-CF3-4-Cl-phenylthiourea 0.17 N.I.a > 100 25  

20 O 4-(p-Chlorophenyl)-triazol-1-yl 9    

21 O N3 6    

22 O 4-(p-Chlorophenyl)-triazol-1-yl 35    
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N.I.: no inhibition detected at a final concentration of (a) 0.05 mM and (b) 1 mM. 

 

2.1 Biological evaluation 

All compounds have been evaluated for TMPKmt inhibition as described in the Experimental Section 

and results are summarized in Table 1. Replacement of the 3’-azido group of AZT (6) by a 3-CF3-4-Cl-

phenylurea substituent (4) resulted in a 10-fold increased activity, while this trend was less 

pronounced with the thiourea analogue 5. In the 1,4-substituted 1,2,3-triazole series, the anti-TMPKmt 

activity was clearly influenced by the nature of the substituent at C-4 of the triazole. The click product 

of AZT and phenylacetylene (8) proved to be more potent than AZT itself. p-Chloro-substitution of the 

phenyl ring of 8 or introduction of a methylene between the triazole and the phenyl caused a moderate 

increase in activity (11). In this series of 3’-modified thymidine analogues, replacement of the oxygen 

at position 4 of the thymine moiety by a sulfur typically led to a significant drop in affinity for the target 

enzyme (compare couples 6/7 and 9/10). Compounds 12 and 13, both containing a 1,5-disubstituted 

tetrazole, significantly differed in their capacity to inhibit TMPKmt. The aminotetrazole analogue 13, in 

which the tetrazole ring is directly attached to the sugar ring, showed a significantly better activity 

compared to analogue 12 in which the tetrazole ring is connected to C-3’ via a NH-bridge. 

Remarkably, an opposite trend was observed for these tetrazole analogues on mitochondrial 

thymidine kinase 2.11 

The inhibitory activity of a series of 5’-modified β-thymidine analogues appeared to be weak. 

Introduction of a 3-CF3-4-Cl-phenylthiourea substituent (14) gave micromolar inhibition, while 

replacement of the thiourea by a 1-(3-CF3-4-Cl-phenyl)-tetrazol-5-amine (15) or a 4-(p-chlorophenyl)-

triazol-1-yl (16) caused a 5 and 14-fold drop in Ki value, respectively. Comparison of the anomeric 

couples 3/14 and 16/20 demonstrate that the α-anomers, which feature a trans orientation of the 

nucleobase and the 5’-substituent, exhibit superior TMPKmt inhibition compared to their β-epimers 

(factor 22-24). 

The 5’-modified α-thymidine analogues (3, 17-20) demonstrated moderate to excellent inhibitory 

activity for TMPKmt. Also in this small series, the activity is influenced by the nature of the substituent 

at the 5’-position. Derivative 17, containing an azide function, gave moderate inhibition with a strikingly 

comparable Ki value (26.5 μM) as its AZT counterpart (28 μM). As observed in the 3’-modified β-

series, conversion of the 5’-azide moiety by a 4-(p-chlorophenyl)-1,2,3-triazol-1-yl substituent 

improved the inhibitory activity, although to a lesser extent. Most interestingly and in contrast to what 

was observed in the 3’-modified β-series, substitution of the 4-O of the original hit 3 by a 4-S, 

increased the activity by a factor 3, ranking compound 19 amongst the most potent TMPKmt inhibitors 

together with the (Z)-butenylthymines with a naphtholactam or naphthosultam moiety at position 4 (Ki 

values of 0.42 and 0.27 µM, respectively).19  
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In addition, α-analogue 22, which was synthesized to further assess the influence of the relative 

orientation between the aryl moiety and the nucleobases, showed poor inhibitory activity against 

TMPKmt, indicating that the preferred trans-orientation of the base and the aromatic substituent also 

holds for the 3’-modified analogues.  

Compound 19 was evaluated for its in vitro inhibitory activity against Mycobacterium bovis BCG. It 

showed 100% inhibition of bacterial growth at a concentration of 25 μg/mL. 

In an effort to rationalize the 3-fold increase in affinity upon replacement of the 4-O of the original hit 3 

by a 4-S (19), both compound were docked into the substrate binding site of the TMPKmt enzyme 

(Figure 2).8 The interactions of the base moiety with the surrounding residues is in inhibitor 3 are 

similar to the ones with the natural substrate6: a stacking with Phe70, H-bond of base atom N3 with 

Asn100 and base atom O4 hydrogen bonding with Arg74. An additional hydrogen bond involving O3' 

and Tyr39 may explain the better activity of 3 compared to its 3’-deoxygenated analogue.8 In 

compound 19 where the C(4)=O at is replaced by a C(4)=S, the hydrogen bonds to Arg74 is lost. 

However, due to the bigger size of the sulfur atom, a better van der Waals interaction is seen with 

surrounding residues Phe70, Arg74 and Asn100 which may explain a higher affinity for this inhibitor. 

  

Figure 2. Compound 3 (a) and compound 19 (b) docked in the substrate binding site of TMPKmt. The 

carbon atoms of both inhibitors are colored green. The enzyme contact surface is colored cyan, and 

the contact surface with the 4S atom is colored magenta. 

