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ABSTRACT

This paper relates the style of 16th century Flemish paintings
by Goossen van der Weyden (GvdW) to the style of prelim-
inary sketches or underpaintings made prior to executing the
painting. Van der Weyden made underpaintings in markedly
different styles for reasons as yet not understood by art histo-
rians. The analysis presented here starts from a classification
of the underpaintings into four distinct styles by experts in
art history. Analysis of the painted surfaces by a combina-
tion of wavelet analysis, hidden Markov trees and boosting
algorithms can distinguish the four underpainting styles with
greater than 90% cross-validation accuracy. On a subsequent
blind test this classifier provided insight into the hypothesis
by art historians that different patches of the finished painting
were executed by different hands.

Index Terms— Wavelet Transforms, Hidden Markov
Trees, Image Analysis, Machine Learning, Artwork Classifi-
cation.

1. INTRODUCTION

In recent decades, mathematical methods of statistical anal-
ysis have contributed greatly to detecting artistic forgeries,
denoising digital images, and uncovering underpaintings or
other images beneath the surface of famous works of art.
A very powerful mathematical tool for image processing
has been wavelet analysis, in which special functions called
wavelets are used to analyze images at different scales and
extract important or identifying information from them. In
2008, a research team at Dartmouth used wavelet decompo-
sitions to authenticate a series of drawings by Netherlandish
artist Pieter Bruegel the Elder [7]. Subsequent work by the
same research team also showed that Pietro Perugino’s paint-
ing Virgin and Child with Saints had likely been completed
by several different artists. Mathematical modeling suggested
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that each painter brought a distinctive style or “signature” to
the work. These same principles of wavelet analysis have
also been applied to a number of other image processing
problems, including detecting handwriting forgeries and re-
covering underpaintings by famous artists [6].

We follow prior stylistic analysis [4] in applying wavelet
analysis, hidden Markov models and machine learning algo-
rithms to a set of painting details attributed to Goossen van
der Weyden. However our primary objective is different; it is
to apply wavelet analysis broadly defined to develop a corre-
spondence between the van der Weyden’s painting details and
the style of the underpaintings or sketches beneath the paint.

This paper is organized as follows. Section 2 briefly de-
scribes the application of wavelets to brushstroke analysis,
Section 3 describes how features are represented by hidden
Markov models, and Section 4 describes the machine learn-
ing algorithms used for classification. Section 5 describes the
data set in greater detail and Section 6 contains our results and
conclusions.

2. WAVELET TRANSFORMS

Wavelet transforms allow us to split up a signal — or, in this
case, an image — into several signals all corresponding to dif-
ferent frequency bands or scales. A wavelet transform divides
up data into frequency components and looks at each of those
components with a resolution that corresponds to its scale.
Five primary properties of wavelet transforms make them es-
pecially useful for performing image analysis: locality, multi-
resolution representation, edge detection, compression, and
decorrelation [3].

Dual-tree complex wavelet transforms [8] consist of two
real discrete wavelet transforms (implemented via wavelet fil-
ter bank trees) that produce the real and imaginary parts of
the transform, respectively. The filter banks use combina-
tions of band-pass and low-pass filters to separate the signal
into several components characterized by specific frequency
magnitude ranges; for each such range, six angular subbands
(see Figure 1) provide better orientation selection than stan-
dard wavelet bases (see [4] for a more detailed explanation).
When studying paintings, this directional orientation allows
for a more detailed analysis of brushstroke direction, color
patterns and local differences.



Fig. 1. Left: Wavelets for the six orientation subbands in the
2-D dualtree complex wavelet transform, shown for two suc-
cessive scales. Right: Quad-tree organization of wavelet coef-
ficients in one orientation direction of the wavelet transform.
For each spatial localization of a “parent coefficient” the next
finer-scale subband has four “children wavelet coefficients”.

3. HIDDEN MARKOV TREES

In the wavelet transform of an image, most coefficients are
very likely to be similar in size to their neighbors. This results
in peaky, heavy-tailed, non-Gaussian marginal distributions
for the wavelet representation of an image. Moreover, large
or small values also have a tendency to persist across scales.

