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Abstract.

Among spinning objects, the tippe top exhibits one of the most bizarre and counterintuitive behaviours. The commercially
available tippe tops basically consist of a section of a sphere with a rod. After spinning on its rounded body, the top flips over
and continues spinning on the stem. It is the friction with the bottom surface and the position of the center of mass below
the centre of curvature that cause the tippe top to rise its centre of mass while continuing rotating around its symmetry axis
(through the stem). The commonly used simplified mathematical model for the tippe top is a sphere whose mass distribution
is axially but not spherically symmetric, spinning on a flat surface subject to a small friction force that is due to sliding.
Adopting a bifurcation theory point of view we reach a global geometric understanding of the phase diagram of this dynamical
system. According to the eccentricity of the sphere and the Jellet invariant (which includes information on the initial angular
velocity) three main different dynamical behaviours are distinguished: tipping, non-tipping, hanging (i.e. the top rises but
converges to an intermediate state instead of rising all the way to the vertical state). Subclasses according to the stability
of relative equilibria can further be distinguished. Since our concern is the degree of confidence in the mathematical model
predictions, we applied 3D-printing and rapid prototyping to manufacture a ’3-in-1 toy’ that could catch the three main
characteristics defining the three main groups in the classification of spherical tippe tops as mentioned above. This ’toy ’ is
suitable to validate the mathematical model qualitatively and quantitatively.

AMS subject classifications. 70E18, 34D23, 37J15, 37J20, 37M05

1. Introduction. Spinning toys are among the most ancient toys, and there is a great variety of them.
It is quite simple to start spinning objects like a top or a gyroscope, and though it is simple to explain
their motion in general, it is challenging to write down the detailed equations of motion. Among spinning
objects, the tippe top exhibits one of the most bizarre and counterintuitive behaviour. The commercially
available tippe tops, patented in Denmark in the 50′s, basically consist of a section of a sphere with a rod.
After spinning on its rounded body, the top flips over and continues spinning on the stem. It is the friction
with the bottom surface and the position of the center of mass below the centre of curvature that cause the
tippe top to rise its centre of mass while continuing rotating around its symmetry axis (through the stem).
See Fig. 1.1 for an illustration. Remarkably, at the inverted state, the center of mass lies higher than at
the initial condition, defying gravity. Experimentally, it is known that such a transition occurs only if the
initial spin exceeds a certain critical threshold.

Figure 1.1. The tippe top, showing inversion.

The commonly used simplified mathematical model for the tippe top is a sphere whose mass distribution
is axially but not spherically symmetric, spinning on a flat surface subject to a small friction force that
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is due to sliding. Adopting a bifurcation theory point of view we reach a global geometric understanding
of the phase diagram of this dynamical system. According to the eccentricity of the sphere and the
Jellet invariant (which includes information on the initial angular velocity) six main classes of tops can
be identified within three main groups according to the distinguished dynamical behaviours: tipping, non-
tipping, hanging. See Fig. 2.2 below. Note that objects displaying inversion properties such as the tippe top
have been known since the 1800’s, see e.g. [19]. After the type of Tippe Top as in Fig. 1.1 was introduced in
Denmark, several theoretical articles have been published since then, see e.g. [9, 13, 18, 3, 21] for a survey
of the literature. Since it was established that sliding friction was necessary to explain the Tippe Top
inversion [5, 9, 14], many studies have been dedicated to the analysis of models for tippe tops, involving
linear stability analysis of the relative equilibria, numerical simulations, etc. Some studies have addressed
the occurrence of transitions between rolling and sliding during the motion, see [13, 15, 18]. In this paper
the presented mathematical results mainly reproduce those in [8, 6, 7, 10, 20, 16] but our approach is
inspired by the hands-on numerical approach as first attempted by Cohen in [9]. We believe this approach
is the best choice in giving a clear view of the role of the different parameters that is necessary during
the design process of an actual three-dimensional object that effectively demonstrates the model. We
remark that in the mathematical model we stick to the common assumption that the only external force
acting on the system consists of a normal reaction force and a frictional force of viscous type opposing
the motion of the contact point in the supporting plane. This is the most common assumption in the
literature, though in [18] the inclusion of a non-linear Coulumb-type friction is discussed. It is shown there
by numerical simulations that the Coulomb term contributes to the tippe top inversion but the effect is
weaker compared to the viscous term. The non-linear Coulomb term results in algebraic destabilization of
the initially spinning top, whereas the viscous friction gives exponential destabilization, see also [3]. This
argument motivates our choice of including viscous friction only.

The phase diagram and bifurcation diagrams illustrate the main results that confirm the findings
described in [8], the type of asymptotic dynamics is a function of the Jellett invariant (which includes
information on the initial angular velocity) and eccentricity of the sphere. The asymptotic state is either
unique or the system is bistable. Three main different regimes are distinguished: no tippe top phenomenon
occurs no matter what the initial spin is, tippe top dynamics may occur if the Jellett invariant (which is
proportional to the initial spin) is sufficiently large, or incomplete tippe top behaviour occurs, where the
top rises but converges to an intermediate state instead of rising all the way to the vertical state.
We underline that though the classification results can be obtained in a less cumbersome way by using the
Routhian reduction as in [8], the approach used in this paper is standard and straightforward to implement
from a prototyping point of view. Also, it is amenable for extensions to include for example transitions from
sliding to rolling and vice versa. Our concern in this paper is the degree of confidence in the mathematical
model predictions. We wanted to be sure that the mathematical model as presented here and in [8] reflected
the reality. Our goal was to investigate if it was possible to make a ’3-in-1 toy’ that could catch the three
main characteristics tipping, non-tipping, hanging that defines the three main groups in the classification of
spherical tippe tops as mentioned above. As far as we know such a toy does not exist yet. We successfully
applied the methodology for efficient use of prototyping during the design process as presented in [4]. To
the best of our knowledge this is the first time that 3D-printing and rapid prototyping is being applied
to design and to produce a ’toy’ suitable to validate the qualitative and quantitative mathematical model
describing the behaviour of a dissipative non-linear dynamical system. From the bifurcation diagram it was
clear that it should be possible to hit three out of the 6 classes of tippe tops (one type for each main group)
by keeping one of the characterizing parameters of the system fixed and varying the other. We believe that
the realization of an actual toy is a more powerful validation of the model than software simulations which
are directly affected by the underlying mathematical idealization assumptions.
Since the two parameters on which the whole classification is based, inertia ratio and eccentricity, are not
independent, the challenge was to come up with a feasible prototype which could be easily mechanically

2



driven. After detailed mathematical calculations and the development of 3D animations1 we used 3D
printing to create a functional model giving us a quick and easy hands-on demonstration capability.

2. Mathematical Results. In this paper we consider a sphere whose mass distribution is axially
but not spherically symmetric, spinning on a flat surface subject to a small friction force that is due to
sliding. In [10], Ebenfeld and Scheck presented a detailed analysis of the dynamics of the eccentric spinning
sphere on a flat surface where friction is assumed to be only due to sliding, see also [20] . Without making
any other assumptions, we show that their results imply a full qualitative understanding of the asymptotic
long term dynamics. Whereas the treatment of [10, 20] is mainly analytical, here we adopt a bifurcation
theory point of view leading to a global geometric understanding of the phase diagram. The phase diagram
Fig. 2.1 and bifurcation diagrams in Fig. 2.2, illustrate our main results. Recall that an ω-limit set of a
dynamical system is a closed invariant set that is accumulated by a (forward) trajectory [1]. Our main
result is summarized in the following theorem.

Theorem 2.1. A spinning eccentric sphere on a flat surface with small slipping friction admits three
types of (asymptotically stable) ω-limit sets:

• Vertically spinning top (θ = 0), which has its center of mass straight below its geometric center,
• Vertically spinning top (θ = π), which has its center of mass straight above its geometric center,
• Intermediate spinning top (0 < θ < π), whose center of mass is neither straight below, nor straight
above its geometric center.

These are solutions of constant energy, which are purely rolling due to the assumption on sliding friction
(that is, they display no slipping). The vertical states are periodic, whereas in general, the intermediate
states are quasi-periodic.

At most two of the above types of solutions can be stable at the same time. In case the stable solution is
unique its basin of attraction consists of almost the entire phase space (subset of full measure). If the system
is bi-stable, the separatrix between the two different domains of attraction for the asymptotically stable states
is expected to be formed by the stable manifold of an unstable intermediate spinning top solution.

All the analytical results needed to arrive at this conclusion can in principle be found in [10, 20].
However, these papers stop short of drawing the full global conclusions as formulated in the above theorem,
and also crucially they did not present the phase diagram and bifurcation diagrams that we present in
Fig. 2.1 and Fig. 2.2.

We note that for the eccentric sphere in regime I, the state θ = 0 is always asymptotically stable,
and thus does not display the tippe top phenomenon. Similarly, no such dynamics arises in regime III,
since there the inverted state θ = π is always unstable. Tippe top dynamics may occur in regime II, if
the Jellett invariant (which is proportional to the initial spin) is sufficiently large, corresponding to the
empirical observation that tippe top dynamics requires a sufficiently large initial spin. In the sub regimes
IIb and III it is also possible to observe incomplete tippe top behaviour, where the top rises but converges
to an intermediate state instead of rising all the way to the vertical state θ = π. Note that in regime I,
tipping might occur is the top is initially spun sufficiently fast under an angle not close to θ = 0.

