
 1 

Ring expansion of cyclobutylmethylcarbenium ions to cyclopentane or 

cyclopentene derivatives and metal-promoted analogous rearrangements 

 
Erika Leemans, Matthias D‟hooghe, Norbert De Kimpe* 

 

Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience 

Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium 

 
*norbert.dekimpe@UGent.be 

 
Table of Contents 

 

1 Introduction ........................................................................................................................ 2 
2 Ring expansion of cyclobutylmethylcarbenium ions through activation of a carbon-

carbon double bond .................................................................................................................... 5 
2.1 Acid-promoted activation of alkenylcyclobutanes ...................................................... 7 

2.1.1 Pinene rearrangement ........................................................................................... 7 
2.1.2 Ring expansion of vinylcyclobutanes (different from pinene) ............................. 9 
2.1.3 Semipinacol rearrangement of 1-vinylcyclobutanols ......................................... 17 

2.2 Halogen/selenium cation-promoted activation .......................................................... 23 
2.3 Metal-promoted activation ........................................................................................ 27 

2.3.1 Mercury-promoted activation ............................................................................. 27 
2.3.2 Palladium-promoted activation .......................................................................... 28 

2.3.3 Thallium-promoted activation ............................................................................ 41 

2.4 Conjugated double bond (1,3-dienyl group) activation ............................................. 43 

3 Ring expansion of cyclobutylmethylcarbenium ions through activation of an allene ..... 44 
3.1 Acid-promoted activation .......................................................................................... 44 

3.2 Metal-promoted activation ........................................................................................ 45 
3.2.1 Palladium-promoted activation .......................................................................... 45 
3.2.2 Ruthenium- or gold-promoted activation ........................................................... 49 

4 Ring expansion of cyclobutylmethylcarbenium ions through activation of an alkynyl 

substituent ................................................................................................................................. 51 
4.1 Palladium-promoted activation .................................................................................. 52 

4.2 Ruthenium-promoted activation ................................................................................ 55 
4.3 Gold-promoted activation .......................................................................................... 57 

5 Ring expansion of cyclobutylmethylcarbenium ions through activation of a carbonyl 

group ......................................................................................................................................... 59 

5.1 Direct activation ........................................................................................................ 60 
5.2 Special cases .............................................................................................................. 76 

6 Formation of cyclobutylmethylcarbenium ions through expulsion of a leaving group ... 79 

6.1 A halogen atom as leaving group .............................................................................. 79 
6.1.1 Cyclobutylmethyl chlorides ............................................................................... 79 

6.1.2 Cyclobutylmethyl bromides ............................................................................... 84 
6.1.3 Cyclobutylmethyl iodides .................................................................................. 89 

6.2 N2 as leaving group .................................................................................................... 98 

6.2.1 Via azide addition across methylenecyclobutanes ............................................. 98 
6.2.2 Semipinacol rearrangement .............................................................................. 100 

6.3 An activated nitro group as leaving group ............................................................... 117 

6.4 An activated hydroxy group as leaving group ......................................................... 118 



 2 

6.4.1 Cyclopentane/Cyclopentene synthesis ............................................................. 118 

6.4.2 Pinacol rearrangement (cyclopentanone synthesis) ......................................... 127 
6.4.3 A mesyloxy group as leaving group ................................................................. 132 
6.4.4 A tosyloxy group as leaving group .................................................................. 134 

6.5 An ether moiety as leaving group ............................................................................ 138 
6.5.1 An alkoxy or aryloxy group as leaving group .................................................. 138 
6.5.2 Ring opening of an epoxide as driving force for the ring expansion reaction . 147 
6.5.3 Ring opening of an activated tetrahydrofuran ring as driving force for the ring 

expansion reaction .......................................................................................................... 151 

6.5.4 A special case ................................................................................................... 153 
6.6 An alkyl- or arylthio group as leaving group .......................................................... 153 
6.7 An alkyl- or arylselenyl group as leaving group ..................................................... 158 
6.8 Sulfone, sulfoxide and selenoxide groups as leaving group .................................... 160 

6.8.1 A sulfone group as leaving group .................................................................... 161 
6.8.2 A sulfoxide as leaving group ............................................................................ 162 
6.8.3 A selenoxide as leaving group ......................................................................... 165 

7 Miscellanous ................................................................................................................... 166 
8 Concluding Remarks ...................................................................................................... 174 
9 References ...................................................................................................................... 175 
 

1 Introduction 
 

The synthesis of five-membered carbocycles remains an important task within the design of 

functionalized target compounds bearing a cyclopentane unit.
1
 Ring enlargement reactions are 

commonly used to access five-membered ring systems. Many of these methodologies utilize 

ring strain in consort with the generation of a positive charge on a carbon atom adjacent to a 

four-membered ring as a driving force for the ring expansion reaction.
2
 In this way, the 

cyclobutylmethylcarbenium ion 1 can rearrange smoothly under mild conditions to provide 

the cyclopentylcarbenium ion 2 (Scheme 1).
3
  

 

1 2  

Scheme 1 
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The ring enlargement of cyclobutanes to five-membered rings is associated with a release of 

20 kcal/mol (ring strain energy). In contrast, the relief of strain associated with C3 to C4 and 

C5 to C6 enlargements is less pronounced,
4
 but the activation barrier for 1,2-shifts is higher in 

cyclobutanes than in cyclopentanes or cyclohexanes.
5
 In addition to experimental work, 

theoretical studies on cyclobutylmethyl and cyclopentylcarbenium ions have been performed 

in the past.
6
  

 

Some of the classical methods applied to ring homologation by a one carbon atom are the 

Demjanov,
7
 the Tiffeneau-Demjanov,

7
 the Wagner-Meerwein

8
 and the pinacol 

rearrangement.
9
 Well-known ring homologation methods which incorporate a heteroatom into 

the ring are the Baeyer-Villiger reaction (oxygen)
10

 and the Beckmann rearrangement 

(nitrogen).
11

  

Cyclobutanones are readily available derivatives of cyclobutanes.
12

 The chemical reactivity of 

cyclobutanones is considerably different from that of cyclic ketones with larger rings due to 

the ring strain of ca. 25 kcal/mol. Information regarding the influence of the ring strain on 

regio-, chemo- and stereoselective transformations of four-membered ring ketones is of 

particular importance.
13

 Cyclobutanones can be constructed through a variety of methods
14

 

and may be further functionalized by means of Grignard reactions,
12

 aldol reactions of 

cyclobutanone enolates with aldehydes,
15

 and many other reactions to offer a convenient four-

carbon ring substrate for further ring enlargement reactions. Enantioselective reactions 

involving deprotonations, alkylations, reductions, and other functionalization reactions of the 

carbonyl group of cyclobutanones represent practical approaches to optically enriched 

cyclobutanes starting from racemates.
16

 The interest in cyclopentanes and cyclopentanones 

stems from their presence in a wide variety of natural products. Their structures characterize 

the core of different classes of substances like steroids and sesquiterpenes, but also 
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jasmones,
17

 pyrethroids and prostaglandins.
18

 Substituted cyclopentenones are found in 

various naturally occurring, biologically active compounds, like pentenomycins.
19

 

 

In 1988, Bellus and Ernst reviewed the ring enlargement of cyclobutanones and 

cyclobutenones to cyclopentanones very briefly.
13

 Almost a decade later, in 1997, Wong 

published a review on the formation of five-membered rings through 

cyclobutylmethylcarbenium rearrangements.
20

 Although Wong‟s review provided a useful 

introduction to the field of cyclobutylmethylcarbenium to cyclopentylcarbenium ion 

rearrangements, only a minor part of the existing literature was covered. The application of 

cyclobutane derivatives in organic synthesis in general was reviewed in 2003 by Namyslo and 

Kaufmann.
21

 Transformations of cyclobutane rings through ring expansion reactions were 

described in a small paragraph in the latter review, where only a selected number of examples 

were given with a few in natural product synthesis. Furthermore, also other types of four- to 

five-membered ring expansion reactions, e.g. transformations of azetidines to pyrrolidines,
22

 

azetidinones to pyrrolidines
23

 and oxetanes to tetrahydrofurans,
24

 have been reported in the 

literature. 

 

The purpose of the present review is to provide a comprehensive coverage on the ring 

rearrangement of four- to five-membered carbocyclic rings via cyclobutylmethylcarbenium 

ions and metal-promoted analogous rearrangements. The review is built up according to the 

creation of a positive centre for migration of a cyclobutane bond. Both the formation of 

localized carbenium ions and electrophilic π-complexes resulting from metal-activation of 

unsaturated C-C bonds will be dealt with. In addition to rearrangements through intermediate 

cyclobutylmethylcarbenium ions 1, especially through semi-pinacol type rearrangements, ring 

expansion reactions of cyclobutylmethyl halides 3 (and analogous substrates) are of particular 



 5 

importance and will also be discussed in this overview. Although emphasis will be put on 

these two types of rearrangements, the relevance of anion-mediated ring enlargements 

through e.g. intermediates 4 will be highlighted as well. 
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The activation of a double bond as a driving force for ring rearrangement is first described, 

followed by the activation of an allene substituent and a triple bond. In that part, the metal-

promoted ring expansion of alkynylcyclobutanols towards cyclopentanones is covered for the 

first time. Subsequently, the activation of a carbonyl compound via several methods is 

described. In another part, different kinds of leaving groups, e.g. halogens, nitrogen gas, a 

nitro group, activated hydroxy and alkoxy groups, and activated sulfur and selenium species, 

are evaluated as precursors for the formation and ring expansion of cyclobutylmethyl 

carbenium ions. In a last paragraph, miscellaneous examples, which could not be subdivided 

into the previous classes, are described. The rearrangement of heterocycles fall out the scope 

of this review, as well as cyclobutene ring rearrangements and radical-mediated ring 

expansions.
25

 

 

2 Ring expansion of cyclobutylmethylcarbenium ions 
through activation of a carbon-carbon double bond 
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Alkenylcyclobutanes 6 are interesting substrates for the synthesis of cyclopentanes and 

cylopentanones via rearrangement reactions. The π-system of the double bond is prone to a 

Markovnikov-controlled electrophilic attack, thereby creating electron-deficiency at the 

desired position to trigger a ring expansion (Scheme 2).
26

 In particular, alkenylcyclobutanols 

6 comprise suitable substrates for a cyclobutylmethyl to cyclopentyl rearrangement and are 

readily accessible through addition of an alkenyllithium reagent to cyclobutanones.  

The cyclobutane ring possesses the capability of interacting with an adjacent alkenyl group or 

sp
2
-hybridized centre. The direct conjugation of the Walsh orbitals in a cyclobutane ring with 

the π-orbitals of adjacent double bonds has been investigated by semiempirical
27

 and ab initio 

calculations and photoelectron spectroscopy.
28

 While the bonding of the cyclobutane ring 

attenuates its ability to delocalize charge, the approximately 20 kcal/mol of strain energy 

released by expansion of the four- to a five-membered ring may compensate for the electronic 

deficits. 
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Different activation types are described in this section, from acid-promoted and 

halogen/selenium cation-promoted activation to the use of metals for efficient ring 

rearrangement. 

 

2.1 Acid-promoted activation of alkenylcyclobutanes 

 

2.1.1 Pinene rearrangement 

 

An important illustration of the acid-promoted ring expansion of vinylcyclobutanes to 

cyclopentanes or cyclopentenes comprised the conversion of α-pinene into camphane.
29

 

Addition of hydrogen chloride to α-pinene initially led to hydrogen chloride adduct, which 

isomerized to 2-chlorocamphane (= bornyl chloride) containing some fenchyl chloride.
29

 In an 

analogous approach, chlorination of α-pinene 13 with undistilled t-butyl hypochlorite led to 

the formation of carvyl chloride 14 (see Schema 3 for a possible mechanism) and 2,6-

dichlorocamphane 15 as a minor side product (Scheme 3).
30

 The same reaction was also 

executed with bromine to synthesize 2,6-dibromocamphane as the sole product.
31

 The 

corresponding yields were not mentioned in the original article. 

 

Cl CltBuOCl Cl

13

+

14 (major)

15 (minor)

16

Cl Cl

16

Cl

H 14

 

Scheme 3 
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Other authors have also reported the addition of hydrogen chloride to α-pinene 13
32

 with 

formation of 2-chlorocamphane 17a in 34% yield in pentane
32a

 or in 40% yield in acetic 

acid.
32b

 In addition, hydrobromination was performed on α-pinene 13 in chloroform to yield 

2-bromocamphane 17b in 70% (Scheme 4).
33

  

 

XHX, solvent

13 17a (X = Cl : 34-40%)
17b (X = Br : 70%)

solvent = pentane, 
CH3CO2H, CHCl3

 

Scheme 4 

 

2-Chlorocamphane 17a was also obtained as a side product in 24% yield via 

hydrochlorination of α-pinene 13 through addition of eight equiv of acetyl chloride in ethanol 

at 30 °C for 15 minutes, affording 1-chloro-4-(1-chloro-1-methylethyl)-1-methylcyclohexane 

18 in 57% yield and 2-chloro-1,3,3-trimethylbicyclo[2.2.1]heptane 19 in 19% yield (Scheme 

5).
34

  

 

8 equiv AcCl

18:17a:19  (57:24:19) (95%)

EtOH, 15 min, 30°C

13

Cl
Cl

Cl Cl
+ +

18 17a 19

 

Scheme 5 

 

Other reagents were applied as well, such as sulfuric acid in chloroform
35

 and thionylchloride 

in dichloromethane,
36

 to synthesize 2-chlorocamphane in 54-63% yield. When oxalic acid was 
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used, 2-hydroxycamphane was obtained in 41% yield.
37a

 The same 2-hydroxycamphane was 

synthesized in 89% yield when benzoyl peroxide was added in combination with chloroacetic 

acid and sodium hydroxide in water (probably implying a sodium acetate-promoted 

reaction).
37b

 When perchloric acid and 3,5-di(trifluoromethyl)benzonitrile 20 were added to (-

)-α-pinene 13, the corresponding racemic isobornylamide derivative 21 was isolated as the 

main product (Scheme 6). No yield was mentioned for this reaction.
38

  

 

H
N

O

CF3

CF3

HClO4

CN

CF3

F3C

2120 13

+

 

Scheme 6 

 

2.1.2 Ring expansion of vinylcyclobutanes (different from pinene) 

 

The same methodology as described above was applied to other types of vinylcyclobutanes. 

Acid- and Lewis acid-catalyzed rearrangements of α-vinylcyclobutanones via 

methanesulfonic acid or boron(III) fluoride etherate have been reported, leading to for 

example ring annelated cyclopentenones, bicyclo[3.1.0]hexanones, bicyclo[5.3.0]decenones, 

bicyclo[4.3.0]nonenones or spiro[4.5]decenones.  

 

In a first example, Beereboom reported an acid-catalyzed rearrangement of 2,6,6-

trimethylbicyclo[3.2.0]hept-2-en-7-one 22 with 0.1 equiv of p-toluenesulfonic acid 

monohydrate in toluene at reflux temperature for 24 hours to afford a mixture of three 

compounds in 89% crude yield.
39

 The starting material was isolated, as well as the ring 

expanded 3,3-dimethyl-6-methylidenebicyclo[2.2.1]heptan-2-one 23 (no mechanism 
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provided; Scheme 7). The author did neither mention the ratio of the compounds nor the 

identification of the third compound.  

 

22:23 (89% crude)

0.1 equiv pTsOH H2O

22

O OO

+

toluene, , 24 h

.

 

Scheme 7 

 

In a second example, the formate of hibaene 25, a tetracyclic diterpene, was synthesized using 

formic acid as promoter for the ring expansion of compound 24.
40

 When tetracyclic olefin 24 

was dissolved in an excess of formic acid and stirred at room temperature for 12 hours, the 

formate 25 was obtained in a quantitative yield (Scheme 8). 

 

excess HCOOH

rt, 12 h
24 25

H

H

H

H
O

O

H

 

Scheme 8 

 

In research on illudoid sesquiterpenes, a protoilludyl carbenium ion 27 was generated.
41

 

Stirring of alkene 26 in formic acid afforded a mixture of rearranged products 28 and 31 in a 

7:3 ratio when the reaction took place at reflux for 30 minutes, and in a 9:1 ratio when the 

reaction was executed at room temperature for three hours (Scheme 9). The authors did not 

report the exact yields of the two products. No hirsutene skeleton 32 was found under these 

reaction conditions, which could be formed via a triple 1,2-shift from carbenium ion 27.  
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26 27

HCOOH hydride

shift

R = endo-OCHOhirsutene 32

H

H

H

29 30

28

31

, 30 min  28:31 (7:3)

rt, 3 h        28:31 (9:1)

X

R

 

Scheme 9 

 

A racemic synthesis of the tricyclic sesquiterpene isocomene 36 was developed by Pirrung 

(Scheme 10).
42

 The last step of this total synthesis involved an acid-catalyzed 

cyclobutylmethyl to cyclopentylcarbenium ion rearrangement. Upon treatment with 0.3 equiv 

of p-toluenesulfonic acid in benzene for one hour at reflux temperature, 2,6,8-trimethyl-5-

methylenetricyclo[6.3.0.0
1,6

]undecane 33 was transformed into racemic isocomene 36 in 98% 

yield.  

 

0.3 equiv pTsOH

C6H6, , 1 h

33 34 35 isocomene 36 (98%) 

Scheme 10 

 

In the presence of a 10:1 mixture of methanesulfonic acid/P2O5 (Eaton‟s reagent), a 1,2-

rearrangement of vinylic cyclobutanone 37 (R = Me) to 51% of spiro[4.5]dec-2-en-1-one 38 

was observed, and accompanied by a minor but significant degree of 1,3-rearrangement 

(13%) toward bicycle 39 (Scheme 11). This reaction was improved to 53% of the 1,2-

rearrangement product 38 and 8% of the 1,3-rearrangement product 39, respectively, when no 
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P2O5 was added.
43

 The nor-methyl analogue 37 (R = H) yielded only bicyclic compound 39 in 

65% yield under the same reaction conditions. 

 

+

R

O

R = H     method a
R = Me   method a

-
51%

65%
13%

O

R

or method b

O

R

53% 8%

37 38 39

method a: MeSO3H/P2O5 (10:1), 15 min
method b:  0.2 equiv MeSO3H/CH2CH2, 10 h

method a

method b

 

Scheme 11 

 

The above described 1,3-rearrangement was completely suppressed in the ring enlargement of 

spirovinylcyclobutanones 40, 42 and 44 (Scheme 12).
43a

 Vinylcyclobutanones 40, 42 and 44, 

in the presence of 10:1 methanesulfonic acid/P2O5 or solely methanesulfonic acid, afforded 

only the corresponding 1,2-rearranged products 41, 43 and 45, in 33 to 52% yield, 

respectively. In this case, a 1,3-rearrangement would imply a violation of Bredt‟s rule. No 

reaction temperatures were mentioned in this article. 

 

O

H

O H

O

MeSO3H

O

H

O

MeSO3H/P2O5 (10:1)

MeSO3H

O

45 (33%)

43 (52%)

41 (48%)40

42

44

30 min

30 min

45 min

 



 13 

Scheme 12 

 

Treatment of bicyclic dienones 46 with three to eight equiv of BF3·Et2O in 1,2-

dimethoxyethane gave rise to 4-alkylidenebicyclo[3.3.0]octenones 47 in moderate yield (35-

36%), accompanied by a small amount of bicyclo[4.2.1]nonadienones 48 (7-10%) (Scheme 

13).
44

 

 

46

O

R

O

O

+

48 (7-10%)

47:48 (80:20)

R = H, Me

.BF3 Et2O

R

3-8 equiv

47 (35-36%)

MeO(CH2)2OMe
 rt, 10-17 d

R

 

Scheme 13 

 

Under Lewis acid or acid catalysis (0.2 equiv of BF3·Et2O or 0.2 equiv of MeSO3H), 3,3-

dialkyl-2-methyl-2-vinylcyclobutanones 49 underwent ring opening to substituted allylvinyl 

ketones and divinylketones 50. When higher acid concentrations were used, i.e. up to one 

equiv of methanesulfonic acid, cyclobutanones were transformed into cyclopentenones 49 in 

51-71% yield (Scheme 14).
45

 However, the authors stated that this transformation occurred by 

a Nazarov cyclisation of the intermediate dienones instead of through a 

cyclobutylmethylcarbenium to cyclopentylcarbenium ion rearrangement. The 3,3-

dialkylcyclobutanones first underwent C(α),C(β)-bond cleavage under mild acid conditions, 

because in this way the original C(β) became a stable tertiary carbenium ion. Deprotonation 

produced the dienones 50. The subsequent cyclization to cyclopentenones 49 required 

intermediate acid conditions via a Nazarov-type mechanism. 
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1 equiv MeSO3H

CH2Cl2, rt, 0.25-24 h

R1 = C3H7; R
2 = CH3, C2H5

R1-R2 = (CH2)3 or (CH2)4

O

R2
R1

51 (51-71%)

O

R1

R2

49 50

O

R1

R2

 

Scheme 14 

 

On the other hand, 3-alkyl- and 3,4-dialkylcyclobutanones 52 did not yield the corresponding 

dienones 50 or cyclopentenones 51 using the above-described methods, but were converted 

into cyclopentenones 54 under more vigorous reaction conditions or under stronger acid 

catalysis, i.e. treatment with neat MeSO3H. This transformation proceeded by a different 

mechanism. At first, a cyclobutylmethylcarbenium ion 53 is formed and ring expansion via a 

[1,2]-acyl shift to a cyclopentylcarbenium ion is followed by formation of a double bond to 

produce cyclopentenones 54 in 46 to 76% yield (Scheme 15).
45 

 

 

R2

O

R3

R1

R2

O

R3

R1
1 equiv MeSO3H, CDCl3, 60 °C, 12 d
or neat MeSO3H, rt, 0.25-24 h

R1 = H, R2 = C5H11

R1-R2 = (CH2)3 or (CH2)6

R3 = CH3, C2H5

O

R1

R2
R3

54 (46-76%)5352  

Scheme 15 

 

When cyclobutanone 55, which carried a 1-isobutenyl group at the α-position, was exposed to 

0.9 equiv of boron(III) fluoride etherate in dichloromethane at room temperature for 24 hours, 

no cyclopentenone but the bicyclo[3.1.0]hexanone spiro derivative 58 was obtained in 82% 

(Scheme 16).
46

 The proposed mechanism again involved a C(α),C(β)-bond cleavage to 

produce a tertiary carbenium ion 56 which cyclised to produce another tertiary carbenium ion 

57, which was finally trapped by the enolate to afford the highly substituted 
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bicyclo[3.1.0]hexanone spiro derivative 58. No cyclobutylmethylcarbenium ion was involved 

in this transformation. 

 

O

55 58 (82%)

0.9 equiv

CH2Cl2, rt, 24 h

O
56

O
BF3

57

O BF3

.BF3 Et2O

 

Scheme 16 

 

The synthesis of bicyclo[2.2.1]heptan-7-ols 60 was achieved in 81 to 98% yield by reaction of 

4-methylenebicyclo[3.2.0]heptanes 59 with a 0.5 molar solution of sulfuric acid in acetic acid 

for 16 hours at room temperature, followed by reduction of the resulting acetate with lithium 

aluminium hydride in diethyl ether for 0.5 hours at room temperature (Scheme 17).
47

 The 

exclusive formation of the norbornane derivative 60 under thermodynamic control was in 

accordance with the lower energy of the bicyclo[2.2.1]heptane skeleton (62.8 kJ mol
-1

), as 

compared to that of bicyclo[3.2.0]heptane (138.2 kJ mol
-1

). The obtained ring expanded 

products were used in the synthesis of 7-norbornanones 61. 

 

R
a) H2SO4/AcOH, H2O, rt, 16 h

60 (81-98%)

OH

R

59 R = H, Me
R

O

61

b) 2.1 equiv LiAlH4, Et2O, rt, 0.5 h

ox.

 

Scheme 17 

 

The synthesis of dihydrojasmone (R
2
 = C4H9) and analogs 64 from cyclopropanol derivatives 

62 was reported in 55-90% yield via the intermediacy of cyclobutanones 63 (Scheme 18).
48
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Precursors 63 were prepared from cyclopropanes 62 through a three-step synthesis involving 

(i) addition of the lithium salt of a terminal alkyne across the carbonyl group, (ii) LiAlH4-

promoted reduction of the triple bond to the corresponding alkene, and (iii) BF3 Et2O- or 

MeSO3H/P2O5-mediated cyclopropane to cyclobutane ring enlargement. The ring expansion 

of cyclobutanones 63 to cyclopentenones 64 was completed in five minutes using 17 equiv of 

methanesulfonic acid/phosphorus pentoxide (10:1) in diethyl ether at room temperature. The 

cyclopentenone 64 (R
2
 = H) is a known synthetic precursor of methylenomycin B, a 

cyclopentanoid antibiotic produced by Streptomyces coelicolor.
49

 

 

17 equiv MeSO3H/P2O5 (10:1)

Et2O, rt, 5 min

R1 = tetrahydropyran-2-yl,

SiMe2tBu; R2 = H, C4H9

OR1

O

O

R2

64 (55-90%)62 63

O
R2

 

Scheme 18 

 

Upon treatment with 15 equiv of methanesulfonic acid (neat) at room temperature for three 

hours, or 30 equiv of methanesulfonic acid in dichloromethane, enantiopure 2,3-dimethyl-2-

vinylcyclobutanones (2S,3S)-65 and (2R,3S)-65 underwent acid-catalysed ring expansion into 

a 9:1 mixture of 2,3,4- and 2,3,5-trimethylcyclopentenones 66 and 67 in 56% yield (Scheme 

19).
2b 

This rearrangement led to a complete racemisation of the obtained cyclopentenones. 

 

O O

+

66:67 (56%) (9:1)

(2S,3S)-65 (2R,3S)-65 6766

OO

+

15 equiv MeSO3H, rt, 3 h

or 30 equiv MeSO3H, CH2Cl2

 

Scheme 19 
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2.1.3 Semipinacol rearrangement of 1-vinylcyclobutanols 

 

As mentioned in the introduction, 1-(1-alkenyl)cyclobutanols 9 comprise suitable substrates 

for a semipinacol-type cyclobutylmethylcarbenium to cyclopentylcarbenium ion 

rearrangement. 

 

The acid-catalyzed ring expansion of 1-isopropenylcyclobutanol 68 was investigated using a 

variety of acids and solvents without success as no ketonic product could be detected, mostly 

delivering dark, tarry residues.
 50

 However, a solution of 1-isopropenylcyclobutanol 68 in 

sulfuric acid and ethanol in the presence of 2,4-dinitrophenylhydrazine (2,4-DNP) resulted in 

the hydrazone of 2,2-dimethylcyclopentanone 69 in 51% yield (Scheme 20).  

 

N

HN

NO2

NO2

HO

68 69 (51%)

H2SO4, EtOH

2,4-DNP

  

Scheme 20 

 

When a phenylsulfanyl group as carbanion-stabilizing sulfur substituent was introduced at the 

2-position of 1-vinylcyclobutanol, different ring expansion products were obtained in the 

presence of acid.
51

 O-Silylated 1-isopropenyl-2-phenylthiocyclobutanol 70 was treated with 

para-toluenesulfonic acid in toluene at reflux temperature, leading to 2,2-dimethyl-3-

phenylthiocyclopentanone 71 in 62% yield (Scheme 21). The silyl ether protection of the 

hydroxy group was necessary because the unprotected cyclobutanol, upon treatment with 

potassium hydride to synthesize the corresponding potassium salts, gave 2-methyl-4-
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phenylthiocyclohexanone as a mixture of cis- and trans-isomers (ratio 5:1) in 69% yield. The 

effect of sulfur was demonstrated by comparing 2-phenylthio-1-vinylcyclobutanol with 2-

benzyl-1-vinylcyclobutanol. If both were subjected to reaction conditions which caused 

complete rearrangement of the first cyclobutanol, the reaction with the latter only resulted in 

unchanged starting material.  

