
Surrogate Modelling of Computer
Experiments with Sequential Experimental
Design

Proefschrift voorgelegd op 1 augustus 2011 met het oog op het behalen

van de graad van Doctor in de Wetenschappen (informatica) aan de

Universiteit Antwerpen en Doctor in de Ingenieurswetenschappen (com-

puterwetenschappen) aan de Universiteit Gent

PROMOTOREN:

prof. dr. Tom Dhaene
prof. dr. Jan Broeckhove

Karel Crombecq

FONDS VOOR WETENSCHAPPELIJK

ONDERZOEK VLAANDEREN

COMPUTATIONAL

MODELING AND PROGRAMMING

INTERNET BASED COMMUNICATION

NETWORKS AND SERVICES

Summary

For many modern engineering problems, accurate high fidelity simulations are
often used instead of controlled real-life experiments, in order to reduce the overall
time, cost and/or risk. These simulations are used by the engineer to understand
and interpret the behaviour of the system under study and to identify interesting
regions in the design space. They are also used to understand the relationships
between the different input parameters and how they affect the outputs.

The simulation of one single instance of a complex system with multiple inputs
and outputs can be a very time-consuming process. For example, Ford Motor
Company reported on a crash simulation for a full passenger car that takes 36 to
160 hours to compute [36]. Because of this long computational time, using this
simulation directly is still impractical for engineers who want to explore, optimize
or gain insight into the system.

The goal of global surrogate modelling is to find an approximation function
that mimics the behaviour of the original system, but can be evaluated much
faster. This function is constructed by performing multiple simulations (called
samples) at key points in the design space, analyzing the results, and selecting
a surrogate model that approximates the data and the overall system behaviour
quite well. This surrogate model can then be used as a full replacement for the
original simulator.

It is clear that the choice of the data points (the experimental design) is of
paramount importance to the success of the surrogate modelling task. In traditi-
onal (one-shot) experimental design, all data points are selected and simulated
beforehand, and a model is trained only after all points are simulated. In sequen-
tial design, points are selected with an iterative method, in which intermediate
models and outputs from previous simulations are used to make a better, more
informed choice on the locations for future simulations.

In this thesis, several new sequential design methods are proposed for black
box, deterministic computer simulations. In this context, little or nothing is known
up front about the behaviour of the simulator, and the only information available
is acquired from previously evaluated samples. If no information is available up
front, it can be very difficult to determine the total number of simulations that will
be needed, which makes one-shot experimental designs a huge risk. Sequential
design methods are much safer, because they avoid the selection of too many
samples (oversampling) or too little (undersampling).

1

2

First, a number of novel space-filling design methods are proposed. These me-
thods try to spread the data points as evenly over the design space as possible, in
order to produce a uniform distribution of samples. This is done without knowing
in advance how many samples will be needed. These methods are thoroughly
compared against existing methods from different fields of research, and it is de-
monstrated that the new methods can sequentially produce space-filling designs
that rival the best one-shot methods.

Next, a method is proposed that spreads samples according to the local nonli-
nearity of the system. Regions with high nonlinearity are more densely sampled
than linear regions, because it is assumed that these nonlinear regions are more
difficult to model than linear (flat) regions. This method, called LOLA-Voronoi,
uses an approximation of the local gradient of the system to estimate the nonline-
arity. LOLA-Voronoi is compared against a number of other sequential methods,
and it is shown that it is a robust algorithm that can greatly reduce the total number
of samples in different contexts.

All the methods proposed in this thesis are freely available in the SUMO (SUr-
rogate MOdelling) and SED (Sequential Experimental Design) toolboxes. SUMO
is a Matlab toolbox for adaptive surrogate modelling with sequential design,
which tackles the entire modelling process from the first samples through si-
mulation to model training and optimization. SED is a specialized tool for se-
quential design which can be easily integrated into an existing modelling pipe-
line. Both toolboxes are open source, and therefore all experiments in this thesis
can be reproduced and validated. SUMO and SED can be downloaded from
http://sumo.intec.ugent.be.

http://sumo.intec.ugent.be

Samenvatting

Titel: Surrogaatmodelleren van Computerexperimenten met Sequentieel Ont-
werp

In veel moderne ingenieursproblemen worden nauwkeurige, op fysische ei-
genschappen gebaseerde computersimulaties gebruikt als alternatief voor reële
experimenten, om kosten te drukken of om gevaar te minimaliseren. Deze simu-
laties worden door de ingenieur gebruikt om inzicht te verwerven in het gedrag
van het bestudeerde systeem. Zo kan de ingenieur beter begrijpen hoe de ver-
schillende parameters met elkaar interageren en hoe het gedrag van het systeem
geoptimaliseerd kan worden.

Omdat deze computersimulaties dikwijls gebaseerd zijn op nauwkeurige fy-
sische modellen, kan één enkele simulatie met meerdere inputs en meerdere
outputs soms zeer lang duren. Zo rapporteerde Ford Motor Company over een car
crash simulatie voor een passagiersauto die 36 tot 160 uur duurde [36]. Vanwege
deze lange rekentijden, zijn deze computersimulaties nog steeds zeer onpraktisch
voor ingenieurs die het systeem willen begrijpen, interpreteren of optimaliseren.

Het doel van globaal surrogaatmodelleren is om een benaderingsmodel te
zoeken dat het gedrag van de originele simulator zo goed mogelijk benadert, maar
dat veel sneller uitgevoerd kan worden dan de originele simulator. Dit model
wordt getraind door een aantal intelligent gekozen simulaties uit te voeren, de
resultaten van deze simulaties te analyseren en deze informatie te gebruiken om
een model te kiezen dat deze data zo goed mogelijk benadert. Daarna kan dit
surrogaatmodel gebruikt worden als een volwaardig alternatief voor de originele
simulator dat veel sneller uitgevoerd kan worden en dus praktischer is voor de
ingenieurs om te gebruiken.

Het is duidelijk dat de keuze van de datapunten van essentieel belang is voor
de kwaliteit van het surrogaatmodel. In traditioneel (one-shot) experimenteel
ontwerp worden alle punten op voorhand gekozen, en wordt er pas een model
getraind wanneer alle punten geëvalueerd zijn. In sequentieel ontwerp worden
punten volgens een iteratieve methode gekozen, waarbij tussentijdse modellen en
outputs van voorgaande punten gebruikt worden om een betere, intelligentere
keuze te maken voor de locatie van de toekomstige punten.

In deze thesis worden nieuwe methodes voorgesteld voor sequentieel ontwerp
van black box, deterministische computersimulaties. Bij deze computersimulaties
is er op voorhand weinig of niets geweten over het gedrag van de simulator, en is de

3

4

enige informatie die beschikbaar is de resultaten van reeds uitgevoerde simulaties.
In deze context kan het zeer moeilijk zijn om op voorhand in te schatten hoeveel
datapunten er nodig zijn, waardoor one-shot experimenteel ontwerp zeer risicovol
kan zijn. Sequentieel ontwerp is dan een veiligere keuze die kan voorkomen dat er
te veel of te weinig datapunten geëvalueerd worden.

Eerst worden een aantal zogenaamde space-filling methodes voorgesteld.
Deze methodes proberen de datapunten zo goed mogelijk te verspreiden over de
ontwerpruimte, om zo een zo uniform mogelijke dekking van de ontwerpruimte
te bekomen. Dit wordt bereikt zonder op voorhand een idee te hebben van hoe-
veel punten er uiteindelijk nodig zullen zijn. Deze methodes worden uitgebreid
vergeleken met bestaande methodes van verschillende onderzoeksdomeinen, en
er wordt gedemonstreerd dat ze sequentieel een spreiding kunnen genereren die
kan concurreren met de beste one-shot methodes.

Vervolgens wordt een methode voorgesteld en bestudeerd die datapunten
spreidt volgens de lokale nonlineariteit van het systeem. Er worden meer da-
tapunten geplaatst op nonlineaire gebieden, omdat er wordt aangenomen dat
deze gebieden moeilijker te modelleren zijn dan lineaire (vlakke) gebieden. Deze
methode, genaamd LOLA-Voronoi, maakt hiervoor gebruik van een benadering
van de gradiënt van het systeem. Deze methode wordt vergeleken met bestaande
methodes, en er wordt aangetoond dat het een robuust algoritme is dat werkt voor
verschillende problemen in verschillende situaties.

Al de algoritmes voorgesteld in deze thesis zijn geïmplementeerd en beschik-
baar in de SUMO (SUrrogate MOdelling) en SED (Sequential Experimental Design)
toolboxen. SUMO is een Matlab toolbox voor adaptief surrogaatmodelleren met
sequentieel ontwerp, die het hele modelleringsproces beheert, van het kiezen van
de eerste punten tot het trainen van het finale model. SED is een gespecialiseerde
toolbox voor sequentieel ontwerp die gemakkelijk kan geïntegreerd worden in een
bestaand modelleringsproces. Beide toolboxen zijn open source, waardoor alle
experimenten in deze thesis gereproduceerd en gecontroleerd kunnen worden.
SUMO en SED kunnen gedownload worden op http://sumo.intec.ugent.be.

http://sumo.intec.ugent.be

Dankwoord

Why did I follow him...? I don’t know. Why do things happen as they do in dreams?
All I know is that, when he beckoned... I had to follow him. From that moment, we
traveled together, East. Always... into the East.
— Marius

Ik wil via deze weg een aantal mensen bedanken die belangrijk voor me zijn
geweest op de 5 jaar lange tocht naar mijn uiteindelijke doctoraatsverdediging.
Alleen is maar alleen, en jullie gezelschap heeft me zowel op professioneel als op
persoonlijk vlak veel vooruit geholpen.

Eerst en vooral wil ik mijn promotoren Tom Dhaene en Jan Broeckhove be-
danken. Tom, bedankt om mij de kans te geven om dit onderzoek te voeren en
mijn eigen weg te zoeken in de materie, zodat ik uiteindelijk een niche kon vinden
die me echt lag. Je hebt me altijd goed begeleid en gesteund, en je feedback was
steeds waardevol. Jan, bedankt om mij logistiek te ondersteunen in het uitwerken
van het duodoctoraat, en het in orde brengen van alle zaken achter de schermen.
Het heeft mij de kans gegeven om me volledig te concentreren op mijn werk.

Ook wil ik mijn (ex-)collega’s Dirk Gorissen, Ivo Couckuyt, Wouter Hendrickx
en Wim van Aarle bedanken, voor hun enthousiasme, inzet en medewerking. Het
was een bijzonder leerrijke ervaring om met jullie samen te werken aan een groot,
complex wetenschappelijk softwarepakket zoals SUMO en alles tot een goed eind
te brengen. De kennis opgedaan door samen met jullie SUMO van nul af aan op te
bouwen zal me in mijn toekomstige loopbaan zeker nog van pas komen.

Vervolgens wil ik mijn familie bedanken. Papa, voor je nuchtere kijk op de
wereld, je eerlijke meningen en de fantastische opvoeding die ik genoten heb. Ik
heb van jou de vrijheid gekregen om mijn eigen toekomst uit te stippelen. Ik appre-
cieer het enorm dat ik van jongsaf aan veel vertrouwen en verantwoordelijkheid
heb gekregen, en dat heeft in grote mate bepaald wie ik geworden ben. Ilse en
Sanne, voor de leuke feestjes die we samen op jullie appartement gehad hebben,
en de leuke gesprekken die daar gevoerd werden. Peter, voor de vele dolle avonden
die we beleefd hebben en voor de fantastische brouwerijweek in Wallonië, die me
erg de ogen heeft geopend.

In de 9 jaar dat ik op de universiteit heb doorgebracht, heb ik veel nieuwe
vrienden gemaakt. Wim van Aarle, Bram Derkinderen, Jan Vlegels, Wesley Jordens
en Gert Heiremans: bedankt om mijn studiejaren kleur te geven. Bedankt aan
Pieter Belmans om deze tekst zo minutieus na te lezen en te verbeteren. Bedankt

5

6

aan WINAK om mij te introduceren in het studentenleven. Bedankt ook aan Andie
Similon, Evi De Cock, David Staessens, David Van der Cruyssen en al mijn andere
vrienden van de Neejberhood: Neejberhood leeft voort!

Verder wil ik nog Dieter Schwerdtfeger bedanken voor de fantastische tijd die
we samen gespendeerd hebben, al gamend in het computerkot, en alle goede
gesprekken over het leven. Aan Olivier Mees en Dennis Vandaele: ook bedankt
voor de duizenden uren die we online samen besteed hebben. En ik mag uiteraard
Julian De Backer niet vergeten: je bent mijn oudste vriend, en hoewel we elkaar
niet zo veel zien, betekent onze vriendschap zeer veel voor mij.

En tenslotte wil ik Caroline Kussé nog bedanken: ik heb zeer veel van je geleerd
over het leven, en ik zal je altijd in mijn hart dragen. Je bent een fantastische, lieve
meid. Het ga je goed!

Karel Crombecq

Contents

Contents 7

1 Introduction 11
1.1 Computer simulation . 11

1.1.1 Time cost . 12
1.1.2 Output type . 12
1.1.3 Input type . 13
1.1.4 Dimensionality . 13
1.1.5 Noise . 14
1.1.6 Black or white box . 14

1.2 Surrogate modelling . 14
1.3 Sequential design . 17

1.3.1 Sequential design methods 18
1.3.2 Exploration and exploitation 19
1.3.3 Optimal and generic sequential design 22
1.3.4 Generic sequential design overview 23

1.4 Research goals . 25

2 Input-based sequential design 27
2.1 Motivation . 28
2.2 Important criteria for experimental designs 29

2.2.1 Granularity . 29
2.2.2 Space-filling . 29
2.2.3 Good projective properties 33
2.2.4 Orthogonality . 35

2.3 Optimization surface analysis . 36
2.3.1 Experimental setup . 36
2.3.2 Results . 38

2.4 Existing methods . 42
2.4.1 Factorial designs . 42
2.4.2 Latin hypercube . 42
2.4.3 Low-discrepancy sequences 46
2.4.4 Random sampling . 47

2.5 New space-filling sequential design methods 48

7

8 CONTENTS

2.5.1 Voronoi-based sequential design 50
2.5.1.1 Implementation 50
2.5.1.2 Sampling strategy 51
2.5.1.3 Performance analysis 52

2.5.2 Delaunay-based sequential design 54
2.5.3 Sequential nested Latin hypercubes 56
2.5.4 Global Monte Carlo methods 58

2.5.4.1 Intersite-projected distance criterion 58
2.5.4.2 Search space reduction 58
2.5.4.3 Performance analysis 60

2.5.5 Optimization-based methods 68
2.5.5.1 Optimize projected distance locally 68
2.5.5.2 Optimize intersite distance locally 69

2.6 Experiments . 73
2.6.1 Criterion-based comparison 73
2.6.2 Model-based comparison . 80

2.6.2.1 Ackley’s Path . 82
2.6.2.2 Results . 83
2.6.2.3 Electrical low-noise amplifier (LNA) 83
2.6.2.4 Results . 86
2.6.2.5 Truss structure . 87
2.6.2.6 Results . 87

2.7 Conclusions . 88

3 Output-based sequential design 93
3.1 Introduction . 94
3.2 Exploration using a Voronoi approximation 94
3.3 Exploitation using local linear approximations 95

3.3.1 Estimating the gradient . 97
3.3.2 Constructing the neighbourhoods 98

3.3.2.1 The ideal neighbourhood 99
3.3.2.2 The cross-polytope ratio 102
3.3.2.3 The neighbourhood score 103

3.3.3 Gradient estimation . 106
3.3.4 Nonlinearity measure . 109

3.4 Hybrid sequential design using Voronoi and LOLA 109
3.5 Algorithm optimization . 113

3.5.1 Pre-processing of neighbourhood score function 113
3.5.2 Adding a “too far” heuristic 114

3.6 Multiple outputs and frequency-domain parameters 118
3.6.1 Frequency-domain parametrs 118
3.6.2 Example . 119

3.7 Experiments . 123
3.7.1 Other sampling methods . 123
3.7.2 SUMO research platform . 124
3.7.3 In-depth analysis of LOLA-Voronoi with fixed sample size . 124

CONTENTS 9

3.7.3.1 Problem description 124
3.7.3.2 Model types . 126
3.7.3.3 SUMO configuration 126
3.7.3.4 Results . 126

3.7.4 Broad analysis of LOLA-Voronoi with fixed accuracy 132
3.7.4.1 Case 1: Peaks function 132
3.7.4.2 Case 2: low-noise amplifier 133
3.7.4.3 Case 3: shekel function 133

3.7.5 Results . 137
3.8 Conclusions . 141

4 Software 143
4.1 SUMO Toolbox . 144

4.1.1 Initial design . 147
4.1.2 Model type . 147

4.1.2.1 Rational models 148
4.1.2.2 Kriging models . 148
4.1.2.3 Artificial neural networks 150
4.1.2.4 Heterogeneous model builders 150

4.1.3 Sequential design method 151
4.1.3.1 General guidelines 151
4.1.3.2 Implementation 152

4.2 SED Toolbox . 155
4.2.1 Quick start guide . 156

4.2.1.1 You want an ND design of X points 157
4.2.1.2 You want to use the more advanced features of

the SED Toolbox 157
4.2.1.3 You want full control over all the method param-

eters . 158
4.2.2 Function reference . 158
4.2.3 Rules of thumb . 160

4.2.3.1 Constraints . 160
4.2.3.2 Quality vs speed 160
4.2.3.3 Dimensionality . 161

5 Conclusions 163

A Publications 165
A.1 Journal papers . 165
A.2 Conference papers . 166
A.3 Book chapters . 167

Bibliography 169

CHAPTER 1
Introduction

Hello my friend. Stay a while and listen!
— Deckard Cain

1.1 Computer simulation

For many modern engineering problems, accurate high fidelity simulations are
often used instead of controlled real-life experiments, in order to reduce the overall
time, cost and/or risk. These simulations are used by the engineer to understand
and interpret the behaviour of the system under study and to identify interesting
regions in the design space. They are also used to understand the relationships
between the different input parameters and how they affect the outputs.

A computer simulation, also called a computer model, is a program that at-
tempts to simulate a complex system from nature. Given a set of inputs (also called
factors or variables), the simulation will produce an output (also called response),
which can then be verified with a real-life experiment to make sure the computer
program contains no errors. Once the simulation program has been validated,
it can be used instead of real-life experiments to further study the subject, with
reduced cost and risk.

However, not each computer simulation is created equal, and it is impor-
tant to understand the different properties of computer simulations, in order to
properly analyze the results produced by the simulation. Issues such as noise,
domain knowledge and domain constraints can completely change the way the
data should be handled. In the following sections, we will shortly discuss the
different properties a computer simulation might have.

From now on, we will refer to the space containing all possible input values for
each input as the design space. A specific combination of input values, together
with the output produced by performing the simulation with these input values

11

12 CHAPTER 1. INTRODUCTION

will be called a sample. Evaluating a sample means running the simulation on the
input values to obtain the appropriate output value.

1.1.1 Time cost

The simulation of one single instance of a complex system with multiple inputs
and outputs can be a very time-consuming process. For example, Ford Motor
Company reported on a crash simulation for a full passenger car that takes 36 to
160 hours to compute [36]. Because of this long computational time, using this
simulation directly is still impractical for engineers who want to explore, optimize
or gain insight into the system.

The main focus of this thesis is on expensive computer simulations, and how
to minimize the number of simulations that must be performed to understand the
problem. If the simulation is cheap (i.e. millions of data points can be evaluated),
the complex algorithms proposed in this thesis might not be suitable. It might be
cheaper to just generate a large grid of data points than to use a complex (slower)
algorithm to determine the ideal locations for the data points. Only when the
advantage gained by requiring much less data points outweighs the additional
computational cost of the more complex algorithms, do these algorithms become
appropriate.

However, even for simulations which take only a few seconds, evaluating a
large grid can still be unviable. For example, evaluating a 100×100×100 grid for a
30-second simulation in 3 dimensions on a supercomputer with 100 cores already
takes more than 83 hours to finish, which might or might not be acceptable,
depending on the available resources. This clearly demonstrates the need for
intelligent algorithms that can substantially reduce the number of simulations.

1.1.2 Output type

Simulations can be broadly categorized in the type of output they produce. A
large class of simulation problems produce discrete values as output — these are
called classification problems. For classification problems, the goal is to map each
set of inputs on the appropriate discrete output value, for example yes or no in
the binary classification problem. This is a long-standing research subject origi-
nating from statistics, which was picked up by the machine learning community
as supervised learning [93]. Many algorithms are available to tackle problems
with discrete output values, such as decision trees, nearest neighbour algorithms,
support vector machines, and so on.

Another class of simulations are those with continuous outputs. These can
be either real or complex outputs, for which an unlimited number of possible
values exist. Because there is an unlimited number of possible output values,
algorithms which were designed for discrete output values do not directly apply to
these problems. This problem, which is known as regression analysis in statistics
and machine learning [30, 80], is the main focus of this research.

1.1. COMPUTER SIMULATION 13

1.1.3 Input type

The inputs can also be either discrete or continuous, which again results in differ-
ent research fields which have their own terminology, methodology and practices.
In many contexts, discrete inputs are the natural choice: this is often the case in
experiments in which something is either included in the experiment, or excluded
from it, such as a chemical component. But even inputs which are naturally con-
tinuous are often still treated as discrete inputs, to make it easier to determine the
simulations that must be performed. For example, a grid is a discretisation of the
input space into evenly spaced points. Many other methods use a subset of the
full grid. These methods do not consider the entire range of viable values, but a
small subset. This part of the research field is thoroughly discussed in [10].

Other methods treat real-valued inputs as they are, and consider the entire
(infinitely large) range of possible values for each simulation [67]. This allows for
more optimal decisions in terms of input values, but also makes the problem much
harder to tackle, because the search space is infinitely large. Both approaches have
their merit, and will be discussed and compared in this thesis.

1.1.4 Dimensionality

The input dimension of the simulation is a deciding factor in how to work with the
simulation. The curse of dimensionality dictates that high-dimensional problems
quickly become intractable, because data spreads out exponentially with the
number of dimensions. Therefore, analyzing high-dimensional data, even when
there are millions of data points available, will only be possible to a certain degree.

Several solutions to dealing with high-dimensional data have been proposed
over the years. Sometimes, models are limited to linear models (assuming the
response is only linearly dependent on each variable). This approach is taken by
the linear regression field of statistics [47]. Additionally, the number of inputs can
be reduced by variable selection or feature selection methods, which determine
the most important inputs of the simulator and reduce the size of the model by
discarding irrelevant inputs. Another way to deal with the curse of dimensionality
is by assuming the output is discrete, making the modelling process considerably
simpler. This is the assumption followed by the classification field of machine
learning [60].

Low-dimensional simulators, on the other hand, can be analyzed and mod-
elled in great detail, taking into account nonlinear dependencies, complex inter-
actions between inputs and high accuracy requirements. Many problems can be
described as low-dimensional problems, or can be reduced to a low-dimensional
problem by means of variable selection. The focus of this thesis is mainly on
low-dimensional problems; methods are developed for problems with less than
10 dimensions in mind. However, some of the methods proposed will scale well to
higher dimensions.

14 CHAPTER 1. INTRODUCTION

1.1.5 Noise

Noise is a random and unwanted fluctuation in a signal, or in this case: the
outputs of the simulation. Noise can make it considerably more difficult to model
a system. In computer simulations, there is a big difference between deterministic
noise and stochastic noise. Deterministic noise is noise inherent to the simulation
implementation, and performing the same simulation (with the exact same inputs)
twice will yield the same noise on the output. This noise comes from inaccuracies
in the implementation of the simulation, so that it does not perfectly mimic the
behaviour in nature, and introduces some level of noise to the output.