3. Conclusions 

On the basis of the structures of nucleosides 2 and 3, which were identified earlier as potent TMPKmt 

inhibitors, this paper describes the synthesis and biological evaluation of a series of new thymidine 

analogues, including α- and β-derivatives. In both the 3’- and the 5’-derivatised analogues, the anomer 

that places the thymine base trans to the aromatic substituent showed the best TMPKmt inhibition. In 

addition, several analogues were synthesized in which the 4-oxygen was replaced by a more lipophilic 

sulphur atom to probe the influence of this modification on TMPKmt inhibitory activity. Remarkably, a 

4-thio modification of the pyrimidine base was favorable for the 5’-modified α-analogues, while it 

caused an opposite effect the 3’-modified β-analogues. Several compounds showed an inhibitory 
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potency in the low micromolar range, with the 5’-arylthiourea 4-thio-α-thymidine analogue 19 being the 

most active one (Ki = 0.17 μM). This compound is capable of inhibiting M. bovis at a concentration of 

25 μg/mL, promoting TMPKmt as an attractive target for further inhibitor design. 
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Scientific Research-Flanders (F.W.O.-Vlaanderen) for funding and the Institute for the Promotion of 
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4. Experimental Section 

Spectrophotometric Binding Assay. TMPKmt activities were determined using the coupled 

spectrophotometric assay described by Blondin et al.20

Ki  =
Km  [ I ]

(        - 1 ) ( Km + [ S ] )v
vi

(Eq.1)

 using an Eppendorf ECOM 6122 photometer 

and a wavelength of 334 nm. The reaction medium (0.5 mL final volume) contained 50 mM Tris-HCl, 

pH 7.4, 50 mM KCl, 2 mM MgCl2, 0.2 mM NADH, 1 mM phosphoenol pyruvate, and 2 units each of 

lactate dehydrogenase, pyruvate kinase, and nucleoside diphosphate kinase. The concentrations of 

ATP and dTMP were kept constant at 0.5 and 0.05 mM, respectively, whereas the concentrations of 

analogues varied between 0.003 and 1.5 mM. Equation 1 was used to calculate the Ki values using 

Equations 2 and 3 (classical competitive inhibition model following the Lineweaver-Burk 

representation): 

v  =
Vm [ S ]

[ S ] + Km

(Eq.2) vi  =
Vm [ S ]

[ S ] + Km ( 1 +         )[ I ]
Ki

(Eq.3)

 

where v and vi are the reaction velocities respectively in the absence and in the presence of the 

analogue at a concentration value [I]; Km is the Km for dTMP (4.5 µM for TMPKmt and 5 µM for 

TMPKh); [S] is the concentration of dTMP (50 µM). For each compound, vi determinations were 

performed at least at two different concentration values [I]. 

Biological Assays on Mycobacterium bovis (BCG). Compounds 18 and 19 were assayed for their 

inhibitory potency on Mycobacterium bovis var. BCG growth in vitro.21 A micro-method of culture was 

performed in 7H9 Middlebrook broth medium containing 0.2% glycerol and 0.5% Tween-80. Serial 2-

fold dilutions of each compound were prepared directly in 96-well plates. The bacterial inoculum was 
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prepared previously at a concentration in the range of 107 bacteria (M. bovis BCG 1173P2) in 7H9 

medium and stored at -80 °C until used. The bacteria, adjusted at 105 per mL, were delivered in 100 

μL per well. The covered plates were sealed with parafilm and incubated at 37 °C in plastic boxes 

containing a humidified normal atmosphere. At day 8 of incubation, 30 μL of a resazurin (Sigma) 

solution at 0.01% (wt/vol) in water was added to each well. After an overnight incubation at 37 °C, the 

plates were assessed for color development using the optical density difference at 570 and 630 nm on 

a microplate reader. The change from blue to pink indicates reduction of resazurin and therefore 

bacterial growth. The lowest compound concentration that prevented the color change determined the 

MIC for the assayed compound. 

Synthesis. General. All reagents were from standard commercial sources and of analytical grade. 

Precoated Merck silica gel F254 plates were used for TLC, spots were examined under ultraviolet light 

at 254 nm and further visualized by sulfuric acid-anisaldehyde spray. Column chromatography was 

performed on silica gel (63-200 μm, 60 Å, Biosolve, Valkenswaard, The Netherlands). NMR spectra 

were determined using a Varian Mercury 300 MHz spectrometer. Chemical shifts are given in ppm (δ) 

relative to the residual solvent peak: in the case of DMSO-d6, it is 2.54 ppm for 1H and 40.5 ppm for 
13C; in the case of CDCl3, it is 7.26 ppm for 1H and 77.4 ppm for 13C. Structural assignment was 

confirmed with COSY and DEPT. All signals assigned to hydroxyl groups were exchangeable with 

D2O. Exact mass measurements were performed on a Waters LCT Premier XETM Time of flight 

(TOF) mass spectrometer equipped with a standard electrospray ionization (ESI) and modular 

LockSpray TM interface. Samples were infused in a CH3CN/water (1:1) mixture at 10 μL/min.  

5’-O-Acetyl-3’-azido-3’-deoxy-4-thio-β-D-thymidine (24). Lawesson’s reagent (154 mg, 0.38 mmol) 

was added to a solution of compound 23 (111 mg, 0.36 mmol) in 10 mL anhydrous toluene. The 

mixture was refluxed overnight and the solvent was removed in vacuo. The residue was purified by 

column chromatography (CH2Cl2/ MeOH 95:5) to give compound 24 as a brown-yellow solid (23 mg, 

20%). 1H NMR (300 MHz, DMSO-d6): δ 1.99 (3H, d, J= 0.9 Hz, 5-CH3), 2.06 (3H, s, OAc), 2.34-2.43 

(1H, m, H-2’a), 2.53-2.57 (1H, m, H-2’b), 3.99-4.04 (1H, m, H-4’), 4.21-4.32 (2H,m, H-5’a an H-5’b), 

4.44-4.50 (1H, m, H-3’), 6.07 (1H, dd, J= 5.7 Hz, J= 7.2 Hz, H-1’), 7.58 (1H, s, H-6), 12.75 (1H, s, 3-

NH). 13C NMR (75 MHz, DMSO-d6): δ 16.78 (5-CH3), 20.58 (OAc), 35.96 (C-2’), 59.81 (C-3’), 63.09 

(C-5’), 81.10 (C-4’), 84.64 (C-1’), 117.95 (C-5), 133.32 (C-6), 147.67 (C-2), 171.92 (OAc), 190.95 (C-

4). Exact mass (ESI-MS) for C12H16N5O4S [M+H]+ found, 326.0941; calcd, 326.0918.  