Standard signal processing methods that model coef-
ficients as either independent or jointly Gaussian do not
capture this behavior. As described in [1], hidden Markov
tree models provide a concise, tractable, and efficient means
of modeling the statistical dependences and non-Gaussian
statistics of wavelet transforms of images.

In this model, the wavelet coefficients in each subband
are assumed to be distributed according to a mixture of two
Gaussians with very different variances; the hidden variable
for each wavelet coefficient determines from which Gaussian
distribution it is considered to be sampled. The “narrow” state
corresponds to smooth regions, the “wide” state to edges and
ridges in the image. The extent of persistence through scale,
within the quad tree illustrated in Figure 1, of the state of
the hidden variable governing a specific spatial location and
orientation, is modeled by a transition probability matrix, the
entries of which are efficiently estimated via the Expectation
Maximization algorithm.

4. CLASSIFICATION

After using wavelet transforms and hidden Markov trees to
develop a suitable mathematical representation for a painting,
we need to classify the paintings into fixed categories based
on the feature we are trying to distinguish or select for (in this
case, the style of the underpainting). We examined a variety
of different classifiers; we found boosting classifiers gave us
the highest cross-validation accuracy.

Boosting classifiers are ensemble methods that use a
weighted majority vote among a set of base classifiers (in our
case decision stumps). The weights are determined iteratively

by challenging the learner by the hardest examples, i.e. those
examples that are misclassified in the previous rounds.

Initially, we employed the AdaBoost algorithm intro-
duced by Freund and Schapire [9]. For binary classification,
we found AdaBoost to be the most effective learning al-
gorithm; however, our attempts to classify data into four
different classes were more successful when we employed
LogitBoost. The LogitBoost algorithm, formulated by Fried-
man, Hastie, and Tibshirani and fully described in [2], is
known to be more robust against noise and outliers.

5. GOOSSEN VAN DER WEYDEN DATA SET

We were provided with fifteen detail views taken from sev-
eral paintings by Flemish painter Goossen van der Weyden,
presently in the Museum of Fine Arts of Antwerp (Belgium).
For each of these, we were also provided with an infrared
reflectogram, which shows the lines of underpaintings or
sketches, together with features from the visible top layer.
The underpaintings differed markedly; based on their style
as well as the nature of the materials used, we distinguished
four categories (see Figure 2). The aim of the project was
to classify the paintings, using wavelet analysis and machine
learning boosting algorithms, into categories corresponding
to these four different types of underpaintings. That is, we
wanted to examine to what extent the different types of under-
paintings translated into classifiable differences in the final
paintings that were executed on top of them by Goossen van
der Weyden and his students.

5.1. Classification of the Underpainting

The underpaintings in this dataset were made either using dry
materials, like black chalk, or liquid ones, like black ink. We
distinguish the following four distinct classes of underpaint-
ings:

1. Woodcut-type parallel lines indicating shadows: oblique,
parallel lines using a dry medium, like fine charcoal.

2. Parallel lines indicating volume: underdrawings done
with a liquid agent, like a fine brush; finer lines than for
type 1, curved to indicate volume.

3. Cartoon-like sketch of features: underdrawings done
with a liquid agent; sketchier and much less precise
than those in the previous two categories, with no, or
very few, parallel lines.

4. Graphical indication of feature placement: underdraw-
ing done with a liquid medium and painted in a very
free hand; these are not even sketches; a stenographic
notation rather than a precise indication of what the
artist intends to paint.



Fig. 2. Left: A painting detail and the corresponding infrared
reflectometric (IRR) view, showing both underpainting lines
and top layer features. The underpainting is best visible where
the artist changed his mind between underpainting and top
layer; e.g. position of nose and mouth in zone circled in red,
or details of coiffe in zone circled in yellow. (Contrast in the
IRR view has been enhanced to make lines stand out.) Right:
The four classes of underpainting. From top to bottom: visi-
ble top layer, IRR view, detail of IRR view with underpaint-
ing highlighted in red, underpainting only (as it must have
appeared before the top layer was painted).

