
HTTP ADAPTIVE STREAMING WITH MEDIA FRAGMENT URIS

Wim Van Lancker, Davy Van Deursen, Erik Mannens, Rik Van de Walle

Ghent University – IBBT
Ghent, Belgium

{wim.vanlancker, davy.vandeursen, erik.mannens, rik.vandewalle}@ugent.be

ABSTRACT
HTTP adaptive streaming was introduced with the general
idea that user agents interpret a manifest file (describing dif-
ferent representations and segments of the media); where-
after they retrieve the media content using sequential HTTP
progressive download operations. MPEG started with the
standardization of an HTTP streaming protocol, defining the
structure and semantics of a manifest file and additional re-
strictions and extensions for container formats. At the same
time, W3C is working on a specification for addressing me-
dia fragments on the Web using Uniform Resource Identi-
fiers. The latter not only defines the URI syntax for media
fragment identifiers but also the protocol for retrieving me-
dia fragments over HTTP. In this paper, we elaborate on the
role of Media Fragment URIs within HTTP adaptive stream-
ing scenarios. First, we elaborate on how different media rep-
resentations can be addressed by means of Media Fragment
URIs, by using track fragments. Additionally, we illustrate
how HTTP adaptive streaming is realized relying on the Me-
dia Fragments URI retrieval protocol. To validate the pre-
sented ideas, we implemented Apple’s HTTP Live streaming
technique using Media Fragment URIs.

Index Terms— HTTP Streaming, Media Delivery, Media
Fragment URIs

1. INTRODUCTION

Multimedia content has become an essential part of the World
Wide Web. Moreover, Web-based media is exploding: it
is used for entertainment, education, advertising, product
reviews, etc. Media delivery on the Web evolved from
download-and-play over progressive download to real-time
streaming protocols such as the Real Time Streaming Proto-
col (RTSP). Recently, a new media delivery technique, called
HTTP adaptive streaming, was introduced showing an inter-
esting combination of the features of real-time streaming pro-
tocols and HTTP progressive download.

The research activities as described in this paper were funded by Ghent
University, the Interdisciplinary Institute for Broadband Technology (IBBT),
the Institute for the Promotion of Innovation by Science and Technology in
Flanders (IWT), the Fund for Scientific Research-Flanders (FWO-Flanders),
and the European Union.

Various proprietary implementations are already avail-
able: Microsoft’s Smooth Streaming, Apple’s HTTP Live
streaming, and Adobe’s Dynamic HTTP Streaming. Almost
all current proprietary solutions for HTTP streaming define
the structure and semantics of a manifest file, describing the
high-level structure of the media content in terms of repre-
sentations and temporal segments. Additionally, extensions
and restrictions are defined for one or more existing container
formats encapsulating the media content. User Agents (UA)
interpret the manifest file and retrieve the media content us-
ing sequential HTTP progressive download operations. Cur-
rently, MPEG is standardizing HTTP adaptive streaming as
media delivery protocol, Dynamic Adaptive Streaming over
HTTP (DASH, [1]), which is based on 3GPP Adaptive HTTP
Streaming.

In this paper, we investigate how Media Fragment URIs
can be used within HTTP adaptive streaming scenarios. Note
that Wu et al. already indicated the relevance of Media Frag-
ments within HTTP streaming [2]. The specification of Media
Fragment URIs is currently being developed within W3C by
the Media Fragment Working Group1 (MFWG). Its mission
is to address media fragments on the Web using Uniform Re-
source Identifiers (URIs). Although most HTTP streaming
solutions rely on the use of regular HTTP 1.1 Web servers,
we assume in this paper the availability of Media Fragments-
aware servers for HTTP streaming and describe the impact
of this availability for HTTP streaming solutions. Addition-
ally, since the Media Fragments 1.0 specification also fore-
sees a scenario for serving Media Fragment URIs using reg-
ular HTTP 1.1 Web servers, we will elaborate on how this
scenario fits in the current HTTP streaming solutions.