3’-Azido-3’-deoxy-4-thio-β-D-thymidine (7). Compound 24 (16 mg, 0.050 mmol) was dissolved in a 

7N NH3 in MeOH solution (1 mL) and stirred at room temperature for 6 hours. The reaction mixture 

was concentrated in vacuo and the residue was purified on a silica gel column using CH2Cl2/MeOH 

(95:5) as the eluent to afford compound 7 as a yellow powder (6.0 mg, 42%). 1H NMR (300 MHz, 

DMSO-d6): δ 1.97 (3H, d, J= 0.6 Hz, 5-CH3), 2.29-2.38 (1H, m, H-2’a), 2.41-2.48 (1H, m, H-2’b), 3.59-

3.71 (2H, m, H-5’a and H-5’b), 3.83-3.87 (1H, m, H-4’), 4.40 (1H, app dd, J= 6.0 Hz, J= 12.6 Hz, H-3’), 

5.28 (1H, br s, 5’-OH), 6.04 (1H, app t, J= 5.7 Hz, H-1’), 7.86 (1H, s, H-6). 13C NMR (75 MHz, DMSO-
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d6): δ 16.90 (5-CH3), 36.64 (C-2’), 59.44 (C-3’), 60.35 (C-5’), 84.32 and 84.44 (C-4’ and C-1’), 117.63 

(C-5), 133.34 (C-6), 147.71 (C-2), 190.76 (C-4). Exact mass (ESI-MS) for C10H14N5O3S [M+H]+ found, 

326.284.0813; calcd, 284.0812. Spectroscopic data of 7 were in accordance with literature data.22

5’-O-acetyl-3’-(4-chlorophenyl-1,2,3-triazol-1-yl)-3’-deoxy-β-D-thymidine (25). Compound 23 (146 

mg, 0.47 mmol), sodium ascorbate (5 mg, 0.024 mmol) and CuSO4͘͘ ∙5H2O (5 mg, 0.019 mmol) were 

suspended in 9 mL of H2O/t-BuOH (2:1). 1-Chloro-4-ethynylbenzene (129 mg, 0.94 mmol) was added 

after 15 minutes and the mixture was stirred at room temperature for 24 h. The reaction mixture was 

extracted with EtOAc and the combined organic phases were dried over anhydrous MgSO4 and 

evaporated to anhydrousness. The crude product was purified column chromatography (CH2Cl2/MeOH 

95:5) affording 25 (87 mg, 41 %) as a white powder. 1H NMR (300 MHz, DMSO-d6): δ 1.84 (3H, s, 5-

CH3), 2.04 (3H, s, OAc), 2.73-2.94 (2H, m, H-2’a and H-2’b), 4.27-4.37 (2H, m, H-5’a and H-5’b), 4.43-

4.49 (1H, m, H-4’), 5.47-5.54 (1H, m, H-3’), 6.45 (1H, t, J= 7.2 Hz, H-1’), 7.52-7.57 (2H, m, subs Ph), 

7.63 (1H, d, J= 1.2 Hz, H-6), 7.85-7.90 (2H, m, subs Ph), 8.86 (1H, s, H-5”), 11.41 (1H, s, 3-NH). 13C 

NMR (75 MHz, DMSO-d6): δ 12.14 (5-CH3), 20.53 (OAc), 36.36 (C-2’), 59.50 and 63.29 (C-5‘ and C-

3’), 80.85 (C-4’), 84.15 (C-1’), 110.00 (C-5), 121.34 (C-5”), 126.86, 129.07, 129.42 and 132.48 (subs 

Ph), 136.39 (C-6), 145.54 (C-4”), 150.44 (C-2), 163.74 (C-4), 170.08 (OAc). Exact mass (ESI-MS) for 

C20H21ClN5O5 [M+H]+ found, 446.1238; calcd, 446.1226. 

 

5’-O-acetyl-3’-(4-chlorophenyl-1,2,3-triazol-1-yl)-3’-deoxy-4-thio-β-D-thymidine (26). Lawesson’s 

reagent (158 mg, 0.39 mmol) was added to a solution of compound 25 (87 mg, 0.20 mmol) in 10 mL 

anhydrous toluene. The mixture was refluxed overnight and the solvent was removed in vacuo. The 

residue was purified by column chromatography (CH2Cl2/ MeOH 95:5) to give compound 26 as a 

brown-yellow solid (44 mg, 49%). 1H NMR (300 MHz, CDCl3): δ 2.00 (3H, s, 5-CH3), 2.05 (3H, s, OAc), 

2.86-2.94 (1H, m, H-2’a), 3.17-3.26 (1H, m, H-2’b), 4.35 (2H, d, J= 3.3 Hz, H-5’a and H-5’b), 4.59-4.65 

(1H, m, H-4’), 5.49 (1H, app dd, J= 7.5 Hz, J= 15.3 Hz, H-3’),6.01-6.04 (1H, m, H-1’), 7.24 (1H, s, H-6), 

7.32 (2H, d, J= 8.4 Hz, subs Ph), 7.68 (2H, d, J= 8.4 Hz, subs Ph), 7.93 (1H, s, H-5”), 11.10 (1H, s, 3-

NH). 13C NMR (75 MHz, CDCl3): δ 17.41 (5-CH3), 21.00 (OAc), 38.16 (C-2’), 60.31 and 63.45 (C-5‘ 

and C-3’), 82.99 (C-4’), 89.57 (C-1’), 120.21 and 120.71 (C-5 and C-5”), 127.23, 128.77, 129.39, 

134.01 and 134.47 (C-6 and subs Ph), 147.20 and 148.49 (C-4” and C-2), 170.66 (OAc), 190.91 (C-4). 

Exact mass (ESI-MS) for C20H21ClN5O4S [M+H]+ found, 462.1042; calcd, 462.0997. 