Stochastic noise, on the other hand, is caused by random elements in the
implementation. This type of noise will produce (slightly) different outputs when
the same simulation is performed twice. This can be the case when, for example,
Monte Carlo methods are used in the simulation implementation. It is very impor-
tant to know if this noise is present, as it needs to be taken into account in every
stage of the analysis of the data [98]. When stochastic noise is present, classical
statistical methods such as replication become relevant.

In this thesis, the focus will be on deterministic computer simulations, which
have either no (relevant) noise at all, or only deterministic noise. Therefore, repli-
cation will not be taken into account.

1.1.6 Black or white box

When no information is known about the behaviour of the system, the simulation
is called a black box. This means that, without running simulations, nothing is
known about the behaviour of the function, and no assumptions can be made
about continuity or linearity or any other mathematical properties the system
might have. The only way to acquire information about the behaviour is by per-
forming simulations and analyzing the results.

When the system is a grey or white box, information is available about the inner
workings and behaviour of the system. This allows the engineer to make informed
decisions about which methods to use to analyze the data and which simulations
to perform. For example, when the engineer knows that the different inputs only
have a linear effect on the output, linear models can be used to accurately model
the system with very little data. When this information is not available, more
complex models must be used that can handle nonlinear data, such as Kriging [82].
These models might not be as good at modelling linear data as the linear models.

In this thesis, we focus on black box systems, and limit ourselves to analyzing
the output to gain insight into the system behaviour.

1.2 Surrogate modelling

Because simulations are assumed to be expensive, it is impractical to explore the
design space thoroughly by evaluating large amounts of samples directly. The goal
of global surrogate modelling (or metamodelling) is to find an approximation func-
tion (also called a surrogate model) that mimics the original system’s behaviour,

1.2. SURROGATE MODELLING 15

but can be evaluated much faster. This function is constructed by performing
multiple simulations (called samples) at key points in the design space, analyzing
the results, and selecting a model that approximates the samples and the overall
system behavior quite well [8, 43]. This is illustrated in Figure 1.1.

There are a wide variety of model types available, and which one is most
suitable depends largely on the system that is to be modelled. Popular choices are
polynomial and rational functions [22, 48], Kriging models [9, 87], neural networks
[5, 77] and radial basis functions (RBF) models [61]. Once the model is constructed,
it can be used to perform optimization and sensitivity analysis and to gain insight
in the global structure and behavior of the function [7, 24, 99].

Please note that global surrogate modeling differs from local surrogate mod-
eling in the way the surrogate models are employed. In local surrogate model-
ing, local models are used to guide the optimization algorithm towards a global
optimum [81]. The local models are discarded afterwards. In global surrogate
modeling, the goal is to create a model that approximates the behavior of the sim-
ulator on the entire domain, so that the surrogate model can then be used as a full
replacement for the original simulator, or can be used to explore the design space.
Thus, the goal of global surrogate modeling is to overcome the long computational
time of the simulator by providing a fast but accurate approximation, based on
a one-time up front modeling effort. In this thesis, we are only concerned with
global surrogate modeling.

Mathematically, the simulator can be defined as an unknown function f : Rd →
C, mapping a vector of d real inputs to a real or complex output. This function
can be highly nonlinear and possibly even discontinuous. This unknown function
has been sampled at a set of scattered data points P = {

p1,p2, . . . ,pn
} ⊂ [−1,1]d ,

for which the function values
{

f (p1), f (p2), . . . , f (pn)
}

are known. In order to
approximate the function f , a function f̃ : Rd →C is chosen from the (possibly)
infinite function set of candidate approximation functions F .

The quality of this approximation depends on both the choice and exploration
of the function space F and the samples P . Ideally, the function f itself would be in
the search space F , in which case it is possible to achieve an exact approximation.
However, this is rarely the case, due to the complexity of the underlying system.
In practice, the function f̃ is chosen according to a search strategy through the
space F , in order to find the function that most closely resembles the original
function, based on some error metric for the samples P [11, 52].

It is clear that the choice of the sample set P (called the experimental design) is
of paramount importance to the success of the surrogate modeling task. Intuitively,
the data points must be spread over the design space Rd in such a way as to convey
a maximum amount of information about the behavior of f . This is a non-trivial
task, since little or nothing is known about this function in advance.

16 CHAPTER 1. INTRODUCTION

Figu
re

1.1:A
seto

fd
ata

p
o

in
ts

is
evalu

ated
by

a
b

lack
b

ox
sim

u
lato

r,w
h

ich
o

u
tp

u
ts

a
resp

o
n

se
fo

r
every

d
ata

p
o

in
t.A

n
ap

p
roxim

atio
n

m
o

d
el(su

rro
gate

m
o

d
el)

is
fi

tto
th

e
d

ata
p

o
in

ts,w
ith

th
e

go
alo

fm
in

im
izin

g
th

e
ap

p
roxim

atio
n

erro
r

o
n

th
e

en
tire

d
o

m
ain

.

1.3. SEQUENTIAL DESIGN 17

1.3 Sequential design

In traditional design of experiments (DoE), the experimental design P is chosen
based only on information that is available before the first simulation, such as the
existence of noise, the relevance of the input variables, the measurement precision
and so on. This experimental design is then fed to the simulator, which evaluates
all the selected data points. Finally, a surrogate model is built using this data. This
is essentially a one-shot approach, as all the data points are chosen at once and
the modeling algorithm proceeds from there, without evaluating any additional
samples later on. This process is illustrated in Figure 1.2.

Figure 1.2: A one-shot experimental design flow-chart.

In the deterministic black box setting, where there is no information available
up front and statistical methods such as blocking and replication lose their rele-
vance, the only sensible one-shot experimental designs are space-filling designs,
which try to cover the design space as evenly as possible. The advantages of clas-
sical space-filling methods are that they can be easily implemented and provide
a good (and guaranteed) coverage of the domain. Examples of popular space-
filling design are fractional designs [88], Latin hypercubes [87] and orthogonal
arrays [25].

Sequential design improves on this approach by transforming the one-shot
algorithm into an iterative process. Sequential design methods analyze data (sam-
ples) and models from previous iterations in order to select new samples in areas

18 CHAPTER 1. INTRODUCTION

that are more difficult to approximate, resulting in a more efficient distribution of
samples compared to traditional design of experiments. Sequential design is also
known by other names, such as adaptive sampling [64] and active learning [89],
depending on the research field. For example, in machine learning, active learning
is the prefered term. Throughout this thesis, we will call it sequential design.

1.3.1 Sequential design methods

A typical sequential design method is described in Algorithm 1. First, an initial
batch of data points is evaluated using a minimal one-shot experimental design.
This design is usually one of the traditional designs from DoE, such as a (sparse)
Latin hypercube. The initial design must be large enough to guarantee a minimal
coverage of the design space, but should be small enough so that there is room for
improvement, allowing the sequential design strategy to do its work.

Algorithm 1 A typical sequential design method.

P ← initial experimental design
Calculate f (P) through simulation
Train model using P and f (P)
while accuracy not reached do

Select new data points Pnew using sequential design strategy
Calculate f (Pnew) through simulation
P ← P ∪Pnew

Train model using P and f (P)
end while

Based on the initial experimental design, a surrogate model is built and the
accuracy of this model is estimated using one or more well-known error metrics.
Examples of error metrics are cross-validation, an external test-set, error in the
data points, and so on. Based on the estimated accuracy of the model, the algo-
rithm may (and probably will, if the initial design was small enough) decide that
more samples are needed. This process is shown in Figure 1.3.

The locations of these additional samples are chosen by the adaptive sampling
or sequential design strategy. Many different strategies are available, and the opti-
mal strategy may depend on several factors, including the surrogate model type
that is used, the number of samples required, the system that is being modelled
and so on. Finally, a new surrogate model is built using all the data gathered thus
far, and the model accuracy is estimated again. If the desired accuracy is still not
reached, the entire sample selection process is started all over again.

Ultimately, the goal of this algorithm is to reduce the overall number of samples,
since evaluating the samples (running the simulation) is the dominant cost in
the entire surrogate modelling process. If samples are chosen sequentially, more
information is available to base the sampling decision on compared to traditional
design of experiments. Both the previous data points and the behaviour of the
intermediate surrogate model provide important information on where the next

1.3. SEQUENTIAL DESIGN 19

Figure 1.3: A sequential design flow-chart.

sample(s) should be located. If this additional information is used well, the total
number of samples can be reduced substantially.

Note that some optimization algorithms use similar iterative schemes, but
with a completely different goal. These optimization algorithms may also employ
sequential design techniques to minimize the number of samples required to find
the global optimum. However, they are not concerned with finding a good global
approximation over the entire design space. Because of this, a lot of optimization-
oriented sequential design techniques ignore large portions of the design space
and focus heavily on the (estimated) optima. In this thesis, we will only consider
related work on sequential design in the context of global surrogate modelling. For
more information about sequential design in the context of optimization, please
refer to [29, 59].

1.3.2 Exploration and exploitation

An essential consideration in sequential design is the trade-off between explo-
ration and exploitation. Exploration is the act of exploring the domain in order to
find key regions of the design space, such as discontinuities, steep slopes, optima
or stable regions, that have not been identified before. The goal is similar to that of
a one-shot experimental design, in that exploration means filling up the domain
as evenly as possible. Exploration does not involve the responses of the system,
because the goal is to fill up the input domain evenly. Examples of exploration
methods can be found in [33, 73, 78, 79, 92].

The advantage of exploration-based sequential design methods over one-shot
experimental designs is that the amount of samples evaluated depends on the

20 CHAPTER 1. INTRODUCTION

feedback from previous iterations of the algorithm (when the model is accurate
enough, no more samples are requested). When one large experimental design is
used, too many samples may have been evaluated to achieve the desired accuracy
(oversampling) or too little samples may have been evaluated (undersampling), in
which case one must completely restart the experiment or resolve to sequential
methods to improve the initial experimental design.

Instead of exploring the input domain, exploitation-based methods select
samples in regions which have already been identified as (potentially) interesting.
For example, one might want to zoom in on optima, in order to make sure the
surrogate model does not overshoot the optimum. Or one might also want to
sample near possible discontinuities to verify that they are, in fact, discontinuous,
and not just very steep slopes. Exploitation involves using the outputs of the
previous function evaluations to guide the sampling process.

Over the years, many exploitation-based methods have been proposed. Jin et
al. [53] described an algorithm that uses a maximin design to select new samples
in combination with an importance weighting for the input variables based on
previous surrogate models. Farhang-Mehr et al. [28] proposed an algorithm that
uses previously built surrogate models to sample regions in which many local
optima of the surrogate model are close to each other. Turner et al. [91] use a
sequential design technique for a NURBS-based surrogate model that balances
multiple sampling criteria using a simulated annealing approach. Lin et al. [67]
train a second surrogate model on the prediction errors in order to guide the sam-
pling process to locations in which the surrogate model performs poorly. Kleijnen
et al. [58] employ cross-validation and jackknifing to predict the variance at new
candidate sample locations in the context of Kriging. Osio et al. [75] developed an
adaptive algorithm that weights variables according to their estimated importance,
and samples accordingly.

In every sequential design strategy, a trade-off must be made between these
two conflicting options. If a sequential design strategy only focuses on exploitation,
the initial experimental design must be sufficiently large as to capture all regions
of interest right away. Otherwise, large (interesting) areas may be left unsampled, a
problem which they share with optimal designs [11]. Because the simulator is often
a black box, it is infeasible in practice to predict the required size for the initial
design accurately. On the other hand, if a strategy focuses only on exploration, one
of the advantages provided by evaluating and selecting the samples sequentially is
ignored, because the outputs are not used.

The trade-off between exploration and exploitation is illustrated in Figure 1.4.
It is clear that without proper design space exploration, any sequential design
strategy is bound to miss important regions in the response surface. Thus, every
sequential design strategy must be space-filling to a certain degree. On top of
this necessary foundation, exploitation-based methods can then zoom in on
interesting regions to improve the generalization error in that region.

The necessary trade-off between exploration and exploitation can be accounted
for in different ways. In sequential design methods [28, 67], the trade-off is buried
deep in the formulation of the algorithm. In other strategies [91], the difference
between exploration and exploitation is very clear, in that a simulated annealing

1.3. SEQUENTIAL DESIGN 21

(a) Initial set of samples and target func-
tion

(b) Exploration

(c) Exploitation

Figure 1.4: This figure demonstrates the trade-off between exploration and ex-
ploitation. In Figure 1.4(a), a function and an initial set of samples are visualized.
The function is unknown, and from looking at the samples, the function seems to
behave linearly, except for one sample to the right. As illustrated in Figure 1.4(b),
exploration will explore the entire design space evenly, discovering new nonlinear-
ities on the way. Exploitation, on the other hand, will focus on the area to the right
because it seems to be the only nonlinear area, missing the additional nonlinearity
to the left. This is depicted in Figure 1.4(c).

22 CHAPTER 1. INTRODUCTION

approach is used to balance between the two and to switch priorities from one to
the other during the modelling process.

1.3.3 Optimal and generic sequential design

A large class of sequential design methods assume that the model type is known in
advance. This allows the algorithm to exploit the behaviour of this model to guide
the sampling process in the optimal direction for this specific model type. This is
called optimal design.

Many sequential design methods use some aspects of optimal design to gener-
ate new samples. By far the most popular model type for this approach is Kriging
(also known as Gaussian process models). For example, Busby et al. [11] split the
design space into cells using a domain decomposition strategy, ensuring a certain
degree of domain coverage. In each cell, their algorithm applies a local sequential
optimal design. Gramacy et al. [44] use a treed Gaussian process model, which
is an extension of the standard Gaussian process model, to approximate a black
box system. After an initial batch of samples is selected using a Latin hypercube
design, active learning methods (Active Learning-McKay and Active Learning-
Cohn) are used to select more samples in regions with high levels of uncertainty.
Sasena et al. [85] proposed an algorithm called Switch which switches between a
Kriging-based exploration and exploitation strategy. Lehmensiek et al. [63] sug-
gest an adaptive sampling strategy which uses the estimated interpolation error
calculated from the last two models to choose new sample locations.

All of these methods incorporate to some degree information about the model
in the sampling process. These sampling strategies may be highly efficient if the
model for which it was developed is suitable for the problem at hand. However,
this may not always be the case, as the optimal model type for a specific problem
might not be known up front. This motivates the need for a generic algorithm,
which makes no assumptions about the model type, the behaviour of the system
or the amount of samples needed.

Generic sequential design strategies can only use the outputs from the simu-
lator and previously built models to decide where to sample next. They cannot
make any assumptions about how the model will behave, or which type of model
is used. In fact, completely different model types may be used at the same time
in a heterogeneous modelling environment [41]. This is a major advantage over
optimal sequential design strategies, especially in a black box setting where little or
nothing is known about the system in advance. In this case, choosing a model type
for the problem comes down to guesswork, and if a bad choice is made, the opti-
mal design that will be generated will not be optimal for another model type that
might be tried later on. A heterogeneous modelling environment can help solve
this problem by automatically looking for model types that match the problem at
hand, while generating a sequential design that is not specifically tailored to one
model type. Heterogeneous modelling environments, in which many completely
different types of models are considered together, have a larger search space of
candidate functions F , and can therefore drastically improve the accuracy of the

1.3. SEQUENTIAL DESIGN 23

final model. Because of these advantages, all the methods proposed in this thesis
will be generic methods.

1.3.4 Generic sequential design overview

Based on the different approaches described in the previous sections, sequential
design methods can be divided into four categories, based on how much informa-
tion they use to determine where to select the next sample. This is illustrated in
Table 1.1.

Input-based methods only use the inputs from previously selected samples
to determine where to sample next. Because outputs are not used at all, this
category contains the space-filling methods. Output-based methods use the
outputs generated from previous simulations to determine a more optimal sample
distribution, tailored to the simulator. However, these methods are still generic
with regards to the surrogate model, because they do not evaluate models from
previous iterations to determine the new sample location. Therefore, they are still
suitable for heterogeneous modelling environments.

The last two categories use respectively model evaluations and model param-
eters to determine new sample locations. In the last category, Kriging is very
popular because properties such as variance can be directly derived from the
model parameters. These two categories optimize the sample distribution for
one specific model type, and therefore cannot be used properly in heterogeneous
environments.

24 CHAPTER 1. INTRODUCTION

Tab
le

1.1:T
h

e
fo

u
r

d
ifferen

tcatego
ries

fo
r

seq
u

en
tiald

esign
m

eth
o

d
s.

In
p

u
t-b

ased
(=

exp
lo

ratio
n

)
O

u
tp

u
t-b

ased
(=

exp
lo

itatio
n

)
M

o
d

elo
u

tp
u

t-b
ased

M
o

d
el-b

ased
U

ses
o

n
ly

in
p

u
t

valu
es

fro
m

p
revio

u
s

sam
p

les
to

d
eterm

in
e

n
extsam

p
le.

U
ses

in
p

u
t

an
d

o
u

tp
u

t
valu

es
from

p
reviou

s
sam

p
les

to
d

eter-
m

in
e

n
extsam

p
le.

U
ses

p
revio

u
s

sam
p

les
an

d
m

o
d

el
evalu

atio
n

s
to

d
eter-

m
in

e
n

extsam
p

le.

U
ses

p
revio

u
s

sam
p

les
an

d
m

o
d

elp
ro

p
erties

an
d

p
aram

e-
ters

to
d

eterm
in

e
n

extsam
p

le.
E

xam
p

les:
•

R
an

d
o

m
sam

p
lin

g
•

Low
-d

iscrep
an

cy
seq

u
en

ces
[49,54,73]

•
Seq

u
en

tially
n

ested
Latin

h
y-

p
ercu

b
es

[50,79,92]
•

V
o

ro
n

o
i-b

ased
sam

p
lin

g
[18]

•
M

o
n

te
C

arlo
/O

p
tim

izatio
n

-
b

ased
sam

p
lin

g
[20]

•
C

h
ap

ter
2

E
xam

p
les:

•
LO

L
A

-Vo
ro

n
o

i[18,19]
•

C
h

ap
ter

3

E
xam

p
les:

•
A

d
ap

tatio
n

to
irregu

larities
[28]

•
Slo

p
e,lo

calo
p

tim
a

an
d

vari-
an

ce
criteria

[91]
•

Seq
u

en
tial

E
xp

lo
rato

ry
E

x-
p

erim
en

tal
D

esign
m

eth
o

d
(SE

E
D

)
[67]

•
M

o
d

elerro
r

sam
p

lin
g

[48]

E
xam

p
les:

•
K

rigin
g-b

ased
[11,44,53,58,

63,85]

1.4. RESEARCH GOALS 25

1.4 Research goals

The goal of this thesis is to propose new, highly efficient generic sequential design
algorithms for deterministic black box computer simulations. The methods pro-
posed in this thesis provide a good alternative for classical experimental design
techniques by reducing the total number of simulations required. Because the
simulation is assumed to be a black box, it is difficult to determine the best model
type up front. Therefore, the focus of this thesis lies on input-based and output-
based methods, which do not rely on a particular model type for determining the
samples.

In Chapter 2, a set of novel, fast space-filling sequential design methods are
proposed. These methods can be used as replacements for pre-optimized Latin
hypercubes, which have excellent space-filling properties but are extremely costly
to compute and are not available in high dimensions or for a larger of samples.
The methods proposed in this chapter scale well to high dimensions and large
sample sizes, and can be computed much faster.

In Chapter 3, we propose the LOLA-Voronoi algorithm, a powerful exploitation-
based sequential design algorithm which selects new samples in regions of high
variability, because these regions are assumed to be more difficult to approximate
than smooth, linear regions.

The sequential design methods presented in this thesis are freely available in
the SUMO (SUrrogate MOdelling) Toolbox and the SED (Sequential Experimental
Design) Toolbox, which are both open source Matlab toolboxes which can be found
at http://sumo.intec.ugent.be. These toolboxes are discussed in Chapter 4.

http://sumo.intec.ugent.be

CHAPTER 2
Input-based sequential design

You speak of knowledge, Judicator? You speak of experience? I have journeyed
through the darkness between the most distant stars. I have beheld the births
of negative suns and borne witness to the entropy of entire realities... Unto my
experience, Aldaris, all that you’ve built here on Aiur is but a fleeting dream.
— Zeratul

27

28 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.1 Motivation

Space-filling design methods play a prominent role in modeling today. Stemming
from traditional experimental design, one-shot methods such as Latin hypercubes
have become very popular as the go-to stop for any situation. However, Latin
hypercubes are far from perfect, and using them without thought can severely
harm the resulting model, as we will try to demonstrate in this chapter.

The one-shot experimental design methods are mainly popular because they
are widely available (most computational packages support them out-of-the-box)
and easy to use and understand. However, they require an up-front guess of
the total number of sample points, which can be very difficult in a black box
setting. Sequential space-filling methods, on the other hand, do not need any
information on the total number of samples beforehand, and will always produce
good designs, no matter after how many points the algorithm is stopped. This is a
huge advantage over the one-shot approaches.

One might ask why one would want to develop and use purely input-based
(space-filling) methods if output-based methods are available that tailor the design
to the problem at hand. There are several reasons why one would prefer input-
based methods over the more complex output-based methods.

Firstly, input-based methods are usually much faster than output-based meth-
ods, as they do not need to analyse the outputs from previous simulations. In
fact, output-based methods tend to scale relatively poor to high dimensions and
large numbers of samples, while input-based methods scale much better. When
it cannot be afforded to spend large amounts of time on analyzing the data to
determine the next sample point, input-based methods can offer real-time sample
selection at considerable speeds.

Secondly, every output-based method needs an exploration (input-based)
component, as explained in Section 1.3.2. If an output-based method would not
perform design space exploration, it would focus purely on the already identified
interesting regions, and might overlook large portions of the design space that
are equally interesting or more so. Hence, it makes sense to investigate good
space-filling methods, even in the context of output-based sequential design.

Thirdly, some of the most popular modeling methods today, such as Kriging,
actually prefer space-filling methods over methods that cluster points in hard-
to-approximate regions. This is due to the structure of the correlation matrix for
Kriging, which tends to become ill-conditioned when two points are placed too
close to each other. In order to avoid this problem, data points should be spread
out as evenly as possible over the design space, which is exactly what input-based
methods do.

In this chapter, we will look into existing one-shot and sequential experimental
design methods, and propose several new ones, based on different approaches and
ideas such as Voronoi tessellations, Monte Carlo methods and local optimization.
We will compare these methods to the existing ones, and show that they are a
viable alternative to traditional one-shot designs.

2.2. IMPORTANT CRITERIA FOR EXPERIMENTAL DESIGNS 29

2.2 Important criteria for experimental designs

From now on, we will consider the d-dimensional experimental design P ={
p1,p2, . . . ,pn

}
containing n samples pi =

(
p1

i , p2
i , . . . , pd

i

)
in the (hyper)cube [−1,1]d .

In order for this method to be a good space-filling sequential design strategy for
computer experiments, it has to maximize the following criteria.

2.2.1 Granularity

The first criterion is the granularity of the strategy. A fine-grained sequential design
strategy can select a small number of points (preferably one) during each iteration
of the algorithm. It should also generate reasonably space-filling designs, no
matter after which iteration the algorithm is stopped. A coarse-grained sequential
design strategy, on the other hand, selects new samples in large batches. The
reason why a fine-grained method is preferred, is because it completely avoids
over- or undersampling. When samples are only selected in large batches, too
many samples may be evaluated at once, because only a few samples of the last
batch were necessary to arrive at the desired prediction error. It is also possible
that the modeller decides to stop sampling before the desired prediction error is
reached, because the next batch is too large and there is not enough computational
time left to evaluate the entire batch.

Finally, the granularity of an algorithm also refers to the fact that the algo-
rithm does not need to know the total number of samples that will be evaluated.
Some methods, such as factorial designs and Latin hypercubes, require that the
total number of samples be known in advance. In most real-life situations, this
information is unavailable, because the simulator is assumed a black box, and
the complexity of the simulator, and the difficulty to model the problem, is not
known up front. Therefore a good space-filling sequential design method should
not make any assumptions about the maximum number of samples, and should
work reasonably well no matter how many samples will be selected in the end.