 

Me3SiO

SPh

O

SPh

70 71 (62%)

p-TsOH

toluene, 

 

Scheme 21 

 

In another approach, tert-butyldimethylsilyl ethers of 1-alkenylcyclobutanols 72 were 

rearranged to the corresponding ring expanded α-(1-phenylthioalkyl)cyclopentanones 73 or 

74 in 83 to 98% or 84 to 96% yield, respectively, upon successive treatment with 

benzenesulfanyl chloride at -78 °C and silver tetrafluoroborate at -40 °C (Scheme 22).
52

 The 

conversion was stated to occur via episulfonium ions. Depending on the different substituents 

(R
1
, R

2
, R

3
 and R

4
), 2,3,5- or 2,3,4-trisubstituted cyclopentanones were isolated as the sole 

reaction product. For unsymmetrical 1-alkenylcyclobutanols (R
3
  H), the most substituted 

alkyl group migrated preferentially, following the expected migratory aptitudes. 

 

O

SPh

1) 1 equiv PhSCl,
    CH2Cl2, -78 °C

R4

R3

R4

R1

R2RO

tBu

R1 = H, Me 

R2 = H, Me

R3 = H, R4 = Ph

2) 1.5 equiv AgBF4, 
    CH2Cl2, -40 °C
3) -10 °C-0 °C, 1-1.5 h

R1 R2 O

SPh

R4

R1 R2

or
R3

R3

R3 =

R = SiMe2tBu
73 (83-98%) 74 (84-96%)

R1 = H, R2 = H

 and R4 = H or R3-R4 = (CH2)4

72
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Scheme 22 

 

In the total synthesis of (±)-cis-sativenediol 78 and (±)-helminthosporal 79, one of the last 

steps comprised an acid-catalyzed semipinacol rearrangement of diols 75 (Scheme 23).
53

 

Treatment of each isomer (or the mixture) with methanolic hydrogen chloride for two minutes 

at room temperature afforded a 3:1 mixture of olefinic ketones 76 and 77 in 76% yield. 

 

iPr

OH

R'
R

iPr

O
O

HCl (gas)

MeOH, rt, 2 min
+

75 76:77 (3:1) (76%)

iPr

OH

OH

CHO

CHO

or

cis-sativenediol 78 helminthosporal 79

R = H, OH
R' = H, OH

 

Scheme 23 

 

A special case in the acid-catalyzed rearrangement of vinylcyclobutanols started with the 

reaction of cyclobutanone 80 with the 2-lithio derivative of 2,3-dihydrothiophene, reported by 

Paquette and co-workers.
54

 The obtained product 81 was not isolated but immediately slurried 

with Dowex-50x resin in dichloromethane at 20 °C. After 48 hours the resin was filtered off 

and spiro compound 82 was obtained in 89% yield after purification by column 

chromatography (Scheme 24).  

 

OH
S

CH2Cl2, 20 °C, 48 h

S

O

82 (89%)

O
SLi

Dowex-50x resin

80 81  
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Scheme 24 

 

The scope of the Bronsted and Lewis acid-promoted spirocyclization of 1-vinylcyclobutanols 

83 with an acetal moiety acting as initiator in the cyclization reaction was demonstrated by 

Trost and Chen.
55

 The spiroannelated products are cyclopentanones derived from ring 

expansion of the cyclobutanol unit from which the second ring was formed by attack of the 

terminator on the initiator moiety. Spirocyclization to [4.5]- and [4.6]-systems proceeded 

smoothly, whereas spirocyclization to a [4.7]-system failed. Examples of acids used were 

trimethylsilyl trifluoromethanesulfonate (TMSOTf), CF3SO3H, SnCl4 and Ph3CSbCl6. When 

0.7 equiv of pyridine and one equiv of trimethylsilyl triflate was added to a solution of 7,7-

dimethoxy-2-(1-hydroxycyclobutyl)-1-heptene 83 in dichloromethane at 0 °C, 7-

methoxyspiro[4.6]undecan-1-one 85 was isolated after 15 minutes in 86% yield (Scheme 25). 

Extension of this cyclization methodology to form eight-, nine- or 13-membered rings failed 

under the same reaction conditions. Subjecting aldehyde 86 to 10% triflic acid afforded a 

1.3:1 cis/trans mixture of 7-hydroxyspiro[4.5]decan-1-one 87 in 90% yield. 

 

OH

OMe

OH
OMe

OMe

O

OMe

83 85 (4.6:1) (86%)

OH

O

O

86 87 (90%) (1.3:1) (cis/trans)

10% CF3SO2H

OH

84

1 equiv Me3SiOTf
0.7 equiv pyridine

CH2Cl2, 0 °C, 15 min

H

 

Scheme 25 
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Another example of the acid-promoted ring expansion of propenylcyclobutanols comprised 

the synthesis of (±)-α-cuparenone
56

 (R
1
 = Me, R

2
 = 4-MeC6H4) and cyclopentanone 89 (R

1
 = 

Me, R
2
 = 3-MeC6H4) as the direct precursor of (±)-herbertene.

57
 Herbertanes belong to an 

expanding family of sesquiterpenes possessing a 3-methyl-(1,2,2-

trimethylcyclopentyl)cyclohexane skeleton. In recent years, herbertanes have become popular 

synthetic targets as some members of this family exhibit a wide range of biological activities 

such as antifungal, neurotrophic and anti-lipid peroxidation.
58

 Isopropenylcyclobutanols 88 

were treated with one equiv of p-toluenesulfonic acid in benzene under reflux to synthesize 

the corresponding 2,2-dimethylcyclopentanones 89 in good to excellent yields (70-98%) 

(Scheme 26).
59

 (±)-α-Cuparenone 89 was synthesized in 76% yield, and the precursor of (±)-

herbertene in 70% yield. 3-(4-Methoxyphenoxymethyl)-2,2,3-trimethylcyclopentanone was 

synthesized in 70% yield and is a known precursor of capsorubin 90 (Figure 1), a 

ketocarotenoïd which, together with capsanthin, constitutes the red pigment of paprika.
60

 

 

HO

R1

R2

R3

O

R1

R2

R3

88

C6H6, , 30 min

1 equiv 4-MeC6H4SO3H

R1 = Me, (CH2)4C6H5; R2 = H, Me

R3 = (CH2)2C6H5, 4-MeC6H4, 3-MeC6H4, 

       4-MeOC6H4OCH2, 3-MeC6H4OCH2, C10H21

89 (70-98%)

 

Scheme 26 

 

OH

O
O

OH
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Figure 1 

 

Recently, a semipinacol-based acid-promoted ring expansion of cyclobutanols toward 

functionalized 1-azaspirocyclic cyclopentanones has been reported.
61

 Treatment of enamines 

91 with camphor sulfonic acid (CSA) or hydrogen chloride produced the transient 

azacarbenium ion intermediates 92. Migration of one of the adjacent cyclobutane carbon-

carbon bonds with concomitant C=O π-bond formation furnished protonated azaspirocyclic 

ketones 93, eventually giving rise to the desired azaspirocyclic ring systems 94a and 94b in 

73-89% yield and in a diastereoselectivity of 2.8:1-14:1, which improved when the reaction 

was executed at lower temperatures (Scheme 27). 

 

N

91

OH

Ts

N

92

OH

Ts

1.2 equiv CSA
or 1.1 equiv HCl

CH2Cl2, 0-45 °C, 6-144 h

N

Ts

O H

N

Ts

O

-H

93

94a:94b (2.8:1-14:1) (73-93%)

+H

R1

R2

R1

R2

+ N

Ts

OR1

R2

94a 94b
R1 = H, OSi(tBu)3

R2 = H, C6H5

R1 R1

R2 R2

 

Scheme 27 

 

In a final example, asymmetric spirocyclic diketones 96 have been synthesized via a 

semipinacol-type 1,2-carbon migration using a cinchona-based primary amine catalyst 97.
62

 

Addition of a catalytic amount of N-Boc-L-phenylglycine (NBLP) and diamine 97 to 

cyclobutanols 95 afforded spirocyclic diketones 96 in 57-95% yield and in 86-97% 

enantiomeric excess (Scheme 28). The same group have also used chiral phosphoric acid 
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catalysts in the asymmetric synthesis of spiroethers via semipinacol rearrangement through 

activation of a carbonyl group.
63
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OH

O

R4

1-2

R3

R5

R5

R1

R2

0.4 equiv NBLP
0.2 cat 97

CCl4, 40-70 °C, 21-190 h

R1 = H, C6H5, 4-BrC6H4; R2 = H

R1-R2 = (CH2)4-6

R3,R4 = H, Me; 

R3-R4 = (CH2)5
R5 = H, Me

O

R4

1-2

R3

R5

R5

O

R1

R2

96 (57-95%)
86-97% ee

N

OMe

NH2

NH

97  

Scheme 28 

 

2.2 Halogen/selenium cation-promoted activation 

 

In addition to acid-catalyzed rearrangements of alkenylcyclobutanols, also halogen and 

selenium cation-promoted activation has been reported in the literature. 

 

A chlorinative ring homologation of cyclobutanols with one equiv of the potentially explosive 

t-butyl hypochlorite in chloroform has been performed using isopropenylcyclobutanol 68 as 

starting material. This reaction provided 2-chloromethyl-2-methylcyclopentanone 98 in 81% 

yield (Scheme 29).
50 

Another chlorinating agent, used for semipinacol type rearrangement 

reactions, comprised a bleach/acetic acid system which was utilized for the ring expansion of 

isopropenyl[2.2.1]heptanol.
64
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O

Cl

68 98 (81%)

CHCl3, dark, 55 °C, 2 h

1 equiv tBuOCl
HO

 

Scheme 29 

 

The iodonium ion-mediated ring expansion of olefinic cyclobutanols 99 was examined using 

iodine in the presence of NaHCO3 or by means of N-iodosuccinimide.
65

 In all cases, the 

reaction proceeded in moderate to high yields, and the triethylsilyl ether (R
1
 = TES) gave a 

slightly better result (59-100% yield of (S)-100, no (R)-100) than the corresponding alcohol 

(R
1
 = H) (36-88% of (S)-100 and 0-47% of (R)-100) (Scheme 30). Although no 

stereoselectivity was observed utilizing monosubstituted substrates (R
2
 = H) giving a mixture 

of (S)-100 and (R)-100, complete stereoselectivity was observed starting from geminally 

substituted substrates (R
2
 ≠ H) to afford cyclopentanone (S)-100 as the sole product. 

 

R1O

R3
R2

O

I

R2

R3

O

I

R2

R3

99 (S)-100 (36-100%) (R)-100 (0-47%)

1.5 equiv I2, 
1.5 equiv NaHCO3 
or 1.2 equiv NIS

Et2O,  0 °C

+

R1 = H, TES; R2 = H, CH2OTBS

R3 =(CH2)6Me, Ph, (CH2)3CH=CHCO2Me,

(CH2)3C CCO2Me  

Scheme 30 

 

In analogy with the acid-catalyzed rearrangement of vinylcyclobutanols 81 obtained via 

reaction of cyclobutanone 80 with the 2-litho derivative of 2,3-dihydrothiophene (Scheme 

24),
54 

a bromonium ion-promoted rearrangement of vinylcyclobutanol 101 has been 

reported.
66

 Vinylcyclobutanol 101 was synthesized by addition of 5-lithio-2,3-dihydrofuran to 
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cyclobutanone 80 in THF at -78 °C. Rearrangement of 101 was executed with N-

bromosuccinimide (NBS) in the presence of an acid scavenger, propylene oxide, to give 

spirocyclic ketone 103, exclusively, in 96 % yield through intermediate bromonium ion 102 

(Scheme 31). This N-bromosuccinimide promoted ring expansion methodology has also been 

used in the formation of functionalized azaspirocyclic cyclopentanones such as compounds 94 

(Scheme 27).
67

 

 

O
OH

O

O

101 102 103 (96%)

O

OLi

THF, -78 °C

80

Br
BrNBS,

O

iPrOH,
-78 °C to rt

OH
O

 

Scheme 31 

 

Allylic alcohols were found to undergo a semipinacol type rearrangement induced by a 

halogen cation generated from the chloramine-T/ZnX2 combination, which provided a highly 

efficient and stereoselective method for the preparation of α-quaternary β-bromoketones. It 

was presumed that the halogen anion in ZnX2 was oxidized to a halogen cation by 

chloramine-T and existed in the form of XCl. An electrophilic addition of X
+
, released from 

XCl, to the double bond occurred with concomitant 1,2-migration in a transition state 

geometry resembling that of an ordinary nucleophilic substitution proceeding with inversion 

of configuration. Using this methodology, 1-cyclopent-1-enylcyclobutanol 104 was converted 

into 6-bromospiro[4.4]nonan-1-one 105 in 94% yield in the presence of ZnBr2 (Scheme 32).
68

 

ZnCl2 and ZnI2 were also used in the same reaction to prepare other β-haloketo compounds. 

 

O Br

104
2) rt, 1 min

105 (94%)

OH 1) chloramine-T, ZnBr2, 
     MeCN, rt, 5 min
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Scheme 32 

 

Another application of this method involved the synthesis of pseudohelical hydrocarbons of 

four- and five-membered rings (Scheme 33).
69

 Addition of 1-lithiocyclopentene 107 and 1-

lithiocyclobutene 110, respectively, to dispiroketone 106 led to allylic alcohols 108 and 111 in 

82 and 64% yield, respectively, which were regio- and stereoselectively converted into 

cyclopentanones 109 and 112 by reaction with 1.2 equiv of chloramine-T and 1.2 equiv of 

ZnBr2 in acetonitrile at room temperature in 82% and 66% yield, respectively. 

 

O

OH

OH

O

O
Br

Br

Li

Li

THF, rt, 16.5 h

MeCN, rt, 15 min

1.2 equiv chloramine-T
1.2 equiv ZnBr2

106

108 (82%)

111 (64%) 112 (66%)

109 (82%)

MeCN, rt, 15 min

1.2 equiv chloramine-T
1.2 equiv ZnBr2

2 equiv CeCl3
2.4 equiv 107 or 110

107

110

 

Scheme 33 

 

A last example of cation-promoted ring expansion of vinylcyclobutanols involved the 

rearrangement of selenonium ion 113, in analogy with the bromonium ion rearrangement in 

Scheme 31.
54b

 When vinylcyclobutanol 81 was treated with one equivalent of phenylselenenyl 

chloride in isopropylalcohol and propylene oxide (ratio 3:2), spirocyclic ketone 114 was 

synthesized in 70% yield (Scheme 34). 
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OH
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O
1 equiv PhSeCl

81 113
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SePh

 

Scheme 34 

 

2.3 Metal-promoted activation 

 

The electrophilic activation of an alkene by coordination to an electron-deficient metal ion 

toward nucleophilic attack is fundamental to organometallic chemistry, both conceptual as in 

synthetic applications.
70

 Mercury- and palladium-promoted ring expansion reactions of 

alkenylcyclobutanols are well investigated reactions triggered by release of strain in four-

membered ring systems.
71

 These useful methodologies for the construction of five-membered 

ring systems have been successfully applied in the synthesis of natural products.
72

 In the 

following section, distinction will be made between mercury-promoted, palladium-promoted 

ring expansion and thallium promoted reactions of cyclobutane derivatives toward five-

membered ring systems. 

 

It should be noted that the true nature of the electrophilic species resulting from metal-

promoted activation of alkenes has not always been defined accurately in the papers described 

below. Nonetheless, the intermediacy of cyclobutylmethylcarbenium ion-type species can be 

assumed in order to explain the observed reactivity. 

 

2.3.1 Mercury-promoted activation 
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The mercury(II) ion-mediated ring expansion of 1-alkenyl-1-cyclobutanols 115 led to 

cyclopentanones 118 (Scheme 35),
73

 which are of synthetic importance because β-mercurio 

cycloalkanones may undergo further ring expansion or carbon-carbon bond formation via free 

radical chain reactions
74

 along with the conversion into α-methylene cycloalkanones or 1,4-

dicarbonyl compounds.
75

 Ring expansion reactions of trimethylsilyl ethers of 1-vinyl and 1-

propenylcyclobutanols 115 with Hg(OCOCF3)2 in dichloromethane at room temperature gave 

the synthetically useful α-methylenecyclopentanones 118 in 68-82% yield via π-complex 

intermediates 116 after demercuration of 117 with aqueous sodium carbonate. For 

unsymmetrical substrates, and as expected, the most substituted alkyl group migrated 

preferentially. 
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OTMS
O

R3

R2

R1

tBu

R1 = H, Me; R3 = H, Ph

R2 = H,

R2

R1

118 (68-82%)
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R3

R2

116

HgX
TMSO

R1

O

117

R1

HgX

R2

R3

1) 1.3 equiv Hg(OCOCF3)2,
    CH2Cl2, rt, 10 min
    
2) NaHCO3aq

 

Scheme 35 

 

2.3.2 Palladium-promoted activation 

 

The palladium(II)-catalysed conversion of terminal olefins into methyl ketones by PdCl2-

CuCl2-O2-H2O has been known for some time and is analogous to the Wacker process.
76

 A 

conversion of methylenecyclobutanes 119 into cyclopentanones 120 in 65 to 82% yield 
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comprised a special case of rearrangement based on the reaction conditions of this Wacker 

oxidation (Scheme 36).
77

 

 

R

O

R119

0.1 equiv PdCl2, 1 equiv CuCl2
4 equiv H2O

C6H6 or EtOAc, 0 °C-65 °C

120 (65-82%)R = H, CN, CH2HNCOMe  

Scheme 36 

 

The reaction of 1-vinyl-1-cyclobutanols 121 with one equivalent of bis(benzonitrile)palladium 

dichloride in THF quickly and smoothly gave cyclopentenones 122 in one hour at 25 °C 

(Scheme 37).
78

 However, when two equivalents of benzoquinone were added, only a catalytic 

amount of palladium (5 mol%) was needed to obtain the desired cyclopentenone 122, 

although reflux conditions were necessary for 2.5 days in THF. The two equivalents of added 

benzoquinone are responsible for the regeneration of the active catalyst. A plausible 

mechanistic pathway is given in Scheme 38 using intermediates 125 and 126 for the 

formation of cyclopentanone 127 and subsequently cyclopentenone 129 through intermediate 

128. Accordingly, several 1-vinyl-1-cyclobutanols 121 were rearranged into the 

corresponding 2-methyl-cyclopentenones 122 in 16-67% yield (Scheme 37) applying the 

optimized conditions (vide supra).
78

 The reaction with substrate 121 (R
1
 = H, R

2
 = OEt, R

3 
= 

H) produced a substantial amount of the diastereomeric 4-ethoxy-2-methylcyclopentanone 

123 (42%) next to 21% of 4-ethoxy-2-methylcyclopentenone 122, even in the presence of a 

ten-fold excess of benzoquinone. This reaction provided useful building blocks for 

prostaglandin synthesis. 
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O
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Scheme 37 
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Scheme 38 

 

The above-described method was used to synthesize the potential precursor 131 of 

pentalenolactone-G and -H antibiotics without the need to cleave the Me3SiO group in 130 

prior to the treatment with PdCl2(PhCN2).
79

 Treatment of ethyl 2-(3,3-dimethyl-4-oxo-7-

trimethylsilyloxy-7-vinylbicyclo[3.2.0]hept-1-yl)acetate 130, in a ratio of stereoisomers 12:1, 

with 3.3 mol% of bis(benzonitrile)palladium(II) chloride and two equiv of p-benzoquinone in 

THF for three hours under reflux afforded ethyl 2-(3,3-dimethyl-8-methylidene-4,7-

dioxobicyclo[3.3.0]oct-1-yl)acetate 131 in 72% yield (Scheme 39). 
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O

OSiMe3
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THF, , 3 h

O

EtO2C

O

131 (72%)130 (12:1)

3.3 mol% PdCl2(PhCN)2
2 equiv p-benzoquinone

*

 

Scheme 39 

 

A pseudoguaianolide-like structure was synthesized using a palladium-mediated ring 

expansion for the synthesis of the cyclopentanone ring (Scheme 40).
80

 Reaction of tricyclic 

compound 132 with three mol% of bis(benzonitrile)palladium(II) chloride in tetrahydrofuran 

at reflux temperature resulted in a smooth rearrangement to provide the tricyclic α-

methylenecyclopentanone 135 in 95% yield. The proposed mechanism involved the formation 

of an enolate 134 which preceded the construction of the cyclopentanone ring, although it is 

not clear how this process can be catalytic in palladium according to the suggested pathway. 

The obtained tricycle 135 was functionalized into analogues of helenalin, a typical 

pseudoguaianolide sesquiterpene. 
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O
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Scheme 40 
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A special case involved the palladium-catalyzed ring expansion of vinyl oxaspirohexanes.
81

 

When vinyl oxaspirohexanes 136 were treated with five mol% of Pd(PPh3)4 in the presence of 

one equiv of 4-nitrophenol in tetrahydrofuran at room temperature or at reflux for one to three 

hours, the corresponding 2-alkylidenecyclopentanones 138 were obtained in 73-90% yield 

(Scheme 41). Pd(0) activated the double bond, forming a π-allyl palladium cationic complex 

137, which rearranged to the corresponding cyclopentanone. When the migrating group was a 

secondary alcohol, the reaction could be executed at room temperature. Furthermore, the 

presence of a methyl vinyl group (R
1
 = Me) was expected to stabilize the π-allyl Pd-complex 

but, as a result, the reaction proceeded slowly and required heating for three hours. In the case 

of a tertiary migrating group (R
2
, R

3
 = Me or R

2
-R

3
 = -(CH2)2CH(tBu)(CH2)2-), the reaction 

was completed almost instantly (0.2 hours at room temperature) under the same reaction 

conditions, yielding only 2-vinylcyclopentanones 139 in 87-88% yield without migration of 

the double bond (Scheme 41). 
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Scheme 41 

 

In the enantioselective total synthesis of (+)-laurene 142, the five-membered ring was 

obtained via a palladium-mediated ring enlargement of a cyclobutane system (Scheme 42).
82
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The triethylsilyl (TES) ethers 140a and 140b were subjected to ring expansion in the presence 

of a catalytic amount of bis(acetonitrile)palladium(II) chloride and p-benzoquinone in 

tetrahydrofuran at reflux temperature for two hours to give the α-methylenecyclopentanone 

141 in 86% or 70% yield, respectively, as the precursor for (+)-laurene 142. 

 

R1

R2

140a: R1 =                R2 =

140b: R1 =                R2 =

OTES

OTES

O

 (86% from 140a, 
 70% from 140b)

142 (+)-(laurene)

cat. PdCl2(PhCN)2
p-benzoquinone

THF, , 2 h

141

 

Scheme 42 

 

A number of polycyclic compounds possessing a hydrindane (hexahydroindane) skeleton are 

found in nature
83a

 and are important synthons for a variety of natural products.
83b

 Several 

halogenated terpenes having such a ring system, for example oppositol 143
84

 and iriediol 

144,
85

 have been isolated from marine sources (Figure 2). 

 

H

Br

HO
H

Br

HO
Br

143 (oppositol) 144 (iriediol) 

Figure 2 

 

A new route to a hydrindane ring system was developed using a palladium-mediated ring 

expansion of alkenic cyclobutanols 145 in 1,2-dimethoxyethane (DME) to form a palladium-



 34 

complex, followed by an insertion reaction and subsequent β-elimination to afford the 

hydrindan silyl ether 146 in 29% yield (Scheme 43).
71e,86

 The palladium reagent, 

bis(acetonitrile)palladium(II) chloride, was added in one equivalent. Desilylation of the 

resulting silyl ether with tetra-n-butylammonium fluoride in THF furnished the hydrindane 

alcohol 147 in 72%. 
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Scheme 43 

 

The same authors described a palladium-mediated ring expansion of 1-vinylcyclobutanol 148 

in the total synthesis of (-)-aplysin 150 and (-)-debromoaplysin 151.
72a

 The first natural 

product is a halogenated sesquiterpene, isolated from the sea hare, Aplysia kurodai. (-)-

Aplysin displays antifeedant properties that helps to protect the mollusk from raptorial 

advances. The co-occurrence of (-)-debromoaplysin, the unhalogenated form, suggests that 

this might function as an antioxidant and scavenger of reactive halogens. The silyl ether 148 

was subjected to 1.1 equivalents of bis(acetonitrile)palladium(II) chloride in THF at reflux 

temperature for two hours to give the unsaturated cyclopentanone 149 in 59% yield. However, 

the ring expansion reaction was more effective when 0.9 equivalents of palladium(II) acetate 

and 0.9 equivalents of triphenylarsine were used in dichloromethane at room temperature for 

three hours (Scheme 44), resulting in α-methylidenecyclopentanone 149 in 89% yield. This 

compound 149 was also used as a precursor for the synthesis
87

 of (-)-filiformin 152 and its 

debromo analogue, (-)-debromofiliformin 153, which are known marine sesquiterpenes.
88
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Scheme 44 

 

The Nemoto group
89

 developed an efficient synthesis of A-ring aromatic trichotecanes 156 

since such compounds have been shown to possess significant in vivo antileukemic activity.
90

 

In this approach, triethylsilyl ethers of 1-vinylcyclobutanols 154 were subjected to a 

palladium-mediated ring expansion, and it was found that the reaction proceeded 

regioselectively to give 1-methylidenecyclopentanones 155 as the sole products in 63% for 

the methoxymethyl (MOM)-ether and 78% for the trimethylsilylethoxymethyl (SEM)-ether 

(Scheme 45). Cyclopentanones 155 were subsequently used as substrates for the synthesis of 

trichotecanes 156. 
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.

 

Scheme 45 
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In addition, a new route to racemic 4-deoxyverrucarol 159 via a palladium-mediated ring 

expansion has been developed.
72d

 This rearrangement of 1-vinylcyclobutanol 157 to the 

corresponding α-methylidenecyclopentanone 158 was executed in 90% yield by means of 1.6 

equiv of Pd(OAc)2 in tetrahydrofuran at room temperature for eight hours (Scheme 46). The 

asymmetric synthesis of 4-deoxyverrucarol 159 was carried out in 2000 by the same group.
91
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Scheme 46 

 

As an extension of the study of trichothecanes, Nemoto and Ihara reported the synthesis of 

racemic (±)-scirpene 162 through a palladium-mediated ring expansion of vinylcyclobutanols 

160 as the key step to prepare the precursor 161 (Scheme 47).
92

 The desired rearrangement 

was performed using one equivalent of Pd(Cl2)(MeCN)2 in the presence of p-benzoquinone as 

an oxidizing agent in N,N-dimethylacetamide (DMA) as solvent. The α-

methylidenecyclopentanone 161 was obtained in 62% yield. 
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Scheme 47 
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A cyclic cascade carbopalladation has been reported using previously described methods to 

synthesize benzo- and naphthohydrindans in a stereoselective manner.
71g

 These hydrindans 

could be potential intermediates for the synthesis of A-nor steroids and C11-β-substituted 

estradiols. Different palladium reagents such as PdCl2(MeCN)2, Pd(OAc)2(AsPh3)2, 

Pd(OAc)2(PPh3)2, Pd(OAc)2 and PdCl2(PPh3)2 were tested in different solvents at room 

temperature for 10-144 hours, providing useful entries into A-nor steroids 164 or equilenin 

type steroids 165 through ring expansion of the cyclobutanol ring system in 163 (Scheme 48). 