3’-(4-Chlorophenyl-1,2,3-triazol-1-yl)-3’-deoxy-4-thio-β-D-thymidine (10). Compound 26 (42 mg, 

0.090 mmol) was dissolved in a 7N NH3 in MeOH solution (1 mL) and stirred at room temperature for 6 

hours. The reaction mixture was concentrated in vacuo and the residue was purified on a silica gel 

column using CH2Cl2/MeOH (95:5) as the eluent to afford compound 10 as a yellow powder (25.2 mg, 

66%). 1H NMR (300 MHz, DMSO-d6): δ 1.75 (3H, d, J= 0.9 Hz, 5-CH3), 1.96 (1H, app dt, J= 3.6 Hz, J= 

14.1 Hz, H-2’a), 2.45-2.55 (1H, m, H-2’b), 4.28 (1H, app s, H-3’), 4.47-4.64 (3H, m, H-4’, H-5’a and H-

5’b), 5.63 (1H, s, 5’-OH), 6.18 (1H, dd, J= 3.9 Hz, J= 7.5 Hz, H-1’), 7.49-7.54 (2H, m, subs Ph), 7.72 

(1H, d, J= 1.2 Hz, H-6), 7.86-7.91 (2H, m, subs Ph), 8.62 (1H, s, H-5”). 13C NMR (75 MHz, DMSO-d6): 
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δ 16.94 (5-CH3), 37.51 (C-2’), 59.02 (C-3’), 60.41 (C-5‘), 84.80 and 84.90 (C-4’ and C-1’), 117.81 (C-

5), 121.40 (C-5”), 126.87, 129.03, 129.47, 132.44 and 133.50 (C-6 and subs Ph), 145.49 and 147.79 

(C-4” and C-2), 190.90 (C-4). Exact mass (ESI-MS) for C18H19ClN5O3S [M+H]+ found, 420.0915; calcd, 

420.0892. 

N-(5’-Deoxy-3’-O-tert-butyldimethylsilyl-β-D-thymidin-5’-yl)-N’-(4-chloro-3-trifluoromethyl-
phenyl)-thiourea (28). To a solution of compound 27 (403 mg, 1.13 mmol) in DMF (4 mL) was added 

a solution of 4-chloro-3-(trifluoromethyl)phenylisothiocyanate (0.18 mL, 1.13 mmol) in DMF (2 mL) at 0 

°C. The reaction mixture was stirred for 1 h. The solvents were evaporated to anhydrousness and the 

residue was purified by column chromatography (CH2Cl2/MeOH 98:2) affording compound 28 as a 

colorless solid (510 mg, 76%). 1H NMR (300 MHz, DMSO-d6): δ 0.098 (6H, s, TBDMS), 0.87-0.88 (9H, 

m, TBDMS), 1.80 (3H, s, 5-CH3), 2.02-2.10 (1H, m, H-2’a), 2.24-2.34 (1H, m, H-2’b), 3.55-3.65 (1H, m, 

H-4’), 3.98-3.99 (2H, m, H-5’a and H-5’b), 4.45-4.47 (1H, m, H-3’), 6.15-6.19 (1H, m, H-1’), 7.52 (1H, 

s, subs Ph), 7.62-7.72 (2H, m, subs Ph and H-6), 7.96 (1H, subs Ph), 8.12 (1H, s, 5’-NH), 9.93 (1H, s, 

N’H), 11.33 (1H, s, 3-NH). 13C NMR (75 MHz, DMSO-d6): δ -4.99 and -4.93 (TBDMS), 11.95 (5-CH3), 

17.57 (TBDMS), 25.57 (TBDMS), C-2’ (under solvent peak), 45.74 (C-5’), 72.80 (C-3’), 83.98 and 

84.19 (C-1’ and C-4’), 109.74 (C-5), 124.50-139.00 (subs Ph, CF3 and C-6), 150.36 (C-2), 163.56 (C-

4), 180.77 (C=S). Exact mass (ESI-MS) for C24H33ClF3N4O4Si [M+H]+ found, 593.1643; calcd, 

593.1627. 

N-(5’-Deoxy-β-D-thymidin-5’-yl)-N’-(4-chloro-3-trifluoromethylphenyl)-thiourea (14). Compound 

28 (84 mg, 0.14 mmol) was dissolved in THF (0.9 mL). A solution of 1M tetra-n-

butylammoniumfluoride in THF (0.31 mL) was added. After 1 h at room temperature the reaction was 

completed. The solvent was evaporated and the anhydrous residue was purified by column 

chromatography (CH2Cl2/MeOH 95:5) to give pure compound 14 (40 mg, white solid) in 60% yield. 1H 

NMR (300 MHz, DMSO-d6): δ 1.79 (3H, s, 5-CH3), 2.05-2.13 (1H, m, H-2’a), 2.17-2.27 (1H, m, H-2’b), 

3.59-3.66 (1H, m, H-4’), 3.87-3.96 (2H, m, H-5’a and H-5’b), 4.23-4.24 (1H, m, H-3’), 5.38 (1H, d, J= 

4.2 Hz, 3’-OH), 6.18-6.22 (1H, m, H-1’), 7.51-7.7.75 (3H, m, subs Ph and H-6), 8.17-8.22 (2H, m, subs 

Ph and 5’-NH), 9.99 (1H, s, N’H), 11.32 (1H, s, 3-NH). 13C NMR (75 MHz, DMSO-d6): δ 12.73 (5-CH3), 

C-2’ (under solvent peak), 46.95 (C-5’), 71.97 (C-3’), 84.56 and 84.69 (C-1’ and C-4’), 110.54 (C-5), 

121.59-139.91 (subs Ph, CF3 and C-6), 151.18 (C-2), 164.38 (C-4), 181.44 (C=S). Exact mass (ESI-

MS) for C18H19ClF3N4O4 [M+H]+ found, 479.0778; calcd, 479.0762. 