2.2.2 Space-filling

Secondly, the generated design should be space-filling. Intuitively, a space-filling
design is an experimental design P in which the points are spread out evenly
over the design space. However, there are several ways to define this property
mathematically. Over the course of the years, many different space-filling criteria
have been proposed. The goal is to select the design P to maximize the criterion
of choice. Depending on the criterion, the optimal design P will look differently.
Table 2.1 gives an overview of the most popular ones, along with some references
of people using the criterion. Some criteria might be used under different names
in different publications; we use the most common name in this table and in
further references in this thesis.

Note that most authors are concerned with finding an optimal design when the
number of design points n is given and known in advance, and the entire design is
generated at once instead of sequentially (i.e. worst possible granularity). In some

30 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

cases (see [50] and [79]), the authors introduce some granularity in their methods,
but they remain too coarse-grained for expensive computer experiments, in which
each single sample evaluation may take hours and should be considered carefully.

Of these different criteria, the φp criterion and the maximin criterion are the
most widely used. The φp criterion is an extension of the maximin criterion,
introduced by [72] to differentiate between two designs which have the same
maximin value. For large p, the φp criterion tends to rank designs in the same
order as the basic maximin criterion, while for small p, the criterion behaves like
the Audze-Eglais criterion. Additionally, if p is large enough, φp will differentiate
between designs which have the same maximin value, but for which the second
smallest distance between points is different. In this way, the φp criterion is a
family of criteria that encompasses both the maximin and Audze-Eglais criterion
and everything in between.

However, the φp criterion has several disadvantages. The first problem is that
it is numerically unstable in certain circumstances. When two points are very
close to each other, and the power p is chosen large enough, φp will return infinity
because of a floating point overflow. It is enough for one intersite distance to be
rounded to zero, to result in a value of φp that is equal to infinity, no matter the
quality of the rest of the design. The point at which this happens depends on both
the design that is being rated and the number p, and the outcome is therefore
difficult to predict in advance. This problem becomes an issue in sequential
sampling, where the total number of samples (and therefore the distances that are
to be expected) is unknown up front. Figure 2.1 demonstrates this problem.

Another problem with the φp criterion is that the value returned does not bear
any geometrical meaning, and only provides a relative ranking between different
designs. It is not intuitive to interpret the number and relate it to the density of
the design. This also makes it difficult to combine the φp criterion with another
one (for example: the projected distance criterion discussed in the next section).
Additionally, the asymptotic nature of the φp criterion makes it very difficult to
visualize the optimization surface, as the range of values is extremely small in most
parts of the design space, and extremely large in small subparts.

Finally, it is also not easy to determine the ideal choice for the parameter
p. If p is taken too small, the designs are not ranked in the same order as the
maximin criterion would, which might be undesirable. But if p is taken too large,
the instability issues illustrated in Figure 2.1 may occur. Morris et al. [72] perform
several runs of a sequential design strategy with different values of p in order to
find the value of p that works best for their problem. However, this severely slows
down the sequential design method, as several independent runs with different
values for p have to be performed.

Because of these issues, the φp criterion was not used in this study. The novel
methods proposed in this thesis combine multiple criteria to find an optimal
solution for a multi-objective problem, and because of the lack of geometric
meaning and the asymptotic nature of the surface, it is very difficult to combine
theφp criterion with anything else. Instead, the maximin criterion, which does not
suffer from any of the aforementioned issues, will be used to both generate and
rank the designs. From now on, the maximin space-filling criterion will be referred

2.2. IMPORTANT CRITERIA FOR EXPERIMENTAL DESIGNS 31

Ta
b

le
2.

1:
O

ve
rv

ie
w

o
fd

if
fe

re
n

ts
p

ac
e-

fi
lli

n
g

cr
it

er
ia

.

C
ri

te
ri

o
n

In
te

rp
re

ta
ti

o
n

Fo
rm

u
la

R
ef

er
en

ce
s

M
an

h
at

ta
n

(l
1

n
o

rm
)

Ta
xi

ca
b

d
is

ta
n

ce
m

in
p

i,
p

j∈
P

∑ d k
=1

∣ ∣ ∣pk i
−p

k j

∣ ∣ ∣
[9

2,
97

]

M
ax

im
in

(l
2

n
o

rm
)

E
u

cl
id

ea
n

d
is

ta
n

ce
m

in
p

i,
p

j∈
P

√ ∑ d k
=1

∣ ∣ ∣pk i
−p

k j

∣ ∣ ∣2
[5

0,
55

,5
6,

72
,9

2,
97

]

A
u

d
ze

-E
gl

ai
s

A
ve

ra
ge

d
is

ta
n

ce
∑ p

i,
p

j∈
P

1/
∑ d k

=1
∣ ∣ ∣pk i

−p
k j

∣ ∣ ∣2
[3

]

C
en

te
re

d
L

2
d

is
cr

ep
an

cy
P

ro
p

o
rt

io
n

o
fp

o
in

ts
in

su
b

in
te

rv
al

si
ze

o
fi

n
te

rv
al

se
e

[2
7]

[2
6,

27
,4

9,
53

,5
4,

72
]

φ
p

G
en

er
al

iz
at

io
n

of
m

ax
im

in
d

is
ta

n
ce

(∑ p
i,

p
j∈

P

√ ∑ d k
=1

∣ ∣ ∣pk i
−p

k j

∣ ∣ ∣2
−p

) 1/p
[4

5,
53

,5
4,

72
,9

4]

32 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) (b)

(c)

Figure 2.1: Three experimental designs with the same φp score. Because two
points lie close to each other in the bottom left, the difference between these three
designs is lost due to roundoff errors. Figure 2.1(b) is clearly a better design than
2.1(a) because the points are more evenly spread out over the design space, but
this information is completely lost with the φp criterion.

2.2. IMPORTANT CRITERIA FOR EXPERIMENTAL DESIGNS 33

to as the intersite distance, because it tries to maximize the smallest (Euclidean)
distance any two sets of points (sites) in the design. The intersite distance is
formally defined as

idist(P) = minpi,pj∈P

√√√√ d∑
k=1

∥∥∥pk
i −pk

j

∥∥∥2
. (2.1)

The problems with φp are not a major concern when this criterion is used to
rank Latin hypercube designs, which already guarantee by construction a minimal
distance between points. This explains why authors such as Viana et al. [94] use the
φp criterion without encountering any stability issues. They also do not combine
the criterion with other criteria, because Latin hypercubes already guarantee good
projective properties.

2.2.3 Good projective properties

A good space-filling design should also have good projective properties. This is also
called the non-collapsing property by some authors [92]. An experimental design

P has good projective properties if, for every point pi , each value p j
i is strictly

unique and is as different from all other values p j
k as possible. This property also

means that, when the experimental design is projected from the d-dimensional
space to a (d −1)-dimensional space along one of the axes, no two points are ever
projected onto each other.

The quality of a design in terms of its projective properties can be defined as
the minimum projected distance of points from each other:

pdist(P) = min
pi ,p j ∈P

min
1≤k≤d

∣∣∣pk
i −pk

j

∣∣∣
= min

pi ,p j ∈P

∥∥pi −p j
∥∥−∞ (2.2)

where ‖x‖−∞ is the minus infinity norm. This is a useful property if it is
unknown up front if there are design parameters included in the experiment
which have little or no effect on the response. If this is the case, two samples
which differ only in this design parameter can be considered the same point, and
evaluating this same point twice is a waste of computational time. Therefore, each
sample should preferably have unique values for each design parameter. Ideally,
when all the points are projected onto one of the axes the remaining design should
be space-filling as well. Preferably, all the projected points should be equidistant. It
is expected that an experimental design with optimal (equidistant after projection)
non-collapsing points will not suffer a performance hit when one of the design
parameters turns out to be irrelevant. The importance of this property is illustrated
in Figure 2.2.

34 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) 2D function (b) 2D function projected on x1

(c) 2D Latin hypercube design (d) 2D Latin hypercube design pro-
jected on x1

(e) 2D factorial design (f) 2D factorial design projected
on x1

Figure 2.2: Figure 2.2(a) shows a two-dimensional function, for which only the
dimension x1 is relevant to the output. In other words, the output is constant
in dimension x2. Figure 2.2(b) shows the projection of this function on x1. Two
different designs are shown: a pre-optimized 9-point Latin hypercube with optimal
projected distance in Figure 2.2(c) and a 9-point factorial design with the worst
possible projected distance in Figure 2.2(e). When the Latin hypercube is projected
onto x1, no data is lost, and all points are still equidistant. When the grid is
projected onto x1, only 3 different points remain, and the remaining 6 are useless.
This demonstrates the importance of the projected distance in cases when it is
unknown whether each dimension is relevant to the output.

2.2. IMPORTANT CRITERIA FOR EXPERIMENTAL DESIGNS 35

2.2.4 Orthogonality

Orthogonality is another desired property for an experimental design. A design P is
called orthogonal with strength r if, for each subset of r inputs, each combination
of different input values occurs the same number of times [76, 90]. This ensures
that there is no correlation between the inputs in the design. Note that, according
to this definition, only a small subset of possible designs can be orthogonal, namely
those for which the input values are fixed at particular levels. The only designs
included in this study that satisfy this condition are fractional factorial designs
and Latin hypercube designs.

Additionally, for a given input dimension d and number of points n, an or-
thogonal design does not always exist. For the relatively small number of inputs
and the (comparatively) large number of design points considered in this study,
orthogonality cannot be satisfied. Even though Latin hypercubes can, by construc-
tion, never be completely orthogonal, they can be optimized such that subsets
of the hypercube are [76, 90]. Because orthogonality is irrelevant to most designs
discussed in this study, this criterion will not be considered in this study.

36 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.3 Optimization surface analysis

From the criteria defined in the previous section, the two most important ones
are the intersite and projected distance. Generating an experimental design that
optimizes these two criteria is a multi-objective optimization problem. Starting
with two initial points (for example, opposing corner points), a new point is
selected by finding a location in the design space that maximizes both the intersite
and projected distance. Many different methods have been proposed to solve
such multi-objective optimization problems efficiently. The simplest approach is
to combine the different objectives in a single aggregate objective function. This
solution is only acceptable if the scale of both objectives is known, so that they can
be combined into a formula that gives each objective equal weight. Fortunately, in
the case of the intersite and projected distance, this is indeed the case.

The aggregate intersite and projected distance criterion is defined as follows:

dist(P) =
dpn +1−1

2
idist(P)+ n +1

2
pdist(P). (2.3)

However, using this function as the objective is not yet ideal. Consider a
design for which two points already have an intersite distance of 0.1. Then all new
candidates that lie further away from the other points than 0.1 result in the same
objective score, since the minimum intersite distance does not change. However,
it is preferable to choose the point farthest away from the existing points. This is
illustrated in Figure 2.3.

This might not have a substantial effect on subsequent iterations, but it im-
proves the design at the current iteration. Because we do not know the total
number of samples that will be generated up front, it is important to have a design
as optimal as possible after each iteration. Therefore, instead of computing the
distance of all points from each other, we just compute the distance of the new
point from previous points, and optimize this function. The final objective func-
tion, which scores a new candidate point p when it is added to an existing design
P , is defined as:

dist(P ,p) =
dpn +1−1

2
minpi∈P

√√√√ d∑
k=1

∣∣pk
i −pk

∣∣2 + n +1

2
minpi∈P

∥∥pi −p
∥∥−∞ (2.4)

2.3.1 Experimental setup

The objective function dist can now be optimized by any optimization algorithm.
In this section, we will compare two approaches to finding the best location for
the next point at each iteration. The first one is a Monte Carlo method. In this
method a large number of uniformly distributed random points is generated, and
for each candidate p, the objective function dist(P ,p) is calculated and the best
candidate is selected as the new point to be added to P . In the second method,
a genetic algorithm will be used to optimize the objective function and find the
best candidate. Both methods will be compared for different settings, and the

2.3. OPTIMIZATION SURFACE ANALYSIS 37

Figure 2.3: This figure shows a 2D space-filling design with a contour plot of the
minimum distance of that location from all points in the design. The areas in
white are areas that will lower the intersite distance and hence the quality of the
design. These are the regions that lie closer to a point than the minimum intersite
distance of the design. If the aggregate criterion from Equation 2.1 is used, any
point chosen outside of these white areas will have the same score. It is however
preferred to select a new point as far away as possible from existing points (the
red areas), because this will result in an overall better space-filling design.

final designs be evaluated on the idist and pdist criteria to compare both
approaches.

At each iteration, the Monte Carlo method will generate kn random points,
where n is the number of samples evaluated thus far, and k is an algorithm param-
eter. It is expected that, for larger k, the quality of the design will improve. In this
study, the following values for k were considered: 50,250,2000,10000,50000.

For the genetic algorithm, the implementation from the Matlab Genetic Al-
gorithm and Direct Search Toolbox (version 3.0) was used. Most of the options
were kept at their default values, but some were changed in order to improve
the performance. The default mutation function (which offsets each input by
a value drawn from a Gaussian distribution) wasn’t usable, because it did not
respect the boundary constraints (each input must lie in [−1,1]). It was changed
to a mutation function that changes each input with a probability of 0.01 to a
random values in the [−1,1] interval. Preliminary results have shown that play-
ing with the crossover/mutation fraction settings, changing the elite behaviour
etc does not affect the outcome much, so these settings were kept at their de-
fault values. This experiment was repeated for different numbers of generations:

38 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

50,100,250,1000,2000. Because both the Monte Carlo and genetic algorithms use
random numbers, each experiment was repeated 10 times to get a good average of
the performance of the methods.

2.3.2 Results

The results for the intersite and projected distance values are shown in Figure 2.4.
These plots show the average intersite and projected distance of each method,
after generating 144 points in a 2D input space using the algorithms described
in the previous section. It is clear that, in both cases, the Monte Carlo method
outperforms the genetic algorithm. Figure 2.5 contains the aggregate score defined
by Equation 2.3. For the aggregate score, the difference is even more pronounced,
due to the fact that the Monte Carlo methods outperform the genetic algorithm in
both the intersite and projected distance.

Figure 2.6 shows the time it took to generate the design for all the methods.
Even though the final designs generated by the genetic algorithm are considerably
worse than the ones generated by the Monte Carlo method, the genetic algorithm
requires much more time to generate them. The genetic algorithm with 2000
generations takes a much longer time than the Monte Carlo method with k = 50,
but still produces worse results. It is also noticeable that the difference between
50 generations and 2000 generations is smaller than the difference between k =
50 and k = 50000, while the difference in elapsed time is larger for the genetic
algorithm. This indicates that the rate at which the genetic algorithm improves
is actually lower than the improvement rate for the Monte Carlo method. So no
matter how many generations are computed, there will always be a Monte Carlo
alternative that requires less time to get the same result.

It is clear that genetic algorithms (and optimization methods in general), which
are usually considered a better choice than a naive Monte Carlo approach, perform
worse in this test case. In order to understand why this is happening, Figure 2.7
shows the optimization surfaces of the intersite distance, projected distance and
the sum of these two (as defined by Equation 2.3), for 20 2D points spread out in
a space-filling manner. The intersite distance produces an optimization surface
with a considerable number of local optima. But this does not even come close
to the number of local optima for the projected distance. In fact, the projected
distance surface always has (n +1)d local optima, and only one of them is the
global optimum. This optimization surface is so difficult, that it is practically
impossible to optimize in an acceptable timeframe. When these two criteria are
combined, the resulting optimization surface is even more erratic. This explains
why the genetic algorithm quickly gets stuck in a local optimum, and does not
manage to get out of it, no matter how many generations are computed.

Due to the nature of this optimization surface, the new methods proposed
in this chapter will either use a Monte Carlo approach, or will avoid optimizing
the aggregate surface directly. This can be achieved by only performing local
optimizations as a fine-tune step after a Monte Carlo search, or by using the
structure of the optimization surface to perform a more directed search for the
global optimum.

2.3. OPTIMIZATION SURFACE ANALYSIS 39

(a) Intersite distance

(b) Projected distance

Figure 2.4: These figures show the average intersite and projected distance of each
method, after generating 144 points in a 2D input space using the algorithms
described in Section 2.3.1. Each experiment was repeated 10 times, and the
standard deviation is shown as well. It is clear that in both cases, the Monte Carlo
method performs considerably better than the genetic algorithm.

40 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

Figure 2.5: This figure show the aggregate intersite and projected distance score
of each method as defined in Equation 2.3 after generating 144 points in a 2D
input space using the algorithms described in Section 2.3.1. Each experiment was
repeated 10 times, and the standard deviation is shown as well. It is clear that the
Monte Carlo method performs considerably better than the genetic algorithm.

Figure 2.6: This figure shows each experiment, sorted by the average time it took
to generate a 144-point experimental design. Note that the genetic algorithm
requires much more time, while producing worse designs.

2.3. OPTIMIZATION SURFACE ANALYSIS 41

(a) Intersite distance (b) Projected distance

(c) Intersite + projected distance

Figure 2.7: The optimization surfaces for the intersite and projected distance
criteria, as well as the sum of both criteria, for 12 points in 2D space. Due to the
large number of local optima, optimization methods have a lot of trouble finding
a globally optimal solution.

42 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.4 Existing methods

In this section, we will discuss existing methods that will be compared in this study.
Both non-sequential methods, which have favourable properties in one or more
of the criteria described in the previous section, as well as sequential methods
from different fields of study will be investigated.

Each method will be given a name which will be used later in the discussion
to refer to that particular strategy. Note that the design space is a hypercube with
range [−1,1]d , as opposed to the unit hypercube [0,1]d , which is sometimes used
in other studies. This has no effect on any of the algorithms, but may change some
of the formulas.

2.4.1 Factorial designs

Factorial designs are the simplest form of space-filling designs [71]. A full factorial
design is a grid of md points. The full factorial design is the best possible design in
terms of the space-filling criterion; it maximizes the intersite distance for every
number of md points. It is therefore expected that, if all the design parameters are
equally important, a full factorial design will produce the best results when used
to train a model.

However, it has several important disadvantages, which limit its practical use.
Firstly, it is a very coarse-grained method: the full factorial can only be defined
for the dth power of an integer m, which must be determined in advance. The
only way to sequentialize a full factorial design is by evaluating the entire factorial
design, and refine the grid in subsequent steps, as depicted in Figure 2.8. This
increases the size of the design by almost a factor 2d at each iteration. Secondly, a
factorial design has the worst possible projective properties: if one of the design
parameters is unimportant, each unique point is evaluated m times. This is an
unacceptable risk in a black box setting.

To this end, several methods have been developed based on the factorial
design, which tackle some of these issues. Fractional factorial designs remove
some of the points from the grid, in order to limit the number of samples, making
them feasible in high dimensional problems where a full factorial design would
take too much time to evaluate [10]. Latin hypercubes, which are discussed in
the next section, can be considered a subclass of fractional factorial designs with
additional requirements. In this study, the full factorial design with 12 levels will
be considered for the 2-dimensional case (denoted as factorial), for a total of
144 points. The full factorial will be left out in higher dimensions because there is
no full factorial with 144 points in these dimensions.

2.4.2 Latin hypercube

Latin hypercube designs (commonly denoted as LHDs [94]) are a very popular
experimental design technique because of their well-understood mathematical
properties, their ease of implementation and use and their speed. A Latin hyper-
cube is constructed by dividing each dimension in the design space in m equally

2.4. EXISTING METHODS 43

Figure 2.8: A factorial refinement scheme.

sized intervals, and placing exactly one point in each interval for each dimension.
This construction method automatically results in an optimally non-collapsing
experimental design. In addition, due to the stringent way in which the design
space is divided, a Latin hypercube guarantees that each sample is at least 2

m

p
2

away from the closest other sample in a [−1,1]d design space.

However, not every Latin hypercube has nice space-filling properties; this is
illustrated in Figure 2.9. Therefore, Latin hypercubes should not be used blindly
and should be optimized according to a space-filling criterion. The optimization
of Latin hypercubes is a very active research field, and many methods have been
developed to reduce the search space. For a good overview of Latin hypercube
optimization techniques, please refer to [94].

The main problem with Latin hypercubes is that it is very difficult to generate a
good space-filling Latin hypercube in reasonable time. Even with state-of-the-art
optimization algorithms, constructing a good space-filling Latin hypercube can
take hours or even days. Husslage et al. [50] report that constructing a 100-point
Latin hypercube in 3 dimensions took between 145 and 500 hours on a P3-800MHz
processor, depending on the algorithm used. For a larger number of points or
higher dimensions, the computational time increases considerably.

To further demonstrate how difficult it is to generate a good Latin hypercube
in a short timespan (e.g. 15 minutes), we included two different Latin hypercube

44 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) Optimal Latin hypercube

(b) Bad Latin hypercube

Figure 2.9: Two different Latin hypercubes. While 2.9(a) has nice space-filling
properties, 2.9(b) has only points in the diagonal and neglects two corners of the
design space completely.

2.4. EXISTING METHODS 45

generation methods in this study. The first method is an implementation of the
optimization algorithm described in [56] (denoted as lhd-joseph), which uses
simulated annealing to optimize the intersite distance of the Latin hypercube. The
second one uses the Matlab function lhsdesign from the Mathworks Statistics
Toolbox to generate and optimize a Latin hypercube (lhd-matlab).

Additionally, we also included the pre-optimized Latin hypercubes from [50,
92], which can be downloaded from http://www.spacefillingdesigns.nl.
All these Latin hypercubes were optimized for many hours to arrive at a semi-
optimal or optimal solution. However, they are not available for every combination
of dimensions and points. For our experiment, where we consider 144 points in 2
to 4 dimensions, a pre-optimized Latin hypercube is available on the website. We
will refer to this Latin hypercube as lhd-optimal.

It is not straightforward to generate Latin hypercubes with a sequential design
strategy. Firstly, the total number of samples must be determined in advance, in
order to subdivide the design space into equally sized intervals. As mentioned
before, this is an undesirable property, since there is little information available up
front with which to make an educated guess on the required number of samples.

One way to sequentially generate Latin hypercubes is the idea of nested Latin
hypercubes, in which one design is a subset of the other [50, 79]. By using this
method, the smallest subset can be evaluated first, after which the decision can
be made whether the samples in the superset have to be evaluated as well. This
can be extended to a number of so-called layers, in which each layer is a Latin
hypercube in itself and is also a subset of the next layer.

This approach is not very suitable for our purpose, because it is not fine-
grained enough. The technique proposed by Qian et al. [79] only allows for the size
of each superset to be a multiple of the size of its subset, while Husslage et al. [50]
only consider two layers of nested designs. Because one simulation is assumed
to be expensive, a sequential design algorithm should preferably select samples
one by one. Therefore, methods based on nested Latin hypercubes will not be
included in this study. However, a similar, but new and more fine-grained method
will be included in this study and is described in Section 2.5.3.

A second way to adapt Latin hypercubes to a sequential sampling process is to
give up the requirement that each sample is placed in exact intervals, resulting in
so-called quasi-Latin hypercubes. Van Dam et al. [92] define a class of quasi-Latin
hypercube designs in the design space [0,n −1]d , based on a parameter α ∈ [0,1],
which defines the minimum distance of samples from each other when projected
onto one of the axes. In the case of α = 0, this reduces to an unconstrained
maximin design, while α= 1 results in traditional Latin hypercubes. It was shown
that the α value can be relatively close to 1 without reducing the space-filling
qualities of the design much. Xiong et al. [96] proposed a sequential design strategy
in which the minimum projected distance of points from each other is reduced
dynamically as more points are added to the design. A variation on this method
will be included in this study, and will be described in Section 2.5.4.

http://www.spacefillingdesigns.nl

46 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.4.3 Low-discrepancy sequences

Low-discrepancy sequences are sequences of points with the property that, for
each n, the points {x1,x2, . . . ,xn} have a low discrepancy. A set of points has a low
discrepancy if the number of points from the dataset falling into an arbitrary subset
of the design space is close to proportional to a particular measure of size for this
subset. Several definitions exist for the discrepancy, based on the shape of the
subset, and the measure which is used. For more information on low-discrepancy
sequences and different definitions for discrepancy, refer to [49, 54, 73]. Low-
discrepancy sequences are also called quasi-random sequences or quasi-Monte
Carlo methods, because they can be used as a replacement for random uniform
sampling.