This strategy was used in the synthesis of (+)-equilenin with 60% yield for the ring expansion 

of isopropenylcyclobutanol.
72c,93

  

 

OH O

benzo-derivatives 164 (15-53%)
naphtho-derivatives 165 (46-81%)

solvent, rt, 10-144 h

163

Pd(II)

 

Scheme 48 

 

Nonlinear triquinane type building blocks were synthesized by means of metal-controlled 

skeletal rearrangements, type Wagner-Meerwein migration.
94

 Several metal reagents have 

been evaluated for the rearrangement of pentacyclic vinylcyclobutane 166. The thallium(III) 

and mercury(II) salts, being strong, soft electrophiles, favor migration of the more substituted 

carbon (path a), suggesting an electronically controlled process. By contrast, Pd(II), a 

transition metal, clearly favors path b (Scheme 49). When 1.03 equiv of thallium(III) nitrate 

trihydrate was used, α-methylidenecyclopentanone 167 was obtained in 76% yield next to 170 

in 12% yield. Changing the reagent to 0.94 equiv of mercury(II) nitrate monohydrate afforded 

a lower yield of 167 (52%) besides 13% of 170 and 23% of 168. When a stoichiometric 
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reaction of vinylcyclobutanol 166 with palladium(II) nitrate was executed, 54% of 

cyclopentenone 171, 36% of 167 and 2% of 170 and 2% of 169 were obtained. On the other 

hand, a catalytic reaction of 166 with five mol% of palladium(II) nitrate in the presence of 

three equiv of copper(II) nitrate afforded 60% of 171 and only 13% of 167, next to 3% of 170 

and 169. The last reagent that was evaluated was bis(benzonitrile)palladium(II) chloride. If 

eight mol% of this reagent was added in the presence of two equiv of p-benzoquinone, 72% of 

α-methylidenecyclopentanone 169 was obtained, next to 12% of 167, 11% of 171 and 2% of 

170. 
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166

R = H, Me

Oa

O O

b

167

170 171

O

169

O

168

M

catalyst: Tl(NO3)3 3H2O, Pd(NO3)2, Hg(NO3)2 H2O, PdCl2(PhCN)2, Cu(NO3)2. .

M = metal complex  

Scheme 49 

 

In addition to the previous studies, the first ring expansion of α-heteroatom-substituted 1-

vinylcyclobutanols was examined.
95

 When seven mol% of bis(acetonitrile)palladium(II) 

chloride and two equivalents of p-benzoquinone in tetrahydrofuran were added to α-alkoxy-1-

vinyl-1-cyclobutanol 172, 68% of cyclopentenone 173 was obtained and no α-

methylidenecyclopentanone 174 was recovered (Scheme 50).
79 

Changing the catalyst from 

palladium(II) chloride to palladium(II) acetate allowed the isolation of α-
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methylidenecyclopentanones 174. With one equiv of 2,3-dichloro-5,6-dicyanoquinone (DDQ) 

as a reoxidizing agent and tetrahydrofuran as the solvent only ten mol% of palladium(II) 

acetate was required to produce α-methylidenecyclopentanones 174 in 67 to 84% yield. 
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Scheme 50 

 

A special case has been reported by Uemura et al.
96

 The authors described the ring expansion 

of vinylcyclobutanols in which the less substituted carbon atom performed the ring 

rearrangement instead of the more substituted one. Bicyclic cyclobutanols 175 having an 

angular substituent, which blocks β-hydrogen elimination, were reacted with 10 mol% of 

Pd(OAc)2 in the presence of pyridine and molecular sieves in toluene at 80 °C under O2-

atmosphere for 18-48 hours to afford the corresponding cyclopentanones 179 in 62-67% yield 

(Scheme 51). The results showed that an alkylpalladium intermediate 177, which is formed by 

β-carbon elimination from a palladium alcoholate 176, underwent cyclization in the 5-exo 

mode to an intermediate 178, followed by β-hydrogen elimination to give an α-

methylidenecyclopentanone 179. In this case, no initial palladium-assisted activation of the 

olefinic moiety took place. 

 



 40 

175

n

R

179 (62-67%)

n

R

O

R = Me, Ph; n = 1,2

OH

10 mol% Pd(OAc)2 
pyridine, MS3A

toluene, 80 °C, 18-48 h, under O2

176

n

R

OPdXL2

-carbon

elimination

177

n

R

PdXL2

O

178 (62-67%)

n

R

O

PdXL2

HPdXL2

 

Scheme 51 

 

A last ring expansion of vinylcyclobutanols using a palladium catalyst has been reported by 

the Trost group.
97

 Exposing vinylcyclobutanols 180 to 2.5 mol% of a Pd(0) catalyst, i.e. 

Pd2(dba)3·CHCl3, in the presence of seven mol% of Trost ligand (R,R)-182 (Figure 3) and two 

to 100 mol% of tetramethylguanidine (TMG) as a base led to smooth ring expansion affording 

α-vinylcyclopentanones 181 in 52% to quantitative yield and 69-93% ee (Scheme 52). When 

the amount of TMG was increased from two to 100 mol%, the ee increased from 77 to 89% 

but at the expense of conversion from quantitative yields down to 52% yield.  
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NH HN
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PhPh
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Figure 3 

 

2.3.3 Thallium-promoted activation 

 

Oxythallation of alkenes with thallium(III) reagents, a reaction which closely resembles the 

well-known oxymercuration, is a unique method for the preparation of organothallium 

compounds which are produced in high regio- and stereoselectivity. Also, because the 

thallium moiety undergoes facile substitution by various functional groups, useful 

intermediates for further elaboration could be obtained.
98

 

 

Ring expansion of 3-methylenecyclobutanecarbonitrile 183 has been executed via a thallic 

oxidation.
99

 Treatment of methylenecyclobutane 183 with 1.1 equiv of thallium(III) nitrate 

trihydrate in 1,2-dimethoxyethane at room temperature for 12 hours afforded 3-

cyanocyclopentanone 186 in 81% yield (Scheme 53). The mechanism involved initial 

formation of a cyclic thallonium ion 184, followed by trans attack of water to give an 

intermediate 185 in which the thallium can function as a leaving group.
100
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Alternatively, thallium ion-mediated ring expansions of 1-alkenyl-1-cyclobutanols 187 were 

envisioned using cationic species (i.e. Tl(CF3COO)2
+
), generated from thallium(III) 

trifluoroacetate.
101

 When trimethylsilylated cyclobutanols 187 were treated with 

Tl(OCOCF3)3 in acetonitrile at room temperature for 30 minutes, an electrophilic attack 

across the carbon-carbon double bond generated thallium intermediates 188, which 

subsequently rearranged to the ring-expanded cyclic ketones 190 containing an α-methylene 

substituent. The hydroxy group of cyclobutanols 187 was trimethylsilylated because these 

ring expansions afforded better yields in comparison with the use of the corresponding 

alcohols. 
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Scheme 54 

 

The thallic oxidation with Tl(NO3)3 has been used to rearrange diene 191 to the corresponding 

syn-3‟-spirocyclopentanone 192.
102

 Treatment of 2‟-syn-

methylenespiro[bicyclo[2.2.1]heptene-7,1‟-cyclobutanyl] 191 with one equiv of thallium(III) 

nitrate trihydrate in tetrahydrofuran at 3 °C for 45 min afforded syn-3‟-spirocyclopentanone 



 43 

192 in a very low yield of 11% (Scheme 55). No explanation for this low yield was provided 

by the authors. 

 

O

THF, 3 °C, 45 min

191 192 (11%)

1 equiv Tl(NO3)3. 3H2O

 

Scheme 55 

 

2.4 Conjugated double bond (1,3-dienyl group) activation 

 

Palladium-catalyzed ring expansion reactions of (Z)-1-(1,3-butadienyl)cyclobutanols with aryl 

iodides have been reported as a novel cascade ring rearrangement process.
103

 The reaction 

proceeds in a stereospecific manner to produce (Z)-2-(3-aryl-1-propenyl)cyclopentanones. 

Treatment of 1,3-dienylcyclobutanols 193 with 1.5 equiv of an iodo arene in the presence of 

five mol% of Pd2(dba)3, 20 mol% of P(o-Tol)3 and two equiv of Ag2CO3 in toluene for 2-13 

hours at 45 °C afforded a mixture of cyclopentanones 194 and 195 in 53 to 91% yield and in a 

product ratio of 9.3-4.2:1, or 194 as the only formed product (Scheme 56). 

 

HO

1.5 equiv ArI
5 mol% Pd2(dba)3 CHCl3
20 mol% P(o-Tol)3
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Scheme 56 
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3 Ring expansion of cyclobutylmethylcarbenium ions 
through activation of an allene  
 

Allenylcyclobutanols are versatile initiators for the synthesis of cyclopentanones. Two types 

of ring expansion reactions are described, one by means of acid activation and one by means 

of metal-promoted ring rearrangement. Palladium and ruthenium catalysts are used very 

frequently for the synthesis of a five-membered carbon skeleton. 

 

3.1 Acid-promoted activation 

 

In contrast to metal-promoted activation, very few examples are known regarding the acid-

mediated activation of allenylcyclobutanols. 

 

Allenylcyclobutanol 196, synthesized by addition of 1-lithio-1-methoxyallene across 

benzocyclobutanone, on treatment with trifluoroacetic acid in a 1:1 tetrahydrofuran/water 

mixture underwent a hydrolysis-ring expansion providing 2-hydroxy-2-vinylindan-1-one 197 

in 83% yield (Scheme 57).
104
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3.2 Metal-promoted activation 

 

3.2.1 Palladium-promoted activation 

 

Carbopalladation has emerged as an important method for the preparation of a wide range of 

molecular frames. Both intermolecular
105

 and intramolecular
106

 carbopalladation of allenes 

comprise attractive approaches in that respect. Palladium-promoted ring expansion reactions 

of allenylcyclobutanols are well investigated reactions triggered by release of the strain of the 

four-membered ring systems.
107

 A possible general mechanism is given in Scheme 58.
107c 

This reaction enables the formation of a carbon-carbon bond along with the expansion of the 

four-membered ring system via π-allylpalladium intermediates 199 in a one-pot process, and 

thereby constitutes a potentially useful synthetic method for the efficient preparation of 

natural products. 
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Scheme 58 

 

Applying this methodology, Fukumoto et al. reported an intermolecular version of a 

carbopalladation reaction and subsequent ring expansion of allenylcyclobutanols 202 giving 

rise to the direct formation of substituted cyclopentanones, both the conjugated form 203 (62-

100% E, 0-38% Z) and the less stable unconjugated form 204 (0-48%) depending on the β-

substituent and the reaction conditions (Scheme 59).
107a 

 

 



 46 

H
(CH2)6Me

.
HO

(CH2)6Me

O

R +

(CH2)6Me

O R

+

(CH2)6Me

O

R

H

H

10mol% Pd(PPh3)4
5 equiv K2CO3

5 equiv RX
DMF, 80 °C, 6-20 h

R = C6H5, 4-NO2C6H4, 

4-MeC6H4; X = I, OTf

or RX = 1-iodonaphthalene

(E)-203 (62-100%) (Z)-203 (0-38%) 204 (0-48%)202

 

Scheme 59 

 

The same authors also described a novel type of intramolecular palladium-catalyzed cascade 

reaction for the synthesis of bicyclo[5.3.0] and bicyclo[6.3.0] frameworks.
107a 

The ring 

transformation of π-allylpalladium 206, in situ generated by intramolecular carbopalladation 

of 205, was accompanied by strain release of the cyclobutane ring to give directly the fused 

bicyclo[n + 3.3.0] ring system 207 (Scheme 60). 
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O
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Scheme 60 

 

This intramolecular carbopalladation reaction was executed on two substrates in which the 

allene and vinyl iodide units were tethered by four- and five-carbon chains (Scheme 61).
107a

 

The cascade reaction starting from 201 or 204 enabled the synthesis of 

bicyclo[5.3.0]decenone 202 in 67% yield, tricyclic compound 203 in 80% yield, 2,8-

dimethylbicyclo[6.3.0]undeca-1,3-diene-11-one 205 in 34% yield or 2-methylidene-1,8-

dimethylbicyclo[6.3.0]undeca-3-ene-11-one 206 in 24% yield, depending on the chosen 

starting isomer and the selected reaction temperature. 
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Scheme 61 

 

A major restriction of the above-described method involved double bond isomerization to 

give more stable α,β-unsaturated cyclopentenones. A stereoselective synthesis of α-substituted 

cyclopentanones 216 with quaternary carbon stereocentres has been reported by Ihara and co-

workers by introducing a substituent at the allenyl moiety to suppress the isomerization of the 

products.
107b,c

 The stereochemistry of the reaction was controlled by the conformation of the 

π-allylpalladium complex during the ring expansion reaction. By choosing the reaction 

conditions, e.g. time and temperature, the rearrangement of cyclobutanol 215 proceeded in a 

stereospecific manner to give compounds 216 bearing a quaternary carbon stereocentre with 

high diastereoselectivity in 31 to 89% yield (Scheme 62). 

 



 48 

R1 R2

.
HO

R2

O

R1

R3

R2

O R3

R1

+

I X X = H, OMe, Me, NO2

Ag2CO3, toluene, 60 °C- , 1-24 h

R3

X X

(60-100:0-40)dr  (31-89%)

R1 = C6H5, (CH2)3OSitBu(C6H5)2

R2  = H, Me; R3 = Me, C6H5

5 mol% Pd2(dba)3

215
216a

CHCl3 or  Pd(PPh3)4.

216b

 

Scheme 62 

 

The asymmetric Wagner-Meerwein shift of allenylcyclobutanols 217, catalyzed by palladium, 

provided a general way to synthesize cyclopentanones 218 with an α-chiral O-tertiary centre 

using Trost ligands for the palladium catalyst.
108

 The combination of benzoic acid and 

triethylamine gave the fastest reaction and was the key to good reactivity and selectivity. For 

unsubstituted cyclobutanols 217 (R‟ = H), the highest reactivity was obtained at 30 °C with 

ligand 182 (Figure 3) to obtain cyclopentanones 218 (78-100% yield, 84-92% ee), from which 

one derivative was used to determine the absolute configuration by transforming it into trans-

kumausyne or bisabolangelone (Scheme 63).
109

 3,3-Disubstituted cyclobutanols 217 (R‟ ≠ H) 

were converted into cyclopentanones 218 in high yield (80-95%) at 60 °C with ligand 219 

(Figure 4) in an enantiomeric excess of 92-95% (Scheme 63). 
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The above-described palladium-catalyzed method was applied to 3-monosubstituted 

allenylcyclobutanols 220 as substrates (Scheme 64).
110

 Because the diastereomeric mixtures 

resulting from the allene additions to cyclobutanone were not completely separable, the ring 

expansion was conducted with the enriched diastereomeric mixture of allenylcyclobutanols, 

obtained after chromatography on silica gel. The corresponding cyclopentanones 221 were 

obtained in 68-88% yield with a dr of 4.2-14:1 and an enantiomeric excess of 82-90%. 
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Scheme 64 

 

3.2.2 Ruthenium- or gold-promoted activation 

 

In contrast to palladium-promoted ring expansion reactions, only few examples are known 

concerning ring expansion reactions of cyclobutanols using other transition metals.  
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Ihara et al. reported a ruthenium-catalyzed ring expansion of 1-allenylcyclobutanols 222 with 

α,β-unsaturated carbonyl compounds 223 under conditions similar to those described by Trost 

et al. for cycloetherifications.
111

 The reaction mechanism postulated the formation of a π-

allylruthenium intermediate followed by nucleophilic attack of the internal hydroxy group. 

This reaction enabled the one-pot synthesis of α-substituted cyclopentanones 224 using 

[CpRu(MeCN)3]PF6 as a catalyst.
112

 If cerium(III) chloride was added to the reaction mixture, 

according to the method of Trost and Pinkerton,
111b 

bicyclic hemiacetals were formed as side 

products. Without the cerium additive, the allenylcyclobutanols 222 were exclusively 

transformed to cyclopentanones 224 in 63 to 90% yield with dimethylformamide as the best 

suitable solvent (Scheme 65).  
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Scheme 65 

 

It should be noted that a rhodium(I)-catalyzed rearrangement of allenylcyclobutanols has been 

reported by Cramer and co-workers as well.
113

 In contrast to ruthenium- and palladium-

catalyzed ring expansions of allenylcyclobutanols, the final products obtained were 

cyclohexenones instead of cyclopentanones. 

 

Recently, a gold(I)-catalyzed intramolecular rearrangement of allenylcyclobutanols has been 

reported.
114

 Treatment of allenylcyclobutanols 225 with 5 mol% of (Ph3P)AuCl and 5 mol% 
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of AgOTf in dichloromethane at 40 °C furnished 1-vinyl-3-oxabicyclo[3.2.1]octan-8-ones 

228 in 52-85% yield as single stereoisomers (Scheme 66). Coordination of the cationic 

gold(I)catalyst to the internal double bond of the allene moiety in 226 triggered a ring 

expansion through a Wagner-Meerwein shift,
110

 and produced vinyl gold intermediates 227. A 

subsequent protodemetalation liberated the catalyst and released the bridged compounds 228. 
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4 Ring expansion of cyclobutylmethylcarbenium ions 
through activation of an alkynyl substituent 
 

Metal-promoted ring expansion reactions of alkynylcyclobutanols comprise well investigated 

reactions triggered by release of the strain of the four-membered ring systems.
115

 Three 

different metals can be used for synthesis of the corresponding cyclopentanones by means of 

a semipinacol rearrangement, i.e. palladium, ruthenium or gold. 
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4.1 Palladium-promoted activation 

 

Propargylic compounds exhibit versatile reactivity in the presence of palladium complexes, 

affording a variety of applications in the field of palladium-catalysed reactions.
116

 This 

approach has been used for the conversion of alkynylcyclobutanols to the corresponding 

cyclopentanones. The key step in these reactions is the formation of a π-

propargyl/allenylpalladium complex by facile elimination of a leaving group, which 

furthermore reacts with other compounds such as soft nucleophiles to lead to a variety of 

substituted products.
117

  

 

A novel type of palladium-catalyzed cascade ring expansion reaction of 1-(3-

methoxycarbonyloxy-1-propynyl)cyclobutanols with phenols has been reported in that 

respect.
118

 This reaction generated a carbon-oxygen bond to afford cyclopentanones in a one-

pot process. When trans-cyclobutanols 229 were reacted with 1.2 equivalents of different 

substituted phenols, trans-cyclopentanones 231 were obtained in 80 to 98% yield (Scheme 

67).
118a 
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In analogy with the rearrangement of trans-cyclobutanols 229, cis-2-(1-

aryloxyvinyl)cyclopentanones 231 were mainly obtained from the diastereomeric cis-

cyclobutanols 229 when subjected to the same reaction conditions (Scheme 68).
118a

 However, 

these compounds 231 were very unstable due to steric interaction and easily isomerized to 1-

alkylidenecyclopentanones 233. This reaction generally proceeded in high yields (92-97%), 

except in the case of 4-nitrophenol (70% yield). 
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Scheme 68 

 

Also other nucleophiles besides substituted phenols have been evaluated.
118c

 For example, 

imides were found to be suitable reagents in the reaction with propargylic carbonates. When 

1-(3-methoxycarbonyloxy-1-propynyl)cyclobutanol 234 was reacted with 1.2 equivalents of 

various imides in the presence of five mol% of Pd2(dba)3·CHCl3 and 20 mol% of dppe in 

dioxane at 100 °C, the corresponding imidyl-substituted alkylidenecyclopentanones 235 were 

obtained in 34 to 53% yield (Scheme 69). The imides used were succinimide, phthalimide and 

benzo[de]isoquinoline-1,3-dione. 
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2-Arylidene- and 2-alkenylidenecyclopentanones have been synthesized by a palladium-

mediated cross-coupling of aryl and vinyl halides to 1-(1-alkynyl)cyclobutanols, 

respectively.
119

 When 1-alkynylcyclobutanols 236 were treated with two equiv of an aryl or 

vinylic iodide, ten mol% of Pd(OAc)2, 20 mol% of PPh3, two equiv of diisopropylethylamine 

and two equiv of nBu4NCl in DMF at 80 °C, a variety of highly substituted 2-

alkylidenecyclopentanones 239, 240 and 241 were synthesized regio- and stereoselectively in 

moderate to good yields (35-74%) (Scheme 70).  
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In accordance with the cascade insertion-ring expansion reaction of allenylcyclobutanols with 

aryl iodides,
107a,b

 a tandem addition-ring expansion reaction of 1-alkynyl cyclobutanols under 

hydroarylation conditions has been reported.
120

 Treatment of cyclobutanols 242 with two 

equiv of an aryl iodide 237, five mol% of Pd(OAc)2, five mol% of PPh3 and five equiv of 

triethylamine in acetonitrile for 24 hours at 80 °C afforded 2-arylidenecyclopentanones 243 in 

30-75% yield (Scheme 71).
120b
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4.2 Ruthenium-promoted activation 

 

The previously described ring rearrangements were triggered by palladium catalysts. On the 

other hand, a novel type of ring expansion reaction of alkynylcyclobutanols, triggered by a 

ruthenium catalyst, has been described by Ihara et al.
121

 This reaction involved a dimerization 

process to obtain unsaturated cyclopentanones 250. It was supposed that the key reaction 

intermediate was a ruthenacycle 246, which was formed by coordination of a ruthenium 

catalyst with two molecules of alkynylcyclobutanol 244. An equilibrium between complex 

246 and zwitterionic intermediate 247 induced ring rearrangement, followed by ring opening 

of the ruthenacycle 248 to form an alkenyl ruthenium hydride 249. Finally, reductive 

elimination of ruthenium from complex 249 produced a ring expanded dimeric compound 250 

together with regenerated ruthenium catalyst (Scheme 72). 
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As an example of this approach, alkynylcyclobutanol 251 was subjected to ten mol% of 

CpRu(MeCN)3PF6 in 0.5M of DMF at 60 °C for one hour to obtain the ring expanded dimer 

252 in 52% yield (Scheme 73). The triethylsilylated (TES) product afforded the same dimeric 

compound 252 under similar reaction conditions but in lower yield (31%), even after a 

reaction time of ten hours. 

 

10 mol% CpRu(MeCN)3PF6

RO

DMF, 60 °C, 1 h - 10 h

O

OH

251 252 (31 or 52%)

R = H, SiEt3

 

Scheme 73 

 

Additionally, a ruthenium-catalyzed cascade ring expansion reaction through 1,2-

rearrangement of 1-ethynylcyclobutanols followed by carbon-carbon bond formation with 3-

butene-2-one via a one-pot process has been developed to afford 2-alkylidenecyclopentanones 
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in 45 to 71% total yield (Scheme 74).
122

 The stereoselective synthesis of the Z- and E-isomers 

of the latter 2-alkylidene cyclopentanones 253 has been achieved using the appropriate 

ruthenium catalysts. When CpRu(PPh3)2Cl was used, the major isomer obtained was (Z)-2-

alkylidenecyclopentanone (Z)-253 in 33-43% yield besides (E)-2-alkylidenecyclopentanone 

(E)-253 as the minor isomer in 9-26% yield. On the other hand, when CpRu(MeCn)3PF6 was 

added to 1-ethynylcyclobutanols 244, the major isomer isolated was (E)-253 in 33-54% yield 

and the minor isomer (Z)-253 in 3-23% yield. Only the reaction with a cyclobutanol 

derivative possessing coordinative 2,2-bis(methoxymethyl) substituents gave (E)-2-

alkylidenecyclopentanone (E)-253 as the major isomer for both above-mentioned ruthenium 

catalysts in 46 to 57% yield, next to 3-7% yield for the (Z)-isomer of cyclopentanone 253. 
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4.3 Gold-promoted activation 

 

Cationic gold(I) complexes are capable of catalyzing ring expansion reactions by promoting 

migration of nucleophilic σ-bonds to alkynes.
123

 1-Alkynylcyclobutanols 254 were found to 

be viable substrates for gold(I)-catalyzed ring rearrangements to synthesize α-
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alkylidenecyclopentanones 256, in which coordination of a cationic gold(I) catalyst to the 

alkyne moiety (intermediate 255) induced a 1,2-alkyl shift (Scheme 75). 

 

HO

254 255

LAu+

AuL

O
H O

RR

R

256  

Scheme 75 

 

In a first example, alkynylcyclobutanols 257 were subjected to one or two mol% of a (4-

trifluoromethylphenyl)phosphine gold(I) catalyst and AgSbF6 in dichloromethane for 10 to 24 

hours at room temperature. The subsequent rearrangement afforded α-

methylidenecyclopentanones 258 in 66 to 82% yield (Scheme 76) with selective migration of 

the more substituted carbon atom of the cyclobutanol system. 
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Scheme 76 

 

In a second approach, treatment of the acetate derivative of 1-(3-

hydroxypropynyl)cycloalkanol 259 (R = Ac) with one mol% of Au(PPh3)OTf pre-catalyst in 

dichloromethane at room temperature for one hour furnished cyclopentanone 260 in an 

excellent yield of 96% (Scheme 77).
124

 This direct ring expansion occurred without [3,3]-
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rearrangement. Changing the protecting group from acetate to t-butyloxycarbonyl (Boc), 

benzoyl (Bz) or pivaloyl (Piv), however, led to faster [3,3]-rearrangement and completely 

diverted the reaction into rearrangement followed by cycloisomerization, giving spirofurans 

262 in 60-68% yield through an allenyl intermediate 261 without isolation of 

cyclopentanones. 
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5 Ring expansion of cyclobutylmethylcarbenium ions 

through activation of a carbonyl group 

 

Another method by which a carbenium ion can be generated comprises protonation or 

activation by means of a Lewis acid of a carbonyl compound 263 (Scheme 78). The oxygen-

stabilized cyclobutylmethylcarbenium ions 265, thus formed, subsequently rearrange to give 

cyclopentylcarbenium ions 266. Several examples, based on this principle, will be discussed 

in the following paragraphs using a broad scale of acids or Lewis acids, such as p-

toluenesulfonic acid, hydrogen chloride, aluminium(III) chloride or bromide, silica, camphor 
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sulfonic acid, and several others. Also two special cases are described, i. e. a Co2(CO)8 

catalyzed ring expansion and activation of a conjugated carbonyl system. 