5-(5’-Amino-5’-deoxy-3’-O-tert-butyldimethylsilyl-β-D-thymidin-5’N-yl)-1-(4-chloro-3-trifluoro-
methylphenyl)-tetrazole (29). To a suspension of compound 28 (504 mg, 0.85 mmol), sodium azide 

(166 mg, 2.55 mmol) and HgCl2 (253 mg, 0.93 mmol) in anhydrous DMF (3.3 mL) was added Et3N 

(0.36 mL, 2.55 mmol) under N2 atmosphere. The resulting black suspension was stirred overnight at 

room temperature. The mixture was filtered through a pad of Celite, washing with CH2Cl2. The filtrate 

was diluted with water and extracted with CH2Cl2. The combined organic layers were dried over 

MgSO4, filtered and concentrated under reduced pressure. The resulting residue was purified by silica 
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gel chromatography (CH2Cl2/MeOH 98:2) affording compound 29 (424 mg, 83%) as a colorless solid. 
1H NMR (300 MHz, DMSO-d6): δ 0.029-0.042 (6H, m, TBDMS), 0.84-0.86 (9H, m, TBDMS), 1.78 (3H, 

s, 5-CH3), 2.00-2.07 (1H, m, H-2’a), 2.23-2.33 (1H, m, H-2’b), 3.48-3.62 (2H, m, H-5’a and H-5’b), 

3.94-3.99 (1H, m, H-4’), 4.42-4.45 (1H, m, H-3’), 6.10-6.14 (1H, m, H-1’), 7.41 (1H, t, J= 6.0 Hz, 5’-

NH), 7.53 (1H, d, J= 1.2 Hz, H-6), 7.88-8.03 (3H, m, subs Ph), 11.31 (1H, s, 3-NH). 13C NMR (75 MHz, 

DMSO-d6): δ -5.06 and -4.91 (TBDMS), 11.92 (5-CH3), 17.56 (TBDMS), 25.56 (TBDMS), C-2’ (under 

solvent peak), 45.82 (C-5’), 72.90 (C-3’), 84.07 and 84.58 (C-1’ and C-4’), 109.61 (C-5), 128.00-

136.27 (subs Ph, CF3 and C-6), 150.35 (C-2), 155.28 (C=N), 163.62 (C-4). Exact mass (ESI-MS) for 

C24H32ClF3N7O4Si [M+H]+ found, 602.1910; calcd, 602.1920. 

5-(5’-Amino-5’-deoxy-β-D-thymidin-5’N-yl)-1-(4-chloro-3-trifluoromethylphenyl)-tetrazole (15). 

Compound 29 (241 mg, 0.400 mmol) was dissolved in THF (2.5 mL). A solution of 1 M tetra-n-

butylammoniumfluoride in THF (0.88 mL) was added. After 1 h at room temperature the reaction was 

completed. The solvent was evaporated and the anhydrous residue was purified by column 

chromatography (CH2Cl2/MeOH 95:5) to give pure compound 15 (104 mg, white solid) in 53% yield. 1H 

NMR (300 MHz, DMSO-d6): δ 1.76 (3H, d, J= 0.9 Hz, 5-CH3), 2.04-2.11 (1H, m, H-2’a), 2.14-2.24 (1H, 

m, H-2’b), 3.49-3.65 (2H, m, H-5’a and H-5’b), 3.93-3.98 (1H, m, H-4’), 4.22-4.27 (1H, m, H-3’), 5.32 

(1H, d, J= 4.5 Hz, 3’-OH), 6.12-6.17 (1H, m, H-1’), 7.39 (1H, t, J= 5.7 Hz, 5’-NH), 7.50 (1H, d, J= 1.5 

Hz, H-6), 7.90-8.07 (3H, m, subs Ph), 11.29 (1H, s, 3-NH). 13C NMR (75 MHz, DMSO-d6): δ 12.02 (5-

CH3), C-2’ (under solvent peak), 46.16 (C-5’), 71.24 (C-3’), 83.91 (C-1’), 84.28 (C-4’), 109.73 (C-5), 

124.95-136.26 (subs Ph, CF3 and C-6), 150.47 (C-2), 155.42 (C=N), 163.76 (C-4). Exact mass (ESI-

MS) for C18H18ClF3N7O4 [M+H]+ found, 488.1052; calcd, 488.1055. 

5’-(4-Chlorophenyl-1,2,3-triazol-1-yl)-5’-deoxy-β-D-thymidine (16). Compound 30 (56 mg, 0.21 

mmol), sodium ascorbate (cat. amount) and CuSO4͘͘ ∙5H2O (cat. amount) were suspended in 3 mL of 

H2O/t-BuOH (1:2). 1-Chloro-4-ethynylbenzene (57 mg, 0.42 mmol) was added after 15 minutes and 

the mixture was stirred at room temperature for 7 days. The reaction mixture was extracted with 

EtOAc and the combined organic phases were dried over anhydrous MgSO4 and evaporated to 

anhydrousness. Purification of the crude using RP-HPLC (Phenomenex Luna C-18, H2O/0.1% 

HCOOH in CH3CN, 90:10 → 0:100 in 23 min, flow 17.5 mL/min) afforded compound 16 (2.0 mg, 2%) 

as a white powder. 1H NMR (300 MHz, DMSO-d6): δ 1.68 (3H, s, 5-CH3), 2.02-2.24 (2H, m, H-2’a and 

H-2’b), 4.09-4.14 (1H, m, H-4’), 4.28-4.31 (1H, m, H-3’), 4.64-4.80 (2H, m, H-5’a and H-5’b), 5.59 (1H, 

br s, 3’-OH), 6.18 (1H, app t, J= 6.9 Hz, H-1’), 7.23 (1H, d, J= 1.2 Hz, H-6), 7.49-7.53 (2H, m, subs 

Ph), 7.85-7.90 (2H, m, subs Ph), 8.62 (1H, s, H-5”), 11.30 (1H, s, 3-NH). 13C NMR (75 MHz, DMSO-

d6): δ 11.96 (5-CH3), 37.84 (C-2’), 51.13 (C-5’), 70.47 (C-3’), 83.66 (C-4’), 83.77 (C-1’), 109.79 (C-5), 

122.53-132.25 (subs Ph and C-5”), 135.96 (C-6), 145.26 (C-4”), 150.37 (C-2), 163.56 (C-4). Exact 

mass (ESI-MS) for C18H19ClN5O4 [M+H]+ found, 404.1125; calcd, 404.1120.  