It is important to recognize the existence of symmetries. Recall that symmetries are transformations
of the phase space that map solutions of a system to other solutions. In our model of the eccentric sphere
on a flat surface, symmetries arise due to the homogeneity of the surface on which the sphere moves and
the rotational symmetry of the eccentric sphere. The combined symmetries are thus the Euclidean group
E(2) (acting as translations and rotations in the xy plane) and the rotation group SO(2) acting as rotation
of the sphere around its axis of symmetry.

It turns out that the ω-limit sets mentioned above are all relative equilibria with respect to the sym-
metry group SO(2) × SO(2) < E(2) × SO(2), see Section 4. Recall that relative equilibria with respect
to a group Σ are equilibria for the associated flow on a reduced phase space that is obtained from the
original phase space by taking the quotient with respect to the action of Σ. The existence and type of such

1See electronic attachments, or at http://cage.ugent.be/~bm/tippetop/tippetop.html
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Figure 2.1. Phase diagram for the dynamics of the eccentric sphere with small sliding friction. The regions of the phase
diagram correspond to the qualitative types of bifurcation diagrams of SO(2)× SO(2) relative equilibria in Fig. 2.2.

relative equilibria depends solely on the inertia ratio, the eccentricity of the sphere and the Jellett integral
of motion. We identify a number of regimes characterizing the relative equilibria as a function of the Jellett
invariant (which is proportional to the initial angular velocity). The vertical states θ = 0 and θ = π are
always SO(2) × SO(2) relative equilibria and their stability depends on the inertia ratio, the eccentricity
of the sphere and the Jellett integral of motion. In addition, intermediate states may exist, which branch
off from the vertically spinning solutions. We sketch the phase diagram in Fig. 2.1. For the labeled regions
in this phase diagram, the corresponding bifurcation diagrams for the relative equilibria are presented in
Fig. 2.2

The proof of Theorem 2.1, which builds upon the results by [10, 20] can be found in the Appendix.
In order to present our point of view clearly and in a self-contained way, in Section 3 we also present a
derivation of the equations of motion of the eccentric sphere model of the tippe-top, including a discussion
of the symmetries and their consequences. Here also, one finds a precise description of the assumed nature
of the friction and a definition of all the relevant variables that appear as parameters in Fig. 2.1 and
Fig. 2.2. In Section 4 and Section 5 the relative equilibria of the system and their stability is discussed.
The readers who are acquainted with the topic can start reading from Section 6.
We would like to point out that the strategy of proof used here may well be applicable to a large number of
similar examples of mechanical systems under the influence of (some kind of friction), such as the Rattleback
[17] or Hycaro tippe top of Tokieda [23]. The key observation is that for mechanical systems under the
influence of friction, in a natural way the energy becomes a Lyapunov function since friction causes energy
loss. The next observation is that orbits which do not dissipate energy need to lie entirely on a subvariety
of the phase space that is defined by the condition that friction is absent. Equilibria naturally lie on this
subset, since they have zero velocity and friction is absent at zero velocity. However one would expect that
typically no solution lies entirely on this subvariety, unless the solution lies on the orbit of a symmetry group
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Figure 2.2. Qualitative bifurcation diagrams of SO(2)× SO(2) relative equilibria, for the different regions in the phase
diagram of Fig. 2.1. Solid black branches correspond to stable relative equilibria, while dashed black branches correspond to
unstable ones. The vertical states θ = 0 and θ = π always exist, from which intermediate states (with 0 < θ < π) may branch
off.

that leaves the zero friction subvariety invariant.2 In many cases, the set of such relative equilibria can be
accurately analyzed, either analytically or numerically, and the local stability properties can be deduced
from a dissipation-induced instability point of view, based on the local stability properties of the relative
equilibria in the absence of friction. We note in this respect that the set of ω-limit sets on the zero friction
subvariety is independent of the form and size of the friction. The final step is to draw global conclusions
from this local information. The latter is within reach if one has a good understanding of the ω-limit sets.
We would like to stress that Theorem 2.1 concerns the asymptotic dynamics. In an experiment with small
friction, the observation may well be dominated by transient dynamics which bears strong resemblance
(on short time-scales) to the dynamics of the spherical top without friction. The dynamics of the latter
is rather complicated as it is a nonintegrable Hamiltonian system. In Section 7 we present some results
from numerical simulations demonstrating explicitly some examples where the transient dynamics does
not appear to prevent fast convergence to the asymptotic states (although of course for sufficiently small
friction coefficient the transient dynamics would dominate on finite time intervals).

2One can make this precise by constructing a small local perturbation that moves a solution off the zero friction subvariety.
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Figure 3.1. Eccentric sphere version of the tippe top. R is the radius of the sphere, the center of mass O is off center
by ǫ. The top spins on a horizontal table with point of contact Q. The axis of symmetry is Oz and the vertical axis is OZ,
they define a plane Π (containing OQ) which precesses about OZ with angular velocity ϕ̇. The height of O above the table
is h(θ).

3. The equations of motion. We consider an eccentric sphere as in Fig. 3.1, where O denotes the
center of mass and C the center of the sphere. The line joining the center of mass and the geometrical
center is an axis of inertial symmetry: in the plane perpendicular to this axis the moment of inertia tensor
of the sphere has two equal principal moments of inertia.

We describe the motion of the sphere using three reference frames:
(I) An inertial (laboratory) frame Mxyz, where M is some point on the table and the z-axis is the

vertical.
(II) A (non-inertial) rotating frame OXY Z whose origin is in the center of mass O and whose 3-rd

axis is always parallel to the vertical. The X and Y axes are specified below.
(III) A principal axis system Oxyz, whose z-axis is the symmetry axis of the sphere3.

The reference frames (II) and (III) are indicated in Fig. 3.1. The eccentricity ǫ is the distance between the
center of mass O and the geometric center C of the sphere, with 0 < ǫ < R, where R denotes the radius of
the sphere. We denote the moments of inertia Ix = Iy =: A and Iz =: C. The point of contact with the
plane of support is denoted Q.

Let (θ, ϕ, ψ) be the Euler angles of the body with respect to OZ, see Fig. 3.2 for an illustration. The
OzZ-plane Π contains the vector q = OQ which joins the center of mass to the point of contact. The plane
Π is inclined at angle ϕ to the verticalMxz-plane and precesses with angular velocity ϕ̇ around the vertical
OZ. We choose the horizontal OX in Π, so that OY is perpendicular to Π. For the rotating frame, Ox
is in Π and perpendicular to the symmetry axis Oz, the axis Oy coincides with OY 4. The angle between
the vertical OZ and the axis Oz of the top is denoted θ. The angular velocity θ̇ describes the nutation
of the body in the vertical plane Π. The angle ψ describes the orientation of the body with respect to
the OXY Z frame and ψ̇ is the spin of the sphere around its symmetry axis. We denote by e1, e2, e3 the
unit vectors along OX,OY,OZ and by i, j,k those along Ox,Oy,Oz. Note that e2 = j. Because of the
inherent translational symmetry (of the body on the plane), it is convenient to describe the body in terms
of the relative (moving) reference frames (II) and (III), rather than in the absolute reference frame (I). By

3Note that in [3] the origin of the reference frames (II), (III) is at the center of the sphere, and not at the center of mass.
4Note that the axes Ox and Oy are principle axis, but that they are not body fixed.
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Figure 3.2. Euler angles (ϕ, θ, ψ) to fully determine the body, given the coordinates of the center of mass O in an
inertial frame with center M .

doing so we thus ignore the translational motion on the plane and focus on the relative motion of the body,
which captures the Tippe Top behaviour.

The (relative) position vector of the body is

x = xi + yj+ zk = Xe1 + Y e2 + Ze3,

or x = (x, y, z)Oxyz = (X,Y, Z)OXY Z . Note that the coordinates of the reference frames (II) and (III) are
related by the relations

x = X cos(θ) − Z sin(θ)

y = Y

z = X sin(θ) + Z cos(θ).

The reference frames (II) and (III) rotate with respective angular velocities

ΩII = (0, 0, ϕ̇)OXY Z = (−ϕ̇ sin(θ), 0, ϕ̇ cos(θ))Oxyz ,

ΩIII = (−ϕ̇ sin(θ), θ̇, ϕ̇ cos(θ))Oxyz .

The angular velocity of the body ω involves, in addition, the angular velocity ψ̇:

ω = −ϕ̇ sin(θ)i + θ̇j + nk

= ψ̇ sin(θ)e1 + θ̇e2 + (ϕ̇+ ψ̇ cos(θ))e3(3.1)

= (n− ϕ̇ cos(θ)) sin(θ)e1 + θ̇e2 + (ϕ̇ sin2(θ) + n cos(θ))e3,

where n := ψ̇ + ϕ̇ cos(θ) denotes the component of ω about Oz, better known as the spin. For later use
we introduce the notation ω = (ωi, ωj, ωk). Consequently, with I denoting the inertia tensor of the sphere,
the angular momentum of the sphere is given by

L = Iω = −Aϕ̇ sin(θ)i+Aθ̇j+ Cnk(3.2)

= (Cn−Aϕ̇ cos(θ)) sin(θ)e1 +Aθ̇e2 + (Aϕ̇ sin2(θ) + Cn cos(θ))e3.