 

263 264

R

O H+

(or Lewis acid) R

O
H

R

O
H

HO R

265 266  

Scheme 78 

 

5.1 Direct activation 

 

Propellanes containing one cyclobutane ring, i. e. [m.n.2]propellanes (m,n > 2), have been 

studied in terms of their reactivity toward acid treatment to give ring rearranged products.
125

 

An example of this pathway comprised the synthesis of 3,4-dimethyltricyclo[3.3.3.0]undecan-

2-one 271. A mixture of trans-isomers 268, originating from cycloaddition of 2-butene across 

bicyclic enone 269, when treated with 0.4 equiv of p-toluenesulfonic acid in benzene at reflux 

for eight hours, underwent two Wagner-Meerwein shifts to yield tricyclo[3.3.3.0]undecane-2-

one 271 in 82% overall yield from enone 267 via carbenium intermediate 269 and 270 

(Scheme 79).
125d

 Only trans-isomer 271 was isolated after rearrangement, and the trans-

relationship was ascertained by recovering trans-271 unchanged after treatment with NaOMe 

in MeOH at reflux. Under the same ring expansion conditions, the synthesis of 

tricyclo[4.3.3.0]dodecane-7-one from bicyclo[4.4.0]dec-1-en-2-one and ethylene has been 

reported in 95% yield as well as another propellane-like skeleton.
125d 

In general, the acid-

catalyzed rearrangement of cyclobutyl ketones involved in polycyclic ring systems such as 

[m.n.2]propellanes is known as the Cargill reaction
125e

 and has been used in the synthesis of 

natural products
2g

 and several other compounds.
126
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Scheme 79 

 

In a short synthesis of (+)-isophyllocladenone 275, the five-membered ring was obtained via 

ring rearrangement of an α-methylidenecyclobutane ring.
127

 To this end, compound 272 

rearranged to (+)-isophyllocladenone 275 in 50% yield when treated with a large amount of p-

toluenesulfonic acid (1:1 by weight) in benzene at reflux temperature for three hours through 

skeletal reorganization via intermediates 273 and 274 (Scheme 80). 
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In studies on the preparation of sesquiterpenes, a synthesis of tricyclic compound 277 has 

been reported by reaction of tricyclic ketone 276 with 2.5 equiv of p-toluenesulfonic acid in 

benzene at reflux for five days to afford the corresponding ring expanded ketone 277 in 

quantitative yield (Scheme 81).
128

 

 

O

O
2.5 equiv pTsOH

C6H6, , 5 d

276 277 (100%)  

Scheme 81 

 

As an alternative racemic route to the tricyclic sesquiterpene isocomene 36, Pirrung reported a 

synthesis via a cyclobutyl carbinyl ketone rearrangement.
42b

 The first synthesis by Pirrung 

was already described in this review in section 2.1.2.
42

 Using the Cargill rearrangement,
125b

 

278 was treated with 1.2 equiv of pTsOH in benzene under reflux to provide 279 and 280 in 

75 and 15% yield, respectively, after column chromatography (Scheme 82). However, the 

more obvious precursor to isocomene 36 was the minor product. Yet, using the conversions of 

[3.3.0]- and [3.2.1]bicyclooctane carbenium ions 283 and 285 in the Cargill reaction (Scheme 

83), compound 279 was treated with an excess of MeLi in tetrahydrofuran at reflux to give a 

mixture of tertiary alcohols in quantitative yield. Upon treatment with formic acid at room 

temperature, the crude mixture of alcohols was transformed into isocomene 36 in 70% yield 

(Scheme 82). 
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When 1-alkanoyl-1-(p-tolylsulfanyl)cyclobutanes 287 were treated with one or two equiv of 

aluminium(III) chloride in toluene, hexane or chlorobenzene at room temperature, 2-alkyl-2-

(p-tolylsulfanyl)cyclopentanones 288 were obtained in 55-90% yield (Scheme 84).
129

 Other 

Lewis acids such as aluminium(III) bromide and iron(III) chloride were also effective for this 

reaction. Boron(III) fluoride etherate and protonic acids (sulfuric acid and perchloric acid) did 

not catalyse the rearrangement. The mechanism involved coordination of AlCl3 to the 

carbonyl oxygen, followed by ring expansion to form a sulfur-stabilized carbenium ion, and 

migration of the alkyl group to the carbenium ion centre with concomitant regeneration of the 



 64 

carbonyl function to afford the corresponding cyclopentanones. This reaction was applied to 

the synthesis of 2-[4-(3-hydroxypropyl)phenyl]-2-cyclopentenone 289 in 84% yield from 287, 

which is of interest since the corresponding carboxylic ester was proposed as a key 

intermediate for the synthesis of 4,5,6,7-tetra-nor-3-8-inter-p-phenylene-11-

deoxyprostaglandin, a new prostaglandin analogue.
129,130

 

 

R3

ORS

R1R2
solvent, rt, 10 min - 2 h

R = Tol, Me; R1 = H, Me

R2 = H, PhCH2; R3 = H, Me, Et, nBu, 4-((CH2)3OH)C6H4

solvent = toluene, hexane, chlorobenzene

288 (55-90%)287

RS

R3

O

R2

R1

289 (84% overall)

O

3

OH

- RSH

R = Tol; R1 = H; R2 = H; 

R3 = 4-((CH2)3OH)C6H4

1-2 equiv AlCl3 or AlBr3

 

Scheme 84 

 

In a curious example, slow addition of a slight excess of trichloroacetyl chloride in anhydrous 

ether to a slurry of activated zinc in an ether solution of bullvalene 290 at room temperature 

for 12 hours afforded α,α-dichlorocyclopentanone 293 in 81% yield (Scheme 85).
131

 The 

proposed mechanism involved initial formation of an equilibrium mixture of 1,2-cycloadducts 

291 and 292 (shown by detailed NMR analysis) via [2+2]-cycloaddition of the olefin with 

dichloroketene. However, these cycloadducts undergo Lewis acid-catalyzed ring opening and 

subsequent cyclization with skeletal rearrangement to form the 1,6-adduct 293. 
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Scheme 85 
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The acid-catalyzed rearrangement of [4.3.2]propellanones 294 to 

tricyclo[4.3.2.0
1,5

]undecanols 295 has been reported as a one-step construction of the 

carbocyclic skeleton of terrecyclic acid A 296, descarboxyquadrone 297 and quadrone 298 

(Scheme 86).
132

 These compounds have been shown to display significant biological activities 

involving antitumor properties. When tricyclic ketone 294 was treated with conc. HCl in 

diethyl ether at reflux temperature for 36 hours, diol 295 was isolated in 72% yield (for R
1
 = 

OAc, R
2
 = OH) or, because of instability (R

1
, R

2
 = H), directly converted into the next 

product of the reaction sequence. 
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Scheme 86 

 

In a short synthesis toward hirsutene 32, the rearrangement of tricyclo[5.4.0.0
2,6

]undecane-

8,11-dione 299 represents the key step for the synthesis of the carbocyclic skeleton.
133

 When 

299 was treated with 2.3 equiv of iodotrimethylsilane in dichloromethane for three hours at 

room temperature, tricyclo[6.3.0.0
2,6

]undec-2-ene-3-one 300 was isolated in 95% yield 

through rearrangement and a final dehydration step (Scheme 87).
133b 
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Scheme 87 

 

When dispiroketones 301, 302 and 303 were treated with equimolar amounts of a 0.56 molar 

solution of anhydrous p-toluenesulfonic acid in benzene for 14 hours at 20 °C, quantitative 

conversion into the bicyclic enone 307 was observed. The same conversion was complete 

within ten minutes at 70 °C, but after 14 hours at 70 °C the propellanone 310 was formed 

instead in a quantitative yield (Scheme 88).
134

 These rearrangements proceeded via 

intermediate β-hydroxy carbenium ions. These ketones 301, 302 and 303 were well suited for 

rearrangement because of the defined dihedral angle relationships favoring stereospecific 

rearrangements and the possibility of reactions through energetically favorable tertiary 

carbenium ions as depicted in Scheme 88,
135

 besides the pronounced relief of strain associated 

with C4-C5 ring enlargements. 
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Scheme 88 

 

According to the previous result, reaction of a tetraspiroketone 311 with equimolar amounts 

of anhydrous p-toluenesulfonic acid in benzene would lead to bispropellanone 312. However, 

the bridged pentacyclic ketone 315 was isolated instead in 100% yield (Scheme 89).
134c 

The 

observed reactivity was explained considering the carbenium ion intermediates 313 and 314 

en route to ketone 315. 
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In a formal reductive ring enlargement, cyclobutanecarboxylic acid 316 has been described to 

be converted to cyclopentane 317 in 96% yield through a primary carbenium ion utilizing a 

mixture of two equiv of sodium borohydride and 12 equiv of triflic acid in diethyl ether 

(Scheme 90).
136

 In the original paper, the authors mainly focused on adamantine derivatives.  
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2 equiv NaBH4
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Et2O, -78 °C to rt
 

Scheme 90 

 

Within the study of marine sesquiterpenes, a new pathway (path b) for the rearrangement of 

(1S*,4S*,8R*)-tricyclo[6.3.0.0
1,4

]undecan-5-one 318 has been reported under the action of a 

Lewis acid to give angularly fused triquinane 325 with high selectivity, which is entirely 

different from the Cargill pathway (path a) (Scheme 91).
137

 Coordination of the carbonyl 

group to the Lewis acid generated intermediate 322, followed by cleavage of the central 

cyclobutane bond to yield homoallylcarbinylcarbenium ion 323. A 1,2-hydride shift afforded 

the carbenium ion 324, which collapsed to give the desired product 325. 
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The utility of this approach was further demonstrated by the total syntheses of (±)-3-

oxosilphinene 326, (±)-silphiperfol-6-ene 327 and (±)-5-oxosilphiperfol-6-ene 328 (Scheme 

92).
137

 The rearrangement of substrates 318 proceeded smoothly using aluminium(III) 

chloride in dichloromethane at room temperature for 30 minutes to obtain the angular ketones 

325 in 55-93% yield, which could be converted into the desired products. 
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The reactivity of 1-alkanoylcyclobutanes toward ring enlargement can be further enhanced by 

the introduction of an electron-donating hydroxy group at the 1-position. Exposure of the 

relatively stable 1-(1-oxo-2-propenyl)cyclobutanol 329 (obtained via treatment of 3-

ethoxycyclobutanone with 1-lithio-1-methoxyallene followed by acid hydrolysis) to the usual 

aqueous acid conditions (i. e. treatment with trifluoroacetic acid in a THF/H2O (1:1) solvent 

mixture) did not rapidly induce ring expansion. However, exposure to SiO2 provided the ring 

expanded cyclopentanone product 330 as one diastereomer.
104a

 Treatment of the same 

cyclobutanol 329 with ZnBr2 in dichloromethane for two hours at room temperature, followed 

by ten hours under reflux led to cyclopentenone 331 in 45% yield, presumably via 

cyclopentanone 330 (Scheme 93). 
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In analogy, the cyclobutyl system 332 rearranged completely to α-hydroxycyclopentanone 

333 on silica gel chromatography using diethyl ether/hexane (1:5) in 95% yield (path A, 

Scheme 94).
138a

 Furthermore, a nickel-catalyzed enantioselective α-ketol rearrangement of 1-

benzoylcyclobutanol 332 was initiated with two mol% of NiCl2 and four mol% of 2,6-

bis[(4S)-isopropyl-2-oxazolin-2-yl]pyridine (NiCl2/pybox) in methanol for four hours at 25 

°C, to afford (-)-2-hydroxy-2-phenylcyclopentanone 333 in quantitative yield and in 34% 
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enantiomeric excess without knowing the exact absolute configuration (path B, Scheme 

94).
138b
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Ring enlargement of cyclohexene-annelated acylcyclobutanes upon treatment with an 

appropriate Lewis acid has been reported to afford hydrindanone derivatives.
139

 Ring 

enlargement of 1-acylbicyclo[4.2.0]oct-3-enes 334 could afford two isomeric ketones 337 and 

339 depending on the direction of migration (pathways a and b) (Scheme 95). The formation 

of 339, however, was unfavorable due to the lower stability of intermediate 338 as compared 

to carbenium ion 336. The overlap of the p-orbital of the carbonyl group and the breaking σ-

orbital of the cyclobutane ring must be maintained during the ring expansion of cyclobutane 

334 to carbenium ion intermediate 336. As a result, the acetyl group and the C-6 hydrogen or 

alkyl group (R
2
) lay in the same plane in the transition state so that the ring enlargement 

proceeded through conformer 335a or 335b. Since the alkyl group migrated at the same face 

of the molecule, the main cis-isomer was produced via 335a and hence the steric repulsion 

between R
2
 and the carbonyl oxygen, coordinated to the Lewis acid, was larger than the 

repulsion between the R
2
- and R

1
-group.  
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Scheme 95 

 

With 1.1 equiv of ethylaluminium dichloride, as the most efficient Lewis acid, the ring 

expansion of 1-acylbicyclo[4.2.0]oct-3-enes 334 in dichloromethane gave 6-

alkylbicyclo[4.3.0]non-3-en-7-ones 337 in good yields (Scheme 96).
139

 When substituted 

annelated cyclobutyl methylketones (R
1
 = Me) were used, cis-hydrindanones were 

synthesized in good yield (67-93%) with high cis-stereoselectivity (82-100% de). With 

isopropyl and tert-butyl ketones (R
1
 = iPr, tert-Bu) instead of methyl ketones, a reduced 

stereoselectivity or even a reversal was observed, according to the steric demand of these 

substituents. 

 

R3

R4

R1
O

R2

R3

R4

O

R2

R1

R3

R4

O

R2

R1

334

1.1 equiv 
EtAlCl2

CH2Cl2
rt, 8-72 h

cis-337 trans-337

R1 = Me, iPr, tert-Bu

R2 = H, Me, Bu; R3 = H 

R3-R4 = C4H4; R4 = H, Me

R1 = Me (67-93%) (91:9-100:0)

R1 = iPr  (88%) (50:50)

R1 = tert-Bu (9%) (16:84)

+

 

Scheme 96 



 73 

 

As part of the synthesis of enantiomerically pure spirocyclic α,β-butenolides, a bromonium 

ion- (vide supra, Scheme 31) or oxonium ion-induced rearrangement of carbinol 101 has been 

developed.
54a,66,140

 This oxonium ion-promoted rearrangement was first executed by treatment 

of carbinol 101, synthesized by the addition of 5-lithio-2,3-dihydrofuran 340 (R
1
, R

2
 = H) to 

cyclobutanone 80, with different acids to produce the spirocyclic tetrahydrofuranyl ketone 

342 (R
1
, R

2
 = H) in 45-87% yield with excellent selectivity (dr 100:0). Next to 342, variable 

quantities (0-14%) of 1,4-dioxanes 343 and 344 (R
1
, R

2
 = H) in a 1:1 ratio were detected, 

depending on the used acidic ion exchange resin (Scheme 97). Only when Amberlyst-15
66

 or 

methanol-free Dowex-50X resin
140b

 was used in dichloromethane at room temperature, no 

dioxane side product was obtained.  

When carbinols 101 (R
1 

= H, allyl; R
2
 = H, Me) were treated with camphor sulfonic acid 

(CSA) (0.2-1.7 mol%) in dichloromethane at room temperature for 30 minutes to two hours, 

spiro ketones 342 were obtained in 67 to 89% yield in a diastereomeric ratio ranging from 

3.9:1 to 1:1.5.
141
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In the field of carbohydrate chemistry, the acid-catalyzed rearrangement of 

dihydropyranylcarbinols such as 345 to spirocyclic bis-C,C-glycosides 347 and 349 has been 

examined and proved to be highly diastereoselective.
141,142

 This efficient process resulted in 

the generation of a new stereogenic centre by means of controlled pinacol-like 1,2-migration 

to a cyclic oxonium ion. When glycols 345, substituted with a leaving group in the allylic 

C(4) position, were subjected to acidic conditions, two intermediates 346 and 348 could be 

formed, resulting in spirocyclic compounds 347 and 349, respectively. While the generation 

of intermediate 346 qualified as a potentially reversible process, the formation of 348 is 

essentially irreversible (Scheme 98).
142
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In another example, simple substitution of the dihydropyran ring with one or two alkyl groups 

engendered sufficient inductive electron donation to reduce the potential for isomerization 

significantly,
141

 although cyclobutanol derivatives still underwent ring expansion at a rate to 

be synthetically useful. In that respect, treatment of cyclobutanols 350 with a catalytic amount 

of camphorsulfonic acid (CSA) in dichloromethane at room temperature for 0.5 to four hours 

resulted in spirocyclic bis-C,C-glycosides 351 and 352 in 50-80% and 14-38% yield, 

respectively (Scheme 99).
142b
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Although based on a different reaction mechanism, the samarium(II)-induced ring expansion 

of 1,2-cyclobutanedicarboxylates 353 to cyclopentanones 354 is worth mentioning (Scheme 

100).
143

 Also, a single isomer 356 was obtained in the ring expansion of tricyclic compound 

355 in 38% yield. It should be noted that the reaction of this rearrangement proceeded via a 

tandem reductive fragmentation-Dieckmann condensation. 
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Ring expansion of cyclobutanecarboxaldehyde 357 (R
1
, R

2
 = Me, R

3
 = iPr) was executed 

upon treatment with 1.2 equiv of AlCl3 in dichloromethane at 0 °C for nine hours through 
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successive 1,2-shifts of a tertiary alkyl group and a hydride to synthesize 2-

benzoyloxycyclopentanone 358 in 61% yield (Scheme 101).
144

 The same authors reported the 

ring expansion of bicyclic compound 359 (R
1
 = Me, R

2
-R

3
 = (CH2)3C(CH3)2) by treatment 

with two equiv of Bu4NF·3H2O through hydrolysis and subsequent 1,2-shift of a tertiary alkyl 

group to afford 2-hydroxycyclopentanone 359 as a chiral intermediate in the enantioselective 

total synthesis of 4a-methylhydrofluorene diterpenoids such as (-)-taiwaniaquinol B 360 

(Scheme 101).
144a
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5.2 Special cases 

 

Although essentially based on a cyclobutane to cyclopentane ring enlargement through 

activation of a carbonyl moiety, the following examples deviate from a simple and direct 

carbonyl activation approach and are therefore discussed in a separate section. 

 

The cobalt carbonyl-catalyzed ring expansion of cyclobutanone 361 to 1,2-

bis(diethylmethylsiloxy)cyclopentene 365 with diethylmethylsilane and carbon monoxide (50 
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atm) comprised the first example of the catalytic incorporation of carbon monoxide into a 

simple ketonic C-C bond.
145

 The ring-enlargement mechanism, as shown in Scheme 102, for 

the rearrangement of cyclobutanones 361 to cyclopentenes 365, also involved a 

cyclobutylmethyl to cyclopentylcarbenium ion rearrangement. There was evidence that 

MeEt2SiCo(CO)4 was involved in the reaction, generated in situ in the trialkylsilane/carbon 

monoxide/dicobaltoctacarbonyl system. In addition to the ring strain of cyclobutanes, the high 

oxygenophilicity of silicon implied a strong driving force for this reaction. Addition of three 

equiv of diethylmethylsilane, 0.04 equiv of dicobaltoctacarbonyl, 0.04 equiv of 

triphenylphosphine and carbon monoxide (50 atm) to cyclobutanone 361 in benzene at 110-

175 °C for 20 hours afforded the corresponding disiloxycyclopentenes 365 in 73-95% yield 

through formation of intermediates 362, 363 and 364 (Scheme 102). 
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Bicyclo[3.3.0]oct-1-en-3-ones 368, obtained from spirocyclobutanes 365, were applied in the 

synthesis of racemic 1-desoxyhypnophilin.
146

 When enaminonitriles 365 were treated with 

phosphoric acid in aqueous acetic acid at reflux temperature for one hour, the corresponding 

cyclopentenones 368 were obtained in 62-99% yield. In a plausible mechanism, the acidic 

hydrolysis of the enamine function of 365 first gave enones 366. Protonation of the carbonyl 
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oxygen of enones 366, followed by rearrangement of the cyclobutane ring furnished 

bicyclo[3.3.0]octenones 367 which, upon tautomerization, produced bicyclic enones 368. 
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When enaminonitriles 369 were subjected to the same reaction conditions as described before, 

not the expected 2-cyano-4-alkyl- or 4-arylbicyclo[3.3.0]oct-1-en-3-ones were obtained but 

instead 2-alkyl- or 2-arylbicyclo[3.3.0]oct-1-en-3-ones 373 were isolated in 53-99% yield.
146

 

A plausible mechanism for the formation of these compounds is provided in Scheme 104. 

First, acidic hydrolysis of the enamine moiety of 369 gave enones 370. Subsequently the ring 

expansion of the cyclobutane ring took place as described above (Scheme 103) to give 2-

cyano-4-alkyl- or 4-arylbicyclo[3.3.0]oct-1-en-3-ones 371. Migration of the double bond in 

371 occurred under the acidic conditions to afford enone 372, in which the cyano group was 

hydrolyzed followed by decarboxylation to provide compounds 373. 

 



 79 

369 373 (53-99%)

CN
NH2 H3PO4 (85%)

AcOH-H2O, , 1 h

O

R = Me, iPr, CPh3, Ph, 4-MeOC6H4

O
H CN H+ CN

O

R

370 371

R

R
R

CN

O

372 R  

Scheme 104 

 

6 Formation of cyclobutylmethylcarbenium ions through 

expulsion of a leaving group 

 

Different kinds of leaving groups, e.g. halogens, nitrogen gas, a nitro group, activated 

hydroxy and alkoxy groups, and sulfur and selenium groups, can be used to form and induce 

ring expansion of cyclobutylmethylcarbenium ions with ring strain as a driving force. Several 

examples of syntheses based on this approach are described in this section. 

 

6.1 A halogen atom as leaving group 

 

6.1.1 Cyclobutylmethyl chlorides 

 

The ethyl dichloroacetate anion, cathodically generated from ethyl trichloroacetate, was added 

across cyclobutanone 80 in DMF at 0 °C to yield cyclopentanone 375 in 43% yield (Scheme 



 80 

105).
147

 The formation of this cyclopentanone was conceived by a ring expansion reaction of 

the adduct 374, taking advantage of the electrophilicity of the dihalogenated carbon atom. 
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In the synthesis of the regioisomer of β-cuparenone 379, Krief and co-workers reported a 

rearrangement of chlorohydrin 377, synthesized from epoxide 376 with beryllium(II) chloride 

(Scheme 106).
148

 Treatment of this chlorohydrin 377 with silver tetrafluoroborate in the 

presence of aluminium oxide at 20 °C for 15 hours afforded cyclopentanone 378 and a small 

fraction of β-cuparenone 379 in a ratio of 95:5. An overall yield of 75% was assigned to 

cyclopentanone 378 starting from epoxide 376. 
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In another approach, a one-carbon homologation of ketones to α-sulfinyl ketones using 

(chloromethyl)phenylsulfoxide has been reported.
149

 Treatment of 

(chloromethyl)phenylsulfoxide with 1.2 equiv of lithium diisopropylamide (LDA) in 
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tetrahydrofuran at -60 °C formed a carbanion, which was reacted with cyclobutanone 80 to 

give adduct 380 as a single isomer in 92% yield (Scheme 107). This adduct 380 was treated 

with three equiv of LDA in tetrahydrofuran at -60 to -50 °C for 1.5 hours to afford α-sulfinyl 

cyclopentanone 381 in 95% yield as a mixture of two inseparable diastereomers in a 4:1 ratio. 

The previous method was applied to the one-carbon ring expansion of cyclic ketones to cyclic 

ketones bearing an alkyl substituent.
150

 Addition of the carbanion of (1-chloroalkyl)-p-

tolylsulfoxide to cyclobutanone 80 afforded chloro alcohol 382 in 91% yield (Scheme 107). 

When five equiv of tBuLi were added to the chloro alcohol 382 in tetrahydrofuran at -70 °C, 

the rearrangement afforded 1-decylcyclopentanone 383 in 60% yield.  

The same authors used the previous ligand exchange reaction of sulfoxides for the synthesis 

of α-chloroketones from carbonyl compounds with one-carbon homologation.
151

 When 

(dichloromethyl)phenylsulfoxide was treated with LDA in tetrahydrofuran at -60 °C followed 

by cyclobutanone addition, adduct 384 was synthesized in 90% yield (Scheme 107). The 

chloro alcohol 384 was treated with three equiv of EtMgBr in tetrahydrofuran at -78 to -45 °C 

for 1.5 h to synthesize α-chlorocyclopentanone 385 in 63% yield. In this case, a Grignard 

reagent (EtMgBr) was used for the ligand exchange reaction of the sulfoxides. Apparently, 

different approaches can be applied for the conversion of cyclobutanone 80 into 

cyclopentanones, in which either cationic or anionic intermediates intervene. 
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Treatment of cyclic tert-trihalomethylcarbinols with CrCl2 in THF/HMPA in the presence of 

aryl or aliphatic aldehydes initiated a cascade sequence of one-carbon ring expansion - 

olefination, affording conjugated exocyclic ketones.
152

 As a specific example, exposure of 

cyclobutyl carbinol 386 to six equiv of CrCl2 and one equiv of benzaldehyde in THF/HMPA 

for four hours at 40 °C afforded (E)-2-benzylidenecyclopentanone 387 in 63% yield (Scheme 

108). 
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Two plausible mechanistic pathways were disclosed (Scheme 109).
152

 Initial metalation of the 

trihalomethyl moiety generated the key dihalochromium intermediate 388. A second 

metalation led to 389, which rearranged to dichromium ketone 390. This ketone 390 was 
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expected to add rapidly to the aldehyde and to collapse to the final product 392. Alternatively, 

α-elimination of 388 formed carbene 393 and hence α-haloenol 394, its rearrangement 

product. Addition of the aldehyde culminated in 392 via reduction of adduct 395. 
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A domino λ
3
-iodination - 1,4-halogen shift - ring enlargement reaction of 5-chloro- or 5-

bromopent-1-ynes 396 took place when the starting material was treated with two equiv of 4-

(difluoroiodo)toluene in the presence of 1.5 equiv of BF3·iPr2O in chloroform at -60 °C to 

room temperature for five hours with an additional five hours at room temperature (Scheme 

110).
153

 This domino reaction afforded (E)-3-cyclopentyl-2-halopropenyliodinanes 401 

stereoselectively in 87-89% yield. A mechanistic rationale based on the formation and 

transformation of intermediates 397, 398, 399 and 400 was provided by the authors. 
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6.1.2 Cyclobutylmethyl bromides 

 

6.1.2.1 Rearrangement of oxaspiro[2.3]hexanes using LiBr 

 

Ring enlargement of cyclobutanones by means of the rearrangement of spiroannelated 

oxiranes has been developed by Trost and Latimer as an important step in gibberellin 

synthesis (Scheme 111).
154

 Treatment of cyclobutanone 402 with 2.6 equiv of 

dimethylsulfonium methylide gave 403, and subsequent treatment with 1.2 equiv of lithium 

bromide in benzene containing 1.2 equiv of HMPA produced ketone 405 in 65% yield. The 

cyclobutane to cyclopentane ring expansion proceeded through initial ring opening of epoxide 

403 by bromide toward the oxyanion of 1-(bromomethyl)cyclobutanol 404, followed by 

skeletal rearrangement to furnish cyclopentanone 405. Alternatively, conversion of substrates 

402 to epoxide 403 via mCPBA epoxidation of the Wittig olefination product 406, followed 

by rearrangement, gave spirocompound 405 in 78% overall yield. The latter procedure, 

although one step longer, proceeded in higher yield.  
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The same type of epoxide-carbonyl rearrangement was executed in the synthesis of (±)-

modhephene 410.
155

 The ring expansion of 407 was carried out in the same manner using 

lithium bromide and hexamethylphosphoramide in benzene at 80 °C, affording the desired 

ketone 408 in 86% yield, together with a small amount (9%) of the regioisomer 409 (Scheme 

112). 
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The same authors also published an alternative synthesis of (±)-isocomene 36 (Figure 5). The 

second five-membered ring was synthesized in 81% yield applying the same reaction 
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conditions (LiBr, HMPA, benzene, 80 °C) from the corresponding epoxide.
156

 On the other 

hand, Wenkert and Arrhenius used LiI in tetrahydrofuran at room temperature for 24 hours for 

the synthesis of the third five-membered ring of isocomene 36 in 91% yield, also starting 

from the corresponding epoxide.
157

 Two other syntheses of isocomene have previously been 

described, one using the acid-promoted activation of a vinylcyclobutane (Scheme 10) and one 

via a cyclobutyl carbinyl ketone rearrangement (Scheme 82), both reported by Pirrung.
42

 

Pirrung has also described a ring expansion of an epoxide (LiBr, HMPA, benzene, 80 °C) in 

85% yield in the synthesis of the precursor of the methyl ester of pentalenolactone G 411 

(Figure 5).
158
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Research on the chelation-controlled regioselective epoxide-carbonyl rearrangement has been 

effected on 1-oxaspirohexane derivatives, giving difunctionalized bicyclo[3.3.0]octan-2-ones 

414 (Scheme 113).
159

 When epoxides 412 were subjected to one equiv of lithium bromide and 

one equiv of hexamethylphosphoramide in benzene at reflux temperature, migration of the 

less substituted carbon occurred, whose selectivity is controlled by chelation of oxygen to the 

lithium cation. This process afforded 2,8-disubstituted diquinanes 414 in high selectivity (96-

100:0-4) in 75 to 94% yield. In contrast, the anti-epoxy acetal 412 did not afford 414 but gave 

415 as the only ring expanded product in 24% yield, together with the macrocyclic enol ether 

416 in 54% yield.
159
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Scheme 113 

 

6.1.2.2 Other methods 

 

A ring expansion of a 1-(dibromomethyl)cyclobutanol derivative has been reported by Vedejs 

and Larsen as part of a synthetic pathway to fulvinic acid 420.
160

 When cyclobutanone 417 

was treated with CH2Br2 in the presence of LDA, cyclobutyl carbinol 418 was obtained in 

84% yield (Scheme 114).
160b

 Rearrangement by means of nBuLi and Me3SiCl yielded the ring 

expanded product 419 in 85% yield which could be converted into fulvinic acid 420 through 

ozonolysis of the olefinic moiety.  