4-Thio-α-D-thymidine (33). Lawesson’s reagent (777 mg, 1.92 mmol) was added to a solution of 

compound 3’-5’-di-O-acetyl-α-D-thymidine (31) (519 mg, 1.59 mmol) in 15 mL anhydrous 1,4-dioxane. 
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The mixture was refluxed for 4 hours. After the reaction mixture had been cooled, the solvent was 

removed in vacuo. The crude product thus obtained was treated with 8 mL of a 7N NH3 in MeOH 

solution and stirred at room temperature for 4 hours. The reaction mixture was concentrated in vacuo 

and the residue was purified on a silica gel column using CH2Cl2/MeOH (94:6) as the eluent to afford 

compound 33 as a yellow foam (150 mg, 37%). 1H NMR (300 MHz, DMSO-d6): δ 1.75 (3H, s, 5-CH3), 

1.94-1.98 (1H, m, H-2’a), 2.51-2.57 (1H, m, H-2’b), 3.40 (2H, t, J= 5.2 Hz, H-5’a and H-5’b), 4.23-4.25 

(2H, m, H-3’ and H-4’), 4.86 (1H, t, J= 5.7 Hz, 5’-OH), 5.26 (1H, d, J= 2.7 Hz, 3’-OH), 6.04 (1H, dd, J= 

2.7 Hz, J= 7.5 Hz, H-1’), 7.81 (1H, d, J= 0.9 Hz, H-6), 12.65 (1H, s, 3-NH). Exact mass (ESI-MS) for 

C10H15N2O4S [M+H]+ found, 259.0753; calcd, 259.0747.  

5’-O-Methanesulfonyl-4-thio-α-D-thymidine (34). To a solution of 4-thio-α-D-thymidine 33 (146 mg, 

0.57 mmol) in pyridine (5 mL) at -78 °C, methanesulfonylchloride (42 μL,0.54 mmol) was added. The 

reaction mixture was stirred for 1 h at 0 °C. The reaction was quenched with saturated aqueous 

NaHCO3-solution and extracted with CH2Cl2 three times, dried over MgSO4 and evaporated. The 

residue was purified by column chromatography (CH2Cl2/ MeOH 95:5) to give mesylated compound 34 

as a yellow foam (133 mg, 70%). 1H NMR (300 MHz, DMSO-d6): δ 1.97 (3H, d, J= 0.6 Hz, 5-CH3), 

1.99-2.04 (1H, m, H-2’a), 2.53-2.30 (1H, m, H-2’b), 3.22 (3H, s, SO2CH3), 4.08-4.10 (2H, m, H-5’a and 

H-5’b), 4.16-4.30 (1H, m, H-3’), 4.40-4.46 (1H, m, H-4’), 5.55 (1H, br s, 3’-OH), 6.09 (1H, dd, J= 3.6 

Hz, J= 7.5 Hz, H-1’), 7.69 (1H, s, H-6). Exact mass (ESI-MS) for C11H17N2O6S2 [M+H]+ found, 

337.0533; calcd, 337.0523. 

5’-Azido-5’-deoxy-4-thio-α-D-thymidine (35). A solution of 5’-mesylated 4-thio-α-D-thymidine 34 

(129 mg, 0.38 mmol) and NaN3 (250 mg, 3.86 mmol) in DMF (7 mL) was heated to 60 °C overnight. 

The reaction mixture was evaporated in vacuo. The residue was resolved in CH2Cl2 and washed with 

brine. The organic layer was dried over MgSO4, evaporated and purified by column chromatography 

(CH2Cl2/MeOH 95:5) to afford compound 35 (97 mg, 89%) as a yellow oil. 1H NMR (300 MHz, DMSO-

d6): δ 1.98 (3H, d, J= 0.9 Hz, 5-CH3), 2.04 (1H, t, J= 3.3 Hz, H-2’a), 2.56-2.65 (1H, m, H-2’b), 3.40-

3.44 (2H, m, H-5’a and H-5’b), 4.14-4.17 (1H, m, H-3’), 4.34-4.39 (1H, m, H-4’), 5.47 (1H, br s, 3’-OH), 

6.09 (1H, dd, J= 3.6 Hz, J= 7.5 Hz, H-1’), 7.78 (1H, s, H-6). Exact mass (ESI-MS) for C10H14N5O3S 

[M+H]+ found, 284.0813; calcd, 284.0812. 

5’-Amino-5’-deoxy-4-thio-α-D-thymidine (36). Compound 35 (97 mg, 0.34 mmol) and PPh3 (187 mg, 

0.71 mmol) were dissolved in THF (6 mL). After stirring for 10 minutes, H2O was added (883 μL) and 

the mixture was stirred for 1 day. The mixture was extracted with CH2Cl2 and the water phase 

lyophilized to give amine 36 (78 mg, 89%). 1H NMR (300 MHz, DMSO-d6): δ 1.96 (3H, d, J= 0.6 Hz, 5-

CH3), 2.00 (1H, t, J= 3.6 Hz, H-2’a), 2.58-2.68 (1H, m, H-2’b), 2.76-2.87 (1H, m, H-5’a), 2.96-3.04 (1H, 

m, H-5’b), 4.18-4.20 (1H, m, H-3’), 4.32 (1H,dt, J= 3.3 Hz, J= 9.6 Hz, H-4’), 5.57 (1H, br s, 3’-OH), 6.15 

(1H, dd, J= 3.3 Hz, J= 7.5 Hz, H-1’), 7.77 (1H, s, H-6). Exact mass (ESI-MS) for C10H16N3O3S [M+H]+ 

found, 258.0907; calcd, 258.0907. 
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N-(5’-Deoxy-4-thio-α-D-thymidin-5‘-yl)-N’-phenylthiourea (18). For the synthesis of compound 18, 

amine 36 (26 mg, 0.10 mmol) was dissolved in DMF (1 mL). At 0 °C, phenyl isothiocyanate (16 mg, 

0.12 mmol) was added and the reaction mixture was allowed to stir at room temperature during 3 h. 