The point of contact Q has coordinates

Q =

(
−h2(θ) d

dθ

(
cos(θ)

h(θ)

)
, 0,−h2(θ) d

dθ

(
sin(θ)

h(θ)

))

Oxyz

= (ǫ sin θ, 0, ǫ cos θ −R)OXY Z = (R sin θ, 0, ǫ−R cos θ)Oxyz(3.3)
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The velocity of the point of contact Q is

VQ = vO + ω × q,(3.4)

where q = OQ denotes the vector from the center of mass O to the point of contact Q and vO is the velocity
of the center of mass. We set vO = Ue1 + V e2 +We3 and use the fact that Q = (h′(θ), 0,−h(θ))OXY Z to
obtain

ω × q = (−θ̇h(θ), sin(θ)(ǫϕ̇ +Rψ̇),−θ̇h′(θ))OXY Z

= (−θ̇h(θ), sin(θ)(ǫϕ̇ +R(n− ϕ̇ cos(θ))),−θ̇h′(θ))OXY Z .

Hence, we obtain

VQ =
(
U − θ̇h(θ), V + sin(θ)(ǫϕ̇ +R(n− ϕ̇ cos(θ))),W − θ̇h′(θ)

)

OXY Z
.(3.5)

The fact that the sphere remains in contact with the table is expressed by the (holonomic) constraint

zO = h(θ) = R − ǫ cos(θ).

where h(θ) denotes the height of the center of mass O above the table, cf. Fig. 3.1. From this constraint
it follows that the e3 component of v0 is,

W :=
d

dt
z0 = θ̇h′(θ) = ǫθ̇ sin(θ),(3.6)

so that the Z-component of VQ vanishes, consistent with the constraint.
We note that the physical interpretation of VQ concerns the phenomenon of slipping. In case VQ 6= 0

the body slips on the surface. In contrast, a rolling motion of the body is characterized by the fact that
VQ = 0.

The equations of motion will be derived, in Newton’s spirit, as a consequence of the action of external
forces. We distinguish the following forces acting on the sphere:

• The gravitational force: G = −mge3, where m is the total mass of the sphere.
• A force FQ = Rn+Rf acting on the point of contact Q, where Rn = Rne3 is the normal reaction
force at Q (due to the stiffness of the surface) and Rf is a friction force. For completeness we
mention [11] where a mathematical model for the tippe top is proposed taking elasticity properties
of the table and tippe top into account.

Friction is the resistive force acting between bodies that tends to oppose and damp out motion. Friction
is usually distinguished as being either static friction (the frictional force opposing placing a body at rest
into motion) or kinetic friction (the frictional force tending to slow a body in motion). Importantly, we
assume that the friction force is entirely due to the slipping of the sphere on the surface, and neglect all
other sources of friction. Friction forces can be complicated, and there are various models in circulation.
We adopt the assumption of viscous friction [15, 16, 24], and assume the friction force to be given by

Rf = −µRnVQ,(3.7)

where µ is the coefficient of sliding friction with the dimension of (velocity)−1. Rf is proportional to the
size of the normal reaction force and vanishes smoothly when VQ → 01. Euler’s equations of motion for
the sphere,

dL

dt
+Ω× L = q× FQ,(3.8)

1An alternative model for the friction force is the so-called Coulomb friction Rf = −µRn
VQ

|VQ|
. This model is not

appropriate when VQ → 0 due to the singular nature of this force when VQ = 0.
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govern the evolution of the angular momentum L in a non-inertial reference frame, rotating with frequency
Ω, due to the influence of the external torque q×FQ. The equation of motion for the center of mass O in
the rotating frame is

m

(
dvO

dt
+Ω× vO

)
= −G+ FQ.(3.9)

In terms of the coordinates in reference frame (III) the equations of motion (3.8) yield






Aϕ̈ sin(θ) = (Cn− 2Aϕ̇ cos(θ))θ̇ + zQFY ,

Aθ̈ = −ϕ̇ sin(θ)(Cn −Aϕ̇ cos(θ)) + ZQFX −XQRn,
Cṅ = xQFY ,

(3.10)

where Q = (xQ, yQ, zQ)Oxyz = (XQ, YQ, ZQ)OXY Z and FQ = (FX , FY , FZ)OXY Z . From the equation for
the motion of the center of mass (3.9), in terms of reference frame (II), we obtain





m(U̇ − ϕ̇V ) = FX ,

m(V̇ + ϕ̇U) = FY ,

mẆ = Rn −mg.

(3.11)

Recalling that W = θ̇h′(θ), from the last of the latter equations we may derive an expression for Rn:

Rn = mg +m
d

dt
(θ̇h′(θ)) = mg +mǫ(θ̈ sin(θ) + θ̇2 cos(θ)).(3.12)

The equations of motion (3.10) and (3.11) can be written as a system of six coupled first-order nonlinear
ordinary differential equations in the variables (u, v, α, ϕ, β, θ, n), where α := ϕ̇, β := θ̇, u := mU and
v := mV .

Setting m = 1 for simplicity, these may be arranged in the standard form ḃ = f(b) (when sin(θ) 6= 0)






α̇ = 1
sin(θ)

[
C
A
nβ − 2α cos(θ)β + zQ

FY

A

]

β̇ = 1
A
[α sin(θ)(Aα cos(θ) − Cn)− RnXQ + ZQFX ]

θ̇ = β

ṅ =
xQFY

C
,

u̇ = αv + FX

v̇ = −αu+ FY

ϕ̇ = α,

ψ̇ = n− α cos(θ).

(3.13)

It should be remembered that Rn, FX , and FY are still functions of the other variables. For instance, from
(3.12) and (3.13) one finds

Rn =
g + β2h′′(θ) + h′(θ)α sin(θ)(α cos(θ) − Cn/A)

1 + h′(θ)/A[−h(θ)µ(U − βh(θ)) + h′(θ)]
.(3.14)

Recall that we require that Rn ≥ 0. If this condition fails, the sphere loses contact with the surface.
Expressions for FX and FY follow similarly from (3.7).

It is important to recognize that some of the structure of the equations of motion (3.13) is due to
symmetry. We recall that the symmetries are the Euclidean group E(2) (acting as translations, rotations
and reflections in the Mxy plane) and the rotation group SO(2) acting as rotation of the sphere around
its axis of symmetry. The effect of the Euclidean symmetry is that the right-hand side of the equations
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of motion contain no reference to the position of the sphere on the surface. In a similar way, due to the
rotational symmetry the equations of motion do not depend explicitly on ϕ. The system can be viewed
as three coupled systems, where the coupling is of skew product type: the evolution of α, β, θ, n does not
depend on u, v, ϕ, and the evolution of u, v does not depend on ϕ. Moreover, note that the position of the
center of mass relative to the surface (in Mxy coordinates) could in principle be obtained by integrating
the velocities u and v over time. Because of the fact that we take friction into account, Noether’s theorem
does not apply, so the continuous symmetries we observe need not (and do not) give rise to conserved
quantities. However, it was discovered by Jellett [14] by an approximate argument, and later proved by
Routh [21], that the system (3.13) has the following conserved quantity:

J = −L · q.(3.15)

Indeed, it follows from (3.8) that
(
dL
dt

+Ω× L
)
⊥ q, so that

d

dt
J = −L ·

(
d

dt
q+Ω× q

)
= −

(
Cn−Aϕ̇ cos(θ)

)
h′(θ)2

d

dt

(
sin(θ)

h′(θ)

)

︸ ︷︷ ︸
=0

= 0.

Note that the Jellett invariant can be written as ([8, 16, 24])

J = Cn(R cos(θ)− ǫ) +Aϕ̇R sin2(θ).(3.16)

4. ω-limit sets are relative equilibria. Our aim is to describe the asymptotic dynamics of the
eccentric sphere. Recall that a subset of the phase space is an ω-limit set if this set is accumulated by
(forward) orbits. While the friction force destroys the Hamiltonian nature of the dynamics, it greatly
simplifies the asymptotic dynamics. This follows from the fact that in the presence of friction the energy,
which is conserved in the absence of friction, is almost always decreasing along solutions.

The energy is given by E = T + V , where T = Trot + Ttr is the kinetic energy with its rotational and
translational part and V = mgh(θ) is the potential energy. With our choice of variables we may write

Trot =
1
2

(
Aω2

i +Aω2
j + Cω2

k

)
and Ttr =

1
2m(ẋ2 + ẏ

2 + ż
2), where ż = ǫm sin θθ̇.

Lemma 4.1 ([10]). The energy E is a Lyapunov function5 for (3.13). In particular,

d

dt
E = VQ ·Rf ≤ 0.(4.1)

As Rf is parallel (and opposite) to VQ,
d
dt
E vanishes if and only if VQ vanishes. Observe that E(t)

decreases monotonically and hence is a suitable Lyapunov function. Moreover,E(t) is analytic and therefore
along orbits it is either strictly decreasing or constant. The energy E is constant only if VQ = 0, that is
in the absence of friction. Thus, the ω-limit sets must consist of orbits which do not experience friction.
We show that such orbits are necessarily relative equilibria.

Proposition 4.2. Solutions have constant energy only if they are relative equilibria with respect to
the action of SO(2)× SO(2).

Proof. We already concluded that VQ needs to be equal to 0 along any orbit in an ω-limit set. A

straightforward calculation shows that VQ = d
dt
VQ = 0 indeed implies that φ̇ = Ẋ = 0, so that such a

solution must be an SO(2)× SO(2) relative equilibrium.
This observation is in fact what one would generically expect to find. If M is a submanifold of the

phase space that corresponds to the absence of friction, in general it would be quite unexpected to find a
non-equilibrium solution that lies entirely inside M .

5Recall that a Lyapunov function is non-increasing along orbits.