Popular low discrepancy sequences have relatively good non-collapsing prop-
erties by construction. However, for small numbers of n, their space-filling proper-
ties are often subpar. Additionally, for some popular low-discrepancy sequences,
such as the Hammersley sequence, the total number of points must be known in
advance, because the points that are generated depend on the total number of
points. So, for different values of n, completely different point sets are generated.
Because these sequences are not suitable as a sequential design method, they will
be ommited from this study.

Two of the most popular sequences that do not depend on the total number
of samples are the Halton sequence and the Sobol sequence. Figure 2.10 shows
the points generated by the Halton sequence in 2D for respectively 10, 50 and 144
points. The implementation of these sequences that is available in the Matlab
Statistics Toolbox will be included in this study.

Figure 2.10: The first 144 points of the Halton sequence in 2D.

2.4. EXISTING METHODS 47

2.4.4 Random sampling

As a base case, random sampling will be considered. A random sampling scheme
just randomly selects samples in the design space, with no regards for previously
evaluated samples. If enough samples are taken, random sampling will approxi-
mate a good space-filling design, while at the same time being the simplest and
cheapest sampling scheme available. This makes random sampling actually a
good choice if the number of allowed data points is sufficiently large. However, for
a small sample set, large deviation from space-filling is to be expected, and the be-
haviour of this sampling scheme can be very erratic. Because sample evaluations
are considered to be very expensive, we mostly operate on small sample sizes,
which makes random sampling a very unreliable method. However, for very large
sample sets, random sampling is actually a viable method, because it is extremely
fast and available everywhere.

48 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.5 New space-filling sequential design methods

In this section, we propose a number of new space-filling sequential design meth-
ods that attempt to generate a design that scores well on both the intersite and
projected distance criterion, while being as fine-grained as possible (each method
selects samples one by one). The goal of this study is to develop an algorithm
that generates a design sequentially (one by one), with intersite and projected
distance as close to the best non-sequential methods as possible. Additionally,
this algorithm must run relatively quickly (at most 15 minutes for 144 points in
2D). This study was executed on an Intel quadcore running at 1.86GHz.

Because the new methods are sequential, they have to make do with a lot less
information than their non-sequential counterparts (namely, the total number of
samples is unknown in advance). Of course, this comes at a cost, and it is therefore
expected that all the sequential methods will perform worse than pre-optimized
Latin hypercube designs or factorial designs. However, if the drop in intersite
distance and projected distance is small, these methods should be preferred over
one-shot methods in a black box environment, because they can avoid over- and
undersampling, thus potentially saving lots of computational time. Additionally,
some of the proposed methods will also work for very large n, for which optimizing
a Latin hypercube is infeasible, and will also work for high dimensional problems.

At each iteration of a sequential design algorithm, the algorithm must deter-
mine the optimal location for the new sample point, based on the previously
evaluated points. This new point must be located in such a way as to maximize the
intersite and projected distance of the resulting design, which is composed of the
original points and the new point. However, the new point must also ensure that
future iterations of the algorithm can still produce good designs. Even if a point
is optimally chosen for intersite and projected distance at one iteration, it might
cause the algorithm to get stuck on a local optimum in subsequent iterations.
This is illustrated in Figure 2.11. This figure shows two 2D designs which were
generated from the same set of two initial points: (−1,−1) and (1,1). The first
algorithm places the third point in the origin, while the second algorithm places
it at (−1/3,1/3). After the third point, the first algorithm has produced the best
design, both in intersite and projected distance. However, it is now stuck in a
local optimum, as the best possible choice for the fourth point results in a design
considerably worse than the one for the second algorithm.

This problem is further compounded by the difficult optimization surfaces
produced by the intersite and projected distance, as shown in Section 2.3. Due to
the extremely complex nature of this optimization surface, all the new methods
proposed in this chapter avoid working with this surface directly, by exploiting
the structure of the projected distance surface, or by resorting to Monte Carlo
methods instead of optimization. In the next sections, the new methods will be
discussed in detail.

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 49

(a) First algorithm

(b) Second algorithm

Figure 2.11: Two different sequential design algorithms generate a 4-point design
starting from the same two initial points. The first algorithm gets stuck in a local
optimum after the third point, while the second algorithm does not.

50 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.5.1 Voronoi-based sequential design

An exploration criterion must accurately and efficiently identify the region of the
design space that contains the lowest density of samples. This can be done in
many different ways, depending on the density measure used and on the allowed
computational complexity of the algorithm.

A Voronoi tessellation (or Voronoi diagram) is an intuitive way to describe
sampling density. Assume a discrete and pairwise distinct set of points P ⊂Rd in
Euclidean space, which represents the existing data points. For any point pi ∈ P ,
the Voronoi cell Ci ⊂Rd contains all points inRd that lie closer to pi than any other
point in P . The complete set of cells {C1,C2, . . . ,Cn} tessellate the whole space, and
is called the Voronoi tessellation corresponding to the set P .

To define a Voronoi tessellation more formally, we adopt the notation from [4].
For two distinct points pi ,p j ∈Rd , the dominance of pi over p j is defined as the
subset of the plane being at least as close to pi as to p j . Formally,

dom(pi ,p j) =
{

p ∈Rd
∣∣∣∥∥p−pi

∥∥≤ ∥∥p−p j
∥∥}

.

dom(pi ,p j) is a closed half plane bounded by the perpendicular bisector of pi

and p j . This bisector, which we will call the separator of pi and p j , separates all
points of the plane closer to pi than those closer to p j . Finally, the Voronoi cell Ci

of pi is the portion of the design space that lies in all dominances of pi over all the
other data points in P :

Ci =
⋂

pj∈P\pi

dom(pi ,p j)

This is illustrated in Figure 2.12. Note that in this example, the Voronoi cells are
noticeably smaller near the center than near the borders; a space-filling sequential
design algorithm should select new data points in the larger (darker) Voronoi cells
in order to achieve a more equal distribution of data. However, the points that
lie closest to the border are colored black, because their volume is infinitely high:
their Voronoi cells reach to infinity in their respective directions. This is a basic
property of Voronoi tessellations.

2.5.1.1 Implementation

Computing a Voronoi tessellation is non-trivial, and is usually done by calculating
the dual Delaunay triangulation, from which the Voronoi tessellation can be
computed in O(n) time [4]. However, this still does not give us the volume of each
Voronoi cell, which requires another computationally intensive step. In order to
calculate the volume of each Voronoi cell, the unbounded Voronoi cells near the
border of the domain must first be bounded. After this, the volume of each cell
can be computed and used as a measure of density.

Figure 2.13 illustrates the calculation time for a Voronoi diagram as a function
of the number of samples and the dimension of the input space. This plot was
made using the Qhull library [1], which is based on the Quickhull algorithm de-
scribed in [6]. It is clear that the calculation of a Voronoi diagram scales terribly

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 51

Figure 2.12: A set of data points and their Voronoi cells in a 2D design space.
Larger Voronoi cells have a darker colour. The data points are drawn as white dots.
Unbounded Voronoi cells are coloured black.

with the dimensionality of the problem. For high-dimensional problems (in prac-
tice, any problem with more than 6 dimensions), the direct computation of the
Voronoi tessellation is not an option.

Fortunately, we do not need the complete computation of the Voronoi cells for
our purposes: an estimation of the volume of the cells is enough. Thus, instead
of solving the problem exactly by calculating the Voronoi tessellation and the
volume, a Monte Carlo approach is used. In order to estimate the volume of each
Voronoi cell, a large number of random, uniformly distributed test points are
generated in the domain. For each test point, the minimum distance from all
the samples is computed, and the test point is assigned to the sample which is
the closest. If enough test points are generated like this, the algorithm produces
an estimation of the (relative) size of each Voronoi cell. This is described more
formally in Algorithm 2.

2.5.1.2 Sampling strategy

Now that the Voronoi cell size is estimated to an acceptable accuracy, this infor-
mation can be used to select new samples in undersampled regions of the design
space. First, the Voronoi cell size is estimated for all the samples p ∈ P . The sample
with the largest Voronoi cell size is identified, and a number of random candidates
are generated in the neighbourhood of this sample. These candidates are ranked,
based on the maximin criterion, and the best candidate is selected as the new
sample. At the next iteration of the sampling algorithm, the Voronoi cell size is esti-

52 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

Figure 2.13: A performance plot of the Qhull package as a function of the number of
samples and the dimensionality of the problem. It is clear that the algorithm scales
relatively well with the number of samples, but poorly with the dimensionality of
the problem. In practice, the algorithm is infeasible for problems with more than
six dimensions.

mated again, and the process starts all over again. Of course, all the random points
used in the Monte Carlo estimation of the Voronoi cell sizes are also considered as
candidates, because their distance was already calculated anyway.

Basically, the Voronoi tessellation is used to reduce the design space to a small
subset in which additional random candidates will be generated, by zooming in
on those regions which have few samples. Instead of blindly generating random
candidates in the entire design space, they are only generated in the largest Voronoi
cell, which leads to a better design. This is an example of a search-space reducing
Monte Carlo method. Random candidates are not generated in the entire design
space, but in specifically, intelligently chosen regions of the design space instead.
This increases the chances of finding the best possible location for the new sample.

2.5.1.3 Performance analysis

The number of randomly generated samples mainly determines the accuracy of
the estimation, as a higher number of samples clearly results in a better volume
estimation, at the cost of a higher computational time. In order to find the optimal
number, we have performed a large set of tests with different numbers, ranging

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 53

Algorithm 2 Estimating the Voronoi cell size. P is the set of samples that have to
be ranked according to their respective Voronoi cell size.

S ← 100 |P | random points in the domain
V ← [0,0, . . . ,0]
for all s ∈ S do

d ←∞
for all p ∈ P do

if
∥∥p−s

∥∥< d then
pclosest ← p
d ← ∥∥p−s

∥∥
end if

end for
V [pclosest] ←V [pclosest]+ (1/ |S|)

end for

from 10 random samples to 500000 random samples. For each of these numbers,
the (bounded) Voronoi volume estimation was calculated for a dataset of 100
random points in three-dimensional space.

To calculate the error on the volume estimation, we used the BEEQ (Bayesian
Estimation Error Quotient) metric proposed in [65]. This is a relative error metric
is defined as:

BEEQ = exp

(
1

n

n∑
i=1

ln

(∥∥Vi − Ṽi
∥∥∥∥Vi − V̄i
∥∥

))

where Vi is the real volume of the i th Voronoi cell, Ṽi is the estimated volume
of the i th Voronoi cell and V̄i is the average real Voronoi cell size. The BEEQ error
was computed for each volume estimation and the exact volume. Each case was
repeated 10 times, and the average error was taken over all experiments. The result
is shown in Figure 2.14.

It is clear that the error drops considerably as the number of random samples
grows. However, the rate at which the estimation improves slows down as the
number of samples is increased. It appears only 10000 random samples, or 100
samples per data point, are required to achieve an error below 0.1. This is an ac-
ceptable error, since we only need a rough estimation to make a ranking between
Voronoi cells based on their volume. By increasing the number of random samples
to 300 per data point, an error of 0.05 can be reached. However, by further increas-
ing the total number of samples to 1000000 (10000 per data point), the error is
only lowered to 0.01. Thus, it is not worth selecting more than about 300 samples,
because the gain in accuracy is negligible. Furthermore, additional experiments
have shown that the results are similar for higher dimensions.

We conclude that, in order to get an acceptable Voronoi volume estimation,
we need at least 100 random samples per data point, but not much more. Because
acquiring data points (running a simulation) is computationally expensive, we
typically work with relatively small datasets, and thus 100 random samples per

54 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

Figure 2.14: A benchmark of the accuracy of a Monte Carlo Voronoi approximation.

data point is a reasonable number. An additional advantage of the Monte Carlo
approach is that it works for high-dimensional problems, while computing the
Voronoi tessellation and volume exactly turns out to be infeasible for more than
6 dimensions.

2.5.2 Delaunay-based sequential design

A Delaunay triangulation is a triangulation of a set of points P such that no point
in P lies inside the circum-hypersphere of any n-simplex in the triangulation [21].
In two dimensions, this reduces to the circumcircle of each triangle. The Delaunay
triangulation is the dual of the Voronoi diagram described in Section 2.5.1. One
can be computed exactly from the other. The Voronoi tessellation for a given
Delaunay triangulation can be computed by connecting the edges of the centers
of the circum-hyperspheres of all the simplices. The Delaunay triangulation of a
given Voronoi tessellation can be computed by adding an edge for every two points
in P for which the Voronoi cells share an edge. This is illustrated in Figure 2.15.

Since calculating the Voronoi tessellation is performed in Matlab by first cal-
culating the Delaunay triangulation and then taking its dual, both share similar
problems of efficiency in high-dimensional spaces. Therefore, the performance
analysis performed in Section 2.5.1.1 can just as well be applied to a Delaunay
triangulation, with the difference that it is much more difficult to approximate
a Delaunay triangulation as it is to approximate a Voronoi tessellation. Con-
sequently, this sampling strategy is only feasible for problems with less than 6
dimensions, or problems with a small amount of samples, because it uses the

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 55

(a) A Delaunay triangulation

(b) A Delaunay triangulation with its dual Voronoi tessellation

Figure 2.15: A Delaunay triangulation of a set of 2D points. In Figure 2.15(a), the
triangulation is displayed along with one circumcircle. Note that no points lie
within the circumcircle of any triangle of the triangulation. On Figure 2.15(b), the
Delaunay triangulation is plotted along with its dual Voronoi tessellation.

56 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

Qhull implementation and not an approximation as is the case for Voronoi-based
sequential design.

The idea behind Delaunay-based sampling is to find the centers of gravity
of the largest simplices of the triangulation, and take these as new samples for
the next iterations. Once the Delaunay triangulation is computed, the volume is
calculated for each simplex (v1, v2, . . . , vd+1) using the following formula:

V = 1

d !
∣∣ v2 − v1 v3 − v1 . . . vd+1 − v1

∣∣ where vi =

v1

i
v2

i
...

vd
i

 (2.5)

The simplices are ranked according to their volume. If nnew samples need
to be selected, nnew simplices with the largest volume are selected. For each of
these simplices, the algorithm calculates the centers of gravity (not to be confused
with the center of the circum-hypersphere). One new sample is submitted at each
center of gravity. This method will be called delaunay.

2.5.3 Sequential nested Latin hypercubes

A more fine-grained variant of the nested Latin hypercube method described in
Section 2.4.2 was also included in this study. In order to sequentially generate Latin
hypercube-like designs, one could refine the grid on which the points are chosen,
similar to the idea of the factorial refinement scheme proposed in Figure 2.8.
Figure 2.16 shows a refinement scheme for Latin hypercubes. Starting from an
initial grid of md candidate points, m new samples are iteratively chosen on this
grid. When a new sample is selected, all the other candidate points on the grid
that have the same value for one of the design parameters are removed from the
grid and will not be selected later. When m points have been selected, a new grid
is created at the midpoints between the samples, and the process is repeated, thus
(asymptotically) doubling the grid size at each iteration.

To determine which candidate point will be chosen next, the distance of each
candidate point on the grid from all the previously selected points is computed.
The candidate point that lies the farthest away is selected as the next sample, and
all the other candidates that share one of the design parameter values with this
sample are removed from the grid. Because the search space only contains the
points on the grid instead of the entire design space, it is feasible to compute the
distance for all the candidate points, without having to resort to optimization or
Monte Carlo methods. This method is called lhd-nested.

This method results in an exact Latin hypercube when exactly m+(m−1)(2p−1)
samples have been selected, for p > 0. At these iterations, which depend solely
on the initial grid size m, the ‖P‖−∞ score is maximal. In the worst case, which is
when 1+m+(m−1)(2p −1) samples have been selected, the ‖P‖−∞ score is almost
half of the optimal score. When the total number of samples is known in advance,
the number m can be tweaked such that the total number of samples is close to

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 57

Figure 2.16: A Latin hypercube refinement scheme, starting with m = 3. The points
highlighted with a circle are the ones that were chosen by the sampling algorithm.
Note that the design, composed of the encircled points, forms a Latin hypercube,
and therefore has optimal projected distance.

but not larger than m + (m −1)(2p −1). However, in this study, this information is
considered unknown, so m is fixed at 2.

58 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.5.4 Global Monte Carlo methods

A Monte Carlo method is a method that relies on repeated random sampling to
compute the results. In the context of sequential design, Monte Carlo methods
generate a large number of random candidate points in the design space, compute
a criterion for all of these points, and select the point with the best (highest) score
on the criterion as the next sample to be evaluated. This is repeated at each
iteration.

2.5.4.1 Intersite-projected distance criterion

Two different criteria to rank the random points were considered in this study. The
first criterion that was used is the aggregate of the intersite and projected distance
dist, defined in Equation 2.4, which ranks a point according to its (weighted)
intersite and projected distance from all other points. For convenience, the defini-
tion of this criterion is repeated:

dist(P ,p) = (n +1)
1
d −1

2
minpi∈P

√√√√ d∑
k=1

∣∣pk
i −pk

∣∣2 + n +1

2
minpi∈P

∥∥pi −p
∥∥−∞

At each iteration, the point which maximizes this criterion will be picked as
the next point. This method will be referred to as mc-intersite-proj.

2.5.4.2 Search space reduction

Note that, in the previous section, points are still ranked based on the complex
surface shown in Figure 2.7(c). An alternative is to consider the projected distance
as a threshold function. The idea is to discard points that lie too close to other
points in terms of projected distance. All the remaining points are then ranked
solely on intersite distance. This is similar to the idea of quasi-Latin hypercube
designs proposed in [92]. The difference between the standard projected distance
criterion and the threshold projected distance criterion is shown in Figure 2.17.
In the case of the threshold criterion, only random points in the white areas are
considered, and the best candidate in these areas based on the intersite distance
is selected as the next sample.

The threshold, or minimum allowed projected distance, is defined as:

dmin = 2α

n
(2.6)

where α is a tolerance parameter, which defines the importance of the pro-
jected distance. The objective function for the threshold version of Equation 2.4 is
defined as follows:

intersite-proj-th(P ,p)

=
{

0 if minpi∈P
∥∥pi −p

∥∥−∞ < dmin

minpi∈P
∥∥pi −p

∥∥
2 if minpi∈P

∥∥pi −p
∥∥−∞ >= dmin.

(2.7)

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 59

(a) Projected distance

(b) Threshold projected distance

Figure 2.17: The optimization surfaces for projected distance and threshold pro-
jected distance criteria.

60 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

If α= 0, there are no constraints, and the projected distance is not taken into
account at all. If α = 1, only points that lie exactly on an optimal configuration
are considered. In practice, this means that all points are rejected, because the
candidates are generated randomly. The trade-off between intersite and projected
distance is illustrated in Figure 2.18. For this experiment, α = 0.5 was chosen
because it results in a good trade-off between intersite and projected distance.
The method using this objective function for ranking the candidate points will be
referred to as mc-intersite-proj-th.

This method can be further fine-tuned by adapting the algorithm to only
generate random points in areas that fall outside of the threshold region, instead
of eliminating the points after generation. This further improves the efficiency
of this method. This is another example of a search-space reducing Monte Carlo
method, such as the Voronoi-based sequential design strategy. Instead of finding
the best Monte Carlo sample in the entire design space, the design space is reduced
to certain regions which already have favourable properties. In this case, these are
the white areas in Figure 2.17(b).

Figure 2.18: The effect of the α parameter from the mc-intersite-proj-th algo-
rithm on the intersite and projected distance. Lower values of α favour intersite
distance, while higher values of α favour projected distance. For α= 0.5, a good
trade-off is found between intersite and projected distance.

2.5.4.3 Performance analysis

An essential parameter to any Monte Carlo method is the number of random
points to generate. This number does not have to be same between subsequent
iterations. Indeed, it makes sense to scale up the total number of random points as

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 61

P increases in size. Intuitively, more random candidates should be needed when
the total number of previously evaluated samples is larger.

As discussed in Section 2.3, the Monte Carlo method will generate kn random
points at each iteration, where n is the number of samples evaluated thus far, and k
is an algorithm parameter. Figure 2.4 already showed that increasing k will improve
the final result. In order to determine the optimal choice for k, the experiment was
repeated for additional values of k, up to a total of 144 samples (so 143k random
points will be generated for the last iteration). For each value of k, 10 experiments
were run to get a good average of the performance. Additionally, the experiments
were also conducted in 3D, in order to see how the dimensionality affects the
choice of k. The results for the 2D case are summarized in Figure 2.19 for the
mc-intersite-proj method and in Figure 2.20 for the mc-intersite-proj-th
method.

Surprisingly, the parameter k has very little effect on the quality of the final
design. For mc-intersite-proj, increasing k will increase the average quality of
the design, but the difference between k = 50 and k = 2000 is rather small, while
the runtime is considerably longer. If time is a concern, a relatively low value of k
around 100 should be more than sufficient for acceptable intersite distance. For
the projected distance, the differences are larger, but once again k = 50 does not
perform much worse than k = 2000. In this use case, we therefore suggest k = 100
as a good choice for stable, fast designs, without wasting too much computational
time. Increasing k by a factor 50 or 100 will only yield a marginal advantage. The
reason why a low value for k is acceptable, is because even for k = 5, a 2D design
space in a [−1,1]2 square will already be covered very well once n goes up. This is
shown in Figure 2.21.

For mc-intersite-proj-th, the results are even more striking. Beyond
k = 50, the difference in quality is almost negligible. Increasing k beyond this
point will yield no advantage whatsoever. Additionally, even for k = 1, the design
is considerably better than mc-intersite-proj with k = 10000. This can be
explained by the threshold property of mc-intersite-proj-th. Points that lie
in the regions that do not violate the threshold already have, by definition, a mini-
mum distance of

p
2dmin from all the samples so far. By restricting the randomly

generated points to these areas, every candidate point already lies an acceptable
distance from existing samples. Picking any single random point from these viable
areas will already yield a good design! Because of the threshold requirement, the k
parameter does not affect the projected distance at all. Any value for k will result
in the same projected distance score; in order to change this, the α parameter
should be changed.

In the 3D case, the results are somewhat different. The results for the 3D case
are summarized in Figure 2.22 for the mc-intersite-proj method and in Figure
2.23 for the mc-intersite-proj-th method. In 3D, the parameter k has a much
larger effect than in 2D. This can be explained by the fact that the design space is
much larger; more random points are needed to cover it adequately.

For mc-intersite-proj, a noticeable increase in both the intersite and es-
pecially the projected distance can be noted as k is increased. This seems to cap
again somewhat at k = 2000, indicating that at this point, the 3D design space is

62 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) Intersite distance for mc-intersite-proj in 2D

(b) Projected distance for mc-intersite-proj in 2D

Figure 2.19: Respectively the intersite and projected distance as a function of
the parameter k, which represents how many random candidates are generated
each iteration of the Monte Carlo method mc-intersite-proj. This graph shows
how the performance of the mc-intersite-proj method scales in 2D with the
parameter k.

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 63

(a) Intersite distance for mc-intersite-proj-th in 2D

(b) Projected distance for mc-intersite-proj-th in 2D

Figure 2.20: Respectively the intersite and projected distance as a function of the
parameter k, which represents how many random candidates are generated each
iteration of the Monte Carlo method mc-intersite-proj-th. This graph shows
how the performance of the mc-intersite-proj-th method scales in 2D with
the parameter k.