After completion of the reaction, the reaction mixture was evaporated to anhydrousness and the 

residue was purified by column chromatography (CH2Cl2/MeOH 95:5) to obtain the pure final 

compound 18 (27.0 mg, 69%) as a yellow powder. 1H NMR (300 MHz, DMSO-d6): δ 1.97 (3H, d, J= 

0.9 Hz, 5-CH3), 2.01-2.03 (1H, m, H-2’a), 2.54-2.63 (1H, m, H-2’b), 3.53-3.70 (2H, m, H-5’a and H-

5’b), 4.21-4.24 (1H, m, H-3’), 4.42-4.46 (1H, m, H-4’), 5.43 (1H, d, J= 2.7 Hz, 3’-OH), 6.12 (1H, dd, J= 

2.7 Hz, J= 7.5 Hz, H-1’), 7.08-7.13 (1H, m, Ph), 7.29-7.34 (2H, m, Ph), 7.43-7.47 (2H, m, Ph), 7.80 

(1H, s, H-6). 13C NMR (75 MHz, DMSO-d6): δ 17.03 (5-CH3), under DMSO (C-2’), 45.49 (C-5’), 70.79 

(C-3’), 86.08 (C-1’), 86.78 (C-4’), 117.22 (C-5), 123.22, 124.30, 128.63 and 134.25 (Ph), 139.13 (C-6), 

147.87 (C-2), 180.74 (C=S), 190.56 (C-4). Exact mass (ESI-MS) for C17H21N4O3S2 [M+H]+ 

found,393.1053; calcd, 393.1050. 

N-(5’-Deoxy-4-thio-α-D-thymidin-5‘-yl)-N’-(3-trifluoromethyl-4-chlorophenyl)thiourea (19). 

Compound 19 was synthesized from amine 36 (52 mg, 0.20 mmol) and 4-chloro-3-

trifluoromethylphenyl isothiocyanate (57 mg,0.24 mmol) using the same procedure as described for 

the synthesis of compound 18. After purification by column chromatography (CH2Cl2/MeOH 95:5), 

compound 19 (41.7mg, 42%) was obtained as a yellow powder. 1H NMR (300 MHz, DMSO-d6): δ 1.98 

(3H, d, J= 0.6 Hz, 5-CH3), 2.06 (1H, t, J= 2.1 Hz, H-2’a), 2.57-2.66 (1H, m, H-2’b), 3.56-3.59 (1H, m, 

H-5’a), 3.67-3.72 (1H, m, H-5’b), 4.25-4.26 (1H, m, H-3’), 4.44-4.48 (1H, m, H-4’), 5.47 (1H, d, J= 3.0 

Hz, 3’-OH), 6.14 (1H, dd, J= 2.7 Hz, J= 7.5 Hz, H-1’), 7.64 (2H, d, J= 8.7 Hz, subs Ph), 7.74 (2H, dd; 

J= 2.1 Hz, J= 8.4 Hz, subs Ph), 7.83 (1H, d, J= 0.9 Hz, H-6). 13C NMR (75 MHz, DMSO-d6): δ 17,11 

(5-CH3), under DMSO (C-2’), 45.62 (C-5’), 70.95 (C-3’), 86.18 and 86.55 (C-4’ and C-1’), 117.22 (C-5), 

124.61, 127.50, 131.77 and 134.28 (CF3 and subs Ph), 139.23 (C-6), 148.00 (C-2), 180.95 (C=S), 

190.70 (C-4). Exact mass (ESI-MS) for C18H19ClF3N4O3S2 [M+H]+ found,495.0508; calcd, 495.0534. 

5’-(4-Chlorophenyl-1,2,3-triazol-1-yl)-5’-deoxy-α-D-thymidine (20). Compound 17 (85 mg, 0.32 

mmol), sodium ascorbate (3 mg, 0.016 mmol) and CuSO4͘͘ ∙5H2O (3 mg, 0.013 mmol) were 

suspended in 3 mL of H2O/t-BuOH (2:1). 1-Chloro-4-ethynylbenzene (87 mg, 0.64 mmol) was added 

after 15 minutes and the mixture was stirred at room temperature for 4 days. Water was added and 

the triazole product precipitated. Filtration of the mixture afforded pure compound 20 (40.0 mg, 31%) 

as a white powder. 1H NMR (300 MHz, DMSO-d6): δ 1.75 (3H, d, J= 1.2 Hz, 5-CH3), 1.94 (1H, app t, 

J= 3.9 Hz, H-2’a), 1.99 (1H, app t, J= 3.9 Hz, H-2’b), 4.22-4.32 (1H, m, H-4’), 4.43-4.66 (3H, m, H-3’, 

H-5’a and H-5’b), 5.65 (1H, br s, 3’-OH), 6.18 (1H, dd, J= 4.2 Hz, J= 7.5 Hz, H-1’), 7.49-7.54 (2H, m, 

subs Ph), 7.72 (1H, d, J= 1.2 Hz, H-6), 7.86-7.91 (2H, m, subs Ph), 8.62 (1H, s, H-5”), 11.26 (1H, s, 3-

NH). 13C NMR (75 MHz, DMSO-d6): δ 12.15 (5-CH3), 51.20 (C-5’), 70.53 (C-4’), 84.72 (C-1’), 85.37 (C-

3’), 108.81 (C-5), 122.41 (C-5”), 126.73, 128.83, 129.45 and 132.15 (subs Ph), 136.64 (C-6), 145.12 