10



5. Stability and bifurcations of relative equilibria. Having determined that the relative equi-
libria are the only possible asymptotic states in the presence of friction, we derive in this section these
solutions of constant energy using the explicit equations of motion (3.10)-(3.11), see also [16, 10, 3]. With
ϕ̇ = constant and VQ = 0, Rf = 0, the equations of motion yield α̇ = 0, β̇ = 0, β = 0, ṅ = 0, U = 0,
W = 0 and






αV = 0,
α sin(θ)(Aα cos(θ)− Cn)−mgǫ sin(θ) = 0,
V + [R(n− α cos(θ)) + ǫα] sin(θ) = 0.

These equations have the following three types of solutions. The linear stability analysis differs from [10, 20]
in methodology.

Vertical states.
1- Vertical state θ = 0:

U = V = 0, θ = 0, n = arbitrary constant,

α = ϕ̇ = undefined constant.

The top is spinning about its axle with center of mass straight below the geometric center.
2- Vertical state θ = π:

U = V = 0, θ = 0, n = arbitrary constant,

α = ϕ̇ = arbitrary constant.

The top is spinning about its axle with center of mass straight above the geometric center.
Intermediate states. For these solutions we have U = V = 0, 0 < θ < π, and n, α, θ are related by

n = α cos(θ) − ǫ

R
α,(5.1)

α(Aα cos(θ)− Cn)−mgǫ = 0.(5.2)

Elimination of n from the above yields

α2 =
mgǫ

(A− C) cos(θ) + C ǫ
R

.(5.3)

Hence, the condition for the existence of intermediate states is
(
A

C
− 1

)
cos(θ) +

ǫ

R
> 0.(5.4)

It is natural to divide the solutions into three groups, according to regimes of the parameters A
C

and
ǫ
R

[24]:

Group I: A
C
< 1− ǫ

R
. Intermediate states exist with

θ > θc1 = cos−1

(
ǫ
R

1− A
C

)
, with 0 < θc1 <

π

2
;

Group II: 1− ǫ
R
< A

C
< 1 + ǫ

R
. Intermediate states exist with any 0 < θ < π;

Group III: A
C
> 1 + ǫ

R
. Intermediate states exist with

θ < θc2 = cos−1

(
ǫ
R

1− A
C

)
, with

π

2
< θc2 < π.
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As in [8] we further refine this classification. Note that the intermediate states discussed here correspond
to the tumbling solutions discussed in [10].

The intermediate states are completely determined by (5.1), (5.2) and the Jellett invariant J . More
precisely, combining the square of (3.16) with (5.1) and (5.3), they are obtained by solving

f(J2, cos θ) :=
J2

mgǫCR2

[(
A

C
− 1

)
cos(θ) +

ǫ

R

]
−
[(

cos(θ) − ǫ

R

)2
+
A

C
(1− cos2(θ))

]2
= 0.(5.5)

The theorem below summarizes the linear stability and local bifurcation results, as depicted in Figure
2.2 cf. [24], the proof is sketched in the Appendix. We identify six different groups according to how the
value of A/C is related to the eccentricity ǫ/R. In the literature, results have previously been expressed
in terms of variables n0 and nπ, referring to the spin of an initial condition in a vertical state. We define
n0 := J

C(R−ǫ) , which is the value of the spin n at θ = 0 for motion with Jellett invariant J . Similarly,

nπ := −J
C(R+ǫ) denotes the spin of the solution with Jellett invariant J at θ = π. Note that for a fixed value

of the Jellett invariant J , these spins are related by n0 = −nπ
R+ǫ
R−ǫ

. We further define

n± :=

√
±mgǫ

C
[
(1± ǫ

R
)− A

C

]
(
1± ǫ

R

)
, b :=

ǫ
R
−
√

1
3
A
C
(1− A

C
− ( ǫ

R
)2)

1− A
C

and θb := arccos(b). Furthermore we define c =
ǫ
R

1−A
C

, and θc := arccos(c).

Theorem 5.1. The bifurcation diagrams of the eccentric sphere spinning on a flat surface with small
friction fall in one of the following six categories (Fig. 2.2):
Group I: A/C − 1 < −ǫ/R

- The vertical state θ = 0 is stable for any value of J .
- The vertical state θ = π is stable if |nπ| > n+, and unstable otherwise.
- Intermediate states exist for all values of θ satisfying θ > θc.
Group Ia: b < −1 The entire branch of intermediate states is unstable.
Group Ib: b > −1 The branch of intermediate states has a fold point at θ = θb. The branch with
θ > θb is stable, while the branch with θ < θb is unstable.

Group II: −ǫ/R < (A/C − 1) < ǫ/R.
- The vertical state θ = 0 is stable if |n0| < n− and unstable otherwise.
- The vertical state θ = π is stable if |nπ| > n+ and unstable otherwise.
- Intermediate states exist for all θ. We distinguish the following three subgroups.
Group IIa: (A/C − 1) < −(ǫ/R)2 and |b| < 1. A fold bifurcation of intermediate states occurs.
Group IIb: (A/C − 1) > −(ǫ/R)2 or b > 1. The entire branch of intermediate states is stable.
Group IIc: (A/C − 1) < −(ǫ/R)2 and b < −1. The entire branch of intermediate states is
unstable.

Group III (A/C − 1) > ǫ/R.
- The vertical state θ = 0 is stable if |n0| < n−.
- The vertical state θ = π is unstable for all J .
- Intermediate states exist for θ < θc, and are all stable.

The proof of Theorem 5.1 can be mainly recovered from [8], for completeness we provide the calculations
based on a direct approach in the Appendix.

6. Prototype of a spherical tippe top. Rapid prototyping technologies (RP) enable solid models
to be obtained from designs generated with CAD applications. Their increasing popularity in industry
is due to the reduction in cost and time associated with the use of these models when verifying product
development stages and improvements in end quality. These technologies can also be applied to verify the
correctness and/or accuracy of mathematical models and last but not least to enhance students’ active
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learning in the frame of a learning-by-doing approach. Students can bring their designs to fruition and
develop a deeper insight in abstract concepts. We made a prototype of a spherical tippe top for educational
use, in the Product Development Laboratory of Howest.
As pointed out earlier, to realize a 3-in-1 toy an axially symmetric sphere where one has control over A/C
and ǫ/R is needed. We considered three possible designs:

1. a solid sphere with a cilindrical hole through the center where a setscrew can move;
2. a hollow sphere with a cilindrical rod on which a weight can move;
3. a hollow sphere with a toroidal band at the equator fitted with a cilindrical rod on which a weight

can be screwed.
From the bifurcation diagram, Fig. 2.1, it is clear that it is possible to hit the three main groups by fixing
ǫ/R and changing A/C. Therefore, it is important to understand for the three designs how A/C and ǫ
vary with respect to each other when the weight is moved. We set up a Maple c© worksheet based on the
given mathematical description and calculated A/C and ǫ in function of the position of the midpoint of
the moving weight with respect to the center of the sphere; this will be further on denoted by Z2. We took
into account the physical parameters: dimensions of the different parts (radii, heights, thickness) and the
density of the materials.

From this we realized that for the solid sphere the goal of three types is within reach, whereas for
the hollow sphere the design has to be modified. Our modifications resulted in the third design as given
above. We now discuss our findings for the realized prototypes. Our realizations were all printed with the
commercial available Dimension SST1200es with printing technology based on the FDM principle (Fused
Deposition Modeling) in ABSplus.

6.1. Sphere with cilindrical hole and setscrew. For the first design we realized three different
tops, varying the geometrical dimensions. This was done because the calculation showed that for the given
materials some zones are hard to achieve or are very narrow, see Fig. 6.2. The prototype consists of a

Figure 6.1. First prototype of a spherical tippe top.

sphere with a cylindrical hole through the center, together with a piece of adjustable cylindrical iron wire
(setscrew), see Fig. 6.1. With a caliper, it can be checked how deep the setscrew is set in the hole. The
position of the midpoint of the setscrew with respect to the center of the sphere is denoted by Z2. The
hole is suitable for a setscrew M12. The dimension of the toy were chosen based on the mathematical
calculations derived from the model. The diameter of the sphere was chosen so that one can comfortably
spin the toy by hand. With a sphere of diameter 50mm, good values for the chosen design are a hole of
radius 5.5mm, filled with the setscrew of height 15mm; or a hole of radius 1.5mm, filled with the setscrew
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Figure 6.2. Different tippe top regimes in function of the position Z2 of the midpoint of the setscrew. The black lines

are ±ǫ(Z2)/R, and the blue curve is A(Z2)
C

− 1, the red curve is −(ǫ(Z2)/R)2. Left the result for the printed prototype with
a M12 setscrew, see Fig. 6.1. On the right, the result for a prototype of the same shape but a setscrew M3. .

Table 6.1
Hand launched tippe top. Observed occurences of the different types on 5 launches.

Depth setscrew 17.5 12.5 7.5 2.5 -2.5
Z2 0 5 10 15 20

Non-Tipping 5 3 0 0 0
Tipping 0 1 5 4 0
Hanging 0 1 0 1 5
Theory I (sphere) I IIa IIa IIb

of height 3mm, see Fig. 6.2. The densities are 1.08 g/cm3 for ABSplus, and 7.87 g/cm3 for the setscrew.