 

O

OSiMe3

CH2Br2

LDA
OSiMe3
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1) nBuLi, -78 to -45 °C

2) Me3SiCl
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HOOC COOH

HO
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Scheme 114 
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A Ag
+
-induced solvolysis of 2-bromomethyl-2-hydroxycyclobutanones 422, obtained via 

photocyclisation of α-bromomethyl-1,2-diketones 421, provided a route to 4-substituted and 

4,5-disubstituted cyclopentane-1,3-diones 423.
161

 In that respect cyclobutanones 422 were 

treated with 1.2 equiv of silver nitrate in aqueous acetic acid (1:1) at 0 °C for four to six 

hours, after which a solution of 0.6 equiv of lithium bromide and 0.9 equiv of sodium acetate 

were added, giving rise to the corresponding cyclopentanones 423 in 35-72% yield (Scheme 

115). 

 

2) 0.6 equiv LiBr,
0.9 equiv NaOAc, H2O

R1R1

O

1) 1.2 equiv AgNO3

HOAc/H2O (1:1), 0 °C, 4-6 h
OH

Br

R1 = Me, Me2, Ph

R2 = H, Me; R1-R2 = (CH2)4

O

OR2R2

423 (35-72%)422

O

Br

O

R1

R2

h

421

 

Scheme 115 

 

In a final example, the formation of a cyclopentane annelated isoquinolone from a 

spirocyclobutane dihydroisoquinolone was executed by silver tetrafluoroborate addition.
162

 

The bromomethylcyclobutane derivative 424, prepared photochemically by bromination using 

N-bromosuccinimide, underwent ring enlargement upon treatment with 1.4 equiv of silver 

tetrafluoroborate in dichloromethane at room temperature for four hours to provide 

tetrahydrophenanthridin-6(5H)-one 425 in 90% yield (Scheme 116). 

 

424

N

Br

O

H

1.4 equiv AgBF4

425 (90%)

N

O

HCH2Cl2, rt, 4 h

 

Scheme 116 
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6.1.3 Cyclobutylmethyl iodides 

 

6.1.3.1 Rearrangement of oxaspiro[2.3]hexanes using LiI 

 

According to literature data, direct and regioselective transformation of oxaspirohexanes 426 

into cyclopentanones 428 is best achieved using lithium iodide, although also lithium bromide 

has proven to give excellent results (vide supra).
163

 Mechanistically, the isomerization 

occurres via initial ring opening of the epoxide by nucleophilic addition of iodide, followed 

by regioselective migration of the more substituted carbon atom of the cyclobutane ring 

(Scheme 117). 

 

O

R
R

LiI

R
R

I
Li

O
O

426 427 428

R
R

 

Scheme 117 

 

For example, the synthetic sequence towards 6a-carbaprostaglandin I2 432 started with the 

optically active, tricyclic ketone 429 which was ring expanded to ketones 430 and 431 

(Scheme 118).
164

 This ring rearrangement was accomplished via the addition of 0.3 equiv of 

lithium iodide to isomeric spiro epoxides 429 in tetrahydrofuran at room temperature for 45 to 

60 min, affording the isomeric cyclopentanones 430 and 431 in 97% crude yield in a 1:9 

ratio.
163b
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Scheme 118 

 

In a short synthesis of (±)-herbertene 436, starting from 1-isopropenyl-3-methylbenzene 433, 

a carbenium ion promoted rearrangement afforded β-herbertenone 435 as the direct precursor 

(Scheme 119).
57

 Spiroannelated oxirane 434, in the presence of a catalytic amount of lithium 

iodide, rearranged mainly to β-herbertenone 435 next to a minor amount of the isomer 89. The 

exact ratio of isomers 435 and 89 was not mentioned in the article. A Huang-Minlon 

reduction of both ketones using hydrazine in the presence of potassium hydroxide led to (±)-

herbertene 436, with an overall yield of ca. 30% from 433. Synthesis of 2,2,3-trimethyl-(3-

methylphenyl)cyclopentanone 89, the minor isomer in this synthesis, was already described in 

the acid-promoted ring expansion of propenylcyclobutanols (Scheme 26).
59 
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O

434 435 89433
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Scheme 119 
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The synthetic applicability of this approach was further demonstrated by the synthesis of 

polyalkylated cyclopentanones 440 in a regioselective way using cyclobutanones 439 and 

carbonyl compounds 437 as starting material (Scheme 120).
165

 The final step in this approach 

comprised a ring expansion of epoxides 439, which was achieved using lithium iodide in 

dichloromethane at reflux temperature to afford cyclopentanones 440 in 77 to 91% yield. This 

was the first example of a ring rearrangement of an epoxide ring bearing one or two alkyl 

groups. The ring rearrangement proved to be highly regioselective via migration of the more 

substituted carbon atom of the cyclobutane ring.  

 

O
R1

R2

R3

R4

O

R1 R2

O

R4

R3+

O

R1

R2

R3
R4

LiI

CH2Cl2,

439 440 (77-91%)437 438

R1, R3 = H, Me

R2 = H, C9H19, C10H21 

R4 = H, C5H11, C9H19  

Scheme 120 

 

As mentioned before, Krief and co-workers have also used a spiro epoxide in the synthesis of 

β-cuparenone 379 (Scheme 106).
148

 Treatment of the spiro epoxide 376 with lithium iodide in 

dioxane in the presence of one equiv of 12-crown-4, afforded β-cuparenone 379 and a small 

fraction of its regioisomer 378 in a selectivity of 94:6 in 95% yield. It should be noted that the 

opposite selectivity was obtained upon treatment of epoxide 376 with BeCl2, as depicted in 

Scheme 106. 

 

The regioselective synthesis of two bicyclo[3.3.0]octane systems 443 and 445 

(carbaprostacyclin precursors) via spirooxiranes 442 and 444, respectively, further 
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demonstrated the feasibility of the spiroannelation methodology (Scheme 121).
166

 α-Epoxide 

442 was synthesized in 90% yield via the Corey-Chaykovsky method, and subsequent 

rearrangement of 442 afforded ketone 443 in 68% yield and its isomer 445 in 10% yield, after 

chromatography. The corresponding β-epoxide 444 was subsequently prepared in 70% overall 

yield, from the bicycloheptanone 441 after initial conversion into the analogous methylene 

derivative using the method of Lombardo, followed by epoxidation.
167

 In direct contrast to the 

cleavage of the α-epoxide 442, the β-epoxide 444 underwent a slow, regioselective 

rearrangement to yield ketone 445 in 71% accompanied by less than 10% of ketone 444. The 

obtained bicyclo[3.3.0]octane framework is a structural unit shared by a variety of 

sesquiterpenes and many carbocyclic analogues of prostacyclin (PGI2).  
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Scheme 121 

 

As part of the synthesis of 13-thiacarbacyclines, used as medicines, lithium iodide was used in 

the formation of the bicyclo[3.3.0]octanone skeleton (Scheme 122).
168

 When five mol% of 

lithium iodide was added to spirooxirane 446 in tetrahydrofuran at room temperature, 

bicyclo[3.3.0]octanone 447 was isolated. No yield was mentioned for the ring expansion step. 
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Scheme 122 

 

The ring expansion of oxiranes 449, prepared from 2-N-methyl-N-tosylcyclobutanones by 

reaction with dimethylsulfonium methylide,
169

 with a stoichiometric amount of lithium iodide 

in tetrahydrofuran at reflux temperature for two hours afforded mono- or bicyclic 

cyclopentenones 450 in 41-96% yield with 0-92% ee, resulting from a β-elimination of N-

methyl-N-tosylamide from a initially formed cyclopentanone. The ring expansion was 

completely selective with the exception of the bicyclo[4.2.0]octanone systems (R
1
-R

2
 = 

CH2(CH)2CH2, (CH2)4), which afforded a side product 451 in 14-41% yield. The ring 

expansion of chiral trans-bicyclo[5.2.0]nonane 449 (R
1
-R

2
 = -(CH2)5-) or trans-

bicyclo[6.2.0]decane 449 (R
1
-R

2
 = (CH2)6) afforded a mixture of cis- and trans-

cyclopentenones 450 (85:15 dr, 98% ee and 15:85 dr, 92% ee, respectively) in 87 to 90% 

yield (Scheme 123). 
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Scheme 123 

 

A Lewis acid-promoted one-pot ring expansion of trisubstituted cyclobutanones has been 

executed starting from 3-substituted 2-methoxy-2-methylcyclobutanones 452 (Scheme 

124).
170

 An ylide, generated from trimethyloxo-λ
4
-sulfanium iodide (Me3S(O)I) and sodium 

hydride, served as the C1-equivalent. Addition of cyclobutanones 452 to a solution of 

Me3S(O)I and sodium hydride in dimethylformamide (DMF), followed by addition of three 

equiv of Et3Al at 25 °C for nine hours, afforded the corresponding cyclopentanones 453 in 0-

18% yield and cyclopentenones 454 in 29-55% yield. Replacing Et3Al with 0.25 equiv of 

scandium(III) triflate at 50 °C for five hours improved the reaction, providing higher yields 

(54-79%) for cyclopentanones 453, and little or no alkoxide elimination (0-9% 

cyclopentenones 454). 
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Scheme 124 

 

Another example concerning cyclopentanone synthesis through elaboration of spirooxiranes 

was recently reported.
171

 Chiral diol (1R,3R)-syn-455 was transformed into oxaspirohexane 

456 which, by reaction with lithium iodide, gave cyclopentanone 457 in 87% yield (Scheme 

125). This reaction was also the first to report the transformation of a chiral oxaspirohexane to 

obtain 457 diastereoisomerically pure with no loss of stereochemical integrity through 

inversion of configuration at the migrating terminus. 

Analogous rearrangements have also been executed with lithium iodide in dichloromethane or 

with Et2AlCl in toluene to afford 2-alkyl-2-arylcyclopentanones in 65-99% yield and in an 

enantiomeric excess of 70-90%.
172
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A last example involves in the synthesis of pseudohelical hydrocarbons of four- and five-

membered rings.
69

 A sequential ring enlargement via a high temperature methylenation, an 

epoxidation, and a lithium iodide-induced rearrangement proved necessary to synthesize 

complex cyclopentanone 460 (Scheme 126). The ring expansion of spirooxirane 459 to 

cyclopentanone 460 proceeded in 88% yield by reaction with one equiv of lithium iodide in 

tetrahydrofuran at 60 to 70 °C for six hours. All attempts of a direct ring enlargement of 458 

with diazomethane failed. The diazomethane type ring expansion will be discussed further in 

this review. 

 

458

O

1) Ph3P=CH2

2) mCPBA

459

O
1 equiv LiI

THF, 60-70 °C, 6 h

460(88%)

O

 

Scheme 126 

 

6.1.3.2 Other methods  

 

Whereas the majority of literature examples comprise rearrangements of 

oxaspiro[2.3]hexanes, a few other approaches via transformation of cyclobutylmethyl iodides 

are known. 

 

In a first example, lithio(iodomethyl)phenylsulfoxide, generated by the reaction of 

(iodomethyl)phenylsulfoxide with LDA in tetrahydrofuran at -78 °C, reacted with 

cyclobutanone 80 to form adduct 461 in 88% yield (Scheme 127).
173

 Reaction of the adduct 

461 with silver nitrate in 95% ethanol at 85 °C for three hours gave compound 381 in 13% 

yield, involving the intermediacy of phenylsulfinyl ion 462. Because of the low yield, 
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compound 461 was treated with TiCl4/Zn in an ether/dichloromethane mixture to synthesize 

α-phenylsulfenylcyclopentanone 464 in 62% yield, presumably via the intermediate thionium 

ion 463. 
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Scheme 127 

 

Alternatively, iodomethylation has been used in the transformation of cyclobutanones 465 to 

cyclopentanones 466 and 467.
174

 Samarium diiodide-induced iodomethylation of 

cyclobutanones with diiodomethane provided a simple way for the synthesis of iodohydrins, 

which underwent ring expansion when exposed to a base. When 3-monosubstituted and 3,3-

disubstituted cyclobutanones 465 were treated with one equiv of CH2I2 and 2.1 equiv of SmI2 

in tetrahydrofuran at room temperature for 15 h, the corresponding cyclopentanones 466 and 

467 were synthesized in 40-88% yield (Scheme 128). Only with bicyclic cyclobutanones, two 

regioisomers of cyclopentanone derivatives were produced as a 1:1 mixture (R
1
-R

2
 = (CH2)4 

or CH2CH=CHCH2) or in a isomer ratio of 97:3 (R
1
-R

2
 = (CH2)5). 
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Scheme 128 

 

6.2 N2 as leaving group 

 

Numerous examples of cyclobutane to cyclopentane rearrangements are known based on the 

formation and ring expansion of intermediate cyclobutylmethylcarbenium ions through 

expulsion of nitrogen gas as a leaving group. Besides a few isolated examples as azide 

addition across methylenecyclobutanes, the vast majority of papers deal with semipinacol-

type rearrangements via diazoalkanes. 

 

6.2.1 Via azide addition across methylenecyclobutanes 

 

Methylenecyclobutane 468 has been reported to react with aromatic sulfonyl azides under 

high pressure at 60 °C for four days to give the corresponding ring enlarged N-sulfonylimines 

471 in almost quantitative yield (Scheme 129).
175

 This 1,3-dipolar addition of azides to 

electron-rich olefins was facilitated by strong electron-withdrawing substituents attached to 

the azide moiety. The resulting triazolines turned out to be relatively unstable, resulting in the 

evolution of nitrogen gas spontaneaously or upon gentle heating. This type of ring 

enlargement is closely related to the Demjanov-Tiffeneau reaction. In a last step, the N-
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sulfonylimines 471 were hydrolysed to cyclopentanone 428 with aqueous hydrogen chloride 

in more than 80% yield. 
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Scheme 129 

 

The same methodology has been used by Fitjer for the synthesis of 

tetraspiro[2.0.2.0.2.1]tridecan-13-one 475 (Scheme 130).
176

 Treatment of 13-

cyclopropylidenetetraspiro[2.0.2.0.2.0.2.1]tridecane 472 with 1.05 equiv 4-

nitrobenzenesulfonyl azide in acetonitrile at reflux for 13 hours afforded 

tetraspiro[2.0.2.0.2.1]tridecan-13-one 474 in 81% yield. The corresponding ketone 475 was 

synthesized in 99% yield by reaction of 474 with a 5% potassium hydroxide solution in 

methanol at reflux temperature for one hour. The same ring enlargement sequence was 

applied in the synthesis of [3.3.0]propellanes.
134a,b
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O

1.05 equiv 

4-NO2C6H4SO2N3

MeCN, , 13 h

475 (99%)

5% KOH in MeOH

, 1 h

 

Scheme 130 
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6.2.2 Semipinacol rearrangement  

 

6.2.2.1 Semipinacol rearrangement of diazonium salts derived from 2-
aminoalcohols (Tiffeneau-Demjanov rearrangement) 

 

Cycloalkylmethylamines 476 can undergo ring expansion upon diazotation, affording cyclic 

alcohols 478. This kind of reaction, the conversion of an amino to a diazonium group and 

subsequent ring expansion, is also known as the Demjanov rearrangement (Scheme 

131).
177,178

 

 

476 478

NH2 N2 H2OHNO2
OH

477  

Scheme 131 

 

A semipinacol rearrangement of 6-(aminomethyl)bicyclo[3.2.0]-2-hepten-6-ol 479 has been 

executed using nitrous acid to afford a mixture of bicyclo[3.3.0]octenones 481 and 482 

(85:15) in 55% yield (Scheme 132).
179

 This type of reaction, the conversion of an amino to a 

diazonium group and subsequent carbonyl formation and ring expansion of intermediate 480, 

is also known as the Tiffeneau-Demjanov rearrangement. 
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Scheme 132 

 

6.2.2.2 Semipinacol rearrangement of diazoalkanes 

 

Among the variety of carbocyclic ring expansions of cyclobutanones to cyclopentanones, the 

diazomethane methodology is the most extensively used (Scheme 133).
20,180

 With a few 

exceptions, the rearrangement of the intermediate zwitter ion 483 is highly regioselective and 

only one product is generally isolated, particularly in cases were α-chloro- or α,α-

dichlorocyclobutanones and substituted diazomethanes are used. With unsymmetrical 

cyclobutanones, diazomethane ring expansions tend to favor migration of the less substituted 

α-carbon and disfavor migration of α-positions bearing electronegative halogens. However, 

other factors including steric effects, ring strain, steric hindrance related to the approach of the 

diazomethane, and the conformation of the intermediate betaine can influence the 

regioselectivity of migration, making predictions difficult. Several examples will be described 

in this section. 

483

O CH2N2

O

N2

O

-N2

80 428  

Scheme 133 

 

6.2.2.2.1 Non-halogenated cyclobutanone derivatives 

 

In a first example, hydrindanonecarboxylates 485 have been synthesized using the 

diazoalkane ring expansion method in a highly selective manner (Scheme 134).
181

 

Bicyclo[4.2.0]octanones 484 reacted with 1.5 equiv of boron(III) fluoride etherate and ethyl 
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diazoacetate in diethyl ether at room temperature for three hours to afford 

bicylo[4.3.0]nonanones 485 in 70 to 100% yield. 
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Scheme 134 

 

In research on bicyclooctanes, ring expansion of bicyclo[3.2.0]hept-2-en-6-one 486 using one 

equiv of diazomethane in the presence of 0.5 equiv of lithium perchlorate in diethyl ether at    

-78 °C for ten minutes and subsequently at room temperature for one hour provided a mixture 

of two regioisomers 481 and 482 in a 4:1 ratio (Scheme 135).
182

 The desired 

bicyclo[3.3.0]oct-2-en-6-one 481 was isolated from the mixture in 44% yield. In the absence 

of a Lewis acid, the observed ratio was approximately 3:2. 
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O
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         + rt, 1 h
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O
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Scheme 135 

 

Ring expansion of 11-norprostaglandin 487 (11-nor PGE2) toward methyl 15α-hydroxy-10-

oxoprosta-5,13-dienoate 488 and 11-desoxy PGE2 489 was achieved by treatment with 

diazomethane in a 5:1 diethyl ether/methanol solution at room temperature (Scheme 

136).
183,184

 After chromatographic separation, methyl 15α-hydroxy-10-oxoprosta-5,13-
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dienoate 488 was isolated in 50% yield, together with 11-desoxy PGE2 489 in 25% yield. 

However, this experiment clearly demonstrated that in the case of alkyl substituted 

cyclobutanones the ring enlargement with diazomethane occurred in good chemical yield but 

with poor regioselectivity. 
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Scheme 136 

 

In another approach, an effort has been made to synthesize prostanoids containing an ether 

linkage in the lower side-chain as potent anti-ulcer compounds.
185

 Again, the cyclopentanone 

ring was synthesized via a ring expansion of a suitable cyclobutane precursor. When 

cyclobutanone 490 was treated with diazomethane in ether and methanol at 0-5 °C, a mixture 

of regioisomers 491 and 492 was obtained in low yield (19% 491 and 19% 492), next to 30% 

unreacted starting material 490 (Scheme 137). However, when trimethylsilyldiazomethane 

was used in the presence of BF3·Et2O in dichloromethane at -78 °C, the reaction was 

regioselective, and only isomer 491 was isolated in 52% yield. 
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Scheme 137 

 

Plentiful synthetic routes have been developed toward the preparation of natural products and 

their derivatives employing the cyclobutanone to cyclopentanone ring expansion reactions 

with diazoalkanes.  

In a first example, Greene et al. reported the total synthesis of natural hirsutic acid C 496 

(Scheme 138) through adjustment of a known racemic synthesis (vide infra).
186

 

Cyclobutanone 493 was exposed to 2.1 equiv of ethyl diazoacetate and 0.4 equiv of 

antimony(V) chloride in dichloromethane at -78 °C for two hours to afford a regioselective 

ring expansion, which was followed by deethoxycarbonylation to provide a 98:2 mixture of 

ketones 494 and 495, from which pure 494 was isolated by silica gel chromatography.  
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+
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Capnellene 500, the presumed biosynthetic precursor of the capnellane family of 

nonisoprenoid sesquiterpenes, has received significant synthetic attention due to the cis-anti-

cis tricyclo(6.3.0.0
2,6

)undecane skeletal framework. These compounds also display biological 

effects similar to those of their terrestrial counterparts, hirsutanes, which possess promising 

antibacterial and antitumor properties.
187

 In a total synthesis of racemic capnellene 500, the 

second five-membered ring was formed via a ring rearrangement of 2-

benzyloxybicyclo[3.2.0]heptane-6-one 497.
188

 To induce the required ring expansion, 

compound 497 was treated with ethyl diazoacetate in diethyl ether in the presence of 

boron(III) fluoride etherate at 0 °C and stirred overnight (Scheme 139). The desired ketoester 

498 was formed preferentially along with a small amount of its regioisomer 499 as an 

inseparable mixture in a total yield of 80%. The exact ratio of the two isomers was not 

reported in the article. 
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OCH2Ph H

H
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O
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+
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H

H
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Scheme 139 

 

An alternative synthesis of racemic capnellene was reported by Stille and Grubbs, who used 

the diazomethane ring expansion methodology to synthesize the third five-membered ring of 
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the precursor of capnellene.
189

 The ring expansion was executed via addition of boron(III) 

fluoride etherate and ethyl diazoacetate to cyclobutanone 501 in diethyl ether at -28 °C, 

followed by addition of sodium chloride and dimethylsulfoxide in water at 150 °C (Scheme 

140). However, only a 83:17 ratio of 502 to its regioisomer 503 was obtained. Column 

chromatography afforded cyclopentanone 502 in 73% yield, which could be converted into 

(±)-
(9,12)

-capnellene 500 in one step. A total and selective synthesis of (-)-
(9,12)

-capnellene 

500 and its antipode, based on a ring expansion for the synthesis of the second five-membered 

ring using ethyl diazoacetate in the presence of antimony(V) chloride, has been reported in 

1991.
190

 2,2,5-Trimethylbicyclo[3.2.0]heptan-6-one rearranged via treatment with ethyl 

diazoacetate in the presence of antimony(IV) chloride to yield the corresponding 2,2,5-

trimethylbicyclo[3.3.0]octan-6-one in 85% yield.  
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H

H

O 1) BF3 Et2O, N2CHCO2Et
Et2O, -78 °C

2) NaCl, Me2SO
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H
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+
O
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.

 

Scheme 140 

 

A total synthesis of the marine sesquiterpenes (±)-aplysin 150 (R
1
 = Br, R

2
 = H), (±)-

debromoaplysin 151 (R
1
 = R

2
 = H), (±)-aplysinol 506 (R

1
 = Br, R

2
 = OH), (±)-

debromoaplysinol 507 (R
1
 = H, R

2
 = OH), and (±)-isoaplysin 508 (R

1
 = H, R

2
 = Br), has been 

reported using ethyl diazoacetate for the ring rearrangement.
191

 A first synthesis of aplysin 

was already described previously (Scheme 44), involving a palladium-promoted ring 
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expansion of alkenylcyclobutanols.
72

 Treatment of compounds 504 with 1.5 equiv of ethyl 

diazoacetate in the presence of 1.5 equiv of boron(III) fluoride etherate in diethyl ether at -10 

°C for 30 minutes and subsequently at room temperature for three hours furnished the β-

ketoesters 505 regioselectively in 81-82% yield, which could be converted into the 

appropriate sesquiterpene 150, 151 and 506-508 (Scheme 141). 
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1.5 equiv  BF3 Et2O

Et2O, -10 °C, 30 min 
         to rt, 3 h

.

aplysin 150

R1       R2

Br      H

H       H

Br      OH

H       OH

H       Br
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R2 R2

 

Scheme 141 

 

In research on taxoids, a semipinacol rearrangement using nitrogen gas as a leaving group has 

been used for the synthesis of a 6-pinanone derivative.
192

 Addition of 5 mol% of 

trifluoroacetic acid to diazolactone 509 in dichloromethane at room temperature, and 

treatment of the reaction mixture with 1.5 equiv of tert-butyldimethylsilyl chloride in the 

presence of three equiv of imidazole in dimethylformamide at room temperature afforded 

lactone 511 in 91% yield through rearrangement of intermediate 510 (Scheme 142). 
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Scheme 142 

 

The ring expansion of β-substituted α-methyl-α-methoxycyclobutanones by diazomethane and 

the influence of the β-substituent on the regioselectivity has been studied by Reeder and 

Hegedus (Scheme 143).
193

 β-Substituted 2-methoxy-2-methylcyclobutanones 512 with the α-

methyl group in syn-position with regard to the β-substituent reacted with diazomethane in 

tetrahydrofuran at 0 °C to yield cyclopentanones 513 and 514 in 46 to 92% yield. Migration 

of the less-substituted α-position is favored and electronegative groups suppress migration, 

and thus ring expansion should strongly favor formation of regioisomer 513. Although this 

was indeed the case, the observed ratios of 513 to 514 varied from 100:0 to 30:70 depending 

on the β-substituent. However, the root cause of this influence was unclear.  

 

O

R

OMe CH2N2

THF, 0 °C, 0.5 - 1 h

O

OMe

R

O

R
OMe

+

R = nC4H9, TMSCH2, (CH2)3, 
C6H5, 4-HOC6H4, 4-MeOC6H4,
and several other examples

513:514 (46-92%) 
(100:0 to 30:70)

512 513 514

 

Scheme 143 
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Aminocyclobutanones 515 rearranged to aminocyclopentanones 516 and 517 via a 

diazomethane ring expansion reaction (Scheme 144).
194a

 When cyclobutanones 515 were 

treated with diazomethane, migration of the less substituted carbon predominated toward the 

formation of cyclopentanones 516 in 69 to 77% yield, next to the minor isomers 517 in 16 to 

19% yield.  