(C-4”), 150.29 (C-2), 163.65 (C-4). Exact mass (ESI-MS) for C18H19ClN5O4 [M+H]+ found, 404.1129; 

calcd, 404.1120. 
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5’-O-Acetyl-3’-azido-3’-deoxy-α-D-thymidine (38). To a solution of compound 37 (642 mg, 2.08 

mmol) in 1 mL anhydrous CH2Cl2, was added a freshly prepared solution, containing 34 μL H2SO4 and 

140 μL acetic acid anhydride in 1 mL anhydrous CH2Cl2. After 2 h, the mixture was quenched with 

saturated NaHCO3-solution and extracted three times with EtOAc. Purification of the crude on a silica 

gel column (EtOAc/hexane 9:1) yielded compound 38 as a white foam (126 mg, 20%). 1H NMR (300 

MHz, DMSO-d6): δ 1.80 (3H, d, J= 0.9 Hz, 5-CH3), 2.06 (3H, s, OAc), 2.15-2.22 (1H, m, H-2’a), 2.70-

2.75 (1H, m, H-2’b), 4.11-4.14 (2H, m, H-5’a and H-5’b), 4.34-4.39 (1H, m, H-3’), 4.42-4.45 (1H, m, H-

4’), 6.07 (1H, dd, J= 6.0 Hz, J= 6.9 Hz, H-1’), 7.59 (1H, d, J= 1.2 Hz, H-6), 11.32 (1H, s, 3-NH). 13C 

NMR (75 MHz, DMSO-d6): δ 12.15 (5-CH3), 20.62 (OAc), 36.23 (C-2’), 60.43 (C-3), 63.68 (C-5’), 81.46 

(C-4’), 84.93 (C-1’), 109.38 (C-5), 136.25 (C-6), 150.36 (C-2), 163.80 (C-4), 170.15 (OAc). Exact mass 
(ESI-MS) for C12H16N5O5 [M+H]+ found, 310.1164; calcd, 310.1146. Spectroscopic data of 38 were in 

accordance with literature data.23

3’-Azido-3’-deoxy-α-D-thymidine (21). Compound 38 (146 mg, 0.47 mmol) was dissolved in a 7N 

NH3 in MeOH solution (2.6 mL) and stirred at room temperature for 6 hours. The reaction mixture was 

concentrated in vacuo and the residue was purified on a silica gel column using EtOAc/hexane (8:2) 

as the eluent to afford compound 21 as a colorless solid (91 mg, 72%). 1H NMR (300 MHz, CDCl3): δ 

1.95 (3H, d, J= 0.9 Hz, 5-CH3), 2.12-2.17 (1H, m, H-2’a), 2.82-2.91 (1H, m, H-2’b), 3.08 (1H, t, J= 5.4 

Hz, 5’-OH), 3.65-3.72 (1H, m, H-5’a), 3.81-3.85 (1H, m, H-5’b), 4.27-4.35 (2H, m, H-3’ and H-4’), 6.29 

(1H, dd, J= 4.2 Hz, J= 6.9 Hz, H-1’), 7.32 (1H, d, J= 1.5 Hz, H-6), 9.48 (1H, s, 3-NH). 13C NMR (75 

MHz, CDCl3): δ 12.67 (5-CH3), 38.22 (C-2’), 60.83 (C-3), 62.62 (C-5’), 85.93 and 86.02 (C-4’ and C-

1’), 111.24 (C-5), 135.35 (C-6), 150.72 (C-2), 164.03 (C-4). Exact mass (ESI-MS) for C10H14N5O4 

[M+H]+ found, 268.1020; calcd, 268.1040. Spectroscopic data of 39 were in accordance with literature 

data.
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3’-(4-Chlorophenyl-1,2,3-triazol-1-yl)-3’-deoxy-α-D-thymidine (22). Compound 21 (72 mg, 0.27 

mmol), sodium ascorbate (3 mg, 0.024 mmol) and CuSO4͘͘ ∙5H2O (3 mg, 0.011 mmol) were 

suspended in 3 mL of H2O/t-BuOH (1:2). 1-Chloro-4-ethynylbenzene (74 mg, 0.54 mmol) was added 

after 15 minutes and the mixture was stirred at room temperature for 24 h. The reaction mixture was 

extracted with EtOAc and the combined organic phases were dried over anhydrous MgSO4 and 

evaporated to anhydrousness. The crude product was purified column chromatography 

(EtOAc/hexane 8:2) affording 22 (50.8 mg, 47%) as a white powder. 1H NMR (300 MHz, DMSO-d6): δ 

1.75 (3H, s, 5-CH3), 2.71-2.80 (1H, m, H-2’a), 2.98-3.07 (1H, m, H-2’b), 3.54-3.70 (2H, m, H-5’a and 

H-5’b), 4.65-4.70 (1H, m, H-4’), 5.12 (1H, t, J= 5.4 Hz, 5’-OH), 5.29-5.36 (1H, m, H-3’), 6.26 (1H, app t, 

J= 6.6 Hz, H-1’), 7.50-7.54 (2H, m, subs Ph), 7.63 (1H, d, J= 1.2 Hz, H-6), 7.84-7.87 (2H, m, subs Ph), 

8.82 (1H, s, H-5”), 11.29 (1H, s, 3-NH). 13C NMR (75 MHz, DMSO-d6): δ 12.18 (5-CH3), 37.12 (C-2’), 

59.23 (C-3), 61.12 (C-5’), 83.89 (C-4’), 84.43 (C-1’), 109.58 (C-5), 121.38 (C-5”), 126.88-132.47 (subs 

Ph), 136.07 (C-6), 145.49 (C-4”), 150.46 (C-2), 163.78 (C-4). Exact mass (ESI-MS) for C18H19ClN5O4 

[M+H]+ found, 404.1156; calcd, 404.1120. 
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