The prototype is axially symmetric, therefore only the eccentricity ǫ and the moment of inertia A are
function of Z2, they are easily calculated; C remains constant when moving the setscrew up and down. In
Fig 6.2 the quantities A

C
− 1, ± ǫ

R
and −(ǫ(Z2)/R)

2 are plotted as functions of Z2, left for the prototype
with a M12 setscrew and right for the prototype with a M3 setscrew. The printed prototype, Fig. 6.1, is
of the first type and according to the mathematical calculations will exhibit the predicted behaviour as
follows: for Z2 between 0mm and 7.95mm the toy does not show tippe top dynamic no matter what the
initial spin is (type I), for Z2 between 7.95mm and 17.76mm complete tippe top dynamic is observed (type
IIc). For Z2 above 17.76mm the top is of type IIb (incomplete tipping is observed if initial spin is not
sufficiently high).

For the different positions of the weight, we launched by hand the toy plenty (≥ 50) of times and
registered each time tipping, non-tipping or hanging. In Table 6.1 we report the typical results for 5
launches. Note that the tippe top is hand spun, so there will be a deviation from the starting position
θ = 0. Tipping and non-tipping were mostly observed in the set up of type IIa and I respectively. For
the set up of type IIb, the expected behaviour (tipping) was not observed; we always observed hanging
behaviour. This is because we were not able to launch the toy fast enough by hand and also because the
setscrew sticking out the toy does not allow ideal launching position. Our observations indicate that the
prototype behaves as predicted by the model. In details, tipping and hanging at Z2 = 5 can be explained
by the presence of a brach of intermediate states and stable π position, that one could hit if the toy is not
launched exactly from the θ = 0 position, see Fig.2.2. The hanging at Z2 = 15 is due to the fact that we

14



didn’t launch the top fast enough.
For a prototype fit for a M3 screw, the intervals for Z2 are as follows: for Z2 between 0mm and 3.33mm the
toy does not show tippe top dynamic no matter what the initial spin is (type I), for Z2 between 3.33mm
and 18.20mm complete tippe top dynamic is observed (type II). For Z2 above 18.20mm the top is of type
III (incomplete tipping is observed). Also, this prototype was spun ≥ 50 times, and we registered similar
observations as for the previous one.
We conclude that this prototype can give a working 3-into-1 toy, but has some disadvantages.

• The setscrew can come loose after intensive use.
• When there are three zones present, at least one of the zones is small.
• Using a caliper to know if the setscrew is in the center is not practical.

Several attempts where done in the computations to improve the design, eg. by adding holes into
the solid sphere. These attempts where not succesfull, so no other prototype was printed. Instead, we
concentrated on the sphere with a cilindrical rod.

6.2. Sphere with cilindrical rod. The second design consists of a spherical shell with a cilindrical
solid rod through the center along which a symmetric bead is spun, this bead can be put at different heights
along the rod. In this design, the user must open the sphere, change the position of the weight by screwing
it up or down, after which the sphere can be closed and spun. See Fig. 6.3.

Figure 6.3. Design of the second prototype. .

The advantage of this design is that different ABS colors can easily be used for both sides making the
tipping more visible, and that the rod can be marked at the critical positions. Where in the first design
setscrews of different length can be used, in this design weights of different lengths and different widths
can be considered within one toy. Also, different materials for the rod can be considered.

However, computations show that a 3-into-1 toy was difficult to obtain with the chosen materials:
ABS, iron, nylon. We briefly summurize our findings that form the basis of further improvements that lead
to the third prototype. We tried three different possibilities for the rod: iron, nylon and ABS. Nylon and
ABS seems to work best. With an iron rod and physical pararmeters that allow easy playing with the toy
we didn’t succeed in catching all the three zones. See below for the specific values of the parameters. As
Fig. 6.4(a) shows, only zone three is hit, which means that this tippe top never shows complete inversion
but may tip up to a certain angle.

The prototype is axially symmetric, therefore only the eccentricity ǫ and the moment of inertia A are
function of Z2, they are easily calculated; C remains constant when moving the weight up and down. The
physical parameters for the construction are here: radius of the spherical shell 25 mm, thickness of the
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(a) (b)

Figure 6.4. (a) Different tippe top regimes in function of the position of the midpoint of the setscrew. The black lines

are ±ǫ(Z2)/R, and the blue curve is
A(Z2)

C
− 1, the red curve is −(ǫ(Z2)/R)2. The physical parameters for the construction

are here: radius of the spherical shell in ABS 25 mm, thickness of the shell 2.5 mm, radius of the iron cilindrical rod 3 mm,
radius of the (iron) weight 10 mm, height of the weight 10 mm. (b) Different tippe top regimes in function of the position of

the midpoint of the setscrew. The black lines are ±ǫ(Z2)/R, and the blue curve is A(Z2)
C

− 1, the red curve is −(ǫ(Z2)/R)2.
The physical parameters for the construction are here: radius of the ABS spherical shell 25 mm, thickness of the shell 2.5
mm, radius of the nylon cilindrical rod 2.5 mm, radius of the (iron) weight 10 mm, height of the weight 10 mm.

shell 2.5 mm, radius of the cilindrical rod 3 mm, radius of the weight 10 mm, height of the weight 10 mm.

In the case of a nylon or ABS rod, it was possible to obtain a tipping top. As illustrated in Fg.6.4(b),
both zones II and zone III are hit, which means that complete tipping and incomplete tipping may be
observed according to the position of the weight. Note that the section of the blue curve in zone III is
very small, which make it very difficult to observe the hanging phenomenon. A similar obesrvation holds
for the section of the blue curve in zone I; this is so small that non-tipping behaviour cannot in practice
be observed. Many launches of this prototype only confimed the observations above. This seems to be a
good type II tippe top, but we were not able to observe the other behaviours.

6.3. Sphere with a toroidal band and a cilindrical rod. The third design consists of a spherical
shell with a toroidal band around the equator and a cilindrical solid rod through the center along which
a symmetric bead is spun. Also in this design, the user must open the sphere, change the position of the
weight by screwing it up or down, after which the sphere can be closed and spun. See Fig. 6.5.

Adding a toroidal band was a way to find a compromise between a spherical shell and a solid sphere.
The prototype is still axially symmetric, and the band provides a better click system to open and close the
toy. The physical parameters for the construction are here: radius of the spherical shell 25 mm, thickness
of the shell 3 mm, radius of the cilindrical rod 3 mm, radius of the weight 6 mm, height of the weight 10
mm. The band has the form of a solid of revolution generated by an ellipse rotating around the rod, the
semi-axes of the ellipse measure respectively 7 mm and 4 mm. The rod is made of iron. According to the
mathematical model, the top should behave as follows: for Z2 between 0mm and 4.14 mm the toy does
not show tippe top dynamic (type I), for Z2 between 4.14 mm and 16.8 mm complete tippe top dynamic
is observed (type II). For Z2 above 16.8 mm the top is of type III (incomplete tipping is observed).

The toy was launched many times, allowing to observe without problems the zones I and II predicted
by the model. Zone III is however difficult to observe as first, the maximum Z2 that can be obtained
with the constructed prototype was only 15mm (due to the fastening system of the rod), and moreover
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Figure 6.5. Design of the third prototype. .

Figure 6.6. Different tippe top regimes in function of the position of the midpoint of the setscrew. The black lines are

±ǫ(Z2)/R, and the blue curve is
A(Z2)

C
− 1, the red curve is −(ǫ(Z2)/R)2 . The physical parameters for the construction are

here: radius of the ABS spherical shell 25 mm, thickness of the shell 3 mm, radius of the cilindrical rod 3 mm, radius of the
(iron) weight 6 mm, height of the weight 10 mm, semi-axis of the ellipse generating the torus 7 mm and 4 mm.

θc > 2π/3 which is not so easy to see. Different weights can however be used so that zone III becomes
visible, for example, this is the case when using an iron weight with radius 8 mm and height 5 mm. We
conclude that this last prototype is a good candidate for the 3-1 toy, although some further optimizations
of the physical parameters can be considered.

7. Numerical illustrations.

7.1. System trajectories. In this section we present some simulations of the equations (3.10)-(3.11).
We focus on the parameter regime of Group II, since these are the tops exhibiting ‘tipping’ behaviour.
Indeed, if the initial spin |n0| > max(n−, n2 := n+

R+ǫ
R−ǫ

) then tipping occurs. The trajectories lie in the
(reduced) 6-dimensional phase space (we ignore the ϕ̇ equation), here we show their projections in the
3-dimensional subspace of the variables (α, θ, n).

Fig. 7.1 shows a number of trajectories for a tippe top of Group IIb starting from initial conditions
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u = 0, v = 0, θ = 0.01, n = arbitrary and α = 1
2A (Cn +

√
C2n2 + 4Amgǫ). Other input parameters

are: m = g = 1, the friction coefficient µ = 0.04, the eccentricity ǫ/R = 0.3 and inertia ratio A/C = 0.92.
Points with n < n− are stable whereas those for which n > n− are unstable. Let n∗ = −n+

R+ǫ
R−ǫ

be the
value of the initial spin calculated for the angle θ = 0 at the Jellett where the change in stability for
the inverted position (θ = π) occurs. Trajectories originating near an unstable non-inverted position are
attracted either to one of the intermediate states at an angle θ > 0 when n− < n < n∗, or when n > n∗ to
a steady state for which θ = π; in this case, the ball rises fully to a stable inverted vertical (Tippe Top)
position with a final spin n determined by the Jellett. The blow-ups in the insets show oscillations in the
immediate neighborhood of the fixed points; these depend on the precise initial conditions. We note also
that changing µ doesn’t affect the final destination of the trajectories but it does affect the time needed to
follow such trajectories in phase-space, this at least within our parameter range of computations.
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Figure 7.1. Trajectories of the system (3.10)-(3.11) projected onto the subspace of variables (α, θ, n) for an eccentric
ball of Group IIb with friction µ = 0.04. The bold-solid curve is that of intermediate states (5.1), (5.2), (5.5); the line s

in the (α, n)-plane represent the initial condition α = 1
2A

(Cn +
√

C2n2 + 4Amgǫ). For n > n−, fixed points on θ = 0 are
unstable. Trajectories are then attracted to a stable intermediate state (a point on the solid curve) for n− < n < n∗, or to
a point on the plane θ = π (i.e. flipping occurs) for n > n∗. The two insets are details at the starting position, one for the
stable case, and one for the unstable case. The parameters are chosen m = g = 1, ǫ/R = 0.3, A/C = 0.92.