64 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

Figure 2.21: A random sample for n = 143 and k = 5. The circles are the existing
143 samples, the crosses are the kn randomly generated candidates. In the back-
ground, a contour plot of the resulting maximin criterion after adding the 144th
point is shown. Note that plenty of candidate points are found in the red areas,
which are the best choice in terms of intersite distance.

sufficiently covered. It is expected that, for k > 10000, the quality of the design will
eventually stabilize and not improve any further. Again, k = 50 seems like a good
choice, as this is the point where the clear lack of coverage seen in lower k values
seems to disappear. However, due to the large variance in the results, it might
be better to pick a larger k for the 3D case. For excellent performance, k = 2000
seems like a very good choice. If more speed is required, k = 200 is a good trade-off
between speed and stability.

While mc-intersite-proj does seem to suffer quite a bit from the addi-
tional dimension, mc-intersite-proj-th remains surprisingly stable. While k
does have a larger effect on the intersite distance than in the 2D case, the effect

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 65

(a) Intersite distance for mc-intersite-proj in 3D

(b) Projected distance for mc-intersite-proj in 3D

Figure 2.22: Respectively the intersite and projected distance as a function of the
parameter k, which represents how many random candidates are generated each
iteration of the Monte Carlo method mc-intersite-proj. This graph shows how
the performance of the mc-intersite-proj-th method scales in 3D with the
parameter k.

66 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) Intersite distance for mc-intersite-proj-th in 3D

(b) Projected distance for mc-intersite-proj-th in 3D

Figure 2.23: Respectively the intersite and projected distance as a function of the
parameter k, which represents how many random candidates are generated each
iteration of the Monte Carlo method mc-intersite-proj-th. This graph shows
how the performance of the mc-intersite-proj-th method scales in 3D with
the parameter k.

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 67

is still very small. The difference between k = 50 and k = 10000 is negligible,
and once again even mc-intersite-proj-th with k = 1 performs better than
mc-intersite-proj with k = 10000. Again, the projected distance is the same
for all k values, and is also the same as in the 2D case.

It is very clear from these results that mc-intersite-proj-th is by far the
superior method, demonstrating that it is highly stable, requires very little random
points for optimal results and scales very well to high dimensions. Both methods,
however, can produce very good designs for relatively small values of k.

68 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

2.5.5 Optimization-based methods

Even though global optimization methods do not seem to work well for this prob-
lem, local optimization methods might still be able to deliver a considerable
improvement when used after a Monte Carlo method. With this in mind, we
propose two additional algorithms that perform a fast, constrained, local opti-
mization after generating a large number of points, either based on a Monte Carlo
method or based on the structure of the projected distance surface. We opted for
the pattern search function from the Genetic Algorithm and Direct Search Toolbox
of Matlab as the optimizer of choice, since it is a relatively fast but good optimizer
that can get out of local optima quite easily.

2.5.5.1 Optimize projected distance locally

The first algorithm uses Monte Carlo to find the best points for the intersite dis-
tance, and then locally optimizes the best candidates for the projected distance,
effectively giving up some intersite distance in exchange for better projected dis-
tance results. This method will be called optimizer-proj. Pseudocode for this
method can be found in Algorithm 3.

First, the algorithm selects a large amount of random points, and computes
the intersite distance for all of these points. The 30 highest scoring points are
selected as potential candidates, and the minimum distance from all the previously
evaluated points is computed for these candidates. This distance is multiplied
by a factor β which determines how much the optimizer may deviate from the
selected candidate locations to improve the projective properties of the candidate.
This is illustrated in Figure 2.24.

Ifβ is set to 0, the algorithm selects points based solely on the intersite distance.
If β is set to 1, the algorithm completely abandons the intersite distance and
optimizes completely towards the projected distance. This trade-off is illustrated
in Figure 2.25. The β parameter effectively specifies how much space-fillingness
the user is willing to give up for better projective properties. For this experiment,
β= 0.3 was chosen because it provides a good trade-off between the two criteria.

Algorithm 3 The optimizer-proj algorithm.

Pcandidates ← 100n random points
Pnew ← 30 best points using intersite distance

for all Pnew ∈ Pnew do
m(Pnew) ← mi np∈P

∥∥Pnew −p
∥∥

2

dmax ← βm(Pnew)
2

Optimize Pnew towards ‖P ∪Pnew‖−∞ on[Pnew −dmax,Pnew +dmax]
end for
Choose best Pnew based on ‖P ∪Pnew‖−∞

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 69

Figure 2.24: In this figure, 15 points (displayed by circles) are already generated
in a space-filling manner by the algorithm. In order to determine the optimal
location for the next point, a large set of random candidates is generated, and
the 30 best are selected based on the intersite distance (displayed as crosses).
For each of these 30 candidates, an optimization area is determined (defined
by the rectangles) in which the optimizer may deviate in order to improve the
projected distance. Each candidate is optimized, and the best candidate in terms
of projected distance is picked as the next sample.

2.5.5.2 Optimize intersite distance locally

Even though the optimization surface of the ‖P‖−∞ criterion is highly multimodal,
it is also very structured, and the optima can easily be derived from the samples
without having to use an optimization algorithm. This structure was already used
by mc-intersite-proj-th to only generate Monte Carlo points in those regions
which satisfy a threshold parameter α. Another way to use this structure is by

70 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

Figure 2.25: The effect of the β parameter from the optimizer-proj algorithm
on the intersite and projected distance. Lower values of β favour intersite distance,
while higher values of β favour projected distance. For β= 0.3, a good trade-off is
found between intersite and projected distance.

calculating the centers of the hypercubes that satisfy this parameter, and optimize
in these legal regions using a local optimizer. Instead of optimizing the reduced,
restricted surface shown in Figure 2.17(b) with Monte Carlo, an optimizer is used
to achieve the same goal. This method will be called optimizer-intersite.

This method is described in detail in Algorithm 4. The value of dmin is com-
puted as in Equation 2.6. First, all intervals between consecutive values are com-
puted for each dimension. This is done by sorting all the different values in P
and substracting subsequent values from each other. The center of every interval
is also computed. Then, all intervals are removed that violate the α threshold.
Finally, all the hypercubes that do not violate the threshold in any dimension are
produced. In the example shown in Figure 2.17(b), this will result in all the white
squares. For each of these hypercubes, the intersite distance of its center from all
points in P is calculated. The nhypercubes best scoring candidates are selected, and
they are further optimized in this hypercube using a pattern search algorithm.

Again, α= 0.5 was picked because the results from Section 2.5.4.2 showed that
this value gives a good trade-off between intersite and projected distance. Pattern
search was chosen because it is a fast, efficient optimization technique that can get
out of local minima quite easily. For this study, the pattern search implementation
from Matlab’s Global Optimization Toolbox was used. Because pattern search
is still quite slow, a selection must be made as to how many hypercubes will be
optimized (the algorithm parameter nhypercubes) and how long the optimizer is
allowed to run for each hypercube. Preliminary experiments have shown that, no
matter how long the optimizer is allowed to run, it will always converge to a final

2.5. NEW SPACE-FILLING SEQUENTIAL DESIGN METHODS 71

Algorithm 4 The optimizer-intersite algorithm.

for i = 1 to d do
P i ← values of P in dimension i
Sort P i

I i = P i
2 to n −P i

1 to n−1

C i = P i
1 to n−1+P i

2 to n
2

I i = I i −2dmin

end for
for all v where I i

vi
> 0 do

pnewi =C i
vi

Pnew = Pnew ∪Pnew

end for
Take nhypercubes points in Pnew with largest idist
for all pnew ∈ Pnew do

Optimize pnew towards idist in [pnew − Ipnew
2 ,pnew + Ipnew

2]
end for
Choose best pnew after optimization

optimum after about 100 evaluations, so no absolute maximum was set for the
optimizer.

The other algorithm parameter, nhypercubes, does have a huge influence on the
quality of the final design. It is clear that, if nhypercubes is low, only a few hypercubes
will be considered (purely based on the projected distance criterion) and these
might not be the best choice for the intersite distance criterion. However, it was
already shown in Section 2.5.4.3 that a sample lying in a hypercube that satis-
fied the α threshold already has by definition acceptable space-filling properties.
Therefore, it is expected that a relatively small number of nhypercubes will already
be sufficient for a good design.

A comparison of different nhypercubes values for the intersite distance in 2D
and 3D is shown in Figure 2.26. In 2D, no noticeable improvement can be noticed
when nhypercubes is increased beyond 50, while in 3D, 75 hypercubes are enough.
This indicates that the center of the intervals is already a very good guess in terms
of the intersite distance, which intuitively makes sense. However, considering that
the total number of valid hypercubes after 144 samples can be larger than 10000,
this is still an interesting result. The projected distance is not shown as, similar to
mc-intersite-proj-th, only the α parameter has an influence on this value.

72 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) 2D

(b) 3D

Figure 2.26: The intersite distance after generating 144 points using different
values for the algorithm parameter nhypercubes in 2D and 3D.

2.6. EXPERIMENTS 73

2.6 Experiments

In this section, we present several experiments that were conducted to study the
validity of the existing and newly suggested methods. Each experiment took a
different approach to comparing the methods. In total, the results will give a clear
view of the quality and performance of the different methods presented in this
thesis.

The first approach is to generate a fixed number experimental design using
the different methods, and measuring the criteria described in Section 2.2 on the
final design. This results in a clear view of the efficiency of the different methods,
as there are no outside influences to affect the outcome.

The second approach is to do a full surrogate modeling run, using different
sequential design methods to generate the samples. Once a desired accuracy on
the model was reached, the process is halted, and the total number of required
samples is compared. This will clearly illustrate the importance of good sampling
for the quality and accuracy of the final model, but the results will also be blurred
by the compatibility between the model type and the sampling method.

It is expected that the results of both approaches will be similar; if a design has
very good intersite and projected distance, it is expected to be a good design for
modeling as well, and the surrogate modeling process should greatly benefit from
it.

In order to compare the different sequential design methods, all strategies
were implemented in the SUrrogate MOdelling (SUMO) research platform [40].
This Matlab toolbox, designed for adaptive surrogate modelling and sampling,
has excellent extensibility, making it possible for the user to add, customize and
replace any component of the modelling process. It also has a wide variety of built-
in test functions and test cases, as well as support for many different model types.
Because of this, SUMO was the ideal choice for conducting these experiments.

In the following sections, the methodology and results for the two approaches
will be presented.

2.6.1 Criterion-based comparison

In this experiment, the goal is to measure for each sequential method the quality
of the generated design purely based on the criteria defined in Section 2.2. This
results in a neutral comparison of each method, in which the results are not
affected by other parts of the adaptive surrogate modelling process, such as the
model type.

Each of the strategies mentioned in the previous sections will be used to
generate 144 points in 2D, 3D and 4D. Each method will be allowed to run at most
15 minutes to generate a design of 144 points on an Intel quadcore running at
1.86GHz1. This is acceptable, considering the fact that simulations are assumed to
be expensive, and can take hours or days for one evaluation. In this context, 15

1No parallelization was explicitly programmed into the algorithms, but Matlab may use different
cores to execute built-in commands faster.

74 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

minutes to generate a good space-filling design is a good time investment. For
each method in each dimension, the experiment will be run 30 times in order to
get an estimate of the standard deviation on each method.

All the methods were compared on three criteria discussed in Section 2.2:
granularity, intersite and projected distance. The granularity of the methods is
summarized in Table 2.2. Each new method proposed in this chapter, except for
lhd-nested, has the best possible granularity: the total number of samples does
not have to be known in advance, they produce good designs whenever they are
aborted, and they select samples one by one.

Table 2.2: The different space-filling design methods in terms of their granularity.
It shows, for each method, whether the method must know the total number of
samples in advance, whether the method is available for all number of samples
and how many samples it selects at each iteration.

Method # samples known n restricted Step size
factorial yes no ∞
lhd-optimal yes yes ∞
lhd-nested no yes 2k

voronoi no yes 1
delaunay no yes 1
random no yes 1
halton, sobol no yes 1
mc-intersite-proj no yes 1
mc-intersite-proj-th no yes 1
optimizer-intersite no yes 1
optimizer-proj no yes 1

Figure 2.27(a) contains the results for the intersite distance in 2D, after 144
points were generated. factorial is, of course, the best space-filling design.
However, it is closely followed by lhd-optimal, which demonstrates that, if the
total number of points is known in advance, it is possible to generate a design
practically as space-filling as a factorial, but with optimal projected distance as
well.

The next best methods are five new methods proposed in this chapter. The
best method turns out to be optimizer-intersite, which only performs 20%
worse than the pre-optimized Latin hypercube, yet produced the design in a much
smaller timespan, and with no knowledge at all of the total number of samples
that were going to be needed. After these five methods, the quality of the design
goes down significantly.

Note the big difference between the two sequential Monte Carlo strategies
mc-intersite-proj and mc-intersite-proj-th. By replacing the projected
distance by a threshold function, the quality of the design in terms of intersite
distance improves considerably. The variance is also reduced, making the method
much more stable. Also interesting to note is the rather poor performance of the
Matlab Latin hypercube implementation, which was allowed to optimize for 15

2.6. EXPERIMENTS 75

(a) Intersite distance in 2D

(b) Projected distance in 2D

Figure 2.27: The average intersite and projected distance score for each design
method discussed in this chapter, after generating a 144-point design in 2D.

76 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

minutes to allow for a fair comparison. This method fails to generate a good space-
filling design, and should be avoided. The same can be said for the low-discrepancy
sequences, which, even though they generate good space-filling designs for large
numbers of points, perform bad for small sample sizes. Also noticeable is the bad
performance of lhd-nested. This can be explained by the fact that, by selecting
the optimal point from the Latin hypercube grid at one iteration, future iterations
may get stuck in a local optimum, as described in Section 2.5. In this case, the last
point selected before the grid is refined will be a very bad choice, resulting in a
dramatic drop in quality of the design.

Figure 2.27(b) shows the projected distance for the same designs. Obviously,
the factorial design has the worst projected distance, while the Latin hyper-
cubes have the best score, followed by the five methods proposed in this chapter,
which have a projected distance about 50% worse than the Latin hypercube. This
is still very good, considering that the Latin hypercube has the best possible pro-
jected distance by construction. The projected distance of many of these methods
can be further improved by tweaking the algorithm parameters (such as the α
threshold parameter), at the expense of intersite distance. Since the intersite
distance is deemed the more important criterion of the two, more priority was
given to achieving a high intersite distance in these experiments.

Figure 2.28 shows the evolution over time of the intersite and projected dis-
tance for the algorithms proposed in this chapter, compared to the distance scores
for each lhd-optimal for that number of points. Note that the curve drops
smoothly for all of the algorithms, except the nested Latin hypercube method.
This demonstrates again the tendency of this method to get stuck in local optima,
where at one point, the algorithm is forced to pick a very bad sample. The other
methods suffer much less from this problem, because the points are not selected
on a fixed candidate grid.

In 3D and 4D, some of the methods that were available in 2D will not work
anymore. More particularly, there is no 144-point factorial design available in 3D
and 4D. Also, the grid in lhd-nested becomes too large to evaluate completely
within 15 minutes, so this method was also left out. Finally, computing a Delaunay
triangulation becomes considerably more expensive in higher dimensions (see
[17] for an analysis), so due to the strict time limitation, this method was left out
as well.

Figure 2.29 shows the intersite and projected distance scores for 3D, while
Figure 2.30 shows the intersite and projected distance for 4D. Note that the
optimizer-intersite method performs 21% worse than lhd-optimal in 2D,
but only 16% worse in 3D and 8% worse in 4D. This is an extremely good result,
considering that this method only ran for 15 minutes, while the 4D 144-point Latin
hypercube was optimized for 6 hours. The projected distance is in all dimensions
about 50% worse than lhd-optimal.

Even though a limit of 15 minutes was imposed on all the methods, not all
methods are equally demanding in terms of computing power. As shown in the
different performance analysis sections of this chapter, increasing some method
parameters does not always give a noticeable improvement in the final design. Sev-
eral methods did not threaten to violate the 15-minute limit when they were con-

2.6. EXPERIMENTS 77

(a) Intersite distance in 2D

(b) Projected distance in 2D

Figure 2.28: Respectively the intersite and projected distance as a function of the
number of points selected so far. This graph shows the evolution over time as the
algorithm selects more points, up to a maximum of 144 in 2D. For comparison,
the intersite and projected distance of each pre-optimized Latin hypercube is also
shown, even though it is not a sequential algorithm.

78 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) Intersite distance in 3D

(b) Projected distance in 3D

Figure 2.29: The average intersite and projected distance score for each design
method discussed in this chapter, after generating a 144-point design in 3D.

2.6. EXPERIMENTS 79

(a) Intersite distance in 4D

(b) Projected distance in 4D

Figure 2.30: The average intersite and projected distance score for each design
method discussed in this chapter, after generating a 144-point design in 4D.

80 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

figured with the parameters that came out of the different performance analyses in
this chapter. In fact, every sequential method proposed in this study requires less
than 5 minutes, except for optimizer-intersite and optimizer-proj, which
require on average 10 minutes. Especially the Monte Carlo methods prove to be
very time-efficient: both Monte Carlo designs were generated in under 5 minutes,
since increasing the number of random points does not improve the quality of
the design much, as demonstrated in Section 2.5.4.3. These methods also don’t
increase much in terms of computing time when the dimension is increased. This
is opposed to the optimization-based methods, which require considerably more
time in higher dimensions. This may cause the optimizer-intersite method
to become impractical in higher dimensions. The Monte Carlo method, on the
other hand, should remain fast and viable in dimensions higher than 4.

2.6.2 Model-based comparison

In order to compare the different methods using a full surrogate modeling run,
the SUMO Toolbox was used. The work flow of SUMO for a typical surrogate
modelling task with sequential design is illustrated in Figure 2.31. First, a set
of initial samples are generated and evaluated. Then a set of models is built,
and the accuracy of these models is estimated. Each type of model has several
hyperparameters which can be modified, such as the order of numerator and
denominator for rational models, number and size of hidden layers in neural
networks, smoothness parameters for RBF models, and so on. These parameters
are adjusted using an optimization method, and more models are generated until
no further improvement can be made by changing the model parameters. If
the desired accuracy has not yet been reached, a call is made to the sequential
design strategy, which selects a set of new sample locations to be evaluated, and
the algorithm starts all over again. For more information on the SUMO Toolbox,
please refer to Section 4.1.

All problems in this chapter were modelled using Kriging, which is a popular
and powerful surrogate modelling technique which originates from geostatistics,
and was introduced as part of a modelling technique called Design and Analysis
of Computer Experiments (DACE) by Sacks et al. [82]. In Kriging, the surrogate
model is of the form:

f̃ (x) =
n∑

i=1
βi hi (x)+Z (x) (2.8)

The first part of the equation is a linear regression model, while the second
part Z (x) is a Gaussian random process with zero mean and non-zero covariance.
Kriging works very well with space-filling methods, because it has stability prob-
lems with points that are placed too close to each other. This is due to the structure
of the correlation matrix for Kriging, which tends to become ill-conditioned when
two points close to each other. For more information on Kriging and the imple-
mentation used in the SUMO Toolbox, please refer to [13, 68].

The accuracy of the model is measured by comparing it against a very dense,
pre-evaluated test set. Thus, the error is a very accurate estimate of the true

2.6. EXPERIMENTS 81

Figure 2.31: Flow chart of the SUMO Toolbox.

prediction error of the model. Each run will be terminated when the average
euclidean error between the model outputs and the test set reaches the desired
threshold. The average Euclidean error (AEE) is defined as:

AEE = 1

n

n∑
i

√
(f (xi)− f̃ (xi))2 (2.9)

where xi a sample in the dense test set, f (xi) is the true value at point xi

and f̃ (xi) the model estimation. At the end of each run, the number of samples
required to reach this accuracy will be recorded. To eliminate noise caused by ran-
dom factors in the SUMO toolbox (such as randomization in the model parameter
optimization algorithm), the configuration for each sampling strategy will be run
10 times, and the average will be used for the results.

In addition to sequential design methods, which fit neatly into the flow of a
typical SUMO surrogate modeling run, Latin hypercubes will also be included in
this study. In order to compare the sequential design strategies against the Latin
hypercube, which is inherently non-sequential, we generated Latin hypercubes of
size 50, 60, 70 and so on, up to 300. Models were trained for each of these Latin
hypercubes, and the error was calculated as described in the previous paragraphs.

82 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

The smallest Latin hypercube which, averaged over 10 runs, manages to reach the
desired accuracy, is considered the smallest number of samples needed to achieve
the desired accuracy using Latin hypercubes. This method allows us to compare
the evolution of the accuracy of the Latin hypercube to that of the sequential
design strategies.

The following methods were included in this study: lhd-optimal, lhd-joseph,
voronoi, delaunay, mc-intersite-proj-th, optimizer-intersite and fi-
nally random. Please note that all the algorithms used in this experiment are
available in the open software distribution of the SUMO Toolbox (which can be
found at http://sumo.intec.ugent.be) and therefore, the results of this exper-
iment can easily be reproduced.

To properly investigate the overall quality of each design method, three differ-
ent use cases were investigated.

2.6.2.1 Ackley’s Path

The first test case is Ackley’s Path [2], which is defined as:

y =−a exp

−b

√
(2x1)2 + (2x2)2

2

−exp

(
cos(2cx1)+ cos(2cx2)

2

)
+a exp(1)

(2.10)

where a = 20, b = 0.2 and c = 2π. The behaviour of Ackley’s Path on the
domain [−1,1]2 is shown in Figure 2.32. There are many local optima scattered
systematically throughout the design space, but there is only one global optimum
at the origin. Because of this property, Ackley’s Path is a popular test function
for optimization problems. In this case, however, we are not concerned with
finding the optima; the goal is to model the Ackley function accurately on the
entire domain.

Figure 2.32: Ackley’s Path function.

2.6. EXPERIMENTS 83

2.6.2.2 Results

The results of the experiment are depicted in Table 2.3. The best results are
achieved using the pre-optimized Latin hypercube lhd-optimal, followed very
closely by mc-intersite-proj-th, which only requires 4 more points on average
than lhd-optimal, but has a larger variance. Considering that lhd-optimal took
many hours to optimize and mc-intersite-proj-th was calculated in real-time
in a couple of minutes, this result is quite impressive. The next best methods are
optimizer-intersite, voronoi and delaunay.

Table 2.3: Summary of the test results of modelling Ackley’s Path with different
sampling strategies. The average number of samples required to reach an aver-
age Euclidean error of 0.1 are shown for each sampling strategy. For the Latin
hypercube, the smallest Latin hypercube size that on average over 10 runs reaches
the target is shown. Since these Latin hypercubes all have the same number of
samples, the variance is zero.

Sampling strategy Average Variance
lhd-optimal 130 0
lhd-joseph 180 0
mc-intersite-proj-th 134 11
optimizer-intersite 147 0
voronoi 158 7.4
delaunay 155 7.9
random 226 12

Optimized Latin hypercubes, which are widely used and popular, perform
much worse than all other methods except for random, managing only to achieve
an average error of 0.1 for a Latin hypercube of size 180. However, this is still
considerably better than random sampling, which needs 226 samples for the same
accuracy. In order to better understand the problems with Latin hypercubes,
Figure 2.33 compares the sample distribution of a run with voronoi against a
160-point optimized Latin hypercube and a 160-point optimal Latin hypercube.
It is visually clear that voronoi provides a much better uniform sampling of the
design space than the Latin hypercube, which leaves some noticeable gaps, for
example near the top right. The optimal Latin hypercube, on the other hand, is
still much more uniformly space-filling than the Voronoi-based design.

2.6.2.3 Electrical low-noise amplifier (LNA)

The second test case is a real world problem from electronics: a narrowband Low
Noise Amplifier (LNA), which is a simple RF circuit [62]. An LNA is the typical
first stage of a receiver, having the main function of providing the gain needed to
suppress the noise of subsequent stages, such as a mixer. In addition it has to give
negligible distortion to the signal while adding as little noise as possible itself.