2. MEDIA FRAGMENTS 1.0

The Media Fragments 1.0 specification supports three differ-
ent axes for media fragments: temporal (i.e., a time range),
spatial (i.e., a spatial region), and track (i.e., a track contained
in the media resource). Since the spatial fragment axis is not
relevant in the context of HTTP streaming, we will not fur-
ther discuss it. Further, the specification recommends both

1http://www.w3.org/2008/WebVideo/Fragments/

the URI syntax and the protocol for the retrieval of Media
Fragment URIs over HTTP [3].

2.1. URI Syntax

The specification defines the syntax for mediafrag
within the URI protocol://path/mediafile#
mediafrag. For brevity, we give a simple example for both
the temporal and the track axis; the full syntactical details
can be found in the specification [3].

• Temporal: http://foo/media.mp4#t=10,30
identifies the time range [10s,30s[of media.mp4.

• Track: http://foo/media.mp4?track=vid
identifies the video track of media.mp4.

Both URI fragments and URI queries can be used for me-
dia fragment addressing. Using a URI fragment means that
the media fragment is a secondary resource and hence must be
expressible in terms of byte ranges pointing to the parent re-
source. On the contrary, URI queries result in new resources,
resulting in no restriction regarding the bytes used to repre-
sent the fragment. Note that, although track fragments can
always be expressed in terms of byte ranges, the amount of
byte ranges for a certain track is infeasible high when tracks
are interleaved. Therefore, track fragments are typically ad-
dressed using URI queries when supported by the server or
interpreted locally when the server is unable to extract the re-
quested track (e.g., in case of a regular HTTP Web server).
Local interpretation means that all tracks are downloaded by
the UA, after which the UA picks the requested tracks. Tem-
poral fragments are typically addressed using URI fragments.

2.2. Media Fragment Retrieval over HTTP

The current Web infrastructure, based on the HTTP proto-
col, is not aware of addressing methods other than bytes to
point to a portion of a media resource. Therefore, in order
to implement and deploy a system able to deal with Media
Fragment URIs, the key requirement is to have a module that
is able to translate media fragments (i.e., expressed in time
or tracks) into fragments expressed in terms of bytes (i.e.,
byte ranges) [4]. Such a translation module can occur at the
server or at the UA. The Media Fragments 1.0 specification
describes a number of scenarios, based on the location of this
translation module.

As specified in [5], fragment identifiers are separated from
the rest of the URI prior to a dereference. In other words, they
are not sent to the server and thus the identifying information
within a fragment needs to be interpreted by the UA. Apply-
ing this to Media Fragment URIs, UAs must be able to parse
and interpret media fragment identifiers. When the UA is able
to perform the mapping between fragments and byte ranges,
fragments can be requested in terms of byte ranges (using reg-
ular HTTP 1.1 byte range requests), as illustrated in Fig. 1.

GET /media.mp4 HTTP/1.1

Host: www.foo.com

Accept: video/*

Range: bytes=3000-6000

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes

Content-Length: 3000

Content-Type: video/mp4

Content-Range: bytes 3000-6000/8000

{binary data}

GET /media.mp4 HTTP/1.1

Host: www.mfserver.com

Accept: video/*

Range: t:npt=11-19

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes, t, track

Content-Length: 3052

Content-Type: video/mp4

Content-Range: bytes 3000-6000/8000

Content-Range-Mapping:

 {t:npt 10-20/0-30}={bytes 3000-6000/8000}

{binary data}

Fig. 1. UA-mapped Media Fragment retrieval.

GET /media.mp4 HTTP/1.1

Host: www.foo.com

Accept: video/*

Range: bytes=3000-6000

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes

Content-Length: 3000

Content-Type: video/mp4

Content-Range: bytes 3000-6000/8000

{binary data}

GET /media.mp4 HTTP/1.1

Host: www.mfserver.com

Accept: video/*

Range: t:npt=11-19

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes, t, track

Content-Length: 3000

Content-Type: video/mp4

Content-Range: bytes 3000-6000/8000

Content-Range-Mapping:

 {t:npt 10-20/0-30}={bytes 3000-6000/8000}

{binary data}

Fig. 2. Server-mapped Media Fragment retrieval.