Fig. 7.3 shows a number of trajectories for a tippe top of Group IIa with friction coefficient µ = 0.04,
starting now under an angle close to the inverted position θ = π. Physical parameters are m = g = 1,
ǫ/R = 0.5, A/C = 0.55.

Recall from Fig. 2.2, that trajectories starting near the inverted position will, depending on the initial
spin, either remain in the neighborhood of θ = π or will go all the way down to the non-inverted position
θ = 0 or reach a stable intermediate state. For a clearer overview of the possible behaviours we use the
symmetry (n, α) → (−n,−α) and sketch in Fig. 7.2 the curve of intermediate states (5.5) in (J, θ)-plane
also indicating the essential n’s at which changes in stability type occur. Recall that for a given θ the
relations (5.3) and (5.1) determine α and n.

The depicted trajectories have been obtained with the initial conditions u = 0, v = 0, θ = π − 0.01,
n arbitrary and α one of the following: α = −(Cn−

√
C2n2 − 4Amgǫ)/(2A) =: s1(n), or α = −(Cn +√

C2n2 − 4Amgǫ)/(2A) =: s2(n) or α = −Cn
2A =: s3(n). These choices were made to reduce to a minimum

in the drawings the initial oscillations in the α-direction. We start near the equilibrium on the eigenvector of
the positive eigenvalue(s) so that the motion quickly evolves in the unstable direction away from the initial
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Figure 7.3. Trajectories of the system (3.10)-(3.11) projected onto the subspace of variables (α, θ, n) for an eccentric
ball of Group IIa with friction µ = 0.04. The bold curves are the intermediate states (5.5). The curves s1, s2, s3 in
(α, n)-plane represent the curves on which the initial value of α is chosen. The starting angle is θ = π − 0.01. The arrows
indicate the final position. Points on the plane θ = π are stable if |n| > n+, unstable otherwise. Trajectories are attracted to
a non-inverted position on the plane θ = 0 for |n| < nb, or they reach a point on the red curves otherwise. Two trajectories
are added to illustrate the initial wild oscillations when α is not chosen on one of the si curves. We used m = g = 1,
ǫ/R = 0.5, A/C = 0.55 and µ = 0.04.

position. Trajectories originating near an unstable inverted position will either reach a stable intermediate
state at θ > θb when nb < |n| < n+ or fall in the non-inverted vertical position when |n| < nb. Here nb is
the value of the initial spin corresponding to the angle θ = θb at which intermediate states change stability
type. Points on θ = π with |n| > n+ are stable and trajectories starting near the inverted state will be
attracted to it.

7.2. 3D animations. In this section we comment on the 3D animations illustrating the phenomena
of ’tipping’ or ’hanging on an intermediate state’ for an eccentric sphere6. In the films, the eccentric sphere
is drawn as a transparent ball with a top in it. We focus on eccentric spheres belonging to group IIb and
IIa, see Fig. 2.2 for the corresponding bifurcation diagrams. The films have been made using Maple to
solve the ODE-system and feeding the results to Povray, Imagemagick and ffmpeg. The films are in 5x
slow motion for the sake of clarity, so 1 second takes 5 seconds in the animation, with 30 frames for every
second. For the sake of clarity the evolution of the nutation angle θ is shown in each film.

6http://cage.ugent.be/~bm/tippetop/tippetop.html
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The films for a top of Group IIb show a complete flip1 and the rising to a stable intermediate state7,
for a top of Group IIa the film shows how the top launched upside-down migrates to a stable intermediate
state 8.

In the first film one sees a complete flip (tippe-top effect) of the sphere, the physical parameter used
are: m = 6 gram, R = 1.5 cm, e/R = 0.5, A = 0.82 mg/m2 and C = 0.7mg/m2. The friction coefficient µ
is 0.3. We show 90 seconds, which is presented as 7.5 minutes of film.
The second film shows the motion towards a stable intermediate state from the unstable non-inverted or
unstable inverted position. The initial data is chosen so that the Jellett coincides with that of a stable
intermediate state. It corresponds to 45 seconds of the tippe top movement. The physical parameters are
here as in the first film except for the friction coefficient which is now µ = 0.1. The initial conditions
around θ = 0 and θ = π are chosen to correspond to a Jellett of approximately 0.84 ·106. The intermediate
state is at θ = 134.5 degrees.

The animations for a top out of Group IIa are meant to illustrate how, depending on the initial
conditions, the top started at the inverted position (θ = π) can either fall to an intermediate state or to
the non-inverted position (θ = 0), see Fig. 2.2. The physical parameters are: m = 6 gram, R = 1.5 cm,
eccentricity e = 50 %, A = 0.385 mg/(m2) and C = 0.7mg/(m2). The friction coefficient µ is 0.08. In
the left of the animation we see the behaviour in which the tippe top flips towards the non-inverted state.
However, oscillation of theta occurs. To the right, we see the movement for a slightly different initial state,
with motion towards an intermediate state. Also here oscillation of theta occurs.

8. Further Remarks.

Global dynamics. Concerning Theorem 2.1 we wish to stress the importance of the local bifurcation
diagrams for the global dynamics. Clearly, if we have a unique asymptotically stable ω-limit set it is clear
that the basin of attraction for this set is equal to nearly the full measure set of the phase space defined
by the complement to the stable manifolds of all coexisting (unstable) ω-limit sets.

It thus remains to analyze the situation when we have two coexisting asymptotically stable ω-limit
sets. From the bifurcation analysis we know that in such case the coexisting stable ω-limit sets are the
vertical states.

Theorem 8.1. The ω-limit sets of the eccentric sphere on a flat surface with small friction are
asymptotically stable relative equilibria (with respect to SO(2)×SO(2)). The ω-limit set is either a unique
relative equilibrium, in which case the basin of attraction is the complement of the stable manifolds of the
unstable relative equilibria (and hence dense, and of full measure, in the phase space). Otherwise, there
are at most two stable relative equilibria (the vertical states) and the system is bi-stable. In this case, the
union of the basins of attraction of the two vertical states is the complement of the stable manifold of the
unstable relative equilibria, which is an intermediate state. This union is dense, and of full measure in the
phase space. The separatrix between the two basins of attraction (inside a level set of the Jellett invariant)
consists of the stable manifold of an unstable intermediate state.

Proof. Most of the above statement is a direct consequence of the existence of the energy as a Lyapunov
function (through La Salle’s principle). One readily verifies (from the local bifurcation analysis) that the
stable manifold of the intermediate state coexisting with two asymptotically stable vertical states has
codimension one (inside the level set of the Jellett invariant) and divides the phase space into two parts.

The regions of bistability (as a function of the Jellett invariant J) follow from the local bifurcation
diagrams discussed in Theorem 5.1.

Remark Note that the specific n’s where the changes in stability type of the steady states occur do not
depend on µ. The viscous friction influences the time needed for an orbit to reach such a point. This fact

1See http://cage.ugent.be/~bm/tippetop/tippetop_IIb_flip.mpg
7http://cage.ugent.be/~bm/tippetop/tippetop_IIb_IntSt_Comp.mpg
8http://cage.ugent.be/~bm/tippetop/tippetop_IIaComb.mpg
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was already clear in [10] and could be proved in advance also in our set up. The result remains true also
for more general forms of friction laws proportional to VQ such as proposed in [18]. This suggest that the
study of the asymptotic dynamics of other (mechanical) problems, as for example the rattleback, might
notably simplify by the introduction of viscous friction in the model.

Rolling model. A ’rolling’ eccentric ball does not tip! In this section we give a simple argument showing
that if pure rolling is assumed, then the Tippe Top phenomenon cannot occur.

Solving the tippe top under the constraint of pure rolling (i.e. when the non-holonomic constraint
VQ = 0 is satisfied) allows for complete reduction of the equations of motion to a second order ode. See
[13] for a discussion of this approach. In the pure rolling regime the system is not anymore dissipative and
admits three conserved quantities: the energy, E, the Jellett J as before and the Routhian, Routh, given
by [13]

Routh =

[
1

2
C +

1

2
mR2 sin2(θ) +

1

2
m
C

A
(R cos(θ)− ǫ)2

]
ω2
k.(8.1)

’Tipping’ in the rolling model would violate the conservation of Routh. Indeed, from the Jellett’s
invariant we know that the sign of ωk has to change in a complete inversion since ωk(θ = π) = −R−ǫ

R+ǫ
ωk(θ =

0) and R > ǫ > 0. But this is not allowed if Routh=constant has to hold.
The motion in the rolling model is governed by a functional relation of the type θ̇2 = f(θ). Indeed, the

conserved quantities give three relations for the components of the angular velocity ωi, ωj, ωk. In details,
for a given θ, the Routhian (8.1) fixes ωk, then the Jellett fixes ωi and finally the energy E fixes the tipping
rate θ̇ = ωj (cf. (3.1)), yielding a functional relation of the type θ̇2 = f(θ). Note further that the constraint
VQ = 0 gives U(θ), V (θ) from (3.5). In this approach, as mentioned in [13] one has to check whether a
found solution is physically possible, that is, one has to take into account that rolling cannot be sustained
if |Rt| < µsRn, where µs is the coefficient of static friction. In [13] it is remarked that only a few pure
rolling precessional solutions satisfy this condition. The analysis however leaves open the possibility to
have pure rolling periodic motions around the intermediate states as we discuss below.