In the field of metal-catalyzed allylic substitution reactions, an analogous ring expansion (R
1
, 

R
2
 = Me) has been reported in 2002 where the corresponding cyclopentanone was synthesized 

in 72% yield.
194c
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O
O

O

OPh

Ph

Ph

Ph

516 (69-72%) 517 (16-19%)  

Scheme 144 

 

Structurally challenging pseudohelical hydrocarbons of four-and five-membered rings were 

synthesized by Widjaja et al.
69

 Enantiopure ketone 518 was subjected to diazomethane to 

obtain a 55:45 mixture of ring expanded ketones 519 and 520 in 71% yield, which were 

reduced via a Wolff-Kishner approach to trispirane (S)-521 (Scheme 145). In contrast to 

cyclobutanone 458 (Scheme 126), which could not be converted directly to the corresponding 

cyclopentanone using diazomethane, there were no problems detected for this conversion. 
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MeOH/H2O (6:1)
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O

O
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+

519:520 (71%) (55:45)

2.6 equiv CH2N2

(S)-521 (66%)518  

Scheme 145 

 

6.2.2.2.2 -Chloro- or ,  -dichlorocyclobutanone rearrangements 

 

Although the above-mentioned ring expansions proceeded quite cleanly to afford the 

corresponding cyclopentanones, a low degree of regioselectivity in the migration was 

sometimes observed, especially in cases where unsubstituted diazomethane was used (see for 

example Scheme 136). However, the presence of α-chloro substituent(s) not only accelerates 

the rate of the reaction, but also favors path a over path b (Scheme 146).
195

 α-Chloro and α,α-

dichlorocyclobutanones 522 react faster and more regioselectively in the ring enlargement 

reaction using diazomethane. Epoxide formation is not significant, probably because of the 

strained nature of the four-membered ring,
196

 in spite of the fact that epoxide formation 

generally increases with the introduction of electronegative substituents adjacent to the 

carbonyl.
180 
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In a first example, the racemic aglycon acetate 528 of loganine, a key compound in alkaloid 

biosynthesis, was readily prepared by the diazoethane-induced ring enlargement of α-

chlorocyclobutanone 526. Ring expansion followed by dechlorination afforded bicyclic 

ketone 527 in 72% yield as a synthetic precursor for oxaheterocyclic compound 528 (Scheme 

147).
197
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Scheme 147 

 

In order to validate the synthetic applicability of α,α-dichlorocyclobutanones for the 

preparation of cyclopentanones, Greene and Deprés used α,α-dichlorocyclobutanones 529, 

readily available cycloaddition adducts, for the highly regioselective, one-carbon ring 

expansion reaction with diazomethane to produce the corresponding α,α-

dichlorocyclopentanones 530. Dechlorination with an excess of Zn (one “pot”) afforded 

cyclopentanones 531 in 64 to 82% yield (Scheme 148).
195

 In addition, also the transformation 

of an α,α-dichlorocyclobutanone 529 into an α-methylsubstituted cyclopentanone in 74% 

yield has been reported utilizing diazoethane, followed by addition of an excess of Zn.
195,198 
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R = H, R' = C6H5, C8H17
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Numerous applications of this diazomethane ring enlargement protocol have been used in the 

synthesis of natural products. In the racemic synthesis of (±)-pentalenene 532,
199

 the least 

oxidized neutral precursor of pentalenic acid and of a variety of pentalenolactones, as well as 

the least oxidized neutral triquinane metabolite of Streptomyces griseochromogenes, the 

second five-membered ring was formed in 52% overall yield from a bicyclo[3.2.0]heptanone 

through ring expansion in the presence of diazomethane. Greene et al. reported the synthesis 

of racemic (±)-hirsutene 32 (Figure 6) with iterative three-carbon annelations, for which the 

third ring was introduced regioselectively via dichloroketene addition and subsequent ring 

expansion with diazomethane to form the precursor of (±)-hirsutene 32.
200

 The same authors 

accomplished the total synthesis of racemic (±)-hirsutic acid C 496 (Figure 6) and used 

diazomethane in two ring expansion steps.
201

 

 

pentalenene 532 hirsutene 32

H

H

H

OH

O

H

H

HO2C

hirsutic acid 496  

Figure 6 

 

Furthermore, also in a regioselective synthesis of racemic α-cuparenone 89 and β-cuparenone 

379, the diazomethane ring enlargement protocol has been used successfully.
202,203

 Another 

synthetic approach to α-cuparenone 89 was already described in this review using an acid-

promoted ring rearrangement of a vinylcyclobutanol (Scheme 26).
56

 

 

The regiocontrolled ring expansion of bicyclic cyclobutanones 533 to the corresponding 

bicyclic cyclopentanones 534 (Scheme 149) was achieved using diazomethane in ether. α-
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Methylidene cyclopentanones 535 were obtained via treatment of bicyclic compounds 534 

with tetrabutylammonium fluoride in DMSO in 73 to 96% overall yield.
204
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Scheme 149 

 

Optically active α-chlorocyclopentenones 538 were synthesized in approximately 60% yield 

via asymmetric induction during a cycloaddition reaction of dichloroketene with chiral enol 

ethers 536, followed by ring expansion of the obtained cyclobutanones 537 using 

diazomethane and Cr(ClO4)2 (Scheme 150).
205

 Catalytic hydrogenation in methanol afforded 

(S)-(-)-cyclopentanones 539 in circa 80% yield. 
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Other examples in which the diazomethane ring expansion has been used comprise the 

synthesis of the precursors of 4-oxo-1,2-cyclopentane dipropanoic acids 540, angularly fused 

tricyclopentanoids 541, bicyclic compounds 542 and the macrocycles exaltone 543 and the 

precursor of muscone 544 in quantitative yield, using an excess of diazomethane in diethyl 

ether in the presence of a catalytic amount of  methanol (Figure 7).
206
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Figure 7 

 

Additional illustrations on the use of the diazomethane ring expansion methodology involved 

the synthesis of the precursor of the monoterpene lactone (±)-boonein 545,
207

 of the precursor 

of 7-methoxycyclopenta[a]phenalene 546,
208

 and the precursor of 2-hydroxyazulene 547,
209

  

but also in the synthesis of the cyclopentenone fragment of (-)-dihydrocryptosporiopsin 

548,
210

 and in the key reaction step for an approach to brefeldin A 549 (Figure 8).
211
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Figure 8 

 

This efficient ring expansion has also been used for the synthesis of novel compounds, as 

illustrated in Figure 9. The diazomethane ring expansion approach was used in the synthesis 

of cis-syn-cis-anti tetraquinanedione 550 in 62% yield as part of experiments in pursuit of 

pentagonal dodecahedrane.
212

 In similar research on polyquinanes, Mehta et al. reported the 

synthesis of a structurally interesting half-cage polyquinane 551 in 60% yield via 

diazomethane ring rearrangement of the appropriate cyclobutanone precursor.
213

 In research 

on linked donor-acceptor systems designed to test the effect of bridge configuration on the 

dynamics of long-range intramolecular electron transfer processes, polycycle 552 was 

synthesized as single regioisomer in nearly quantitative yield from its precursor,
214

 while 

adamantane derivative 553 was synthesized in 90% yield from the corresponding α,α-

dichlorobutanone.
215

 5α-Cholestane-3-spirocyclopentanone 554 was synthesized in 97% yield 

from the precursor 5α-2‟,2‟-dichlorospiro[cholestane-3,1‟-cyclobutan]-3‟-one via the 

described diazomethane ring enlargement.
216
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The preparation of conformationally restricted analogues of glutamic acid (both 

diastereomers), e.g. proline derivative 558, from endocyclic enecarbamates proceeded through 

oxidative cleavage of bicyclic compound 557, obtained via ring expansion of the 

corresponding 2-aza-7,7-dichlorobicyclo[3.2.0]heptan-6-one 556 (Scheme 151).
217

 The 

starting cyclobutanone 556 was synthesized by [2+2]-cycloaddition of dichloroketene to a 

five-membered endocyclic enecarbamate. Ring expansion utilizing 1.5 equiv of diazomethane 

in the presence of methanol (3%) gave dichlorocyclopentanone 557 in 80% yield.  
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Scheme 151 

 

In a final example, the cycloadduct 559, when reacted with four equiv of diazomethane in 

methanol and diethyl ether, gave a mixture of two stereoisomers, i.e. tricarbonyl[(2,3,4,5-η)-
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10-exo-chlorobicyclo[5.3.0]deca-2,4-dien-9-one]iron exo-560 and 10-endo-chloro derivative 

endo-560 in 30% and 19% yield, respectively (Scheme 152).
209b
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6.3 An activated nitro group as leaving group  

 

The nitro group, when connected to a carbon atom bearing carbenium ion stabilizing 

substituents, has been reported to act as a leaving group in the presence of Lewis acids.
218

 

(Phenylthio)nitromethane was applied as a useful one carbon and α-heteroatom source in the 

ring expansion of cyclic ketones (Scheme 153).
219

 Treatment of cyclobutanones 561 with the 

dianion of (phenylthio)nitromethane 562 at -80 °C afforded cyclobutanols 563 in 78 to 85% 

yield. The rearrangement proceeded upon treatment with two equiv of aluminium(III) 

chloride in dichloromethane at 0 °C for 30 minutes to produce ring expanded α-phenylthio 

ketones 564 in 66 to 74% yield. 
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6.4  An activated hydroxy group as leaving group 

 

In this section, cyclopenta(e)ne and cyclopenta(e)none synthesis is described, starting from 1-

(hydroxymethyl)cyclobutane or 1-(hydroxymethyl)cyclobutanol derivatives. Several methods 

are discussed in the next paragraphs. 

 

6.4.1 Cyclopentane/Cyclopentene synthesis 

 

The first reaction described here comprises the classical and basic example of this type of ring 

expansions. In an attempt to prepare cyclobutylmethyl bromide, and not the rearranged 

product, cyclobutylcarbinol 565 was treated with 0.4 equiv of phosphorus(III) bromide 

without solvent.
220

 The method of Bartleson, Burk and Lankelma
221

 was chosen by the 

authors because it would be less likely to lead to rearrangement than for example by the use of 

hydrogen bromide.
222

 However, a combined yield of 72% was obtained for a 56:44 mixture of 

cyclopentyl bromide 566 and cyclobutylmethyl bromide 567, respectively (Scheme 154).  

 

OH BrBr
+

566:567 (72%) (56:44)

0.4 equiv PBr3

-10 °C, 7 h 
-78 °C to rt, 36 h  
rt, 10 d565  

Scheme 154 

 

Cationic rearrangement of homocubane carbinols 568 to bridgehead 1,3-bishomocubane 

alcohols 570 was executed via treatment with an excess of thionyl chloride or phosphorus(III) 

bromide.
223

 Both reactions, performed at room temperature for 16 hours or two days, 

respectively, gave mixtures of the rearranged halocubane 569 and hydroxycubane 570 
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(Scheme 155). Again, the driving force in this ring expansion was the relief of strain leading 

to the 1,3-bishomocubane cage systems by selective bond migration in the homocubane 

skeleton. Isomeric 1,4-bishomocubane derivatives were not observed. 
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Scheme 155 

 

In a synthesis toward racemic (±)-quadrone 298, the first bicyclic five-membered ring in the 

precursor 6,6-dimethyl-1-(2-propynyl)bicyclo[3.2.1]octan-8-ol 572 was synthesized in 77% 

yield using an acid-catalyzed ring expansion of 7,7-dimethyl-2-(2-propynyl)-cis-

bicyclo[4.2.0]octan-2-ol 571 with 90% formic acid at reflux temperature for 30 minutes 

(Scheme 156).
224
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Scheme 156 

 

Next to formic acid, acetic acid has also been used as a promoter for the rearrangement of 

cyclobutylmethyl carbenium ions. When 1-(1-hydroxyethyl)-1-alkylcyclobutanes 573 were 

treated with 0.02 equiv of iodine in acetic acid at reflux for three hours, the corresponding 1-



 120 

alkyl-2-methylcyclopentenes 574 were obtained in 80 to 89% yield, as precursors for 1,5-

diketones 575 (Scheme 157).
225
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Scheme 157 

 

In a study on base-induced proton tautomerism in the primary photocyclization product of 

stilbene, the starting compounds 1,2-diphenylcyclopentenes 577 were synthesized by means 

of ring enlargements of cyclobutyldiphenylcarbinols 576.
226

 Rearrangement was effective in 

40-75% yield upon reaction of cyclobutyl carbinols 576 in 98-100% formic acid at reflux for 

eight hours (Scheme 158).
227
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Scheme 158 

 

In another approach, solvolytic trifluoroacetic acid-catalyzed rearrangement of 

bicyclo[3.2.0]heptan-2-ols 578 has been reported to afford 7-hydroxynorbonane derivatives 

579.
228

 The exo-isomer 579 was mainly formed by heating the starting products 578 in 90% 

trifluoroacetic acid at reflux temperature for two to three hours in 64 to 85% yield (maximum 

17% of endo-isomer, ratio 83-98:2-17) (Scheme 159).  
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Scheme 159 

 

Other 7-hydroxynorbonane derivatives 579 have been synthesized by the same authors as 

single epimeric alcohols in 43 to 47% yield by reaction of bicyclo[3.2.0]heptan-2-ols 578 in a 

mixture of tetrahydrofuran and 40% sulfuric acid at 0 °C, followed by stirring for 16 hours at 

ambient temperature (Scheme 160).
228
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Within the study on the synthesis of naturally occurring sesquiterpenes via rearrangement 

reactions, the conversion of dispiro[2.1.3.3]undecane 580 was achieved via three reaction 

pathways (Scheme 161),
229

 i.e. (i) treatment of 580 with 0.01 equiv of silver tetrafluoroborate 

in dichloromethane for 30 minutes (path a), (ii) treatment with 3.6 equiv of formic acid in 

pentane for two hours (path b), and (iii) treatment with 3.6 equiv of trifluoroacetic acid for 30 

minutes (path c). All reactions were executed at room temperature. Quantitative conversion 

into the bicyclic system 582 (path a) and 587 (path c), and preponderant conversion into the 

tricyclic compound 585 (path b) in 67% yield were observed. The formation of these three 

compounds was initiated by protonation and dehydration of carbinol 580, followed by 
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expansion of the four-membered ring. The carbenium ion 581 thus formed, rearranged further 

to carbenium ions 583, 584 and 586 and thereby not only accounted for the formation of 582, 

but also for 585 and 587. An initial enlargement of the three-membered ring, which would 

have opened a way to synthesize 592, was excluded since neither compound 592, nor any 

product derived from carbenium ions 588, 589, 590 or 591 was detected. This was explained 

both by a more favorable alignment of the cyclobutane bond with respect to the neighbouring 

cationic centre
230

 and by the greater thermodynamic advantage associated with C4-C5 as to C3-

C4 ring enlargements.
231

 

 

OH

a) 0.01 equiv AgBF4, CH2Cl2, rt, 30 min
b) 3.6 equiv HCO2H, pentane, rt, 2 h
c) 3.6 equiv CF3CO2H, CHCl3, rt, 30 min

OCHO
R

592

588 589 590 591

581 583 584

R = (CH2)2OCOCF3

580

585 (67%)582 (100%)

586

587 (100%)

a b c

 

Scheme 161 

 

Among other cascade cationic reactions, also reported by Fitjer‟s group, a synthesis of (±)-

modhephene 410 and its enantiomer (±)-epimodhephene was executed from the epimeric 
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dispiroundecanols 593 (Scheme 162).
134d,232

 The rearrangements were initiated by treatment 

with equimolar amounts of anhydrous p-toluenesulfonic acid in benzene at 70 °C. After 20 

minutes, alcohol 593 was completely consumed and rearranged into 65% (±)-modhephene 

410 and 34% triquinane 598. The synthesis of (±)-epimodhephene was accomplished starting 

from the enantiomer of dispiroundecanol 593 to give 65% of (±)-epimodhephene and 35% of 

the corresponding triquinane. 

 

593

HO

596

598 (34%)597

594

595

C6H6, 70 °C, 20 min

1 equiv pTsOH

modhephene 410
(65%)

 

Scheme 162  

 

Another p-toluenesulfonic acid-catalyzed rearrangement, starting from 1-

methylcyclobutylmethanols, has also been reported by Mandelt and Fitjer (Scheme 163).
233

 

Quantitative rearrangements were observed when compounds 599 were reacted with 

equimolar amounts of p-toluenesulfonic acid in benzene at 70 °C for three hours. With the 

exception of alcohol 601 (n = 1, 10% yield) and bicycle 602 (n = 2, 7% yield), only 

hydrocarbons 600 and 603 were formed in a high yield of 90-100%. In all cases, the product 

formation involved a cyclobutylmethyl to cyclopentyl rearrangement, eventually followed by 

a second cyclobutylmethyl to cyclopentyl rearrangement (600 and 601), a cyclopentylmethyl 

to cyclohexyl rearrangement (602), or a 1,2-methyl shift (606). Of the products formed, 605 
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(R = p-tolyl) has been used in the synthesis of (±)-laurene 142,
234a

 606 (R = p-tolyl) in the 

synthesis of (±)-cuparene
234b

 and 605 (R = m-tolyl) for (±)-herbertene.
234c 

These
 

cyclopentenes 605 were produced in a much higher yield (96-97%) when 1-

methylcyclobutylmethanols 604 were treated with hydrochloric acid in methanol at reflux 

temperature for two hours (method B). 
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1 equiv pTsOH

OH

+ +

600 (90-93%) 601 (10%) 602 (7%)

n = 1
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1 equiv pTsOH

603 (100%)n = 3
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R

OH
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A: 605 (24-45%)
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R

R = p-tolyl, m-tolyl

+ R

606 (55-76%)
606 (3-4%)

method A: 1 equiv pTsOH, C6H6, 70 °C, 3 h

method B: aq. HCl/MeOH, , 2 h

C6H6, 70 °C, 3 h

C6H6, 70 °C, 3 h

OH

n

n = 1,2

n = 2

n nn

OH

n
n

605 606

 

Scheme 163 

 

A final example of a cationic cascade reaction of this type of rearrangements included the 

five-fold cyclobutylmethyl to cyclopentyl rearrangement of pentaspirohenicosanol 607 to the 

all-cis annelated precursor 608 of [6.5]coronane (Scheme 164).
235

 The reaction was 

speculated to proceed with conformational control, starting from an initially formed 

chlorosulfite. When pentaspirohenicosanol 607 was treated with five equiv of thionyl chloride 

in pyridine, the corresponding hexacyclohenicos-16-ene 608 was obtained in 83% yield. 
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OH

5 equiv SOCl2

py, 0 °C, 15 min

607 608 (83%)  

Scheme 164 

 

When an incipient primary carbenium ion centre is generated adjacent to an alicyclic ring, the 

latter is prone to undergo ring expansion. This principle has been used by Olah and co-

workers.
136

 A ring enlargement of cyclobutylmethyl alcohol 609 via treatment with a mixture 

of two equiv of sodium borohydride and 12 equiv of triflic acid in diethyl ether afforded 

cyclopentane 317 in 96% yield (Scheme 165). This approach comprised an alternative route 

for the synthesis of cyclopentane 317 starting from cyclobutanecarboxylic acid 316, which 

was ring expanded applying the same reaction conditions (Scheme 90), also in 96% yield. 

 

OH

609 317 (96%)

2 equiv NaBH4
12 equiv TfOH

Et2O, -78 °C to rt
 

Scheme 165 

 

Venkateswaran et al. have developed an acid- or Lewis acid-catalyzed rearrangement of a 

methylcyclobutane unit attached to chromanol to three different types of five-membered ring 

systems, i.e. cyclopentanones, cyclopentenes or cyclopentanes. According to the substitution 

pattern, as well as the solvent and acid, the authors described the outcome of the reaction as 

predictable.
236

 In the synthesis of the carbocyclic framework of the marine natural product 

aplysin,
72a

 a rearrangement of tricyclic alcohol 610 via an incipient trichothecane-like cationic 

intermediate 611 has been reported.
236a

 Treatment of cyclobutachromanol 610 with p-
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toluenesulfonic acid in benzene at reflux temperature led to a mixture of p-toluenesulfonates 

613 in 70% yield via migration of an external bond, followed by an aryl migration (Scheme 

166). The oxidation of this mixture afforded the tricyclic compound 614 as the skeleton of 

aplysin 150. 

 

610

p-TsOH

C6H6, , 3 h
O

OH

O O

Br

O

aplysin 150

OO

611 612

614 613 (70%)

O

(ox)

OTs

 

Scheme 166 

 

In analogous research by the same group, rearrangement of cyclobutachromanol 615 proved 

to be predictable by choice of the catalyst and solvent.
236b

 Treatment of this carbinol 615 with 

boron(III) fluoride etherate in benzene, petroleum ether or nitromethane gave mixtures of two 

different ring expanded products 616 and 617. When a catalytic amount of boron(III) fluoride 

etherate in nitroethane at -78 °C was used, the desired precursor 616 of debromoaplysin 151 

was obtained in 82% yield (Scheme 167). 
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615

O

HO

O O

616 (82%) 617

cat. BF3 OEt2

+
EtNO2, -78 °C, 1 h

O

debromoaplysin 151

.

 

Scheme 167 

 

A last example of the acid-catalyzed rearrangement of (hydroxymethyl)cyclobutane 

derivatives involved the ring expansion of alcohols 618.
237

 When these carbinols 618 were 

treated with 0.7 equiv of ZnBr2 in 48% aqueous hydrogen bromide at 0 °C for three hours, the 

corresponding norbornanes 619 were obtained in 57 to 58% yield (Scheme 168). Due to the 

retention of the stereocentres at C-1 and C-7, the rearrangement of 618 led to the CS-

symmetrical annelated norbornane derivatives 619. 

 

H

H

H 0.7 equiv ZnBr2
48% aq. HBr

H2O, 0 °C, 3 h

619 (57-58%)

HO

n

Br
H

n

H

H

618
n = 1,2

 

Scheme 168 

 

6.4.2 Pinacol rearrangement (cyclopentanone synthesis) 
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Since the pinacol rearrangement involves the formation of a carbenium ion, starting from a 

fully substituted 1,2-diol, followed by a 1,2-alkyl shift, this methodology has been applied for 

cyclobutylmethylcarbenium to cyclopentylcarbenium ion rearrangements as well. 

 

For example, the rearrangement of monosilylated pinacols 620, controlled by the presence of 

an acyl group adjacent to the diol moiety, has been reported to give 1,3-cyclopentanediones 

622 in 87 to 97% yield upon treatment with trifluoroacetic acid (Scheme 169).
238

 Exact 

reaction conditions were not given by the authors, except for a reaction temperature of 30 °C.  

 

622 (87-97%)620

O

O

R

R'

R = Ph, nC9H19; R' = H
R, R' = Et, Et

R-R' = (CH2)5, (CH2)11,

O

Me3SiO
OH

R

R'

CF3CO2H

 30 °C

621

O

O
RH

R'

 

Scheme 169 

 

In the study on the synthesis of ferrocenes, a pinacol rearrangement of 

(hydroxymesityl)cyclobutanone 623 was executed via treatment with 1.2 equiv of 

trifluoroacetic acid at room temperature for one hour, affording the corresponding ring 

expanded product 624 in 42% yield (Scheme 170).
239

 The latter compounds served as 

substrates for the preparation of iron complex 625. 
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OH

O
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1.2 equiv 
CF3CO2HOO

OH

SiMe3

623

624 (42%)

O

O

Fe

625  

Scheme 170 

 

In analogy with sesquiterpene syntheses described in the previous section, a synthesis toward 

filiformin 152 by means of a semipinacol rearrangement has been reported.
240

 The 

rearrangement of diols 626 resulted in the bridged ketones 627 in 81-90% yield by treatment 

with a catalytic amount of BF3·Et2O in benzene at room temperature for one hour (Scheme 

171). In all cases, only isomer 627 was formed, arising from the exclusive migration of the 

external bond.
240a

 Also two other methods were described, i.e. addition of a catalytic amount 

of BF3·Et2O or H2SO4 in petroleum ether at -78 °C for one hour, or addition of a catalytic 

amount of BF3·Et2O or H2SO4 in nitroethane at -78 °C for 30 minutes, however without 

mentioning the yields of the obtained ketone.
240b 

An analogous reaction has been reported in 

the synthesis of heliannuol D 628, a phenolic sesquiterpene isolated from the sun flower 

Helianthus annus (Figure 10).
241

 

 

627 (81-90%)626

O

HO
OH

R1 OR1
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O

O
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R2
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.

 

Scheme 171 
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heliannuol D 628

HO

O

OH

 

Figure 10 

 

In an alternative approach, spiroannelated cyclopentanones have been synthesized using 

cyclobutyl phenyl sulfides.
242

 Treatment of β-hydroxy sulfides 629 with tin(IV) chloride in 

dichloromethane for 15 minutes at 0 °C and five minutes at room temperature afforded the 

corresponding cyclopentanones 630 in 7 to 84% yield (Scheme 172). Cyclohexanones, 

cycloheptanones, cyclooctanones and acyclic ketones were shown to be well suited for the 

spiroannelation, but cyclobutanones (R
1
-R

2
 = (CH2)3) and cyclopentanones (R

1
-R

2
 = (CH2)3) 

were not. 

 

629

R2

OH
R1PhS

O

R1

R2

SnCl4, CH2Cl2

0 °C, 15 min to rt, 5 min

R1, R2 = iC3H7

R1-R2 = (CH2)3-6, 

             (CH2)2-CH(tBu)-(CH2)2

630 (7-10%)

630 (65-84%)

 

Scheme 172 

 

Pinacol derivatives have also been prepared via Grignard addition across carbonyl 

compounds. For example, the synthesis of α,α-dialkylcyclopentanones was achieved via 

Brǿnsted and Lewis acid induced ring expansions of 1-hydroxycarbinols 632 and 636.
243

 The 

ring expansion step was executed via treatment of diols 632 and 636 with a catalytic amount 
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of trifluoroacetic acid in dichloromethane at room temperature or reflux temperature to afford 

α,α-dialkylcyclopentanones 633 in 92 to 96.5% yield and α,α-dialkylcyclopentanones 637 in 

89 to 98% yield, respectively (Scheme 173). The required 1,2-diols were prepared via 

Grignard addition across ester 631 or nitrile 634. 
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Scheme 173 

 

Finally, a pinacol-type rearrangement has been used in the synthesis of cyclopentanediones. 

Thus, 4,4-dimethyl-1,3-cyclopentanediones 639 were prepared from 2-alkyl-2-hydroxy-4,4-

dimethylcyclobutanones 638, which were generated from open-chain or cyclic ketones by 

boron halide-mediated aldol reactions.
244

 The ring rearrangement was realized by means of 

trifluoroacetic acid at room temperature for 24 hours to afford 2-alkyl- or 2-aryl-2-methyl-1,3-

cyclopentanediones 639 in 47 to 83% yield (Scheme 174) and spiro-1,3-cyclopentanediones 

639 in 46 to 98% yield. In comparison with the method depicted in Scheme 169,
238

 no 

silylation of the hydroxy group was used, but lower yields were obtained. 
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             and other examples

639 (46-98%)

 

Scheme 174 

 

6.4.3 A mesyloxy group as leaving group  

 

A convenient way to enhance the leaving group ability of a hydroxy moiety comprises its 

transformation into a sulfonyloxy group. The most frequently applied methods in that respect 

involve the use of a mesyloxy or a tosyloxy group (vide infra). 

 

Tricyclic cyclobutanols 640 with a four-membered ring located in the middle of the 

framework have been shown to be useful precursors toward bisannelated cyclopenta- or 

cyclopentenones.
245

 To this end, tricyclic compounds 640 were treated with 1.2 equiv of 

mesyl chloride in dichloromethane (Scheme 175). The monomesylated diol was then 

subjected to a ring enlargement reaction of the intermediate carbenium ion, generated by 

means of a base. Two different amines were evaluated as bases. The first method involved 

addition of 100 equiv of pyridine at 44 °C for five to 40 hours, while in a second method two 

equiv of triethylamine at 42 °C were applied for three to 72 hours. Both methods were used 

for the synthesis of the corresponding polycyclic cyclopentanones 641 in 0-100% yield and 

polycyclic cyclopentenones 642 in 0-70% yield. 
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Scheme 175 

 

In an attempt to transform the secondary alcohol 643 into a methanesulfonate to produce the 

elimination product 644 as a precursor of the pheromone grandisol or its trans-isomer 

fraganol, the rearranged cyclopentene 646 was obtained as the sole product (Scheme 176).
246

 

Treatment of cyclobutane 643 with two equiv of methanesulfonyl chloride in pyridine at 40 

°C for three hours afforded cyclopentene 646 in 75% yield. 
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Scheme 176 

 

In another example, efforts have been made toward the construction of the 

bicyclo[3.2.1]octane skeleton, found in kaurenoids and gibberellins. In this work, the 

methylenecyclobutane annelated mesyloxydecalin 647a was rearranged applying 1.2 equiv of 

methylaluminium dichloride in dichloromethane at -78 °C (Scheme 177).
247

 The Lewis acid-

catalyzed ring expansion reaction proceeded in 91% yield within five minutes, affording the 



 134 

annelated bicyclo[3.2.1]octane 648. However, when epimer 647b was treated with 1.1 equiv 

of diethylaluminium bromide in dichloromethane at -78 °C for five minutes, allylbromide 649 

was isolated in 91% yield instead of the corresponding annelated bicyclo[3.2.1]octane. 