84 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) Voronoi sampling (b) Optimized Latin hypercube

(c) Optimal Latin hypercube

Figure 2.33: A comparison of the sample distribution of Voronoi-based sampling
against optimized and optimal Latin hypercube sampling for 160 points.

The performance figures of an LNA (gain, input impedance, noise figure and
power consumption) can be determined by means of computer simulations where
the underlying physical behavior is accurately taken into account. Each simulation
typically requires a couple of minutes, too long for a circuit designer to work with
efficiently. Instead a designer could use a very accurate surrogate model (based
on circuit simulations) to quickly explore how the performance figures of the LNA
scale with key circuit-design parameters, such as the dimensions of transistors,
passive components, signal properties and bias conditions.

In this experiment, in order to keep the computation times manageable, the
expensive simulations will be replaced by a first-order analytic model. Initial
manual tests indicate that results obtained from this simplified model are also
applicable to the physics-based simulator.

The two input parameters used in this experiment are the inductances Lsn and
the MOSFET width Wn . The output modelled in this experiment is the input-noise

current
√

i 2
i n , which is defined by Equations 2.11 to 2.18. This output was chosen

2.6. EXPERIMENTS 85

because it is the most challenging performance figure of the LNA [38] to model.
The behaviour of the input-noise current is shown in Figure 2.34. Note that the
response is very linear in most of the design space, except for one tall ridge near
W = 0.

Figure 2.34: The input noise-current of a low-noise amplifier as a function of the
inductance Ls and the MOSFET width W .

ω= 2π f (2.11)

gm = 1 ·10−4 W

L
VGT AV−1 (2.12)

CGS = 0.01 ·W L F (2.13)

fg s,i n = 1+ jωLs gm

1−ω2Cg s (Ls +Lm)+ jωLs gm
(2.14)

fd s,i n = ω2Cg s (Ls +Lm)

1−ω2Cg s (Ls +Lm)+ jωLs gm
(2.15)

i 2
g s = 2 ·10−3 W

L
pA2Hz−1 (2.16)

i 2
d s = 0.5

W

L
pA2Hz−1 (2.17)

√
i 2

i n =
√
| fg s,i n |2 · i 2

g s +| fd s,i n |2 · i 2
d s −2 · Im(0.4 fg s,i n f ∗

d s,i n)

√
i 2

g s · i 2
d s (2.18)

The parameters Wn and Lsn are used as follows:

86 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

W = 100 ·10−6 ·10Wn m,

Ls = 0.1 ·10−9 ·10Lsn H.

Finally, the remaining parameters are set to fixed, typical values:

Lm = 10−9 H,

f = 13 ·109 Hz,

L = 82.5 ·10−9 m,

VGT = 0.325 V.

2.6.2.4 Results

The results are summarized in Table 2.4. Several interesting observations can be
made.

Table 2.4: Summary of the test results of modelling the input noise-current of an
LNA with different sampling strategies. The average number of samples required
to reach an average Euclidean error of 0.05 are shown for each sampling strategy.
For the Latin hypercube, the smallest Latin hypercube size that on average over 10
runs reaches the target is shown.

Sampling strategy Average Variance
lhd-optimal 180 0
lhd-joseph 225 0
mc-intersite-proj-th 197 6
optimizer-intersite 204 0
voronoi 176 30
delaunay 199 32
random 256 75

Firstly, voronoi is now the best method, surpassinglhd-optimal, even though
the optimal Latin hypercube is much more uniformly space-filling than voronoi.
This can be explained by the fact that the optimal Latin hypercube fails to capture
the ridge, resulting in subpar accuracy. This is illustrated in Figure 2.35, which
shows the optimal Latin hypercube of 170 and 180 points. Due to unfortunate
placement of the samples, the 170-point design almost completely misses the
ridge, resulting in an average Euclidean error of 0.1. The 180-point design, while
similar in shape, has several samples right on the ridge, resulting in a dramatic in-
crease of accuracy to 0.03. This highlights the importance of sequential sampling:
perhaps only a couple of extra samples could have improved the 170-point design
to an acceptable level. But because of the one-shot nature of Latin hypercubes,
the only way to do this is to resort to sequential sampling.

2.6. EXPERIMENTS 87

Secondly, even though voronoi has the best performance, it also has a huge
variance compared to the much more stable methods mc-intersite-proj-th
and optimizer-intersite. These methods take more measures to limit the
influence of the Monte Carlo aspect of the sampling strategy, resulting in less
variance. mc-intersite-proj-th limits the region in which Monte Carlo sam-
ples are taken to those already satisfying the projected distance constraint, while
optimizer-intersiteperforms local optimization to reduce the variance. These
methods will always produce very similar designs. For this test problem, this might
be a disadvantage, because if this one design misses the ridge for a while, the re-
sults will on average always be worse than a method such as voronoi which
will sometimes produce much less suitable and sometimes much more suitable
designs.

Thirdly, except for random, lhd-joseph is once again the worst choice. These
results are in line with the results obtained from the previous experiment. Again, it
appears that Latin hypercubes, even those optimized for intersite distance, leave
relatively large gaps in the design space. If such a gap happens to lie on or near the
ridge, the accuracy suffers significantly. In the case of a sequential design strategy,
more samples would be taken until the accuracy is improved, but with one-shot
designs such as the Latin hypercube, it is all or nothing.

2.6.2.5 Truss structure

The third and final problem is the design of a two-dimensional truss, constructed
by 42 Euler-Bernoulli beams. The goal is to study the effect of node displacement
on the passive vibration isolation. The truss structure is shown in Figure 2.36 and
is a simplification of a truss type typically used in satellites.

The beams consist each of two finite elements and are subject to a unit force
excitation at node 1 across a 100−200 Hz frequency range. The two leftmost nodes
are fixed (cantilevered nodes) and all the other nodes are free to move around.
There are 2 input parameters defining the position of node 9 in the structure and
1 output parameter, which describes the stress that the outermost node (the tip)
receives. The geometry of the node is changed by moving node 9 around inside
the 0.9×0.9 square while the remaining nodes are fixed at their positions. The
objective is to model the band-averaged vibration attenuation at the tip compared
to the baseline structure. For an in-depth discussion of the problem, please refer
to [57].

The vibration attenuation as a function of the geometrical position of the 9th
node is shown in Figure 2.37. Note that the surface is quite erratic, with several
local optima. Without a good space-filling design, several important features of
the response may be missed.

2.6.2.6 Results

The results are summarized in Table 2.5. In this case, optimizer-intersite
performs the best, outperforming lhd-optimal by a small margin. The other
methods follow closely with similar results. Note the large difference between

88 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

the sequential methods and random sampling; this demonstrates once again that
intelligently chosen sample locations can have a huge effect on the accuracy of
the model, especially with small sample sizes.

This third experiment once again demonstrates that sequential design strate-
gies can perform equally well as or even outperform pre-optimized Latin hyper-
cubes in realistic modelling situations. While pre-optimized Latin hypercubes
might have better space-filling properties than the sequential design methods, this
does not necessarily translate into better models. Because of the everything-or-
nothing nature of one-shot designs, there is no room for correction when a design
completely misses an essential feature of the response. Sequential methods, on
the other hand, will keep selecting samples one by one until the design covers this
feature.

Table 2.5: Summary of the test results of modelling a two-dimensional truss struc-
ture as a function of the position of the 9th node. The average number of samples
required to reach an average Euclidean error of 0.05 are shown for each sam-
pling strategy. For the Latin hypercube, the smallest Latin hypercube size that on
average over 10 runs reaches the target is shown.

Sampling strategy Average Variance
lhd-optimal 70 0
lhd-joseph 160 0
mc-intersite-proj-th 72 5
optimizer-intersite 66 0
voronoi 74 5
delaunay 99 7
random 171 52

2.7 Conclusions

In this chapter, several new methods for sequentially generating space-filling
designs for simulation-based experiments were proposed. These methods were
thoroughly compared against proven and popular techniques (such as Latin hy-
percubes and low-discrepancy sequences) on three criteria: granularity, intersite
(or maximin) distance and projected (or noncollapsing) distance. It was demon-
strated that the new methods manage to generate good designs, close to the quality
of a pre-optimized Latin hypercube. They also manage to generate these designs
orders of magnitude faster than it takes optimizing a Latin hypercube of the same
size. It was shown that in higher dimensions, the methods come even closer
to the pre-optimized Latin hypercube: in 4D, the best new method produced a
space-filling design only 8% worse than the pre-optimized Latin hypercube.

Of the new methods proposed in this chapter, optimizer-intersite and
mc-intersite-proj-th produce the best space-filling designs overall. Of these,
the second method is considerably faster than the first one: where the first one

2.7. CONCLUSIONS 89

requires approximately 3 minutes to generate a design, optimizer-intersite
takes about 10 minutes in 2D and up to 15 in higher dimensions.

Furthermore, the most promising methods were also compared against each
other in a real scenario, by using the SUMO Toolbox to perform a full-fledged
adaptive surrogate modelling experiment. In order to determine which design pro-
duces the most accurate models, Kriging models were trained on three different
test cases from different problem domains, and the number of samples needed to
achieve a particular accuracy was measured. It was demonstrated that in this con-
text, the most promising sequential methods such as optimizer-intersite and
mc-intersite-proj-th can sometimes generate models with the same accuracy
with less samples than the pre-optimized Latin hypercube lhd-optimal. Because
these methods do not need to know the total number of samples in advance and
therefore do not take the risk of over- or undersampling, it is strongly advised to use
the most performant sequential methods instead of the pre-optimized Latin hyper-
cube. The small advantage in intersite- and projected distance of lhd-optimal
apparently does not translate into better models, and the advantages of sequential
methods strongly outweigh the minor improvement in accuracy.

As a rule of thumb, we suggest to use a pre-optimized Latin hypercube only if
the total number of samples that will or can be evaluated is known in advance. It
is strongly discouraged to use the built-in Latin hypercube method from Matlab,
as well as optimizing a Latin hypercube on the fly, as it may take many hours
to generate a design that is as good or better than the algorithms proposed in
this chapter. If the total number of samples is not known in advance, or no pre-
optimized Latin hypercube is available for a particular number of samples with
the right number of dimensions, the first choice should be the threshold Monte
Carlo method mc-intersite-proj-th, which is easy to implement, extremely
fast and performs very well in all dimensions. If a little more time can be spent
on generating the design, the optimizer-intersite is a very good choice as
well, since it produces slightly better designs on average. In higher dimensions,
for which optimizing a Latin hypercube can be unviable, these methods may be
the only choice for producing a good space-filling design with good projective
properties.

All of these methods are available in the SED (Sequential Experimental Design)
Toolbox, an open source Matlab which is very easy to use and embed in your
workflow. For more information on the SED Toolbox, please refer to Section 4.2.

90 CHAPTER 2. INPUT-BASED SEQUENTIAL DESIGN

(a) 170-point optimal Latin hypercube

(b) 180-point optimal Latin hypercube

Figure 2.35: Two optimal Latin hypercubes. Note that the 170-point design almost
completely misses the tall ridge, while the 180-point design has more samples in
this important area.

2.7. CONCLUSIONS 91

Figure 2.36: Two-dimensional truss structure. The location of node 9 is changed
within the bounds indicated by a square. The goal is to study the effect of the
position of node 9 on the vibration attenuation at the tip of the structure.

Figure 2.37: The vibration attenuation at the tip of the structure as a function of
displacement of node 9 within a 0.9×0.9 square.

CHAPTER 3
Output-based sequential

design

When life gives you lemons, don’t make lemonade. Make life take the lemons back!
Get mad! I don’t want your damn lemons, what the hell am I supposed to do with
these? Demand to see life’s manager! Make life rue the day it thought it could give
Cave Johnson lemons! Do you know who I am? I’m the man who’s gonna burn your
house down! With the lemons! I’m gonna get my engineers to invent a combustible
lemon that burns your house down!
— Cave Johnson

93

94 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

3.1 Introduction

In the previous chapter, we proposed a number of input-based sequential meth-
ods or space-filling methods that only use the inputs from previous samples to
determine where to sample next. These methods can be highly efficient at gener-
ating very good space-filling designs, even in high dimensions. However, they do
not use the outputs from previous simulations to tailor the design to the problem
at hand. In some cases, for example those in which some areas of the design space
are much more difficult to approximate than others, it might be very benificial to
the accuracy of the model to not distribute the samples evenly.

In output-based methods, the trade-off between exploration and exploitation
becomes a central issue. As explained in Section 1.3.2, a balance must be found be-
tween the two in order to properly explore the design space on one hand, and focus
on interesting areas on the other hand. In order to tackle the issue of exploration
vs exploitation, we propose a novel, generic, disjunct approach, in which two
different criteria are defined: one for exploration and one for exploitation. For the
exploration criterion, the Voronoi-based space-filling method voronoi explained
in Section 2.5.1 was used. For the exploitation criterion, we have developed an
algorithm that selects additional samples near locations that deviate significantly
from a local linear approximation of the system (based on the gradient of the
function).

The Voronoi-based method is essentially a space-filling algorithm that was
designed to work well in conjunction with the LOLA portion of LOLA-Voronoi.
It can be used independently as a space-filling algorithm, but some of the more
specialized methods proposed in Chapter 2 produce considerably better results.
Moreover, Voronoi does not directly take the projective distance into account; this
would only make it more difficult for LOLA to sample nonlinear regions. If used
separately from LOLA, this is a major drawback.

LOLA-Voronoi works by ranking the neighbourhood of all existing data points.
This ranking is based on the two aforementioned criteria. If a neighbourhood
is ranked highly, it is either undersampled or very non-linear. In either case, an
additional sample will be selected in this neighbourhood.

In the next sections, we will discuss the two components of the new hybrid
sequential design algorithm in great detail. First, the Monte Carlo Voronoi method
will be briefly discussed in the context of LOLA-Voronoi. Next, the Local Linear
Approximation (LOLA) algorithm will be discussed and analyzed. Finally, the
hybrid algorithm that combines these two components will be presented and
tested on a number of test cases.

3.2 Exploration using a Voronoi approximation

From now on, what was known as voronoi in the previous Chapter will now
simply be called Voronoi because there are no other space-filling methods to
compete with. As explained in Section 2.5.1, Voronoi ranks each sample according
to how large its (estimated) Voronoi cell is, based on a Monte Carlo approximation.

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 95

This results in a ranking for the least densely populated regions of the design space.
This is shown in Algorithm 5.

Algorithm 5 Estimating the Voronoi cell size. P is the set of samples that have to
be ranked according to their respective Voronoi cell size.

S ← 100 |P | random points in the domain
V ← [0,0, . . . ,0]
for all s ∈ S do

d ←∞
for all p ∈ P do

if
∥∥p−s

∥∥< d then
pclosest ← p
d ← ∥∥p−s

∥∥
end if

end for
V [pclosest] ←V [pclosest]+ (1/ |S|)

end for

The difference lies with how this information is consequently used. In the
previous chapter, the ranking contained in V is used to select the largest Voronoi
cells, and generate new samples in these cells. In this chapter, V will be used as the
exploration criterion of LOLA-Voronoi, and will be combined with an exploitation
criterion in order to arrive at a final ranking for each region, which will then be
used to determine new sample locations. In the next section, the exploitation
criterion will be discussed in great detail.

3.3 Exploitation using local linear approximations

The goal of the exploitation part of a hybrid sequential design algorithm is to use
the responses from previous samples to guide the sampling process to interesting
regions in the design space. Which regions are deemed interesting depends mainly
on the purpose of the model. In optimization, interesting regions are regions which
may or do contain (local) optima. In global surrogate modelling, the goal is to find
a model that accurately approximates the system over the entire domain.

However, some regions of the domain may be more difficult to approximate
than others. This may be due to discontinuities, many (local) optima close together,
and so on. It is therefore intuitively a good idea to sample more densely at these
difficult regions. More generally, samples should be distributed according to the
local nonlinearity of the function. This is illustrated in Figure 3.1.

In order to be able to sample according to the local nonlinearity of the function,
one needs a measure of this nonlinearity. To this end, we use the gradient of the
system response. The gradient of a function f : Rd →R is defined as:

∇ f =
(
∂ f

∂x1
,
∂ f

∂x2
, . . . ,

∂ f

∂xd

)
(3.1)

96 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

Figure 3.1: This plot shows a one-dimensional function and a set of samples for
this function. The function is very simple and easy to approximate on the left
hand side, but very nonlinear on the right hand side. Intuitively, more samples
should be selected on the right to compensate for this nonlinearity. The samples
in this plot were selected using the hybrid algorithm proposed in this chapter. As
expected, more samples are selected at the right hand side to better capture the
highly nonlinear behaviour.

The gradient of a function at a given point p0 ∈Rd in the design space has the
property that it represents the best local linear approximation for f around p0:

f (p) = f (p0)+∇ fp0 (p−p0) (3.2)

Therefore, the gradient can be used to estimate and quantify the nonlinearity
in the region around p0 [46]. However, the gradient of the black-box function f is
rarely known, so it cannot be used directly. The idea behind LOLA is to estimate
the gradient at the data points, in order to measure the nonlinearity around these
data points. Each region or neighbourhood is ranked according to its estimated
nonlinearity, and new samples are selected in neighbourhoods which are highly
ranked. From now on, the term neighbourhood will only be used to identify a
set of samples which are chosen to represent the region around a particular data
point.

A high level pseudocode overview of the algorithm can be found in Algorithm
6. When new samples have been evaluated by the simulator (for example, from a
previous iteration of the sequential design method or from an initial experimental
design), these samples have to be pre-processed by the LOLA algorithm. The
algorithm considers a new sample pnew as a candidate neighbour sample for each
previously processed sample p. The neighbourhood N (p) of a sample will be
used to estimate the gradient at p later on. At the same time, p is also considered
for the neighbourhood N (pnew) of pnew. After this initial preprocessing step, the
gradient at each data point is estimated using the newly updated neighbourhoods.
Finally, the local nonlinearity of the neighbourhoods is estimated by comparing
the samples in the neighbourhood to the gradient estimation. This results in

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 97

a ranking of each neighbourhood from linear to highly nonlinear. Finally, this
ranking is used to select new samples in the highest ranking regions.

Algorithm 6 A high level overview of the LOLA algorithm. P are all the samples
that have been processed by LOLA before. Pnew are the data points that have been
selected by the sequential design algorithm in the previous iteration, but have not
been processed yet by the sampling algorithm. nnew is the number of new samples
requested from the algorithm.

for all pnew ∈ Pnew do
for all p ∈ P do

Try to add pnew to neighbourhood N (p) of p
Try to add p to neighbourhood N (pnew) of pnew

Update gradient estimations for p and pnew

end for
P ← P ∪pnew

end for
for all p ∈ P do

Calculate error on gradient estimation in N (p)
end for
Pick nnew highest ranked neighbourhoods
Select new samples in these neighbourhoods

Each component of the LOLA algorithm will be discussed in great detail in the
following sections of this chapter. First, the mathematical background behind the
neighbourhood selection algorithm will be explained. Next, it is shown how the
neighbourhoods can be used to estimate the gradient at the data point, and how
the gradient estimation is subsequently used to estimate the local nonlinearity of
the function.

3.3.1 Estimating the gradient

A lot of research has been done on gradient-estimating methods [31]. These meth-
ods try to estimate the gradient at one point in the design space by evaluating
samples near this point. This is often done in the context of optimization, fol-
lowing the assumption that the gradient is a good indication of the location of
the optimum. Well-known optimization techniques such as hill climbing use this
knowledge to guide the optimizer to the optimum.

These gradient estimation methods are further divided into indirect and direct
estimation methods [95]. The main difference is that indirect methods assume a
black box simulator, while direct methods use internal knowledge of the simulator
or its behaviour. Examples of indirect gradient estimation techniques are finite
differences, simultaneous perturbation, response surface methods and frequency
domain methods [32]. An overview of indirect methods can be found in [31]. Ex-
amples of direct techniques are infinitesimal perturbation analysis and likelihood
ratios.

98 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

All of these methods are, however, useless for the purpose of this algorithm,
as they assume that additional new samples can be evaluated in order to achieve
a proper estimate for the gradient. In the context of surrogate modelling of an
expensive black box simulator, it is usually not acceptable to evaluate additional
data points just to obtain the gradient. The objective is fundamentally different: in
sequential design, estimating the gradient is only a small subgoal of a much larger
problem, and samples are chosen as to maximize the accuracy of the surrogate
model, not the accuracy of the gradient. This renders most traditional gradient
estimation methods useless for the LOLA algorithm.

The LOLA algorithm requires a method that estimates the gradient as accu-
rately as possible using only the data that is available. No assumptions can be
made about the distribution of the data over the domain, because the algorithm
has no complete control over the choice of all the data points: LOLA can be used
in conjunction with other (space filling) sampling strategies, and the initial experi-
mental design can take any form. Thus, gradient estimation methods that assume
that data is available on a grid or any other pattern are unusable.

In the technique we propose, estimating the gradient in a sample location pi

comes down to choosing a set of neighbouring samples N (pi) = {
pi 1,pi 2, . . . ,pi m

}
that lie close to the sample pi and provide as much information as possible about
the region around pi . This is illustrated in Figure 3.2 for the one-dimensional
case. The sample, for which we want to find a neighbourhood, is drawn as a circle.
Three candidate neighbours are drawn as squares. The problem of choosing two
neighbours out of these three candidates will now be considered. In Figure 3.2(a),
two neighbours are chosen on opposite sides (drawn as larger squares), while in
Figure 3.2(b), two neighbours are chosen on the left side.

If distance from the sample is chosen as the metric to determine the best
candidates for the neighbourhood, the neighbourhood displayed in Figure 3.2(b)
will be chosen over the one displayed in Figure 3.2(a), since both candidates on the
left lie closer to the middle than the one on the right. However, it is obvious that
the other neighbourhood conveys much more information about the behaviour of
the function in this region. The information gain from adding a second neighbour
close to another one is much smaller than the information gain from adding one
on the other side. Thus the need arises for a metric that scores neighbourhoods
according to how informative they are.

3.3.2 Constructing the neighbourhoods

When new samples are available (either from a previous iteration of the algo-
rithm, or from the initial experimental design), they have to be processed, and
neighbourhoods have to be assigned to each sample. This will be done in a sequen-
tial manner. Each sample will be considered as a candidate neighbour for each
previously processed sample, and at the same time each previously processed
sample will be considered as a candidate neighbour for the new sample. Thus,
for each new sample, one needs to revisit all previous samples and their neigh-
bourhoods. We will now first consider the simplified case of finding the optimal
neighbourhood for one particular sample, given a set of other samples.

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 99

(a) Good neighbourhood

(b) Bad neighbourhood

Figure 3.2: Two different neighbourhoods with 2 samples are shown in a 1D design
space. The sample for which the neighbourhood has been chosen is drawn as a
circle in the middle. Three candidate neighbours are drawn. The two candidates
which have been selected as neighbours are drawn as large squares. The third
candidate, which is not in the neighbourhood set, is drawn as a smaller square.

3.3.2.1 The ideal neighbourhood

For clarity, we will now refer to the sample for which we want to find a neigh-
bourhood as the reference sample pr ∈ P , and to all the other available samples
Pr = P \ pr as candidate neighbours. Without loss of generality, we assume that
pr lies in the origin. This will allow us to omit the translation in the following
formulas. The goal is to find a subset N (pr) = {

pr 1,pr 2, . . . ,pr m
} ⊂ Pr that best

represents the region around pr .
The ideal neighbourhood is a good representation of the region around pr ,

covering each direction equally, thus providing the highest amount of information
on the behaviour of the function around pr as possible. The samples of such a
neighbourhood must lie relatively close to the reference sample to be meaningful.
They must also lie far away from each other, in order to cover each direction

100 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

as equally as possible. This results in two fundamental properties for the ideal
neighbourhood:

1. Cohesion: neighbours lie as close to the reference sample as possible.

2. Adhesion: neighbours lie as far away from each other as possible.

These two properties necessarily conflict with each other. The optimally cohe-
sive neighbourhood consists of all samples that lie as close to the reference sample
as possible, while the optimally adhesive neighbourhood consists of all samples
spread out over the far reaches of the design space. Therefore, a compromise will
have to be made, giving preference over adhesive neighbourhoods that still lie
relatively close to the reference sample.