Sliding versus Rolling. A debatable issue is whether transitions between sliding and rolling are possible
during the motion of the top. As it was pointed out in [15], such transitions must also be considered when
setting up a realistic model to describe the dynamics of the tippe top. To the different regimes there
correspond different sets of equations. A switch between sliding and rolling occurs as the absolute contact
velocity VQ vanishes. In the Coulomb-friction model, a switch from rolling to sliding occurs when the
tangent reaction force required to maintain rolling exceeds µsRn. We refer to [18] for considerations and
simulations on this topic, and to [13] for a detailed analysis of the pure rolling model. We consider two
test cases, the pendulum motion, and the behaviour of the tippe top around a stable intermediate state.

• The pendulum motion is easily observed by placing the tippe top on the ground, rotating it under
an angle θS , and releasing it. We have J = 0 = Routh in this regime. Normally a pure rolling
motion is observed. Only when θS is large, some slipping might be observed initially. Solved
under the pure rolling constraint, the solution is pendulum-like. In contrast the sliding equations
of motion, (3.13), gives a qualitatively different solution. For µ = 0 the solution is the pure sliding
pendulum, where the center of mass remains fixed, but the tippe top makes a pure slipping periodic
pendulum motion1. On activation of µ, we have that θ = 0 is stable, and the slipping pendulum
solution slowly degrades towards the stable point. In this case, the tippe top is best modeled with
the pure rolling equations.

• Periodic motion around an intermediate state is characterized by the precession of the tippe top
axle around the z-axis combined with a nutation θ(t) where 0 < θm ≤ θ(t) ≤ θM < π. In the pure
rolling case periodic solutions can be obtained exactly. Using a point on this periodic solution

1Recall that for µ = 0 periodic solutions are possible, which was also clear from the Hopf bifurcation. However they all
disappear when µ > 0.

21



0. 44 0. 52 0. 6

−0.1

0

0. 1

0. 16

0. 12

0. 08

0. 04

0

0 100

0 6

0. 001

0

t

θ̇

θ̇

α

θ
θ

|vQ|

(i)

(i)

(ii)

(ii)

(ii)

(iv)

(iv)

(iv)

(iii)

(iii)

(iii)

Figure 8.1. Periodic motion around intermediate state (IS) in (θ, θ̇) frame, m = 1 = g, ǫ = 0.3R, A = 0.92C. Solution
(i) is the pure rolling case for J = 0.63, E = 1.1, Routh = 0.33, (ii) is the pure slipping case, µ = 0 and (iii) is for µ = 0.1,
(iv) for µ = 10, the first 100s. The data is chosen for a stable IS at θIS = π

6
, and the initial condition for (ii), (iii), (iv) is

a point on the solution curve of (i). For (i) a periodic motion is obtained, for (ii) a quasi-periodic motion is observed as it
is sketched in the (θ, θ̇, α) frame. For µ > 0 the trajectories spiral inwards towards the IS. For large friction, this motion is
very slow (only first 100s are depicted). Also the speed at the contact point, |vQ|, is given. In case (iii) this speed is large
when far from the IS, for (iv) this speed is very small corresponding to the very slow spiraling motion. Note that at t = 0,
vQ = 0 as it is expected.

as initial condition for (3.13) allows to investigate the persistence of this solution when friction
is added, see Fig. 8.1. For µ = 0 a quasi-periodic motion is obtained around the pure rolling
solution. Activating µ makes this motion unstable, and the solution goes towards the intermediate
state, this behaviour is already dominant for µ = 0.1, (note also the high |vQ| value). However,
for ever larger µ the decay slows down, the solution remaining very long in the neighborhood of
the pure rolling solution. The |vQ| value in this case is very small, indicating that the condition
for transition from slipping to rolling is satisfied.
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Appendix A. Proof of Theorem 5.1. For the interested reader, the following sections contain the
calculations needed for a straightforward linear stability analysis of the steady states. These form the
proof of Theorem 5.1.

A.1. Stability of the vertical state θ = 0. With the Taylor expansions in θ

ZQ = −h(θ) ≈ −R+ ǫ − ǫ
θ2

2
+O(θ3), XQ = h′(θ) ≈ ǫ(θ − θ3

6
+O(θ4),

linearizing VQ in θ

VX,Q ≈ U − (R− ǫ)θ̇, VY,Q ≈ V + nRθ − (R− ǫ)ϕ̇θ, VZ,Q ≈ 0

and noting that Rn ≈ mg and n = const, the linearization of the equations of motion (3.11) and (3.10) at
θ = 0 yields

U̇ − ϕ̇V = −µg
(
U − θ̇(R− ǫ)

)
,(A.1)

V̇ + ϕ̇U = −µg (V +Rnθ − (R − ǫ)ϕ̇θ) ,(A.2)

and

A
(
ϕ̈θ + 2ϕ̇θ̇

)
− Cnθ̇ = µmg(R− ǫ) (V − (R− ǫ)ϕ̇θ +Rnθ) ,(A.3)

A
(
θ̈ − ϕ̇2θ

)
+ Cnϕ̇θ = −mgǫθ+ µmg(R− ǫ)(U − θ̇(R− ǫ)).(A.4)

Introducing the complex coordinates

ξ = θeiϕ, w = (U + iV )eiϕ,(A.5)
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the equations (A.1)-(A.4) can be reduced to two complex equations. The addition (A.1)+i(A.2) yields

ẇ = µg
(
−w + (R− ǫ)ξ̇ − iRnξ

)

whereas i(A.3)+(A.4) leads to

Aξ̈ − iCnξ̇ = µmg
(
(R− ǫ)w − (R − ǫ)2ξ̇ + iR(R− ǫ)nξ

)
− ǫmgξ.

These equations admit a solution of the form (ξ, w) = (ξ, w)eλt when λ satisfies the determinant
equation

D(λ, µ) :=−Aλ3 +
(
−µmgǫ2 − µ gA+ 2µmgRǫ+ iCn− µmgR2

)
λ2

+
(
iµmgR2n−mgǫ+ iµ gCn− iµmgRnǫ

)
λ− µmg2ǫ = 0.(A.6)

When µ = 0 the roots λ(µ) of (A.6) are

λ1(0) = 0, λ2,3(0) = i
Cn± S

2A
,(A.7)

where we set

S2 := C2n2 + 4Amgǫ.(A.8)

In the absence of friction, i.e. when µ = 0, the vertical state θ = 0 is marginally stable as λ2,3(0) are purely

imaginary since n2 > − 4Amgǫ
C2 .

We now analyze the effect of small friction (0 < µ << 1) by examining how the roots (A.7) are
perturbed to first order in µ:

λ1(µ) = −µg,

λ2,3(µ) = λ2,3(0)− µ
(

mg(R−ǫ)
AS

[S(R − ǫ)∓ARn]± 2m2g2ǫ(R−ǫ)2

S(Cn±S)

)
.

As Re(λ1(µ)) < 0, the vertical state θ = 0 is stable if Re(λ2,3(µ)) < 0. This is the case when

n2

[
A

C
− (1 − ǫ

R
)

]
<
mgǫ

C

(
1− ǫ

R

)2
.(A.9)

It follows that in Group I (A
C
< (1− ǫ

R
)), the vertical state θ = 0 is always stable, while for Group II and

Group III (A
C
> (1− ǫ

R
)) stability requires that n0 < n−.

It remains to be shown how Re(λ2,3(µ)) < 0 yields the relation (A.9). We focus on the inequality
Re(λ2(µ)) < 0, the arguments are similar for Re(λ3(µ)). The inequality Re(λ2(µ)) < 0 yields

− 1

A
[S(R− ǫ)−ARn] < −2mgǫ

R− ǫ

Cn+ S
⇔ (Cn+ S)

(
Rn− S

A
(R− ǫ)

)
< −2mgǫ(R− ǫ).

Using (A.8), this gives
(
R− C

A
(R − ǫ)

) (
n2C + Sn

)
< 2mgǫ(R− ǫ).

Note that if
(
R− C

A
(R− ǫ)

)
< 0 the above condition is satisfied for all n. If on the other hand the

inequality
(
R− C

A
(R− ǫ)

)
> 0 holds, then (0 <)Sn < 2mgǫ(R−ǫ)

(R−C
A
(R−ǫ))

− n2C, squaring both sides yields

n2 <
mgǫ

A

R

K (1− ǫR)2,
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where K :=
(
R− C

A
(R − ǫ)

)
. Since we are in the case K > 0, we can rewrite this last condition as (A.9).