In a second scenario, i.e., if the UA needs help to per-
form the mapping between media fragments and byte ranges,
the media fragment identifiers need to be communicated in
some way to a Media Fragments-aware server. Therefore,
the MFWG recommends a protocol for retrieval of media
fragments over HTTP. More specifically, a number of new
HTTP headers were developed, allowing to provide media
fragment information within an HTTP request. The details
of the exact syntax can be found in the specification [3];
examples of these new headers are provided in Fig. 2. In
this figure, a temporal range ([11s,19s[) is requested by us-
ing a time unit in the HTTP Range request header. The
Media Fragments-aware server interprets the Range header,
performs the mapping from time to byte ranges, extracts
the requested bytes, and responds to the UA. As one can
see, the HTTP response message contains a header (i.e.,
Content-Range-Mapping) indicating the actual extracted tem-
poral range. The latter can differ from the original requested
temporal range since random access points do not necessar-
ily correspond to the range boundaries and the fragments re-
turned by the server have to start with a random access point.
The returned temporal fragment will always include the re-
quested temporal fragment. Note that the UA can also re-
quest codec setup information, together with the temporal
range (in the example, the Range header would then contain
t:npt=11-19;include-setup). The response would
then consist of an HTTP multipart response message, contain-
ing both the setup information and the bytes corresponding to
the temporal range.

Finally, retrieving a track fragment using a URI query
simply comes down to the download of a resource, as illus-
trated in Fig. 3. It is important to note that, when using URI
queries and/or the newly defined HTTP headers for media
fragment retrieval, the server needs to be a Media Fragments-

GET /media.mp4 HTTP/1.1

Host: www.foo.com

Accept: video/*

Range: bytes=3000-6000

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes

Content-Length: 3000

Content-Type: video/mp4

Content-Range: bytes 3000-6000/8000

{binary data}

GET /media.mp4 HTTP/1.1

Host: www.mfserver.com

Accept: video/*

Range: t:npt=11-19

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes, t, track

Content-Length: 3000

Content-Type: video/mp4

Content-Range: bytes 3000-6000/8000

Content-Range-Mapping:

 {t:npt 10-20/0-30}={bytes 3000-6000/8000}

{binary data}

GET /media.mp4?track=video HTTP/1.1

Host: www.mfserver.com

Accept: video/*

HTTP/1.1 200 OK

Content-Length: 5500

Content-Type: video/mp4

{binary data}

Fig. 3. Retrieving track fragments with a URI query.

Listing 1. Composing representations using MDP.
1 <MPD minBufferTime="PT2S" mediaPresentationDuration="

PT30S" baseURL="http://example.com/">
<Period start="PT0S">

<Representation mimeType="video/3gpp; codecs=avc"
bandwidth="256000">

<SegmentInfo duration="PT30S" baseURL="media.3
gp?track=highvid" />

5 </Representation>
<Representation mimeType="video/3gpp; codecs=avc"

bandwidth="128000">
<SegmentInfo duration="PT30S" baseURL="media.3

gp?track=lowvid" />
</Representation>

</Period>
10 </MPD>

aware server, thus also containing a fragment-to-byte range
translation module. Only in the first scenario, where the UA is
able to perform the mapping, a regular HTTP 1.1 Web server
is sufficient to serve the media content.

3. COMPOSITION OF MEDIA REPRESENTATIONS

As discussed in Sect. 1, HTTP streaming solutions make use
of a manifest file. It may describe different representations
(e.g., different bit rates, languages, or resolutions) of the same
media content. Typically, these representations correspond to
different media resources or track combinations within one
media resource. The latter means that we can point to a repre-
sentation in terms of a Media Fragment URI, using the track
axis. This way, it is possible to store different representations
within the same media resource.

Examples of manifest files using Media Fragment URIs to
point to representations are shown in Listings 1 and 2, using
the Media Presentation Description (MPD) and M3U8 syn-
tax respectively. Different representations/versions are rep-
resented by means of different URI queries. For instance,
media.3gp?track=highvid represents the high quality
version.