First, the concepts of cohesion and adhesion will be defined mathematically.
There are multiple sensible formulas, but the following definitions are chosen
for reasons later explained. Cohesion is defined as the average distance of all
neighbours from the origin (i.e. from pr):

C (N (pr)) = 1

m

m∑
i=1

∥∥pr i
∥∥ . (3.3)

Furthermore, adhesion is defined as the average minimum distance of neigh-
bours from each other:

A(N (pr)) = 1

m

m∑
i=1

mi n
{∥∥pr i −pr j

∥∥ | j 6= i
}

. (3.4)

Initially, consider the simplified case where all candidate neighbours have the
same contribution to the cohesion value, which means they all lie on the same
distance from the origin. This is illustrated for the two-dimensional case in Figure
3.3, where all candidate neighbours lie randomly distributed on a circle. The point
in the middle is the reference sample. The goal is to find a set of m samples in the
circle that maximizes the adhesion value.

If all points on the circle are available as candidate neighbours, the best set of
m neighbours are those that form a m-sided regular polygon. Of course, because
of the non-uniform distribution of the samples, an ideal neighbourhood can
rarely be formed; however, amongst neighbourhoods with equal cohesion values,
some are clearly superior to others. There is a strict hierarchy amongst candidate
neighbourhoods, defined by their adhesion, as long as cohesion is identical for all
candidate neighbours. The neighbourhood with the highest adhesion value for the
given candidate neighbours is illustrated in Figure 3.3(a) for m = 5. An example of
a bad neighbourhood can be found in Figure 3.3(b). This neighbourhood provides
no information at all on the behaviour of the function on the left side of the
reference sample.

In the 2D case, the ideal configuration for m neighbours when all candidates
have the same cohesion contribution is, as previously mentioned, the m-sided
regular polygon. In higher dimensions, this extends to the problem of placing m
points in an ideal configuration on a (hyper)sphere so that the adhesion value

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 101

(a) Good neighbourhood

(b) Bad neighbourhood

Figure 3.3: Examples of good and bad neighbourhoods chosen from the same
set of candidate neighbours in a 2D design space. Samples that were selected for
a neighbourhood are drawn as large squares, rejected neighbours are drawn as
small squares.

102 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

as defined by Equation 3.4 is maximized, which is a well-known open problem
in mathematics for which there is no known general solution in all dimensions.
In fact, this is considered as one of the great mathematical challenges of the 21st
century [15]. This is a major problem because the LOLA sampling algorithm
should function independent of the dimensionality of the design space.

Because there is no known optimal solution for the problem of placing m
points on a d-dimensional hypersphere [83], we have focused on a subproblem for
which there is a solution known for all dimensions: the special case where m = 2d ,
or the size of the neighbourhood m is twice the dimensionality d of the design
space. It can be intuitively seen that the optimal configuration in 1D has one
neighbour on each side of the reference point, while the optimal configuration in
2D is a square. This generalizes to the d-cross-polytope [12] in the d-dimensional
case.

The d-dimensional cross-polytope contains all the points obtained by per-
muting the coordinates (±1,0,0, . . . ,0). It has been proven that the cross-polytope
configuration maximizes Equation 3.4 in all dimensions [12]. This means that the
ideal neighbourhood resembles the cross-polytope as closely as possible. When
the set of candidate neighbours consists of points that lie equally far from the
origin, the best choice of neighbourhood will always be a cross-polytope shape.

3.3.2.2 The cross-polytope ratio

In reality, the problem is more complex. Candidate points do not lie on a hyper-
sphere; they differ in distance from the reference point. This results in a multi-
objective optimization problem, in which the goal is to minimize the cohesion
function defined in Equation 3.3 while at the same time maximizing the adhesion
function from Equation 3.4. Many different methods have been proposed to solve
such multi-objective optimization problems efficiently. The simplest approach is
to combine the different objectives in a single aggregate objective function. This
solution is only acceptable if the scale of both objectives is known, so that they can
be combined into a formula that gives each objective equal weight. Fortunately, in
the case of the cohesion and adhesion objectives, these weights are known.

For points lying on a sphere with a given radius, the cross-polytope is the
optimal configuration, maximizing the adhesion value. This means that any
given neighbourhood with cohesion value C (N (pr)) must always have a lower
adhesion value than the cross-polytope with radius C (N (pr)). A cross-polytope
with radius C (N (pr)) has an adhesion value of

p
2C (N (pr)), because, in a cross-

polytope configuration, the distance between points (the adhesion) is
p

2 times
larger than the distance from the origin (the cohesion) for any dimension higher
than 1. Hence,

p
2C (N (pr)) is the absolute upper bound for the adhesion value

of any neighbourhood with cohesion C (N (pr)). Based on this property, we can
now describe how much a given neighbourhood resembles a cross-polytope by
the following measure:

R(N (pr)) = A(N (pr))p
2C (N (pr))

d > 1 (3.5)

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 103

If R(N (pr)) = 1 for a neighbourhood, the neighbourhood must form a perfect
cross-polytope configuration. If the score is 0, all points of the neighbourhood lie
in the exact same spot, reducing the adhesion value to zero. This measure is called
the cross-polytope ratio, and indicates how much a neighbourhood resembles a
cross-polytope.

The 1D case forms a unique exception on this rule, as the distance of the
two points from each other is twice the distance from the origin, instead of

p
2.

Additionally, in the 1D case, there exists an infinite number of configurations
which maximize the adhesion value for any given cohesion value c: any two
points x,−2c + x with 0 ≤ x ≤ c will result in a maximized adhesion value, since
|(−2c +x)−x| = 2c. So we propose an alternative measure, which exhibits similar
behaviour in the one-dimensional case as Equation 3.5 does in general the d-
dimensional case (d > 1):

R(N (pr)) = 1− |pr 1+pr 2|
|pr 1|+|pr 2|+|pr 1−pr 2| d = 1. (3.6)

To illustrate the behaviour of the cross-polytope ratio, we now consider the
case of finding the optimal neighbourhood for a sample pr = 0 in a 1D design
space. Assume that one sample pr 1 = 1 is already added to the neighbourhood
of pr . The cross-polytope ratio is illustrated in Figure 3.4(a). This plot shows the
cross-polytope ratio when the second neighbour is moved over the domain while
the first neighbour is kept fixed at 1. As expected, the function is maximized at
location −1, because this will result in a perfect cross-polytope neighbourhood.
For any positive value x, the score at −x is always better than the one at x, which
illustrates that samples that lie on the opposite side of the fixed neighbour are
preferred, because they add more information.

The cross-polytope ratio has some useful and desirable properties: sampling
on the “unsampled” side is highly encouraged and samples near a cross-polytope
configuration are prefered over samples far away. However, this metric has a
serious drawback, as it completely ignores distance from the reference point when
scoring neighbourhoods.

This is also illustrated in Figure 3.4(a), where 4 candidate neighbours are visu-
alized as squares. The two big squares are the ones that are selected as neighbours,
because they form a perfect cross-polytope. However, it is clear that the two points
that lie closer to the origin form the best neighbourhood and convey much more
information about the environment of the reference sample pr = 0 than the two
that were selected. Because of this, the cross-polytope ratio cannot be used di-
rectly as a measure for selecting a suitable neighbourhood. In order to solve this
issue, the distance of the candidate neighbours from the origin must be taken into
account.

3.3.2.3 The neighbourhood score

We define the neighbourhood score as follows:

S(N (pr)) = R(N (pr))

C (N (pr))
. (3.7)

104 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) Cross-polytope ratio

(b) Neighbourhood score

Figure 3.4: Cross-polytope ratio and neighbourhood score for reference sample
0, with one neighbour fixed at 1 in a 1D design space. Three other candidate
neighbours are drawn as squares. The candidates with respectively the highest
cross-polytope ratio and neighbourhood score are drawn as larger squares.

By dividing the cross-polytope ratio by the cohesion value C (N (pr)) of the
neighbourhood, a measure is acquired that prefers neighbourhoods that resemble
a cross-polytope as well as neighbourhoods that lie closer to the reference sample
pr .

The neighbourhood score is shown in Figure 3.4(b) for the one-dimensional
case. By using the neighbourhood score (instead of the cross-polytope ratio),
samples lying closer to the origin are given preference over samples that lie further
away. However, the key properties of the cross-polytope ratio are maintained: sam-
ples on the unsampled side are still preferred over samples near other neighbours.
In Figure 3.4(b), the sample closer to 0 is now chosen as the second neighbour
instead of the sample at −1 as in Figure 3.4(a).

In Figure 3.5, the cross-polytope ratio and the neighbourhood score are shown
for the two-dimensional case. In case of the cross-polytope ratio (Figure 3.5(a)),
the surface is maximized at (0,1). In case of the neighbourhood score function
(Figure 3.5(c)), the surface is maximized at (0,0). In both cases, the surface reaches
a local minimum at the three fixed neighbours, which makes sense, since adding

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 105

another point at the same location will not provide any additional information.
Furthermore, both functions strongly prefer new samples around (0,1). It is clear
that the neighbourhood score shows similar behaviour in the two-dimensional
case as in the one-dimensional case. Because the fundamental properties of the
cross-polytope do not depend on its dimensionality, the neighbourhood score
behaves the same in higher dimensions.

(a) Cross-polytope ratio. (b) Cross-polytope ratio surface plot.

(c) Neighbourhood score. (d) Neighbourhood score surface plot.

Figure 3.5: The cross-polytope ratio and the neighbourhood score in a 2D design
space with three neighbours fixed at (−1,0), (1,0), (0,−1). The fourth neighbour is
moved over the domain and the resulting cross-polytope ratio and neighbourhood
score is displayed in Figures 3.5(a) and 3.5(c), respectively. The global maximum is
indicated by a diamond on the surface plots, while the fixed neighbours are drawn
as squares.

To further illustrate how the neighbourhood score function behaves in dif-
ferent circumstances, Figure 3.6 and Figure 3.7 contain 4 different situations, in
which 3 neighbours are fixed while the fourth is moved over the domain, and the
neighbourhood score is computed for the 4 points. Note that, in all cases, points
near the origin are strongly prefered. However, it is also clear that preference is

106 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

given to points that lie in the direction the farthest away from existing points, and
preferably in the direction that most closely resembles a cross-polytope.

3.3.3 Gradient estimation

Based on the neighbourhood score (as defined in the previous section), we can
select a good set of neighbours for each reference sample pr , so that the neigh-
bourhood provides a proper coverage of the design space in each direction. These
neighbours may not be the samples closest to pr , but they provide more informa-
tion about the behaviour of the system around the reference sample than other
neighbourhoods with potentially lower cohesion values.

Once a set of suitable candidate neighbours has been chosen, estimating the
gradient becomes straight-forward. We define the neighbourhood for reference
sample pr as N (pr) = {

pr 1,pr 2, . . . ,pr m
}
, with m = 2d , as explained earlier. The

gradient at pr is estimated by fitting a hyperplane through pr and its neighbours.
To ensure that the hyperplane goes exactly through pr , the following system is
solved using least squares:

p(1)

r 1 −p(1)
r p(2)

r 1 −p(2)
r . . . p(d)

r 1 −p(d)
r

p(1)
r 2 −p(1)

r p(2)
r 2 −p(2)

r . . . p(d)
r 2 −p(d)

r
...

...
...

p(1)
r m −p(1)

r p(2)
r m −p(2)

r . . . p(d)
r m −p(d)

r

g (1)
r

g (2)
r
...

g (d)
r

=

f (pr 1)
f (pr 2)

...
f (pr m)

 (3.8)

where pr i = (p(1)
r i , p(2)

r i , . . . , p(d)
r i) is the i -th neighbour for pr with evaluated

value f (pr i) and g = (g (1)
r , g (2)

r , . . . , g (d)
r) is the gradient that is being calculated.

This system can be inverted, and will result in the hyperplane which minimizes
the distance from the neighbours in a least squares sense. This results in the best
linear approximation for the neighbours, which will eventually converge to the
best local linear approximation at the reference sample as the neighbours lie closer
to the reference sample.

Because of the way the neighbours pr i are chosen, the matrix from Equation 3.8
is always well-conditioned. This can be seen from the fact that, in a perfect cross-
polytope configuration, all the vectors pr i −pr are orthogonal with respect to each
other, and therefore the matrix composed of these vectors is well-conditioned.
Because the neighbourhood selection algorithm produces a neighbourhood that
resembles a cross-polytope as closely as possible, the resulting matrix is also
well-conditioned.

It is very important to have a good neighbourhood in order to get a good
estimation of the gradient. If all neighbours lie in the same direction, it becomes
impossible to make a good estimation of the gradient, since the hyperplane will be
completely biased towards the behaviour of the system near the neighbours. This
is why a lot of attention is paid to proper neighbourhood selection in the LOLA
algorithm.

3.3. EXPLOITATION USING LOCAL LINEAR APPROXIMATIONS 107

(a) The 3 fixed points are located at the same side of the origin.
A very strong preference is given to points on the other side;
however, the exact location does not matter very much.

(b) The 3 fixed points are placed in a rather nice cross-
polytope configuration. The location of the fourth point is
prefered where it completes the cross-polytope.

Figure 3.6: The neighbourhood score in a 2D design space with three neighbours
fixed at given locations. The fourth neighbour is moved over the domain and the
neighbourhood score is displayed shown.

108 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) The 3 fixed points are placed all on the same diagonal.
Points which lie on the other diagonal are strongly prefered
to those in other locations, because they will contribute the
most new information.

(b) The 3 fixed points are all placed quite close to the horizontal line go-
ing through the origin. Points on the vertical line are prefered; however,
points below the origin are prefered to those above, because two points
are placed above the origin and only one is placed below.

Figure 3.7: The neighbourhood score in a 2D design space with three neighbours
fixed at given locations. The fourth neighbour is moved over the domain and the
neighbourhood score is displayed shown.

3.4. HYBRID SEQUENTIAL DESIGN USING VORONOI AND LOLA 109

3.3.4 Nonlinearity measure

Once the gradient estimation available, it is possible to estimate the (non-)linearity
of the system behaviour around the reference sample. The local nonlinearity of the
system can be estimated from the normal of the hyperplane using the following
formula:

E(pr) =
m∑

i=1

∣∣ f (pr i)− (f (pr)+g · (pr i −pr))
∣∣ (3.9)

This formula computes how much the response at the neighbours differs from
the local linear approximation that was computed earlier. The nonlinearity mea-
sure E(pr) can now be used to get an idea of how nonlinear the function behaves
in the area around the reference sample pr , using solely previously evaluated
samples to compute this estimation. Furthermore, this approach works both for
real outputs and for complex outputs, making the LOLA algorithm suitable in both
cases without requiring a change in the algorithm.

Also note that the gradient estimation and calculation of the nonlinearity mea-
sure are the only places in the algorithm where the actual simulator output is used;
the rest of the algorithm works on input values only and, if desired, some ratios
and scores can be precalculated, independent of the actual system behaviour.

3.4 Hybrid sequential design using Voronoi and LOLA

In the previous two sections, we have basically developed two different methods
for ranking previously evaluated samples. The Monte Carlo Voronoi approxima-
tion method explained in Section 3.2 ranks samples according to the size of their
Voronoi cells, while the LOLA algorithm discussed in Section 3.3 ranks samples
according to local nonlinearity. The first method is an exploration strategy, while
the second is an exploitation strategy. By combining these two metrics, we can
counteract the disadvantages of both approaches, and deliver a solid, robust and
flexible sampling strategy.

In order to properly combine the two measures, they first have to be normal-
ized. The Voronoi cell size is already in the range [0,1], because it represents which
portion of the design space is contained within each Voronoi cell. The nonlinearity
measure, however, is initially not scaled to [0,1]. Therefore, the hybrid score for a
sample pi ∈ P is computed using the following formula:

H(pi) =V (pi)+ E(pi)∑n
j=1 E(p j)

. (3.10)

The LOLA-Voronoi sequential design strategy is described in pseudocode in
Algorithm 7. First, the nonlinearity measure E(p) is calculated using the LOLA
algorithm. Then, the Voronoi cell size V (p) is computed using the Voronoi approx-
imation, as defined in Algorithm 2. These two measures are then combined into a
single value, and this value is used to rank all the samples according to how un-
dersampled their environment is. Finally, nnew new samples are selected around

110 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

the samples which are ranked the highest. This is done by generating a number of
random points in the Voronoi cell of pi and picking the one farthest away from pi

and its neighbours. This process can be sped up by reusing the points that were
generated for the Voronoi approximation. Combining an exploration strategy with
an exploitation strategy guarantees that the design space is filled up everywhere
and that no large areas are left unsampled. However, nonlinear regions will be
sampled much more densely, which will in turn allow the surrogate model to
capture complex behaviour more easily.

Algorithm 7 Hybrid sequential design using Voronoi approximations and LOLA.
nnew is the number of samples requested by the user of the algorithm.

for all p ∈ P do
Calculate E(p)
Calculate V (p)
Compute final ranking H(p) using E(p) and V (p)

end for
Sort P by H
for i = 1 to nnew do

pnew ← location near pi farthest from other samples
Pnew ← Pnew ∪pnew

end for

Note that the choice of nnew affects the quality of the design that is being
generated: if nnew is small, more information is available to determine the location
of the next sample as optimally as possible. Preferably, nnew should be set to 1,
but higher values will also produce good designs, because at most one sample
is chosen in each Voronoi cell during each iteration of the sequential algorithm,
thereby ensuring a proper coverage of the design space, even for nnew > 1.

To demonstrate how effective LOLA and Voronoi are at respectively identifying
nonlinear and undersampled regions, an example run was performed of LOLA-
Voronoi on the 2D Peaks function with range [−5,5]2 shown in Figure 3.20(b),
which is part of a case study which will be investigated in more detail later. The
relative values for each Voronoi cell for the Voronoi component V after 24 and 100
samples are shown in Figure 3.8, while the relative values for each Voronoi cell for
the LOLA component E are shown in Figure 3.9. It is clear that for both low and
higher number of samples, both LOLA and Voronoi can easily identify respectively
nonlinear and undersampled regions.

The efficiency of the LOLA-Voronoi sequential design strategy comes at the
cost of additional computing time for sample selection, which is mainly caused
by the neighbourhood selection algorithm, which considers each sample as a
candidate neighbour for each other sample. Every time a new sample has been
evaluated, it has to be considered as a potential candidate for every other sample.
This is done by replacing each current neighbour by the new candidate, and
calculating the neighbourhood score. Finally, the neighbourhood is picked with
the best score. This means that, eventually, every sample will have to be checked
against every other sample, so the algorithm will run in O(n2) time. Whether this

3.4. HYBRID SEQUENTIAL DESIGN USING VORONOI AND LOLA 111

(a) 24 points

(b) 100 points

Figure 3.8: The sample distribution at the start of a LOLA-Voronoi run of the
Peaks function in the [−5,5]2 domain and after 100 points were selected by LOLA-
Voronoi. Each sample is indicated by a circle, and a larger circle means a larger
score on the Voronoi component of the LOLA-Voronoi algorithm. Samples with
large circles lie in undersampled regions of the design space. After 100 samples,
large portions of the design space are highly undersampled, because the LOLA
component pushes sample selection towards the nonlinear regions. However,
note that even in the nonlinear region in the center, samples are still quite evenly
distributed relative to each other, thanks to the Voronoi component.

112 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) 24 points

(b) 100 points

Figure 3.9: The sample distribution at the start of a LOLA-Voronoi run of the
Peaks function in the [−5,5]2 domain and after 100 points were selected by LOLA-
Voronoi. Each sample is indicated by a circle, and a larger circle means a larger
score on the LOLA component of the LOLA-Voronoi algorithm. Samples with
large circles lie in nonlinear regions of the design space. Note that, even with very
small sample sizes and the little information they provide, LOLA already efficiently
identified the nonlinear region.

3.5. ALGORITHM OPTIMIZATION 113

is an issue or not depends largely on the problem at hand. If evaluating samples
is very expensive (minutes, hours or even days), the additional computing time
for the sequential sampling process may be negligible compared to the sample
evaluation time. However, if acquiring new data is relatively cheap and the number
of data points is large, the neighbourhood selection algorithm can severely slow
down the overall modelling process.

3.5 Algorithm optimization

Even though a straight-forward implementation of the LOLA-Voronoi algorithm
will be quite slow, several optimizations can be introduced that significantly speed
up the entire algorithm. Because the Voronoi component was already heavily
optimized by using a Monte Carlo approach, the focus of this section will be
on optimizing the LOLA component, and more specifically, the neighbourhood
calculation.

3.5.1 Pre-processing of neighbourhood score function

When the neighbourhood update function is programmed in a straight-forward
manner, we get a time complexity of O(22d nnewn) for the pre-processing step
where 2d is the neighbourhood size, n the amount of evaluated samples and
nnew is the amount of newly evaluated samples that need to be considered for
all neighbourhoods. This can be seen when the adhesion calculation part of the
algorithm is described as follows:

Algorithm 8 Algorithm for neighbourhood score calculation.

for all pnew ∈ Pnew do
for all p ∈ P do

for all preplace ∈ N (p) do
Replace preplace by pnew in N (p)
for all pneighbour ∈ N (P) do

Calculate distance of pneighbour from pnew

end for
end for

end for
end for

Note that this is not the entire algorithm, but just the most computationally
intensive part to illustrate where the computational complexity comes from. The
three outermost loops are unfortunately impossible to optimize; to find the opti-
mal neighbourhood, all combinations of samples have to be considered. However,
with clever use of built-in Matlab functions, the most inner loop can be flattened
and reduced to a few operations. Even though this does not really change the com-
plexity of the algorithm, but merely hides part of it behind the scenes, in practice,
the complutational time is indeed reduced by a factor 2d due to the extremely
efficient execution of the built-in Matlab functions compared to manual code.

114 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

The calculation that will be optimized is the following:

A(N (pr)) = 1

m

m∑
i=1

mi n
{∥∥pr i −pr j

∥∥ | j 6= i
}

.

where m = 2d as explained in Section 3.3.2. When this equation is imple-
mented directly as a loop, all the subtractions xi − x j are performed twice. This
can be eliminated by doing all the subtractions once outside of the loop. At initial-
ization time, we generate the following matrix and store it for further use:

1 2
1 3

...
1 n
2 3
2 4

...
n −1 n

We then generate, for each i , an array of indices for rows that contain i . By
pre-calculating these arrays, we can simply perform all subtractions at once, and
then reference, for each i , to the appropriate values in the array. This can be done
in only 3 lines of Matlab code with the following instructions:

distanceArray = neighbourhood(s.neighbourhoodSubLeftSide,:) − ...
neighbourhood(s.neighbourhoodSubRightSide,:);

distanceArray = dot(distanceArray, distanceArray, 2);
distances = sqrt(min(distanceArray(s.neighbourhoodSubIndexArray), ...

[], 2));

3.5.2 Adding a “too far” heuristic

The vast majority of the computation time of the LOLA-Voronoi algorithm is spent
on neighbourhood selection. It is therefore obvious to focus optimizations on this
part of the code. The following extremely simple optimization will increase the
overall performance of the algorithm by over 50% by not computing the cohesion
and adhesion for a lot of potential neighbourhoods, based on a heuristic.

When constructing the algorithm, we have assumed that we want neighbour-
hoods that resemble a cross-polytope shape as closely as possible, yet give prefer-
ence to smaller neighbourhoods. In other words, the cohesion must be slightly
more important than the adhesion. This also means that, when one candidate
neighbour lies a certain distance from the sample, it will become impossible for
a neighbourhood containing this candidate to have a good score. The fact that
cohesion is given more weight than adhesion, rules our very large neighbourhoods
immediately.