Remark Ignoring translational effects, i.e. throwing everything in the variable w away, (cf. [3]), one is left
with

ẇ = µ(R − ǫ)ξ̇ − iµRnξ,(A.10)

Aξ̈ − iCnξ̇ = −µ(R− ǫ)2ξ̇ − (ǫ − iµRn)ξ,(A.11)

where we set for simplicity m = 1, g = 1. Equation (A.11) is of Maxwell-Bloch type [3] and allows us to
recover the analysis carried out in [3]. An analogous result holds when linearizing around θ = π.

A.2. Stability of the vertical state θ = π. The stability of the vertical state θ = π is studied in a
similar way as in Section A.1. From the equation of motion (3.10)-(3.11), introducing complex coordinates

ξ = (θ − π)eiϕ, w = (U + iV )eiϕ,

we obtain the coupled complex equations

ẇ = −µg
(
w + (R+ ǫ)ẋi + iRnξ

)

Aξ̈ + iCnξ̇ = µmg
(
(R+ ǫ)w − (R + ǫ)2ξ̇ − iR(R+ ǫ)nξ

)
+mgǫξ.

The corresponding determinant equation for eigenvalue λ is given by

D(λ, µ) =−Aλ3 +
(
−2µmgǫR− µ gA− µmgǫ2 − iCn− µmgR2

)
λ2

+
(
−iµmgR2n+mgǫ− iµ gCn− iµmgǫRn

)
λ+ µ g2mǫ(A.12)

When µ = 0, the roots λ(µ) of (A.12) are

λ1(0) = 0, λ2,3(0) = −iCn∓ S

2A
, with S2 := C2n2 − 4Amgǫ.(A.13)

Thus at µ = 0, the vertical state θ = π is at most marginally stable, when λ2,3(0) is purely imaginary, i.e.
when

|n| > 2

√
Amgǫ

C
=: n⋆.(A.14)

This is of course also a necessary condition for stability if µ is small. Provided S 6= 0, corresponding to a

resonance λ2(0) = λ3(0) at |n| = 2
√
Amgǫ
C

, the roots of (A.12) are perturbed at order µ to

λ1(µ) = −µg,

λ2,3(µ) = λ2(0) + µ
(

mg(R+ǫ)
AS

(−S(R+ ǫ)∓AnR)± 2m2g2e(R+e)2

S(Cn∓S)

)
.

Thus, for stability we have to require Re(λ2,3(µ)) < 0, which yields

n2

[
(1 +

ǫ

R
)− A

C

]
>
mgǫ

C

(
1 +

ǫ

R

)2
.(A.15)

Condition (A.15) is never satisfied for Group III, so θ = π is unstable. In the case of Group I and II, when
A
C
< (1 + ǫ

R
), the condition for stability is

nπ >
√

mgǫ

C[(1+ ǫ
R
)−A

C ]

(
1 + ǫ

R

)
=: n+.(A.16)

Note that for tippe tops of Group I and II n2
+ ≥ n2

⋆, with n⋆ := 2
√
Amgǫ
C

. The equality n2
⋆ = n2

+ holds

when A
C

= 1
2

(
1 + ǫ

R

)
.
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A.3. Stability of intermediate states 0 < θ < π. In this section we consider intermediate asymp-
totic states, which exist if the condition (5.4) is satisfied. Such a state, if it exists, is of the form
v0 = (0, 0, ᾱ, 0, θ̄, n̄), with ᾱ, θ̄, n̄ constant and related by (5.1). In order to study the stability prop-
erties, we study the eigenvalues of the SO(2)(ϕ)-reduced equations of motion, obtained from (3.13) by
omitting the ϕ̇ equation.

With J0 denoting the corresponding Jacobian of this reduced equation, eigenvalues λ satisfy the de-
terminant equation

D(λ, µ) := det(J0 − λ I6) = λp5(λ) = 0,(A.17)

where I is the (six-by-six) identity matrix and p5(λ) is a polynomial of degree 5 in λ. So, 0 is always a
solution of (A.17).

Remark It is not possible to reduce the system to a ‘Maxwell-Bloch’ form around an intermediate state
as on the contrary was the case around the two vertical spin states.

When µ = 0 the six roots of (A.17) are

λ1,2 = 0, λ3,4 = ±iα0, λ5,6 = ±iα0

√
A,(A.18)

where

A :=
A2 + 2AB cos(θ̄) + B2

A
(
mǫ2 sin2(θ̄) +A

) > 0, with B := (A− C) cos(θ̄) + C
ǫ

R
;(A.19)

and ᾱ is given by (5.3). Note that B > 0 from (5.4). All the eigenvalues λj , j = 1 . . . 6 are on the imaginary
axis, the intermediate states at µ = 0 are marginally stable.

Remark It is worth noting that for µ = 0 the resonance λ3,4 = λ5,6 = ±iᾱ occurs when A = 1. Using the
expressions for ᾱ and A given before, one checks that this equality is satisfied when the equation

[
(A
C
− 1)(3A

C
− 1) + A

C2mǫ
2
]
cos2(θ̄) + 2 ǫ

R
(2A

C
− 1) cos(θ̄) + ǫ2

R2 − A
C2mǫ

2 = 0(A.20)

admits a real root between −1 and 1. The resonance disappear when higher order terms in µ are added.

When µ is small, 0 < µ << 1, we write the first order perturbation of the roots as

λj(µ) := λj(0) + µqj , j = 1 . . . 6.(A.21)

From (A.17) it follows that

q1 = 0, q2 = m3g3ǫ2R4 sin2(θ̄)g(cos(θ̄))DE ,

q3 = q4 = −mg, q5 = q6 = a0(a1m+ a2), with a0 :=
m3g3ǫ2

2A2R2B2F2α4
0A

> 0, ,(A.22)

ᾱ2 and λ5 are as before and

g(cos θ̄) :=
(
A
C
− 1
)
+

4[(A
C
−1) cos(θ̄)+ ǫ

R ]
2

A
C

sin2(θ̄)+(cos(θ̄)− ǫ
R
)2
.(A.23)

The coefficients a1 and a2 are given by

a1 := −ǫ2 sin2(θ0)
[
AR(R cos2(θ0)− 2ǫ cos(θ0) +R)− C(R cos(θ0)− ǫ)2

]2
< 0,

a2 := AC2R4f
(
A
C
; ǫ
R
, cos(θ0)

)
,
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with

f
(
A
C
; ǫ
R
, cos(θ0)

)
:= f2

A2

C2 + f1
A
C
+ f0,(A.24)

where

f2 := −2 + 6 ǫ
R
cos(θ0)− 5( ǫ2

R2 + 1) cos2(θ0) + 10 cos3(θ0)
ǫ
R
− (1 + 3 ǫ2

R2 ) cos
4(θ0),

f1 := −4 ǫ
R
( ǫ2

R2 + 2) cos(θ0) + 6(1 + 3 ǫ2

R2 ) cos
2(θ0)− 4 ǫ

R
(4 + ǫ2

R2 ) cos
3(θ0) + 2(1 + 2 ǫ2

R2 ) cos
4(θ0) + 2 ǫ2

R2 ,

f0 := − ǫ2

R2 − ǫ4

R4 − 2 ǫ
R
(−1− 3 ǫ2

R2 ) cos(θ0) + (−1− ǫ4

R4 − 10 ǫ2

R2 ) cos
2(θ0)

−2 ǫ
R
(−3− ǫ2

R2 ) cos
3(θ0)− ( ǫ2

R2 + 1) cos4(θ0).

The coefficients D, E are calculated with the help of Maple

D := B2 −A

(
A− C + C

ǫ2

R2

)
,

E := − (A− C)

AB2 [−m(RǫB − ǫ2C)2 +R2(C −A)2(mǫ2 +A)]
,

For tippe tops of Group II they have a fixed sign for θ0 varying in (0, π). Note that q3,4 < 0 and q5,6 < 0.
The first inequality is obvious, the second is less straightforward and is proved below. The friction is
stabilizing at O(µ) when q2 < 0.

The sign of q2 depends on g(cos θ̄) only, since the two terms D, E are never zero for 0 < θ̄ < π. The
zero of g(cos θ̄) is the bifurcation point where the change in stability type happens. When q2 > 0 the
intermediate states are not anymore stable. For the sake of brevity we refer to [8] for the details on the
behaviour of g(cos θ), where the same crucial function is encountered in the stability analysis via Routhian-
reduction. This analysis completes the proof of Theorem 5.1.

Proof of q5 < 0. To prove that q5 < 0 it is sufficient to prove that a2 ≤ 0, see (A.22), since a0 > 0 and
a1 < 0. The sign(a2) is determined by sign

(
f
(
A
C
; ǫ
R
, cos(θ0)

))
. Considering f as a square polynomial in

A
C
, f̃
(
A
C

)
, we have that the discriminant of f̃

(
A
C

)
= 0, is given by

∆f := − sin2(θ0)(−1 +
ǫ

R
cos(θ0))

2



( ǫ
R

cos(θ0)− 1
)2

+ 1− 2
ǫ

R
cos(θ0) +

ǫ2

R2︸ ︷︷ ︸
>0


 ,

which is negative for all θ0,
ǫ
R
. Hence, the sign of f̃ remains fixed. It is easily verified that for θ0 = 0, π

or π
2 , sign(a2) is always negative (e.g. f

(
A
C
; ǫ
R
, 1
)
= −2

(
ǫ
R
− 1
)2 ( ǫ

R
+ 2A

C
− 1
)2
, hence a2 ≤ 0 for all ǫ

R
,

A
C

and θ0. We conclude that q5 ≤ 0.
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