When different representations correspond to different
layers/views of a scalable/multiview media resource, the pro-
posed approach will fail. More specifically, the current Me-
dia Fragments 1.0 specification does not provide explicit so-
lutions for addressing scalability layers or alternative views.
However, it should be noted that scalability layers and alter-
native views are very similar to tracks; the only difference is

Listing 2. Composing representations using M3U8.
1 #EXTM3U

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=256
http://example.com/media.m3u8?track=highvid
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=128

5 http://example.com/media.m3u8?track=lowvid
#EXT-X-ENDLIST

Listing 3. Scalable media resources provide additional repre-
sentations.

1 <MPD minBufferTime="PT2S" mediaPresentationDuration="
PT30S" baseURL="http://example.com/">

<Period start="PT0S">
<Representation mimeType="video/3gpp; codecs=avc"

width="352" height="288" bandwidth="256000">
<SegmentInfo duration="PT30S" baseURL="media.3

gp?track=0" />
5 </Representation>

<Representation mimeType="video/3gpp; codecs=svc"
width="176" height="144" bandwidth="128000">

<SegmentInfo duration="PT30S" baseURL="media.3
gp?track=1_0" />

</Representation>
<Representation mimeType="video/3gpp; codecs=svc"

width="352" height="288" bandwidth="280000">
10 <SegmentInfo duration="PT30S" baseURL="media.3

gp?track=1_1" />
</Representation>

</Period>
</MPD>

that the former can be dependent on other layers/views while
this is not the case for the latter. Thus, if these layers/views
are identifyable, the track axis could be used to address them.

Consider a media resource containing two tracks: an
H.264/AVC video track and an SVC video track with two
spatial layers. The corresponding MPD manifest is de-
picted in Listing 3. As one can see, each scalabil-
ity layer corresponds to a representation (which is simi-
lar to what MPEG DASH will support). Further, the two
spatial layers are identified through the track axis (e.g.,
media.3gp?track=SVC layer0 could refer to the spa-
tial base layer of the SVC track). Of course, this only works if
the server disposes of an SVC bitstream extractor and is aware
of the mapping between layer identifiers (e.g., SVC layer0)
and scalability layers.

4. HTTP STREAMING USING THE MEDIA
FRAGMENTS PROTOCOL

In typical HTTP streaming scenarios, not only the different
representations of media content are described in the mani-
fest, but also information regarding the structure of one rep-
resentation. More specifically, for each representation, differ-
ent segments or temporal fragments are described. These dif-

ferent segments can also be represented by temporal Media
Fragment URIs. Moreover, UAs could even avoid segment
information and compose their own temporal Media Frag-
ment URIs. The compact manifest shown in Listing 1 would
then be sufficient for a UA to retrieve the media content using
HTTP streaming.

Based on the manifest, the UA can start interpreting or
generating Media Fragment URIs, each representing one tem-
poral piece of a certain representation. These Media Frag-
ment URIs will be translated into HTTP Range requests con-
taining using a time unit (see also Sect. 2.2). We illustrate the
behavior of the UA by using the manifest of Listing 1.

The UA decides to request the high quality representation
(i.e., the media resource media.3gp?track=highvid).
The UA can choose the target duration of each segment, for
example 3 seconds. Consequently, the first segment corre-
sponds to the Media Fragment URI http://example.
com/media.3gp?track=highvid#t=0,3, which re-
sults in the following HTTP request:

GET /media.3gp?track=highvid HTTP/1.1
Host: www.example.com
Accept: video/*
Range: t:npt=0-3;include-setup

The UA adds the ‘include-setup’ parameter to the Range
header in order to retrieve the codec setup information. Note
that the latter can be seen as an initialisation segment in
3GPP’s Adaptive HTTP Streaming specification. The Me-
dia Fragments-aware server interprets the request, calculates
which bytes from the requested resource need to be returned,
and constructs the following HTTP response message:

HTTP/1.1 206 Partial Content
Accept-Ranges: bytes, t
Content-Length: 100
Content-Type: video/3gpp
Content-Range-Mapping:

{t:npt 0-3.6/0-30;include-setup}=
{bytes 0-8,9-99/1067}

Content-type: multipart/byteranges
--SEP
Content-type: video/3gpp
Content-Range: bytes 0-8/1067
{binary data}
--SEP
Content-type: video/3gpp
Content-Range: bytes 9-99/1067
{binary data}
--SEP--

The response of the server consists of a multipart mes-
sage containing the codec setup data and the bytes cor-
responding to the requested time range. However, due
to random access point boundaries, the server returned
bytes corresponding to the time range [0s,3.6s[, as indi-
cated by the Content-Range-Mapping header. This means
that the next request of the UA will correspond to the
Media Fragment URI http://example.com/media.