 

H

OMs

1.2 equiv MeAlCl2

CH2Cl2, -78 °C, 5 min

H

Cl
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H
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1.1 equiv Et2AlBr
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Scheme 177 

 

6.4.4 A tosyloxy group as leaving group  

 

A first example involved the solvolysis of bicyclo[4.2.0]octane-1-methyl p-toluenesulfonate 

650 (Scheme 178).
248

 The rearrangement proceeded exclusively to the bicyclo[4.2.1]nonyl 

system by treatment with acetic acid and sodium acetate at 61 °C for six hours, giving 90% of 

1-bicyclo[4.2.1]nonyl acetate 651 and 10% of 1-bicyclo[4.2.1]nonyl p-toluenesulfonate 652. 

 

651 (90%)650

OTs OAc

652 (10%)

OTs

+

HOAc, NaOAc

61 °C, 6 h

 

Scheme 178 
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A much less pronounced tendency toward ring expansion has been observed in the acetolysis 

of cyclobutylcarbinyl p-bromobenzenesulfonate 653 (R = MeO), affording the corresponding 

1-(4-methoxyphenyl)cyclopentene 655 in only 10% as the minor component, next to 90% of 

1-(4-methoxybenzyl)cyclobutyl acetate 654 (Scheme 179),
249

 according to a Wagner-

Meerwein rearrangement of the initially formed primary carbenium ion to a tertiary 

carbenium ion. Acetolysis of other derivatives (R = H, NO2) did not yield any corresponding 

cyclopentene, and instead benzalcyclobutanes 656 were obtained in 92-100% yield. 
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Scheme 179 

 

On the other hand, acetolysis studies of bicyclo[3.2.0]hept-2-yls revealed stereospecific ring 

rearrangements.
250

 For example, treatment of anti-tricyclo[5.2.0.0
2,5

]non-6-yl tosylate 657 

with an acetate buffer of HOAc and NaOAc in a sealed tube at 25 °C for 42 hours afforded 

ring expansion to a mixture of compounds 658 and 659 in 66% and 20% yield, respectively 

(Scheme 180). 
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AcO
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Scheme 180 

 

Furthermore, ring rearrangements of [n.3.2]propellane tosylates have been achieved in the 

same manner.
251

 When endo-[n.3.2]propellane tosylates 660 were subjected to acetolysis, the 

corresponding rearranged olefins 662 were obtained in 39-68% yield, next to the unrearranged 

alcohols 663 in 20-44% and a small amount of the rearranged alcohols 664 in 3-9% yield 

(Scheme 181). This transformation was believed to proceed through carbenium ion 

intermediate 661. 
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Scheme 181 

 

As a key step in the synthesis of tricyclo[6.4.0.0
2,6

]dodecane skeletons (6-5-5 ring systems), 

solvolysis of 665 sodium formate in formic acid afforded a mixture of enone 666 and the 

bridged formate 667 in a 64:36 ratio (Scheme 182). From this mixture, the desired tricyclic 

compound 666 was isolated in 59% yield and the bridged formate 667 in 19% yield.
252
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Scheme 182 

 

The same authors prepared tricyclo[6.3.0.0
2,6

]undecane skeletons as well, also called linear 

triquinane systems.
252

 Upon solvolysis with sodium formate in formic acid or trifluoroacetic 

acid and sodium acetate, sulfonates 668 were converted into enones 669 and sulfonates 670 in 

a 1:2 ratio, and in 25-28% and 57-59% yield, respectively (Scheme 183).  
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Scheme 183 

 

Finally, when cis-cyclobutane derivative 671 was heated in ethanol at 80 °C for seven days, a 

mixture of cyclobutane 672 (substitution product) and ring expanded cyclopentane 673 was 

obtained in a low yield of 18% and in a ratio of 5:4 (Scheme 184).
253
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Scheme 184 
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6.5 An ether moiety as leaving group 

 

6.5.1 An alkoxy or aryloxy group as leaving group 

 

In principle, also an alkoxy or aryloxy group can be modified into a good leaving group upon 

treatment with a Lewis acid or a strong acid, enabling analogous ring transformations as 

compared to these starting from cyclobutylmethyl alcohols. 

 

Treatment of monosilylated cyclobutane-1,2-diol derivatives 674 with one equiv of tin(IV) 

chloride at 0 °C for 15 minutes led to the formation of the corresponding β-

hydroxycyclopentanones 676 as the major isomers in 55-81% yield and α-

hydroxycyclopentanones 678 as the minor isomers in 0-22% yield (Scheme 185).
254

 Only one 

derivative 674 (R = H, R
1
-R

2
 = (CH2)5) was ring expanded toward exclusively β-

hydroxycyclopentanone 676 in 81% yield. The proposed mechanism involved initial 

formation of carbenium ion 675 under the influence of the Lewis acid. The ring opening 

reaction of the cyclobutane ring of 675 resulted in another oxygen-stabilized carbenium ion, 

i.e. oxonium ion 677, which was trapped by the internally formed silyl enol ether moiety to 

yield 676 as the major isomer. The minor isomer 678 was formed through a pinacol type 

rearrangement. 
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Scheme 185 

 

In the total synthesis of the hydroazulenic sesquiterpene β-bulnesene 681, precursor 680 was 

prepared via a pinacol-type rearrangement approach.
255

 Addition of 2.5 equiv of p-

toluenesulfonic acid monohydrate to cyclobutanone 679 in benzene at reflux for four hours 

afforded 2-(3-methyl-4-pentenyl)-1,3-cyclopentanedione 680 in 53% yield (Scheme 186). 

Again, the presence of an acyl group, adjacent to the diol moiety, controlled the 

rearrangement. 

 

2.5 equiv pTsOH
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Scheme 186 

 

Also other reagents have been used for the synthesis of 1,3-cycloalkadiones.
256

 For example, 

treatment of 2-hydroxy-2-(methoxymethyl)cyclobutanone 682 with 0.2 equiv of potassium 
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hydrogen sulfate at 170-180 °C under reduced pressure (20-25 mmHg) formed the ring 

expanded 1,3-cyclopentanedione 683 in 75% yield (Scheme 187). 

 

682 683 (75%)

O
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0.2 equiv KHSO4
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Scheme 187 

 

As an extension of the synthesis of dicyclopentane-1,3-diones, different cyclobutanones have 

been treated with trifluoroacetic acid.
238a,257 

Attached directly to the diol moiety, the 

cyclobutanone ring was expected to exert directive effects in the cationic rearrangements. 

When cyclobutanones 684 were treated with an excess of trifluoroacetic acid at 25 °C to 

reflux temperature for one to 20 hours, depending on the substrate, the corresponding 2-alkyl-

3-hydroxy- or 2-aryl-3-hydroxy-2-cyclopentenones 685 were obtained in 78 to 97% yield 

(Scheme 188). p-Toluenesulfonic acid and boron(III) fluoride etherate were also found to be 

effective for this ring expansion. 
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R1 = Ph, nC5H11, nC9H19

O

Me3SiO
OR

excess CF3CO2H

 25 °C- , 1-20 h

R1 R1

 

Scheme 188 
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However, when cyclobutanones 686, having an extra substituent at the α-carbon of the ether, 

were treated with an excess of trifluoroacetic acid under the same conditions, 2,2-diethyl-1,3-

cyclopentadione or spiro-1,3-cyclopentadiones 622 were isolated in 87 to 94% yield (Scheme 

189). Again, different acids or Lewis acids could be used, but an excess of trifluoroacetic acid 

was chosen for the sake of easy workup (vide supra). 

 

622 (87-94%)686

O

O

R1

R2

R = Me, Et; R1,R2 = Et, Et 

R1-R2 = (CH2)5, (CH2)11

O

Me3SiO
OR

R1

R2
excess CF3CO2H

 25 °C- , 1-20 h

 

Scheme 189 

 

In an effort to synthesize 2-methyl-, 2-ethyl- and 2-isopropyl-1,3-cyclopentadiones 688 the 

procedure of Nakamura and Kuwajima
238a

 has been applied to silylated 2-

hydroxycyclobutanones 687.
258

 Suprisingly, none of the expected products was obtained. 

Application of an additional acidic co-catalyst, i.e. Nafion-H, a sulfonated tetrafluoroethylene 

based polymer, which was reported to give high yields in pinacol rearrangements proved to be 

successful.
259

 When Nafion-H was added to a solution of 687 in trifluoroacetic acid, followed 

by heating at 85 °C for ten hours, the corresponding 2-alkyl-1,3-cyclopentadiones 688 were 

obtained in 42-70% yield (Scheme 190). 

 

687 688 (42-70%)

O

O

R
Nafion-H

CF3CO2H, 85 °C, 10 h

R = Me, Et, iPr
O

Me3SiO

R

OEt

 

Scheme 190 
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Lewis acid-mediated reactions of 1,2-bis(trimethylsilyloxy)cyclobutene with acetals, followed 

by treatment with Amberlyst 15 resin in trifluoroacetic acid, have been reported to yield 1,3-

cyclopentanediones.
260

 This type of rearrangement had already been investigated before by 

Kuwajima et al. and Rao et al.
257,258

 Now, the authors stated that addition of Amberlyst 15 

resin to cyclobutanones 690 in trifluoroacetic acid afforded 1,3-cyclopentanediones, occurring 

mainly in the enolized form 691, in 49-87% yield (Scheme 191). 

 

R

O

OH

R = CH3,CH3(CH2)8, cHex, 
C6H5, CH2(CH)2C6H5, 
CH(CH3)(CH2)3CH(CH3)CH2CH3

691 (49-87%)

O

HO

R

OEt
Amberlyst 15

CF3CO2H
D, 10 h

690

OTMS

OTMS

RCH(OEt)2

689

.BF3 Et2O

 

Scheme 191 

 

In analogy, treatment of cyclobutene 692 with diethyl acetals afforded cyclobutanones 693 

and a small fraction of 694 under the acidic conditions of the reaction.
260

 However, when 

gem-dimethyl cyclobutanones 693 and 694 were treated with Amberlyst 15 resin, no 1,3-

diketone was formed, but instead enols of 1,2-diketones 695 were obtained in 39-54% yield 

(Scheme 192). 

 

CF3CO2H, , 10 h

OH

O

R

695 (39-54%)

O

HO

R

OEt
Amberlyst 15

694

OTMS

OTMS

RCH(OEt)2

692

R = CH3, CH3(CH2)8, C6H5, cHex,
       CH(CH3)(CH2)3CH(CH3)CH2CH3

O

HO

R

OEt

693

+.BF3 Et2O
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Scheme 192 

 

The preparation of α-aryl- and α-vinylcyclopentenones has been achieved via two approaches. 

In a first method, silylated α-methylidenecyclobutanols 696 were treated with an excess of 

trifluoroacetic acid at room temperature for 30 min to 12 hours to afford the corresponding 3-

methyl-2-cyclopentenones 698 in 80-97% yield (Scheme 193).
261

 The second route involved 

tin(IV) chloride treatment of silylated 1,2-cyclobutanediol 699 for the preparation of enones 

700 (Scheme 193). Substrates 696 and 699 were prepared from 1,2-

bis(trimethylsilyloxy)cyclobutene 689. 

 

R = CH=CHnPr, 
      CH=CHC6H5,
      4-MeC6H4, C6H5, 4-ClC6H4

Me3SiO

R

OMe SnCl4

CH2Cl2, 0 °C

O

R

O

R

699

698 (80-97%)697

Me3SiO

R

OMe

696

SiMe3

O

R

700 (50%)R = CH=CHnPr

excess CF3CO2H

rt, 30 min - 12 h

OSiMe3

OSiMe3

+ RCH(OMe)2

689

 

Scheme 193 

 

In the course of the total synthesis of (±)-retigeranic acid 704, the last five-membered ring 

was constructed via ring enlargement of the corresponding cyclobutanone, using an activated 

methoxygroup as a promoter for this ring expansion.
262

 Treatment of ketone 701 with 1.5 

equiv of the lithio derivative of acetaldehyde dimethylmonothioacetal in tetrahydrofuran at -

78 °C formed the corresponding carbonyl adduct in 73% via rearrangement of intermediate 

702 utilizing three equiv of cuprous triflate in the presence of 1.5 equiv of triethylamine in 
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benzene at 23 °C for ten minutes (Scheme 194). No yield was mentioned for this step, and the 

crude compound 703 was used in the next reactions toward retigeranic acid 704.  

 

H

O H

O

CO2H

H
H

retigeranic acid 704

701 703

SMe

OMe

2) 3 equiv CF3SO3Cu
   1.5 equiv Et3N
   C6H6, 23 °C, 10 min

1) 1.5 equiv 

    1.5 equiv nBuLi, THF, -78 °C
SMe

O

OMe

SMe
702

  

Scheme 194 

 

Within the field of polycyclic aromatic hydrocarbon chemistry, attempts to isolate anthracene 

adduct 708, produced via an acid-catalyzed rearrangement, failed and instead, when heating 

cyclobutanone 705 in trifluoroacetic acid for 15 minutes, an equimolar mixture of anthracene 

709 and 9,10-disubstituted anthracene 711 was isolated (Scheme 195).
263

 At room 

temperature, consumption of substrate 705 took about two hours, but again only anthracene 

709 and 711 were obtained. As expected, the pinacol rearrangement of 705 to 708 occurred, 

but the spirodiketone 708 was not stable under these conditions. Acid-catalyzed retro-Diels 

Alder fragmentation produced anthracene 709 and 2-methylene-1,3-cyclopentanedione 710. 

Acceleration of the Diels Alder cycloaddition by acid-catalysis is well-known.
264

 The two-

fold electrophilic substitution of 710 on the cognate anthracene nucleus led to 711, and the 

overall stoichiometry of the process provided for a molar equivalent of anthracene. No yields 

were mentioned for this reaction. 
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However, when the cyclobutanone ring of anthracene adduct 705 was converted into the 

corresponding methylenecyclobutane 706, pinacolic ring expansion of 706 proceeded with 

clean migration of the vinyl group, providing the spiroannelated cyclopentanone 707 in 75% 

yield without tendency for retro-Diels Alder fragmentation. Conversion of alkene 707 to 

ketone 708 was accomplished by ozonolysis to synthesize the preferred adduct 708. 

 

MeO

O

OTMS

O

OCF3CO2H

, 15 min

MeO
OTMS O

O O+

O

OH

HO

O

705 708 709 710

706 707 (75%)

711

18 equiv
CF3CO2H

CH2Cl2
CF3CH2OH
rt, 2 h

O3Cp2Ti
CH2

AlMe2

CH2

 

Scheme 195 

 

With the intention to synthesize the five-membered ring of the methyl ester of 15-

dehydroprostaglandin B1 714 (R = CO2CH3),
265

 a ring rearrangement of silylated 2-

hydroxycyclobutanones has been performed according to Oppolzer‟s
255

 and Kuwajima and 

Nakamura‟s method.
257 

The silylated 2-hydroxycyclobutanones 712 were treated with 2.5 

equiv of p-toluenesulfonic acid monohydrate in benzene at reflux for four hours to afford the 

corresponding 2-alkyl-1,3-cyclopentadiones 713, which were immediately used as such in the 

next step (Scheme 196). Also pyridinium 4-toluenesulfonate has been used for a ring 

rearrangement toward the synthesis of 2-substituted cyclopentanones.
266
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OO

O

5
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O

R

5

3
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O

R
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6

.

 

Scheme 196 

 

Recently, in studies toward the synthesis of meloscine, a cyclobutane to cyclopentane 

rearrangement has been described using potassium carbonate.
267

 When cyclobutane 715 was 

stirred in methanolic potassium carbonate at room temperature for six hours, a cyclopentane-

1,2-diketone was formed in 98% yield, exclusively exisiting in the tautomeric enol form 717 

(Scheme 197). 
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dr > 98/2%

N
H

O

N
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C6H5
O OMe

OTMS

H

N
H

O

N
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C6H5
O OMe

O

H

N
H

O

N

Boc

C6H5

H

O OH

2.8 equiv K2CO3

MeOH, rt, 6 h

716  

Scheme 197 

 

A special case of cyclopentanone synthesis has been reported by Ito et al.
268

 When 

cyclobutanones 718 were treated with five mol% of [Rh(nbd)dppp]PF6 at 170 °C for 12 

hours, cyclopentanones 722 were isolated in 81-88% yield (Scheme 198). First, a five-

membered cyclic acylrhodium intermediate 719 underwent β-oxygen elimination to form the 

olefin-coordinated acylrhodium intermediate 720, followed by recyclization to a six-
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membered acylrhodium 721 by addition of the Rh-O linkage across the C-C double bond in a 

6-endo mode. Finally, reductive elimination forming a C-C bond afforded cyclopentanones 

722. An important remark to this synthesis was the fact that the reaction lacked generality. 
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721720719

O

OR

R = C6H5, CH2C6H5

5 mol% [Rh(nbd)dppp]PF6

170 °C, 12 h

Rh
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O

-oxygen

Rh

O

6-endo-

OR Rh

OR

O

OR

O

722 (81-88%)

cyclization

reductive      
elimination

elimination

 

Scheme 198 

 

6.5.2 Ring opening of an epoxide as driving force for the ring 

expansion reaction 

 

Due to the high ring strain energy associated with epoxides, 2-cyclobutyl oxirane systems can 

be regarded as suitable substrates for a cyclobutane to cyclopentane rearrangement. 

Nevertheless, only few examples are known in the literature based on this approach. 

 

In a first example, the four racemic diastereoisomers of 7-oxiranylbicyclo[4.2.0]octan-7-ol 

723 were treated with boron(III) fluoride etherate under mild conditions.
269

 Three of the 

isomers underwent regio- and stereoselective rearrangements to the ring expanded 

hydroxymethyl substituted ketones 724 and 725, the fourth diastereoisomer only gave 

unreacted starting material.  
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In particular, treatment of bicyclo[4.2.0]octan-7-ols 723a-b with a catalytic amount of 

BF3·Et2O in dichloromethane at -78 °C afforded bicyclo[4.3.0]nonan-8-ones 724 with a shift 

of the bridgehead in a highly regioselective manner in 45% and 74% yield (Scheme 199). 

However, bicyclo[4.2.0]octan-7-ol 723c rearranged to bicyclo[4.3.0]nonan-7-one 725 at -17 

°C in 88% yield by a shift of the methylene group (Scheme 199). 
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.
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H

H H

HH

H

723a-b

H

725 (88%)
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H

H

 

Scheme 199 

 

In an alternative enantioselective total synthesis of (+)-laurene 142, the five-membered ring 

was obtained via ring enlargement of the corresponding cyclobutane through activation of an 

adjacent epoxide (Scheme 200).
82

 A first approach was already described in this review in the 

part on palladium-mediated ring enlargements of vinylcyclobutanols (Scheme 42). BF3·Et2O 

in tetrahydrofuran at -78 °C for four hours effected the ring expansion of the cyclobutane ring 

of epoxides 726 to cyclopentanone 727, which underwent dehydration to furnish α-

methylenecyclopentanone 728 in 76% overall yield from 726. This compound 728 was used 

as a precursor for (+)-laurene 142. 
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Scheme 200 

 

Zinc(II) bromide has been used as a catalyst for the stereoselective construction of quaternary 

carbons in the synthesis of diastereomerically enriched spirocyclic diols.
270

 When hydroxy 

epoxide 729 was treated with five mol% of zinc(II) bromide in dichloromethane at room 

temperature for 1.5 hours, the corresponding 1-hydroxyspiro[4.4]nonan-6-one 730 was 

isolated in 94% yield (Scheme 201). A bromo-substituted byproduct or a competitive 

rearrangement product (allylic alcohol) was not isolated.
271

 The synthesized compound 730 

could be used as substrate for the preparation of the corresponding spirocyclic diol. 

 

729

O

HO

OHO

5 mol% ZnBr2

CH2Cl2, rt, 1.5 h

730 (94%) (dr 57:43) 

Scheme 201 

 

In the next example, titanium(IV) chloride has been used for the formation of functionalized 

azaspirocyclic cyclopentanones 732 (Scheme 202).
272

 Epoxides 731 underwent facile ring 

expansion toward cyclopentanones 732a and 732b in 95-96% yield as 1.1-2.6:1 mixtures of 

diastereoisomers via addition of 1.1 equiv titanium(IV) chloride in dichloromethane at -78 °C 

for 30 minutes, although with low stereoselectivity. Cyclopentanones 732a are the apparent 
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products of an antiperiplanar 1,2-alkyl migration toward the epoxide, while cyclopentanones 

732b seemingly result via a synperiplanar 1,2-alkyl migration process. Similar azaspirocyclic 

cyclopentanones have been made through an acid- and a halogen cation-promoted activation 

of a double bond (Scheme 27).
61,67
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Scheme 202 

 

Recently, a rearrangement through ring opening of an epoxide has been reported in the 

synthesis of (±)-cerapicol 736, a protoilludane sesquiterpene.
273

 Upon treatment with 13 equiv 

of trifluoroacetic acid in pentane, bicycle 733 rearranged to yield a mixture of 

trifluoroacetates containing 48% of spiro compound 734 and 16% of tricyclic compound 735 

(Scheme 203). The preferred formation of 734 indicated that the cyclopentyl cation formed by 

enlargement of the 3,3-dimethylcyclobutyl ring was effectively trapped. 

 

733
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O
H

13 equiv CF3CO2H
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CF3COO
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+
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H
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6.5.3 Ring opening of an activated tetrahydrofuran ring as driving 

force for the ring expansion reaction 

 

In a few isolated cases, an activated oxolane ring has been employed as a way to trigger a 

cyclobutane to cyclopentane ring expansion. 

 

For example, when bicyclo[3.2.0]heptanes 737 were treated with 0.5 equiv of TfOH in 

dichloromethane at -78 °C to room temperature, a ring rearrangement was established toward 

1,2-dialkylcyclopentanones 741 in 76-82% yield (R
3
 = H)

274
 and in 52-76% yield (R

3
 ≠ H)

275
 

in a stereospecific manner via migration of the C1-C5 bond (Scheme 204). These 

cyclopentanones 741 can be used in the synthesis of many natural products.
276,277

 For 

example, the same authors have reported the synthesis of spirocyclopentanone 741 (R
1
-R

2
 = 

(CH2)2CHCH3(CH2)2) in 76% yield as a precursor in the total synthesis of the natural product 

(±)-α-cedrene 742.
276

 Also adduct 741 (R
1
, R

2
 = Me) is an advanced intermediate in the 

synthesis of planococcyl acetate, the pheromone of the citrus mealy bug.
278

 The 

cyclopentanones 741 (R
1
 = Me, R

2
 = 4-methylcyclohexyl) and 741 (R

1
 = Me, R

2
 = 1,4-

dimethylcyclohexyl) comprise the carbon skeletons of cuprenolide and trichodiene, 

respectively. 

The selectivity observed in the pinacol rearrangement of cyclobutane derivatives 737, 

involving exclusive migration of the C1-C5 bond in contrast to the stereoelectronically 

favoured C1-C7 bond, was explained based on the intermediates as depicted below. A 

concerted migration of the C1-C5 bond in the protonated species of 737 led to formation of 

carbenium ions 739, which were stabilized by the OH group through formation of the cyclic 

intermediate 740. Rapid collapse of 740 led to products 741. In case of C1-C7 bond migration, 

the stabilization of the intermediate carbenium ions by the OH group required unfavorable 

formation of the strained oxetanes 738 and was thus inhibited. 
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Scheme 204 

 

In an effort to synthesize hydroxyalkyl-substituted cyclopentanones, a mixture of strong acids 

was used to effect bond migration of the appropriate cyclobutanes.
279

 Rearrangement of 

cyclobutanes 743 took place when treated with trifluoroacetic acid and a catalytic amount of 

trifluoromethane sulfonic acid at 50-55 °C for one hour to afford cyclopentanones 744 in 50-

67% yield (Scheme 205). The cyclopentanones 744, obtained in each case, were mixtures of 

diastereoisomers epimeric at C5 in about 2.5:1 ratio. The stability of the carbenium ion formed 

after cyclobutane bond migration dictated the reaction course during rearrangement, providing 

a selectivity for 1,5-bond over 1,7-bond migration. 
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6.5.4 A special case 

 

A last and rather special example involved gold-catalyzed isomerization of a propargylic 

ester.
280

 Treatment of cyclobutane 745 with 10% of gold(I) triflate in dichloroethane at room 

temperature for 12 hours led to the isolation of cyclopentene 748 in 54% yield (Scheme 206). 
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Scheme 206 

 

6.6 An alkyl- or arylthio group as leaving group 

 

Changing the leaving group from an alkoxide to an alkyl- or arylthio group implies a weaker 

σ-bond, quantitatively reflected in the dissociation energy of the single bond which is 355-380 

kJ/mol for the carbon-oxygen bond and 255 kJ/mol for the carbon-sulfur single bond.
281

  

In pinacol-type ring expansions with removal of an alkyl- or arylthio group, thiophilic 

reagents such as copper(I) or mercury(II) salts are frequently used for generating cationic 

intermediates to direct the migrating group. Different examples of four-membered ring 

rearrangements using the acidity in α-position of a sulfide, are described in this section. 

 

Sulfur-stabilized carbenium ions, generated in organic solvents under mild conditions by 

removal of a thiophenoxide ion from a thioacetal using soluble cuprous 

trifluoromethanesulfonate, have for example been used in the synthesis of 2-sulfanylated 
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cycloalkanones.
282,283

 Addition of the lithio derivative of bis(phenylthio)methane to 

cyclobutanone 80 afforded α-hydroxydiphenylthioacetal 749 in 86% yield (Scheme 207). 

Treatment of thioacetal 749 with two equiv of cuprous triflate and 1.3 equiv of 

diisopropylethylamine in benzene at 46 °C for 2.3 hours afforded α-thiophenoxy 

cyclopentanone 464 in 72% yield, presumably via the intermediate carbenium ion 463.  

This ring expansion was also evaluated alternatively using the lithio derivative of 

tris(phenylthio)methane and failed.
284

 However, when the lithio derivative of 

tris(methylthio)methane was added to cyclobutanone 80, the α-hydroxytrimethylthioacetal 

750 was obtained in 72% yield (Scheme 207). One equiv of n-butyllithium converted the α-

hydroxytrimethylthioacetal 750 to its lithium salt. Two equiv of tetrakis(acetonitrile)copper(I) 

perchlorate were added and the mixture was heated to 75 °C for one to four hours to afford 

α,α-dimethylthiocyclopentanone 751 in 75% yield.  
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Scheme 207 

 

The previous method has also been applied in an alternative synthesis of α-cuparenone 89, 

reported by Ho and Chang.
285

 Treatment of 752 with 1.2 equiv of n-butyllithium and 2.2 

equiv of tetrakis(acetonitrile)copper(I) perchlorate in toluene afforded 2,2-di(methylthio)-3-

methyl-3-(4-methylphenyl)cyclopentanone 753 in 64% yield (Scheme 208). 
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Scheme 208 

 

Furthermore, the above-described method using the lithio derivative of 

tris(phenylthio)methane has been used in the synthesis of coriolin 758, where the second five-

membered ring was obtained via ring rearrangement of the four-membered ring precursor.
284

 

Treatment of bicyclo[3.2.0]heptanone 754 with the lithio derivative of 

tris(phenylthio)methane in tetrahydrofuran at -78 °C gave adduct 755 in one isomer (Scheme 

209). Addition of 1.1 equiv of mercury(II) chloride and diisopropylethylamine in 

dimethylformamide at -40 °C resulted in the removal of one phenylthio group, and subsequent 

ring expansion resulted in cyclopentanone 756 in 74% yield with migration of the more 

substituted carbon atom. The authors stated that almost no regioisomer 757 was formed from 

ring expansion of the less substituted carbon atom, without mentioning the exact ratio. 
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Also 3-benzoyloxy-4-(tert-butyldiphenylsilyloxymethyl)bicyclo[3.3.0]octan-7-one 760, as a 

precursor of carbacyclin 761, has been synthesized in 74% yield via the same method as 

described above (i.e. 1.3 equiv HgCl2, 1.1 equiv (iPr)2EtN, DMF, -40 °C, 1-4 h, followed by 

reduction with Raney nickel) (Scheme 210).
286

 Carbacyclin is a chemically stabilized 

modification of natural prostaglandin I2 (prostacyclin), which has valuable biological activity.  
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Scheme 210 

 

In order to obtain the 1,4-diketospiro[4.4]nonane structure of fredericamycin A, which 

exhibits both antibiotic and antitumor activity, a mercury-mediated acyl migration in a 

modified version of the pinacol-type rearrangement has been reported.
287

 Compounds 763, 

generated from bissilylated cyclobutenediols 689 and dithioacetals 762, were 

desulfurated/desilylated in a single step and rearranged via acyl migration to the mixture of 

spiro compounds cis-765 in 81% yield (R
1
-R

2
 = CH2CH=CHCH2; R

3
-R

4
 = CH=CH-CH=CH) 

by treatment with 1.1 equiv of mercury bistrifluoroacetate in benzene at 0 °C or in 55-91% 

yield using 1.1 equiv of mercury(II) chloride in benzene at reflux temperature (Scheme 211). 