These four underpainting styles are illustrated in Figure 2.
Because the underpaintings in the first two groups are char-
acterized by many fine (almost) parallel lines next to each
other, whereas the lines are drawn more loosely in the last
two groups, we also considered two large classes, with class
FL (Fine Lines) consisting of the painting details in groups 1
and 2, and class LD (Loose Drawings) of those in groups 3
and 4. These two classes were used for binary classification.

5.2. Binary Classification Results

For the binary, or two-group, classification problem the Ad-
aBoost algorithm yielded the most promising results; its per-
formance improved considerably with the number of itera-
tions. The results are summarized in Figure 3; the accuracy
reaches a plateau of around 93% after about 1000 iterations
of the algorithm.

5.3. Four-group Classification Results

AdaBoost was less successful in a direct classification of the
data into its four different groups (as opposed to two succes-
sive binary classifications). However, with LogitBoost we
reached a classification accuracy of 90% in about 400 iter-
ations. (In contrast, AdaBoost achieved only 56.71% accu-
racy.)

Fig. 3. The table at left shows the percentage of data accu-
rately classified into two different classes by the AdaBoost
algorithm, run with varying numbers of iterations; the plot
on the right shows accuracy values reaching a plateau around
1000 iterations.

The convex combination of base hypotheses used by Ad-
aBoost and LogitBoost to construct their classifier contains
hundreds of features, mostly biased towards the highest scales
(those with the finest detail) in both the binary and the four-
group classification results. This emphasis on the finest scales
for the task of distinguishing between the different under-
painting classes could suggest that the differences in execu-
tion (and possible skill-level) for these painting details lies in
the finest details of the work, rather than in broader stylistic
trends, which would be apparent at coarser scales.

Fig. 4. The table at left shows the percentage of data accu-
rately classified into four different classes by the LogitBoost
algorithm, run with varying numbers of iterations; the plot
on the right shows accuracy values reaching a plateau around
400 iterations.

5.4. Blind Data Set Results

Apart from cross-validation, we also used a blind dataset in
order to check the classifier constructed by LogitBoost in the
supervised learning task of Section 5.3. We were provided
with an additional seven unlabeled painting details by van der
Weyden belonging to the same four classes of underdrawings.
For each of these seven, the LogitBoost classifier determined
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Fig. 5. Classification results for seven GvdW images in the
blind testset. Columns A through G correspond to the seven
“new” painting details; in each column the most confident
choice of class, as given by the LogitBoost classifier, is in-
dicated with a double box; the second most confident choice
(if its likelihood reaches into the double digits) by a single
box. A large green V at the bottom of the column indicates
the most likely choice is indeed correct; a smaller green v that
the second most likely choice is the correct one. Example E
is completely misclassified; its “correct” label is in fact Log-
itBoost’s least likely class for this example. (See, however,
Figure 6).

Fig. 6. Left: top layer of painting detail E of the blind test
in section 5.4; Middle: IRR view; Right: highlighted under-
painting lines. These underpainting lines are reminiscent of
classes 3 or 4 rather than 1.

the probabilities p1, . . . p4 that it belonged to the four classes.
Only after the result was obtained did we compare with the
classification determined independently by one of us (M.M.)
who had not participated in the machine learning part of this
experiment. Of these seven, the algorithm scored the correct
class as most likely in three cases, and second most likely in
another three cases. (See Figure 5) In the remaining case the
algorithm’s “least likely” answer corresponded to the inde-
pendently attributed label.

A closer examination showed, however, that the “ground
truth” label did not correspond to the correct description of
the IRR view in the anomalous case, as shown in Figure 6.
The IRR for this instance corresponds more to class 3 or 4
(and not to class 1, despite the “correct” label); these are, in
fact, the classes labeled by the LogitBoost classifier as most
likely for this example.

6. CONCLUSIONS

Our results in the classification of van der Weydens painting
details in the supervised learning experiment described here,
consistent with the style of their underdrawings, show great
promise. Further work is planned to investigate and validate
this in more depth. It is striking that in Figure 5, Class 3
dominates among the most likely picks by LogitBoost; further
work is needed to make sure this is not due to a confounding
factor. The authors plan to extend this study, using many more
examples of paintings by GvdW and others, and replacing the
Hidden Markov Tree model by a method that retains more
spatial localization.
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