3gp?track=highvid#t=3.6,6.6, without requesting
codec setup information since this is already retrieved.

After retrieving the bytes from 0s to 16.2s, the UA de-
cides to change the representation because less bandwidth is
available. The following HTTP request is sent to the server:

GET /media.3gp?track=lowvid HTTP/1.1
Host: www.example.com
Accept: video/*
Range: t:npt=16.2-19.2;include-setup

The UA requests bytes from the lower quality version (indi-
cated by the track parameter) and requests new codec setup
information. Since bytes up to timepoint 16.2s were already
retrieved (high quality), the UA seeks to position 16.2s in the
low quality version. The returned HTTP response message
contains the following Content-Range-Mapping header:

{t:npt 15.9-19.3/0-30;include-setup}=
{bytes 0-7,308-361/534}

Since random access points are not aligned between the two
representations, the server returns bytes corresponding to
the underlying random access boundaries (i.e., time range
[15.9,19.3[). Thus, the UA can seamlessly switch from high
to low quality between 15.9 and 16.2 seconds.

The presented approach lets UAs determine how fine or
coarse the requested segments are in terms of duration. Also,
the UA does not have to discover the location of random ac-
cess points within the representation and their segments. In-
deed, the server is able to perform the segment extraction and
communicates the random access point boundaries to the UA.
Also, codec initialisation information is determined by the
server and requested by the UA through the ‘include-setup’
parameter. Further, live scenarios are also supported by Me-
dia Fragment URIs by using wall-clock time codes in the tem-
poral axis. #t=clock:2010-10-11T11:19:01Z for
example is a temporal fragment starting on 11th Oct 2010 at
11hrs, 19min, 1sec. This way, not only information regard-
ing the different segments within a manifest file is avoided,
also updates of the manifest necessary in live scenarios are
not necessary anymore thanks to the use of wall-clock time
codes.

An HTTP adaptive streaming solution based on Media
Fragment URIs as the one presented in this paper looks
promising. It only requires a limited description of the dif-
ferent representations in a manifest and does not impose any
restrictions to underlying media formats. However, the pre-
sented solution only works if the W3C Media Fragments
1.0 specification is implemented within the Web infrastruc-
ture. More specifically, Web servers need to be extended with
support for the newly introduced Range unit (i.e., time) and
HTTP headers, as well as with a media fragments extractor
module that is able to perform the translation between me-
dia fragments and byte ranges. Additionally, current HTTP
caches will not be able to cache media fragments as they are

GET /media.mp4 HTTP/1.1

Host: www.mfserver.com

Accept: video/*

Range: t:npt=11-19

Accept-Range-Redirect: bytes

HTTP/1.1 307 Temporary Redirect

Location: http://mfserver.com/media.mp4

Accept-Ranges: bytes, t, track

Content-Length: 0

Content-Type: video/mp4

Content-Range-Mapping:

 {t:npt 10-20/0-30}={bytes 3000-6000/8000}

Range-Redirect: 3000-6000

Vary: Accept-Range-Redirect

Fig. 4. Cacheable media fragments.

not aware of the new Range units. Therefore, specialized me-
dia fragment caches should be developed in order to cache
media fragments served by Media Fragments-aware servers.

5. AVOIDING MEDIA FRAGMENT-AWARE
SERVERS

The MFWG does recognize that there should be solutions for
serving and retrieving media fragments using the current Web
infrastructure. For instance, the UA can request the server
to perform the translation between media fragments and byte
ranges, after which the UA uses the obtained byte ranges to
perform regular HTTP 1.1 byte range requests (HTTP com-
munication is illustrated in Fig. 4). However, this solution
still requires a Media Fragments-aware server. Such a server
can be avoided if the UA is able to perform the mapping be-
tween media fragments and byte ranges without help from the
server, as discussed in Sect. 2.2.