Method A has also been used in another total synthesis of fredericamycin A.
288
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Scheme 211 

 

In the total synthesis of (±)-clovene 769, the crucial ring expansion step was effected by acid 

treatment of cyclobutanol 767, obtained by adding the anion of tris(methylthio)methane to 

cyclobutanone 766.
289

 Treatment with a thiophilic Hg(II) salt was not required for 

rearrangement, as instead addition of aqueous HCl in chloroform promoted facile 

rearrangement to cyclopentanone 768 in 66% overall yield (Scheme 212). 

 

O

SMe
SMe

O

(MeS)3CLi

766 768 (66%) clovene 769767

aq. HCl

CHCl3

O

SMe

SMe
SMe

H
 

Scheme 212 

 

As a special case, an electrooxidative ring expansion of 1-(α-phenylthiobenzyl)cyclobutanol 

770 was used to prepare 2-phenylcyclopentanone 771 (Scheme 213).
290

 A solution of β-

hydroxy sulfide 770 in dichloromethane/methanol (9:1), containing two equiv of 

tetraethylammonium chloride, was electrolyzed at 6.0 F/mol in an undivided cell equipped 
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with carbon plate electrodes with a constant current of 100 mA, furnishing 2-

phenylcyclopentanone 771 in 78% yield. 

 

771 (78%)770

OH
Ph

SPh

2 equiv Et4N+Cl-

CH2Cl2/MeOH (9:1)

O

Ph

 

Scheme 213 

 

6.7 An alkyl- or arylselenyl group as leaving group 

 

Krief and co-workers have described that β-hydroxyalkylselenides, bearing two alkyl groups 

on the carbon atom where the seleno moiety is attached, are prone to rearrange to carbonyl 

compounds upon reaction with silver(I) tetrafluoroborate.
 148,291

 

In the synthesis of α- and β-cuparenone, this rearrangement was used via β-hydroxyselenide 

773 as a precursor for the five-membered ring (Scheme 214).
148

 Addition of 2-lithio-2-

methylselenopropane to cyclobutanone 772 in diethyl ether at -78 °C afforded β-

hydroxyselenide 773 in 66% yield. Subsequently, three rearrangement conditions were 

investigated. The first method involved thallium ethoxide addition in chloroform to afford α-

cuparenone 89 in 57% yield, though via generation of a carbene. A better yield of 69% was 

obtained when silver tetrafluoroborate on alumina in dichloromethane was added. Finally, α-

cuparenone 89 was obtained in 82% yield upon reaction of β-hydroxyselenide 773 with 

methyl fluorosulfonate in diethyl ether at 20 °C for one hour. 
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773 (66%)

Et2O, 20 °C, 1 h

-cuparenone 89 (82%)

O

772

O
CH3OSO2F

Et2O, -78 °C

HO SeMe

Me2C(Li)SeMe

 

Scheme 214 

 

The first step in the synthesis of permethylcyclohexane 776 was a ring expansion of 

hexamethylcyclobutanone 774 to octamethylcyclopentanone 775 according to a general 

procedure developed by Krief.
292,293

 Treatment of hexamethylcyclobutanone 774 with 1.5 

equiv of 2-lithio-2-selenopropane in ether/pentane for 30 minutes at -78 °C afforded the 

corresponding β-hydroxyselenide, which was subsequently treated with two equiv of silver 

tetrafluoroborate and eight equiv of alumina in tetrachloromethane for two hours at 0 °C and 

one hour at 25 °C to obtain octamethylcyclopentanone 775 in 74% yield (Scheme 215). 

 

O
O

a) 1.5 equiv Me2C(Li)SeMe 
ether/pentane, -78 °C, 30 min

b) 2 equiv AgBF4, 
8 equiv Al2O3, CCl4, 
0 °C, 2 h to 25 °C, 1 h774 775 (74%) 776  

Scheme 215 

 

Next to other approaches (Scheme 89), the synthesis of tetraspiroketone 311 has been 

accomplished via ring expansion of trispiroketone 777 via β-hydroxyselenide 778 (Scheme 

216).
134b 

The trispiroketone 777 was reacted with 1-lithio-1-(methylseleno)cyclobutane in 

ether/pentane at -78 °C for two hours to afford the crude β-hydroxyselenide 778, which was 

treated with one equiv of silver tetrafluoroborate and eight equiv of silicium oxide in 

tetrachloromethane at 20 °C for 36 hours to furnish the tetraspiroketone 311 in 50% yield. 
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This ketone 311 proved to be unstable towards acids. The same ring expansion was applied in 

the synthesis of a [5.4]rotane, using silver tetrafluoroborate on aluminium oxide instead of 

silicium oxide.
294

  

 

O

HO SeCH3

O
1.2 equiv

Li

SeMe

ether/pentane
-78 °C, 2 h

777

1 equiv AgBF4 
8 equiv SiO2

CCl4, 20 °C, 36 h

778 311 (50%)  

Scheme 216 

 

Because reductive debromination of compound 112 (Scheme 33) with zinc in acetic acid 

failed, an alternative approach to the synthesis of pseudohelical compound 780 was 

proposed.
69

 This method used a rearrangement of β-hydroxyselenide 779, synthesized in 37% 

yield by treatment of tricyclic cyclobutanone 106 with 1-lithio-1-(methylseleno)cyclobutane 

in diethyl ether at -78 °C for one hour. The ring expansion of β-hydroxyselenide 779 was 

executed via addition of 7.1 equiv of 3-chloroperoxybenzoic acid (mCPBA) in 

dichloromethane at room temperature for 45 minutes to afford trispiro[3.0.0.4.3.3]hexadecan-

16-one in 70% yield (Scheme 217). 

 

O
OH

O

CH2Cl2, rt, 45 min

106 779 (37%) 780 (70%)

Et2O, -78 °C, 1 h

1.2 equiv
7.1 equiv mCPBA

H3CSeLi

SeMe

 

Scheme 217 

 

6.8 Sulfone, sulfoxide and selenoxide groups as leaving group   
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Using the synthetic versatility of sulfons, sulfoxides and selenoxides as leaving groups, 

different methods are in hand for the ring rearrangement of four- to five-membered 

carbocycles and will be discussed in the next paragraphs. 

 

6.8.1 A sulfone group as leaving group 

 

A one-pot procedure for the ring expansion of bicyclic ketone 781 (X = CH2, n = 1) with 

concomitant introduction of an α-methoxy group has been reported by Trost and Mikhail.
295

 

In that approach, the sensitivity of sulfones as a leaving group in the presence of Lewis acids 

was used for the ring rearrangement. Addition of lithiated methoxymethylphenyl sulfone to 

bicyclo[3.2.0]ketone 781 (X = CH2, n = 1), followed by cationic rearrangement initiated by an 

excess of diisobutylaluminium chloride in chloroform at -78 °C for seven hours, produced 

only bicyclo[3.3.0]ketone 782a (R = Me, X = CH2, n = 1) in an overall yield of 68% from the 

starting ketone (Scheme 218). The reaction proceeded in a regio- and stereoselective fashion 

toward the thermodynamically more stable diastereoisomer. The lithiation and addition 

reaction were carried out in dimethoxyethane using tert-butyllithium at -78 °C. 

 

The potential of the previous approach has been employed in the synthesis of prostaglandin 

analogues, using different cyclobutanones as starting material.
296

 The same reaction 

conditions, i.e. addition of lithiated methoxymethylphenyl sulfone, followed by rearrangement 

via diisobutylaluminiun chloride, were used to afford a mixture of bicyclic ketones 782a and 

782b in 14-94% yield, in which for each example the one-pot reaction as well as the two-step 

reaction were investigated (Scheme 218). Only when cyclobutanone 781 was used (n = 1, X = 

CH2) in a one-pot reaction, one isomer 782a was isolated. These results showed that Trost-

style ring expansions of cyclobutanone derivatives 781 rarely produced single stereoisomers. 



 162 

Neither isolation of the intermediate alcohol, the nature of the sulfone, nor the presence of an 

oxygen atom in the larger ring of the bicyclic ketone did appear to significantly alter the 

stereochemical outcome of the ring expansion product, in contrast with the size of the larger 

ring in the starting bicyclic ketone. In general, the two-step process was higher yielding than 

the one-pot reaction. 
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X

O

X
O

Li

SO2Ph

OR
1)

2) (iBu)2AlCl, CHCl3, -78 °C, 7 h

H
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, DME, -78 °C

n

n = 1,2; X = CH2, O
R = Me, CH2Ph

n

X
O

H

H

OR

n
+

782b782a

 

Scheme 218 

 

6.8.2 A sulfoxide as leaving group 

 

Ring expansion of 1-[1-methylsulfinyl-1-(methylthio)alkyl]cyclobutanol derivatives 783 has 

been achieved upon treatment with a catalytic amount of 25% sulfuric acid (Scheme 219).
297

 

Starting from 783 (R = Me; R
3
 = H), two types of compounds were expected to be formed. If 

the ring expansion is fast, route A operated predominantly and a 2-

(methylthio)cyclopentanone 785 was produced as the major product. In contrast, a 2-

hydroxycyclopentanone 786 was preferably formed when the dithioacetal S-oxide group of 

783 was first hydrolyzed to afford a 1-acylcyclobutanol 787 (route B). A solution of 783 in 

diethyl ether containing a few drops of 25% sulfuric acid was stirred at room temperature for 

13-45 hours. The major product was alcohol 786 for R
2
 = butyl, synthesized in 53% yield next 

to 7-21% of sulfide 785, whereas 785 (42%) was predominantly formed when R
2
 was a 

hydrogen atom besides 25% of 786. This was explained by stabilization of the intermediate 
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784 by the butyl group to make 784 longer-living, increasing the probability of the 

intermolecular reaction of 784 with water.  

Next, the effect of introducing a 2-methyl group on the cyclobutane ring (R = Me, pTol; R
3
 = 

Me) was investigated (Scheme 219).
297

 However, only one product was obtained in 66 to 82% 

yield when 783 was subjected to acidic conditions. No side products were observed, which 

could be attributed to the migration ability of the carbon atom enhanced by the presence of a 

methyl on the cyclobutanol ring of 783, leading to the chemo- and regioselective formation of 

sulfide 785 (R
3
 = Me). 
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O
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Scheme 219 

 

Ring expansion of cyclobutanones 789, which have both a 2-alkyl and a 2-aryl or 2-alkenyl 

substituent, produced cyclopentanones 791 in 54 to 94% yield on reaction with α-lithioalkyl 

2-chlorophenyl sulfoxides, formed via deprotonation with LDA at -78 °C (Scheme 220).
298

 

The produced adducts underwent rapid ring expansion upon treatment with 1.5 equiv of 

potassium hydride at room temperature for 30 minutes. No evidence of the presence of α-

phenylsulfenylcyclopentanones was provided, as was observed with the selenium reagents 
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(vide supra). Only one regioisomer was isolated in each case with migration of the more 

substituted cyclobutanone α-carbon atom. 

 

O

R1 R2
S

O
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Cl
RR2R1

O

R1 R2

R = H, Me; R1 = Me, 
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    LDA, THF, -78 °C, 15 min
2) -78 °C, 10 min to rt

3) aq. NH4Cl, rt
4) 1.5 equiv KH, THF, rt, 30 min

R

 

Scheme 220 

 

Finally, also the ring expansion of cyclobutanones 792, bearing a single 2-alkenyl or 2-phenyl 

substituent, has been reported.
298

 The problem with this type of cyclobutanones upon 

treatment with any strongly basic carbanion was competitive proton transfer to afford the 

enolate. Still, reaction of cyclobutanones 792 with α-lithioalkyl 2-chlorophenyl sulfoxides 

provided the corresponding cyclopentanones 793 in 34 to 63% yield (Scheme 221). Again, the 

ring rearrangement proceeded regiospecifically with migration of the more substituted α-

carbon atom. 

 

R = Me, Et, iPr

R1 = (CH)2(CH2)2CH3, C(CH2)(CH2)3CH3, C6H5

R1-R2 = (CH)2CH2, C(C(CH3)2)(CH)2

792

1) 1.05 equiv 2-ClC6H4S(O)R,
    LDA, THF, -78 °C, 15 min
2) -78 °C, 10 min to rt

3) aq. NH4Cl, rt
4) 1.5 equiv KH, THF, rt, 30 min

OR1

R2

O

R1 R2

793 (34-63%)

 

Scheme 221 

 



 165 

6.8.3 A selenoxide as leaving group 

 

In a first example, ring expansion of 2,2-disubstituted cyclobutanones 789 using α-lithioalkyl 

phenyl selenoxides, prepared in situ from ethyl phenyl selenide, afforded an adduct 794, 

which underwent ring expansion rather than the expected selenoxide elimination.
299

 

Presumably, chelation in the adduct 794 caused elimination to occur more slowly than ring 

expansion. The corresponding cyclopentanones 791 were obtained after quenching with 

saturated aqueous NH4Cl and subsequent treatment with aluminium amalgam in 39 to 93% 

yield (Scheme 222). A lower yield was obtained somewhat in the reactions with the anion of 

isopropyl phenyl selenoxide (39-63%), in part due to competitive enolization of the 

cyclobutanone. One of these examples comprised a short synthesis of racemic (±)-α-

cuparenone 89 (R = iPr, R
1
 = Me, R

2
 = 4-MeC6H4) in the moderate yield of 39%. 

This selenoxide procedure was regiospecific, with exclusive migration of the more highly 

substituted carbon. A drawback of this method involved reaction of the cyclopentanone 

product with electrophilic selenium species produced in situ to afford a mixture of the product 

and several isomeric α-phenylselenenylcyclopentanones. Reconversion of the α-

phenylselenenyl derivatives back to the cyclopentanone could be accomplished by means of 

aluminium amalgam, but this treatment could interfere with other easily reducible 

functionalities and thus limited the generality of this methodology.  
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Gadwood et al. generalized this research by dividing the cyclobutanones in two classes, in an 

analogous manner as described in the previous paragraph.
298

 The first type included the 

cyclobutanones bearing two alkyl substituents at C2, and the second type were those with only 

one alkyl substituent (Scheme 223). The first type, when reacted under the same conditions as 

previously described, led to the corresponding cyclopentanones 796 in 9 to 78% yield. 

Rearrangement of the second type of cyclobutanones, the least reactive ones toward ring 

expansion, still afforded cyclopentanones 797 in 34 to 78% yield. Again, for both types, 

phenylselenenyl containing impurities were obtained, thus requiring treatment of the crude 

reaction mixture with aluminium amalgam before purification. Exclusive migration of the 

more substituted cyclobutane carbon was observed during the ring expansion.  
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Scheme 223 

 

7 Miscellanous 

 

In this section, special or peculiar cases involving a cyclobutylmethyl to cyclopentyl 

rearrangement will be described which could not be divided into the previous subcategories. 

The first examples comprise ring expansions where a hydrogen or alkyl shift takes place 
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before the actual rearrangement. Other examples involve rearrangement of iminium salts and 

palladium-catalyzed transformations of cyclobutanone O-benzoyloximes. 

 

In a first example, addition of hydrogen bromide or hydrogen chloride to 

arylidenecyclobutane 798 produced 2,2-diphenylcyclopentyl halides 802 in 80-90% yield 

(Scheme 224).
300

 The formation of these cyclopentanes 802 was expected to involve a 2,2-

diphenylcyclopentyl carbenium ion 801. Further rearrangement of this electron-deficient 

species to the 1,2-diphenylcyclopentyl ion 803 would be energetically favored, but the 

absence of 1,2-diphenylcyclopentene 804 showed that capture of 801 by a nucleophile was 

extremely selective. 
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Scheme 224 

 

A specific ring enlargement of tertiary cyclobutanols 805 into cyclopentene derivatives has 

been reported through an initial 1,2-alkyl or –aryl shift prior to ring enlargement (Scheme 

225).
301

 Anhydrous iron(III) chloride, absorbed on silica gel, was reacted with tertiary 

cyclobutanol 805 (R
1
 = H, R

2
 = Me) to give 1,5,5-trimethylcyclopentene 810, also know as 

isolaurolene, in 90% yield. The ring expansion involved Lewis acid induced formation of 1-t-

butylcyclobutyl carbenium ion 806 and a Wagner-Meerwein-type methyl transfer giving the 
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cyclobutylcarbinyl carbenium ion 807, followed by a C4→C5 ring enlargement into 

cyclopentyl carbenium ion 808 and deprotonation to 810. The same ring enlargement was 

executed starting from 1-t-butyl-2-(2-hydroxyethyl)cyclobutanol 805 (R
1
 = (CH2)2OH, R

2
 = 

Me), but the rearranged cyclopentyl carbenium ion was trapped into the campholenic ether (2-

oxabicyclo[3.2.1]octane derivative) 809 in 70% yield. Ring enlargement of 1-(1-methyl-1-

aryl)ethylcyclobutanols 805 gave the corresponding 2-aryl-3,3-dimethylcyclopentenes 811 as 

the major products in 84 to 85% yield and 3-aryl-2,3-dimethylcyclopentenes 812 as the minor 

products in 14 to 15% yield. 3,3-Dimethyl-2-p-tolylcyclopentene 811 was used as a precursor 

of (±)-cuparene, while the minor product, i.e. 3-p-tolyl-2,3-dimethylcyclopentene 812, was 

used as precursor for (±)-laurene synthesis. 
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Scheme 225 

 

Upon reaction with a catalytic amount of concentrated sulfuric acid and two equiv of 

trifluoromethanesulfonic acid in benzene at room temperature, cis,trans-

tricyclo[6.3.0.0
1,4

]undecan-5-ones 318 underwent an unusual and highly selective 

rearrangement to afford tricyclo[6.3.0.0
1,5

]undecan-4-ones 325 in 56 to 83% yield (Scheme 
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226).
302

 The use of Lewis acids was also investigated, e. g. AlCl3, BF3·OEt2, SnCl4, FeCl3 and 

TiCl4, all giving rise to tricyclo[6.3.0.0
1,5

]undecan-4-ones 325 in 63 to 99% yield. 

If the Cargill rearrangement of 318 would take place, tricyclo[6.3.0.0
1,5

]undecan-4-ones 321 

would be the rearranged products. In order to explain these observations, the authors proposed 

a 1,2-alkyl shift of the unexpected cyclobutylmethyl carbenium ions 814, formed by hydrogen 

abstraction by the acid, followed by further rearrangement through carbenium ions 815 and/or 

816 toward bicycles 325. Nonetheless, the formation of carbenium ions 814 from 318 under 

the given reaction conditions should be regarded as highly unlikely, and alternative pathways, 

e.g. involving a hydride shift in intermediates 319 and further transformation, might provide a 

more plausible explanation for the observed reactivity. 

Kakiuchi and co-workers also performed the rearrangement of an analogous product, as 

described previously in Scheme 91.
137 

 

 

H
R

O

cat. H2SO4
2 equiv TfOH

benzene, rt

R

O

O
R

O
R

H

R = H,H; CH2

318 814 816
325 (56-83%)

a
a

b

b R

O

815

H
R

OH

319

H
R

OH

813 O

R

H

321
X

 

Scheme 226 

 

Banik and Ghatak have published the synthesis of a cyclopentanone-bridged tricyclic system 

via a general route to functionalized abietane diterpenoids, involving a Meerwein salt-initiated 
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cationic rearrangement of the ring-annelated cyclobutanone 817.
303

 The addition of an excess 

of triethyloxonium tetrafluoroborate in dichloromethane to cyclobutanone 817 for 24 hours at 

room temperature afforded the 19,20-cycloabieta-19-oxo-8,11,13-triene 818 in 75% yield 

(Scheme 227). 

 

H

O

excess Et3O+BF4
-

CH2Cl2, rt, 24 h

O

H
817 818 (75%)

 

Scheme 227 

 

In an approach to synthesize the precursor of dendrobine, a sesquiterpenoid alkaloid, a 

rearrangement of 5-azatricyclo[6.1.1.0
5,9

]decane acyliminium ion 820 has been 

investigated.
304

 Heating a mixture of 7-hydroxy-8-isobutyl-9-methyl-6-

azatricyclo[6.1.1.0
4,9

]decane-6-carbaldehyde 819 in 95% formic acid under reflux for 12 

hours gave a 1:1 mixture of (E)- and (Z)-9-isobutylidene-8-methyl-2-

azatricyclo[5.2.1.0
4,10

]decane-2-carbaldehyde 822 and the secondary formate 10-isobutyl-8-

formyloxy-7-methyl-2-azatricyclo[5.2.1.0
4,10

]decane-2-carbaldehyde 825 in 24% and 55% 

yield, respectively (Scheme 228). Initial ionization of the starting product 819 formed the 

acyliminium species 820, which was followed by exclusive migration of the exo cyclobutane 

bond to give the tertiary carbenium ion 821. Once formed, 821 can lose a proton to form the 

isomeric mixture of olefins 822. Alternatively, 821 can undergo a skeletally degenerate 1,2-

alkyl shift to provide a secondary tricyclic tertiary carbenium ion 823. A final 1,2-alkyl shift 

converted 823 into secondary carbenium ion 824, which was quenched by the solvent to give 

formate 825. Compound 825 is an analogue of the precursor of dendrobine 826.  
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In a totally different approach, cis-4-oxo-octahydrocyclopent[b]pyrroles 830 have been 

formed by a tandem cationic aza-Cope rearrangement – Mannich cyclization of 2-amino-1-

vinylcyclobutanols 827 (Scheme 229).
305

 Treatment of vinylcyclobutanols 827 with 1.1 equiv 

of AgNO3 in ethanol at 25-60 °C for 15 minutes to 25 hours afforded the corresponding 

bicyclic compounds 830 in 66-93% yield (31% for derivative R
1
 = CH2Ph, R

2
,R

3
 = H). The 

stereoselectivity was explained via the intermediates formed. The iminium ions 828 

underwent a [3,3]-sigmatropic rearrangement in a chair geometry to give the azacycloocta-

1,5-diene intermediates 829, and rapid intramolecular Mannich cyclization of the latter 

intermediates 829 led to bicycles 830. 
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Scheme 229 

 

Recently, a tandem aziridination/rearrangement protocol of alkenylcyclobutanols has been 

developed based on the combination of N-aminophthalimide and phenyliodine diacetate in the 

presence of silica gel.
306

 When 2.5 equiv of PhI(OAc)2, 2.5 equiv of PhthNH2 and 20 equiv of 

SiO2 were added to alkenylcyclobutanols 831 in dichloromethane, the corresponding 

cyclopentanones 833 were obtained in 66-99% yield and in more than 99% diastereomeric 

excess (Scheme 230). An analogous pinacol-type rearrangement has been reported by the 

same group using zinc(II) bromide, but the protocol suffered from low yields (20-30%) 

obtained for the aziridino alcohols.
307
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In a final example, a palladium-catalyzed transformation of cyclobutanone O-benzoyloximes 

834 to nitriles 837 and 838 was reported (Scheme 231).
308

 When cyclobutanone O-

benzoyloximes (Z)-834 were treated with five mol% of Pd(dba)2 and ten mol% of ligand (R)-

(S)-PPFCyA 843 (Figure 11) in the presence of one equiv of K2CO3 in tetrahydrofuran at 

reflux temperature for 24 hours, oxidative addition of the N-O bond of the oxime to Pd(0) 

gave a (Z)-cyclobutylideneaminopalladium(II) species 835. Then, the C-C bond (path a) was 

cleaved to afford a secondary alkylpalladium species 836, from which the nitrile 837 was 

produced by successive β-hydrogen elimination. On the other hand, when the (Z)-

cyclobutylideneaminopalladium(II) species 834 isomerized to 839 and was subsequently 

cleaved (path b), a sterically less hindered primary alkylpalladium species 840 was formed. 

The latter underwent intramolecular cyclization with the alkenic moiety, followed by β-

hydrogen elimination to afford nitrile 838. The ratio of the nitriles 837 and 838 was 16-27:73-

84 in 70 to 83% yield. 
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8 Concluding Remarks 
 

Different methods have been described for the synthesis of cyclopentane and cyclopentene 

derivatives starting from cyclobuta(no)nes through ring expansion of intermediate 

cyclobutylmethylcarbenium ions. Acid activation of the double bond of vinylcyclobutanes or 

vinylcyclobutanols proved to be a suitable methodology for the preparation of 

cyclopenta(e)(no)nes in good to excellent yields, and in most of the cases only one 

regioisomer was formed. Also metal activation has been applied successfully, as exemplified 

in a variety of natural product syntheses. Furthermore, allene activation for the formation of 

cyclobuylmethylcarbenium ions has attracted considerable interest, based on several examples 

found in the more recent literature. Interesting approaches have also been reported concerning 

the ring expansion of cyclobutylmethylcarbenium ions obtained through activation of an 

alkynyl substituent, although moderate yields were obtained in most of the cases.  

Alternatively, the activation of a carbonyl compound via several methods has been described, 

with yields varying from moderate to good. Nonetheless, the vast majority of ring expansions 

of cyclobutylmethylcarbenium ions are induced by the initial expulsion of a leaving group, 

present at the α-position with regard to the cyclobutane ring. 

Although it is sometimes difficult to predict the outcome of the ring expansion reaction, in 

general, the more highly substituted carbon atom migrated preferentially. However, 
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diazomethane induced ring expansions tend to favor migration of the less substituted α-

carbon. In this case, α-chloro and α,α-dichlorocyclobutanones react faster and provide higher 

regioselectivities. 

 

It is worth mentioning that recently the aza-analogue of the cyclobutylmethylcarbenium to 

cyclopentylcarbenium ion rearrangement has been described as well. In particular, a β-lactam 

to γ-lactam ring expansion has been developed starting from 4-(1-halo-1-

methylethyl)azetidin-2-ones via N-acyliminium intermediates, providing access to a variety of 

functionalized mono- and bicyclic pyrrolidines-2-ones in good yields.
309

 A similar approach 

has been described starting from 4-oxoazetidine-2-carbaldehydes to afford 5-cyano-3,4-

dihydroxypyrrolidin-2-ones.
310

 It seems that the onset is given to the development of many 

such ring expansions in the heterocyclic series. 

 

Due to the high synthetic and biological relevance of cyclopentane derivatives, the search for 

novel methodologies for the construction of substituted five-membered carbocycles remains 

of primordial importance. Consequently, the development of new approaches based on the 

ring expansion of cyclobutylmethylcarbenium ions, especially those with a focus on regio- 

and stereoselectivity, will most certainly keep on attracting chemists in the future. 
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