The translation between media fragments and their corre-
sponding byte ranges is dependent on the underlying media
container. Generally, two approaches exist to perform a re-
mote2 translation, dependent on the organization of the con-
tainer format.

When the underlying container format of the media re-
source supports a full index providing a complete mapping of
time and byte-offsets, then only the first couple of bytes corre-
sponding to the index need to be downloaded. Subsequently,
the index is interpreted by the UA in order to calculate the
mapping between media fragments and byte ranges. The lat-
ter is dependent of the container format since different con-
tainer formats use different structures to represent the index.
Examples of container formats providing support for such a
full index are MP4 and ASF.

When no full index is provided at the beginning of the me-
dia resource, the proper byte positions need to be found for a
given media fragment identifier. This is obtained by applying
a bisectional search over HTTP. More specifically, the UA
starts by guessing which byte position corresponds to a given
temporal position. Subsequently, these bytes are retrieved and
interpreted. If the byte position is too high/low, another guess
is made in the right direction until the correct byte offset is

2Note that ‘remote’ indicates that the mapping is calculated without hav-
ing the full media resource at our disposal.

Listing 4. M3U8 composition served by NinSuna (/Medi-
a/Apple/Avatar/Teaser.m3u8).

1 #EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=296960
/Media/Apple/Avatar/Teaser.m3u8?track=1;2
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1230848

5 /Media/Apple/Avatar/Teaser.m3u8?track=3;4
#EXT-X-ENDLIST

found. It is clear that this method is less efficient in terms
of HTTP round-trips than the first method. Examples of con-
tainer format structures where bisectional search over HTTP
could be applied are Ogg files, WebM files, and fragmented
MP4 files.

6. IMPLEMENTATION WITHIN APPLE’S HTTP
LIVE STREAMING

In order to evaluate the feasibility of integrating Media Frag-
ment URIs into HTTP adaptive streaming techniques, we im-
plemented the above described ideas into Apple’s HTTP Live
Streaming solution [6]. More specifically, we used M3U8
as format to describe the manifest information. Also, native
players supporting HTTP Live Streaming such as iPod/iPad/i-
Phone and QuickTime X work with the presented solution.

As a server solution, we used NinSuna3, which is a fully
integrated media adaptation and delivery platform support-
ing the Media Fragment URI 1.0 specification [7]. Moreover,
NinSuna provides support for both query and fragment-based
media fragment retrieval along the temporal and track axis.
Note that the examples in the listings below are available on-
line for testing purposes (base URL is http://ninsuna.
elis.ugent.be).

As discussed in Sect. 3, different representations of the
same media content can be represented in terms of media
fragment URIs, using the track axis. This is illustrated in
Listing 4, where two representations are described. Tracks
‘1’ and ‘2’ correspond to the low quality audio and video ver-
sion, while tracks ‘3’ and ‘4’ correspond to the high quality
version.

When the UA chooses one representation to start the play-
back (e.g., the low quality version), it requests the correspond-
ing manifest (see Listing 5). Since we use an existing, non-
modified HTTP Live Streaming UA, we need to explicitly list
the media fragment URIs of the different time segments. The
latter are expressed with media fragment URIs using the time
and track dimension.

However, there is a difference in the approach explained
in Sect. 4. Since HTTP Live Streaming UAs such as the
iPhone do not support the Media Fragments URI protocol

3http://ninsuna.elis.ugent.be

Listing 5. M3U8 served by NinSuna describing a media re-
source (/Media/Apple/Avatar/Teaser.m3u8?track=1;2).

1 #EXTM3U
#EXT-X-TARGETDURATION:12
#EXTINF:12,
/Media/Apple/Avatar/Teaser.ts?ft=0,11.5&track=1;2

5 #EXTINF:10,
/Media/Apple/Avatar/Teaser.ts?ft=11.5,21.5&track=1;2
#EXTINF:11,
/Media/Apple/Avatar/Teaser.ts?ft=21.5,32.4&track=1;2
#EXT-X-ENDLIST

GET /Media/Apple/Avatar/Teaser.ts?track=1;2 HTTP/1.1

Host: ninsuna.elis.ugent.be

Accept: video/*

Range: t:npt=11.5-21.5

GET /Media/Apple/Avatar/Teaser.ts?track=1;2&ft=11.5,21.5 HTTP/1.1

Host: ninsuna.elis.ugent.be

Accept: video/*

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes, t, track

Content-Range-Mapping: {t:npt 10.92-22.5/0-128.92}=

 {bytes 241580-649539/3593996}

Content-Range: bytes 241580-649539/3593996

Content-Type: video/mp2t

Content-Length: 407960

Fig. 5. HTTP messages between UA, filter, and server.

at this moment, we need to foresee a small hack in prac-
tice. More specifically, we cannot use #-based temporal me-
dia fragments since the UA is not able to translate the tem-
poral fragment into a Range header (see Sect. 2.2). Hence,
instead of writing Teaser.ts?track=1;2#t=0,11.5,
we write Teaser.ts?track=1;2&ft=0,11.5. The
newly introduced ft parameter is a replacement for the #-
based time parameter. This ft parameter will reach the server
and will be translated by a filter into the proper Range header,
so that a compliant Media Fragments 1.0 request arrives at
the NinSuna server. The latter sends a response back (com-
pliant to the protocol discussed in Sect. 2.2) and the HTTP
Live Streaming UA is able to playback the media resource.

In Fig. 5, the above described HTTP communication is
illustrated. The first request is issued by the UA; the second
request is the same request as the first one, but adapted by the
filter located just before the NinSuna server. The last HTTP
message is the HTTP response of the NinSuna server, which
is compliant to the Media Fragments URI protocol.

7. CONCLUSIONS

In this paper, we discussed the role of Media Fragment URIs
within HTTP adaptive streaming scenarios. We illustrated
how different media representations can be addressed by
means of Media Fragment URIs, by using the track axis.
Further, by relying on the Media Fragment retrieval proto-
col defined in the Media Fragments 1.0 specification, we dis-
cussed how HTTP adaptive streaming can be realized. Also,
we elaborated on how a specialized Media Fragments server
can be avoided to perform HTTP adaptive streaming with
Media Fragment URIs. Finally, we illustrated the proposed
approach by providing an implementation of Apple’s HTTP
Live streaming using Media Fragment URIs.

8. REFERENCES

[1] ISO/IEC, “Call for Proposals on HTTP Streaming of
MPEG Media,” ISO/IEC JTC1/SC29/WG11 N11338,
April 2010.

[2] Q. Wu and R. Huang, “Problem State-
ment for HTTP Streaming,” Available on
http://tools.ietf.org/html/draft-wu-
http-streaming-optimization-ps-02.

[3] R. Troncy, E. Mannens, S. Pfeiffer, and D. Van Deursen,
Eds., Media Fragments URI 1.0, W3C Working Draft.
World Wide Web Consortium, June 2010.

[4] D. Van Deursen, R. Troncy, E. Mannens, S. Pfeiffer,
Y. Lafon, and R. Van de Walle, “Implementing the Media
Fragments URI specification,” in Proceedings of the 19th
International World Wide Web Conference, Raleigh, NC,
United States, April 2010, pp. 1361–1364.

[5] T. Berners-Lee, R. Fielding, and L. Masinter, “IETF
RFC 3986: Uniform Resource Identifier (URI) – Generic
Syntax,” January 2005, Available at http://tools.
ietf.org/html/rfc3986.

[6] R. Pantos, “HTTP Live Streaming,” Avail-
able on http://tools.ietf.org/html/
draft-pantos-http-live-streaming-04.

[7] E. Mannens, D. Van Deursen, R. Troncy, S. Pfeiffer,
C. Parker, Y. Lafon, J. Jansen, M. Hausenblas, and
R. Van de Walle, “A URI-Based Approach for Address-
ing Fragments of Media Resources on the Web,” To ap-
pear in Multimedia Tools and Applications Special Issue
on Multimedia Data Semantics.