3.5. ALGORITHM OPTIMIZATION 115

Yet, in the original algorithm, all possible combinations of samples are con-
sidered as candidate neighbourhood sets, independent of their distance from
the reference sample. This is why we introduce an additional heuristic which
will immediately discard any samples that lie too far away before evaluating the
neighbourhood score function for any candidate neighbourhoods containing this
sample. This is shown in Algorithm 9.

Algorithm 9 Adding a “too far” heuristic to the LOLA algorithm to speed up com-
putation.

for all pnew ∈ Pnew do
for all pr ∈ P do

if
∥∥pr −pnew

∥∥< 3.7985maxi (
∥∥pr −pr i

∥∥) then
Consider pnew as new candidate neigbour for pr

end if
end for

end for

If the distance of new candidate neighbour pnew is more than 3.7985 the maxi-
mum distance of the current best neighbourhood, we immediately discard pnew

and do not proceed with the neighbourhood score evaluation. The number 3.7985
is not a magic number, but is derived from the formula for the neighbourhood
score function as follows.

Consider a neighbourhood N (pr) of a reference sample pr , with pr 1 lying in
the worst possible location relatively close to the origin, which is right on top of
another sample in the neighbourhood. We assume pr 1 = pr 2. Now a (hyper)sphere
can be defined that contains all the possible locations on the design space that
can result in a better neighbourhood score when pr 1 is replaced by a sample in
this location.

This would mean that, if a new candidate would emerge in the worst-case
scenario of two identical neighbours, and if this new candidate lies outside of this
(hyper)sphere, it will never be able to achieve a better neighbourhood score. It
is therefore futile to even calculate the score function, as it is already known in
advance that any neighbourhood containing the new candidate will be inferior.

In order to determine the radius of the hypersphere (and hence the value for
the distance check), it must be known at which distance it is completely impossible
to get a better score than a worst-case scenario. Assume a fixed cohesion value
C (N (pr)). This cohesion value is, by definition, lower than the maximum distance
of any point in the neighbourhood from the origin:

MC (N (pr)) = max
i

∥∥pr −pr i
∥∥ (3.11)

Since the adhesion value is maximized at a cross-polytope configuration, the
cross-polytope ratio is so as well for a fixed cohesion value. At a cross-polytope con-
figuration, it is also clear that C (N (pr)) = MC (N (pr)), since all points lie the same
distance from pr , as this is a requirement for a cross-polytope configuration. Since

116 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

any configuration for which C (N (pr)) < MC (N (pr)) is not a cross-polytope con-
figuration, it is also impossible for such a configuration to have a better adhesion
value. This allows us to conclude that, for any possible neighbour configuration
with cohesion value C (N (pr)), the absolute highest possible cross-polytope ratio
is achieved when the fourth point completes a cross-polytope configuration.

If all current neighbours are fixed in a given non-cross-polytope configuration,
the cross-polytope ratio for any candidate neighbour that does not lie further away
from pr than the maximum distance of the other points, must be lower than the
cross-polytope ratio of a cross-polytope with the same distance. Additionally, for a
cross-polytope configuration, the maximum score when the candidate neighbour
lies a given distance from the origin always lies on the line going through the
origin and the point that completes the cross-polytope. This means that the
cross-polytope ratio achieved by adding a candidate neighbour at a given distance
is always lower than the cross-polytope ratio achieved by adding a candidate
neighbour to a configuration which is already in a cross-polytope.

Hence, in order to determine the distance at which it becomes impossible to
achieve a better score, no matter how good or bad the initial configuration is, an
optimization can be performed on the line going through the candidate neighbour
of a cross-polytope configuration, until the neighbourhood score drops below
the local minimum at one of the existing neighbours. Since the neighbourhood
score drops monotonely on this line, this optimization is easy to perform and very
accurate. It turns out that the value at which this happens is 3.7985, so this value
was picked for the heuristic.

This is illustrated in Figure 3.10. In this figure, the neighbourhood score func-
tion is plotted as in Figure 3.5(d), but zoomed out so that the hypersphere can be
displayed (white circle). It can easily be seen that the neighbourhood score func-
tion outside of this circle is lower than in any of the white dots, which are the local
minima around the origin. For any possible neighbourhood configuration with
MC (N (pr)) smaller than the size of this cross-polytope, this will always be the case.
If a candidate neighbour emerges which lies outside of this circle, it will therefore
never be considered a viable candidate, as it can never improve the neighbour-
hood score. It is discared immediately, and an expensive neighbourhood score
function evaluation is saved.

To demonstrate the efficiency of adding this heuristic, Figure 3.11 shows the
total number of neighbourhood score calculations with and without the heuristic
in place. For less than 100 samples, only a very small number of neighbourhood
score calculations are saved. However, as the number of samples increases, the
advantage of the heuristic becomes larger. At 1000 samples, the heuristic will have
prevented 60% of the total number of neighbourhood score calculations. This
percentage will further increase as the number of samples grows.

3.5. ALGORITHM OPTIMIZATION 117

Figure 3.10: A plot of the neighbourhood score function, illustrating that, outside
of the circle with radius 3.7985, the neighbourhood score function will never score
higher than in the local minima at (0,1), (0,−1) and (1,0).

Figure 3.11: A plot of the total number of neighbourhood score calculations as a
function of the total number of samples selected thus far. Note that, as the total
number of samples increases, the heuristic becomes more effective.

118 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

3.6 Multiple outputs and frequency-domain parameters

Thus far, we have only considered one real or complex output associated with
a set of inputs. However, in many real-life problems, multiple outputs are often
associated and computed at the same time during one simulation. In this case,
the engineer might want to perform one sequential design run, and model all the
outputs at the same time. It is possible to do multiple sequential design runs for
each output separately, thereby optimizing the sample distribution for that one
particular output. But this might take too much time, as new samples will have to
be simulated for each output separately.

Instead, ideally, the sequential design method looks for some kind of compro-
mise between the different outputs, by selecting points in either undersampled
regions or regions in which one or more outputs behave nonlinearly. Fortunately,
because LOLA-Voronoi only uses the output of the simulator in one specific loca-
tion of the algorithm (described in Section 3.3.3 and Section 3.3.4), LOLA-Voronoi
can easily be adapted to deal with multiple outputs.

Consider a set of outputs f1(pi), f2(pi), . . . , fk (pi) associated with a samples
pi . For each of these outputs, the gradient can be computed as described in
Equation 3.8, resulting in a set of different gradient vectors g1, g2, . . . , gk . To de-
termine the most nonlinear location based on a number of different outputs, the
nonlinearity measure from Equation 3.9 is adapted to:

E(pr) = max
j

m∑
i=1

∣∣ f j (pr i)− (f j (pr)+g j · (pr i −pr))
∣∣ . (3.12)

The maximum was taken as opposed to the average, because when the average
is taken, LOLA does not tend to have an large effect on sampling at all. This is
because, if there are a lot of outputs, every region might be nonlinear for one
particular output and linear for most of the others. When averaged, every region
will have about the same score. By taking the maximum, the most nonlinear
regions for all the outputs are taken into account. If there are only a few outputs,
taking the average can be a good alternative.

3.6.1 Frequency-domain parametrs

In electrical engineering, there is often a special-case input parameter called the
frequency parameter. In many commercial software tools for this research field,
the outputs for a large number of frequencies can be computed at little or no
additional cost (for example, using AFS algorithms [23]). This basically means
that, if one of the parameters is a frequency parameter, one simulation with given
values for the other parameters will yield a whole range of outputs, for different
frequency values.

There are two ways to deal with the frequency parameter. One way is to treat it
like any other dimension. In this case, it will also be sampled by the sequential
design algorithm like any other dimension, and the advantage of the free frequency
sweep will be lost. Instead, only the requested frequency will be simulated. It
is clear that this is less than ideal in the context of expensive simulations. The

3.6. MULTIPLE OUTPUTS AND FREQUENCY-DOMAIN PARAMETERS 119

second way is to take this special dimension into account in the sampling process.
It is important to note that the frequency dimension tends to be extremely densely
sampled, since computing the outputs for different frequencies is practically free.
It is not uncommon to have hundreds of different outputs for different frequency
values after one simulation. This results in extremely large datasets which are
impossible to work with for the methods proposed in this thesis.

In order to deal with this issue and reduce the sample size to manageable
numbers, LOLA-Voronoi eliminates the frequency dimension from the sampling
process. Instead, each output associated with a given frequency is considered
a separate output of this reduced design space, and LOLA-Voronoi will select
samples according to Equation 3.12.

3.6.2 Example

To demonstrate this approach, a real-life example from electronics will be con-
sidered. This example deals with the parametric macromodeling of the reflection
coefficient of a scalable H-shaped microwave antenna. Figure 3.12 shows a 3-D
view of the antenna, which consists of three layers: a top layer with the H-shaped
antenna, a bottom layer with the feed line, and a middle slot layer with a rectangu-
lar aperture that realizes the coupling between the feed and the antenna.

Figure 3.12: 3D view of a microwave H-antenna.

The input parameters of the model are the length L of the antenna, the width
W of the aperture and the frequency f . The frequency range of interest varies
between [4.5−5.5 G H z]. All data samples are simulated with the full-wave pla-

120 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

nar EM simulator ADS Momentum [51]. This simulator will return a very dense
frequency sample at no additional cost. Therefore, the frequency parameter f
is not considered a normal dimension, and the problem will be reduced to a 2D
sampling problem, in which the 3D samples are grouped by their L and W values,
and each frequency value f will correspond with a different output for this 2D
problem.

LOLA-Voronoi was used on this simulator up to a total of 2000 points in the
2D space. The resulting sample distributions are shown in Figure 3.13. It is clear
that a region near the center is much more densely sampled than other regions;
this should indicate that much more dynamic, nonlinear behaviour occurs in this
region than in the rest of the design space.

To validate the effectiveness of the sample distribution, the parametrized
frequency response is simulated for a constant value of W = 2.406 mm and a
varying length L. In terms of the design space, this corresponds to the horizontal
solid line that is shown in Figure 3.13(d). It is seen from this figure that data points
are distributed more densely if L has a value in between approximately 5 and
8 mm, as marked by the vertical dashed lines. The reason becomes clear when
Figure 3.14 is considered. If L is varied in between these values, the frequency
response contains a sharp resonance that moves toward the lower frequencies as
the length increases. For other values of L, this resonance is located outside the
frequency range of interest, leading to a smoother frequency response.

As an additional test, the frequency response is simulated for a constant value
of L = 9 mm and a varying width W . This corresponds to the vertical solid line
shown in Figure 3.13(d). Here, it is also found that the data points are distributed
more densely if W has a value in between approximately 0.7 and 1.9 mm, as
marked by the horizontal dashed lines. In between these values, the frequency
response contains a sharp resonance that moves towards the lower frequencies as
the width increases, as shown in Figure 3.15. For other values of W , this resonance
is located outside the frequency range.

It is clear that, even for very large numbers of outputs (in this case caused
by a frequency parameter), LOLA efficiently identifies and focuses on nonlinear
regions, without neglecting the rest of the design space. Because the main cost of
LOLA-Voronoi lies in calculating the neighbourhoods, additional outputs (even
thousands) can be incorporated without noticeable computational cost, because
the neighbourhood depends on inputs only and needs to be computed only once.
This makes LOLA-Voronoi a very useful technique for modelling data with a high
number of outputs.

3.6. MULTIPLE OUTPUTS AND FREQUENCY-DOMAIN PARAMETERS 121

(a) 24 points (b) 500 points

(c) 1000 points (d) 2000 points

Figure 3.13: Plots of the sample distributions for respectively 24, 500, 1000 and
2000 points were selecte by LOLA-Voronoi for the H-antenna problem.

122 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

Figure 3.14: Magnitude parameterized S-parameter response for W = 2.406 mm.

Figure 3.15: Magnitude parameterized S-parameter response for L = 9 mm.

3.7. EXPERIMENTS 123

3.7 Experiments

Two studies were conducted in order to investigate the efficiency of LOLA-Voronoi
in different circumstances. The first study does an in-depth investigation of LOLA-
Voronoi and other sampling methods in the context of a real-life problem from
electronics. Because of computational limits, the total number of samples was
fixed at a given number, and the accuracy of the models are measured when the
total number of samples is reached.

The second study does not fix the total number of samples, but keeps selecting
samples until a desired accuracy is met. This is done for three examples, each
demonstrating the flexibility and robustness of LOLA-Voronoi under different
conditions.

3.7.1 Other sampling methods

LOLA-Voronoi will be compared against a number of methods that have proven
their merit in other studies: a pure exploitation method using the model error, an
exploration method using a Voronoi tessellation and a random sampling scheme
(as a base case).

The exploitation-based method first constructs a very dense, randomly per-
turbated grid over the entire design space (typically 2500 points, even though
the number may be higher for high-dimensional problems). It then evaluates
and compares the best models from the previous iterations on this grid. This is
done by subtracting the outputs from these models pairwise from each other, and
finding the locations on the grid where the difference is greatest, as described by
Hendrickx et al. [48]. Places where the models disagree indicate locations of high
uncertainty, and will be sampled next. Because surrogate models can be evaluated
fairly quickly, evaluating them over such a dense grid is usually not a problem. For
very high-dimensional problems, however, the number of evaluations required
to get a sufficiently dense grid may be too large, which makes this sampling strat-
egy a poor choice for high-dimensional problems. This sampling strategy is very
efficient at locating areas in the design space that are difficult to approximate,
such as asymptotes or discontinuous regions, enabling the modeller to quickly
increase accuracy in those regions. It, however, tends to undersample large regions
of the design space and generate large clusters of samples, which might result in
inaccurate global models. We will from now on refer to this strategy as Model Error
sampling, because it estimates the approximation error by substracting the model
outputs from each other.

The exploration-based method is the Voronoi component of LOLA-Voronoi. It
uses a Voronoi tessellation of the design space to find regions with large Voronoi
cells. New samples are chosen in the largest Voronoi cells, as far from any other
sample as possible. This method will distribute the samples evenly, which makes
it very robust: if enough samples are taken, each portion of the design space will
be sampled equally dense.

Finally, random sampling will be considered. A random sampling scheme just
randomly selects samples in the design space, with no regards for previously eval-

124 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

uated samples. If enough samples are taken, random sampling will approximate a
good space-filling design, while at the same time being the simplest and cheapest
sampling method available. For a small sample set, however, large deviation from
space-filling is to be expected, and the behaviour of this sampling scheme can be
very erratic.

3.7.2 SUMO research platform

In order to compare the different sampling strategies, each method was imple-
mented in the SUMO research platform [40, 43]. This Matlab toolbox, designed for
adaptive surrogate modelling and sampling, has excellent extensibility, making it
possible for the user to add, customize and replace any component of the sam-
pling and modelling process. It also has a wide variety of built-in test functions
and test cases, as well as support for many different model types. Because of this,
SUMO was a good choice for conducting this experiment. The work flow of the
SUMO Toolbox was already described in Section 2.6.2 and is further discussed in
Section 4.1.

3.7.3 In-depth analysis of LOLA-Voronoi with fixed sample size

LOLA-Voronoi will be tested and compared against the other methods using a
test-case from electronics: a narrowband Low Noise Amplifier (LNA), which is a
simple RF circuit [62]. The goal is to compare the robustness of these sampling
techniques in different modeling environments for a difficult problem.

3.7.3.1 Problem description

The LNA problem was already described in detail in Section 2.6.2.3. However, this
experiment was conducted earlier, and uses slightly different formulas, since they
were updated later to give more accurate, useful results. Additionally, three inputs
were considered in this experiment: the inductances Ls , Lm , and the MOSFET
width W , as compared to the two inputs Ls and W for the previous experiment.

The input noise-current
√

i 2
i n was again chosen as the output of choice because

it is the most difficult to approximate. This implementation of the input noise-
current is defined by Equations 3.13 to 3.17.

The remaining parameters have been set to the following:

C ′
g s = 1 ·10−9Fm−1,

g ′
m = 100AV−1m−1,

ω= 2π ·5 ·109Hz,

i 2
g s

′ = 2 ·104pA2Hz−1m−1,

i 2
d s

′ = 5 ·106pA2Hz−1m−1.

3.7. EXPERIMENTS 125

fg s,i n = 1+ jωLs g ′
mW

1−ω2C ′
g sW (Ls +Lm)+ jωLs g ′

mW
(3.13)

fd s,i n =
ω2C ′

g sW (Ls +Lm)

1−ω2C ′
g sW (Ls +Lm)+ jωLs g ′

mW
(3.14)

i 2
g s =W · i 2

g s (3.15)

i 2
d s =W · i 2

d s (3.16)√
i 2

i n =
√
| fg s,i n |2 · i 2

g s +| fd s,i n |2 · i 2
d s −2 · Im(0.4 fg s,i n f ∗

d s,i n)

√
i 2

g s · i 2
d s (3.17)

A plot of the input noise-current
√

i 2
i n for 3 input parameters is depicted in

Figure 3.16. Note that the overall shape of the surface hasn’t changed by adding a
third parameter or by adjusting the formulas; it was only rotated and displaced a
bit.

Figure 3.16: A plot of the input noise-current (
√

i 2
i n) of an LNA for inputs Ls , Lm

and W . The plot shows that the function is very flat, except for a tall ridge on the
diagonal.

126 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

3.7.3.2 Model types

All of these methods will be compared against each other using 4 different model
types: Kriging, artificial neural networks (ANN), radial basis functions (RBF) and
(least squares) support vector machines (LS-SVM). For neural networks, two im-
plementations will be used: the default Matlab implementation (M-ANN), which
is rather slow, and the much faster Neural Network Based System Identification
Toolbox (NNSYSID toolbox or N-ANN) developed by Norgaard et al. [74]. The
parameters of all these models are changed on the fly by SUMO to improve their
accuracy.

3.7.3.3 SUMO configuration

The SUMO toolbox is configured so that each run starts with an initial design of 50
points in a Latin hypercube configuration. 25 new samples are taken after each
modeling iteration, up to a total of 800 samples, after which the toolbox is halted.
After each modeling iteration, the best model up to that point, along with its
accuracy, is recorded on disk. In order to measure the accuracy of a model, a grid
of 8000 samples (203) was evaluated in advance. This grid was used to calculate
the root relative square error (RRSE) of the model on the grid. This means that
models are evaluated by their true error, and not by an estimation of the error, to
avoid bias in the results. The formula for the root relative square error is:

RRSE =
√√√√∑n

i=0

(
xi −xi

)2∑n
i=0 (xi − x̃)2 ,

where xi is the true value at a sample location, xi is the estimated value and x̃
is the average of the true values.

3.7.3.4 Results

A summary of the results of the test runs can be found in Table 3.1. A plot of the
root relative square error of all the runs grouped by sampling method can be found
in Figure 3.17. Each plot contains a line for each test run that was performed using
that sampling method. The lines indicate that the accuracy increases (smaller
error) as the number of samples increases; however, the rate of improvement
differs between sampling methods, and also depends on the model that was used
for that run.

The overall best model was produced using the Model Error sampling scheme
in combination with neural networks, resulting in a root relative square error of
4.343×10−4. The neural networks toolbox of Matlab is the only model type that
managed to achieve an accuracy greater than 10−2 or 1%. The other model types
failed to achieve that level of accuracy in this difficult use-case.

The Matlab toolbox produces very smooth models, and hence does not suffer
a lot from undersampling in very flat regions. An error-based measure is therefore
free to focus completely on the most dynamic area, which is in this case the ridge
along the diagonal axis, without giving up accuracy in the rest of the (relatively flat)

3.7. EXPERIMENTS 127

(a) LOLA-Voronoi (b) Model Error

(c) Voronoi

Figure 3.17: Plots of the root relative square error of all test runs as a function of
time, grouped by sampling method. The Model Error method has the overall best
model, but also the worst ones. The worst model produced by LOLA-Voronoi is
still better than 11 Voronoi models and 8 Model Error models. This means that
half of the total amount of Voronoi and Model Error-based runs perform worse
than the worst LOLA-Voronoi run. Overall, models built using LOLA-Voronoi were
considerably more accurate than models of the same type built with the other two
sampling methods.

128 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

Table 3.1: Summary of test results for the 3D LNA-simulator. The best results for
each model type are printed in bold. The worst results are printed in italic. M-ANN
is the Matlab ANN toolbox, N-ANN is the NNSYSID toolbox. The average error is
the average root relative square error of the 4 runs.

Average Error
LOLA-Voronoi Model Error Voronoi Random

M-ANN 0.002 0.0008 0.013 0.007
N-ANN 0.060 0.141 0.049 0.080
Kriging 0.193 0.490 0.376 0.360
LS-SVM 0.341 0.412 0.388 0.429
RBF 0.206 0.502 0.377 0.386
Total 0.160 0.309 0.240 0.253

Standard Deviation
LOLA-Voronoi Model Error Voronoi Random

M-ANN 0.001 0.0005 0.007 0.001
N-ANN 0.010 0.087 0.003 0.033
Kriging 0.007 0.000009 0.044 0.006
LS-SVM 0.005 0.032 0.016 0.015
RBF 0.015 0.037 0.010 0.006
Total 0.007 0.031 0.016 0.012

design space. This results in very accurate models. LOLA-Voronoi also focuses
on the difficult areas, but still samples the flat areas as well, ensuring a minimal
coverage of the entire design space. This resulted in the only case in which LOLA-
Voronoi is significantly outperformed by another sampling scheme.

In the case of the NNSYSID toolbox, the results were comparable in quality
for all the sampling methods, except for the Model Error sampling scheme, which
did noticeably worse. Some of the Model Error runs actually failed to produce
any useful models, because the sampling algorithm initially completely missed
the ridge and failed to locate it. This happened because the initial experimental
design (a Latin hypercube) did not generate any samples on the ridge, causing
the Model Error method to focus on (relatively) uninteresting regions, instead of
exploring the design space to locate the ridge. This is a good illustration of the lack
of robustness of the Model Error method.

The difference between a M-ANN and an N-ANN run is illustrated in Fig-
ure 3.18. The same Latin hypercube is used to start the experiment, so in both
cases, initially the ridge is missed. However, since the M-ANN model behaves
very nicely in flat regions, Model Error sampling will perform a relatively uniform
sampling until the ridge is identified, after which M-ANN will have great difficulty
modelling this region. At this point, Model Error sampling will place lots of new
samples there until the models stabilize again. For the N-ANN case, the initial
models already differ much more, and because of this, Model Error will not per-
form uniform sampling but will focus on those regions in which the initial N-ANN

3.7. EXPERIMENTS 129

models disagree the most, resulting in a much worse design.
With Kriging, LS-SVM and RBF, the best results were achieved using LOLA-

Voronoi. The similarities in the results can be explained by the fact that all three
methods internally use basis functions that depend on the Euclidean distance of
points from each other (LS-SVM uses an RBF kernel). Therefore, a good coverage
of the design space is essential to success. This explains why a purely exploitation-
based sampling scheme such as Model Error performs poorly with these model
types, even compared to random sampling. Exploitation-based sampling tends to
concentrate on specific areas which have been identified as interesting, leaving
wide gaps in the design space, which makes it difficult to produce meaningful
approximations in these undersampled areas. This observation is also confirmed
by Gorissen et al. [39] in a related study.

When the average is taken over all the model types, LOLA-Voronoi clearly
performs the best across the board, producing models that are on average 33%
better than the second best choice (Voronoi sampling). This can be seen on
Figure 3.19, which groups the runs by sampling method and model type. Even
though Model Error and Voronoi perform better with respectively M-ANN and N-
ANN, LOLA-Voronoi follows close behind. Voronoi-based sampling is the second
most robust method, performing decently in all test runs, but not excelling in
any. Model Error sampling performs the worst overall, mainly due to its very poor
performance with RBF and Kriging models.

130 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) M-ANN

(b) N-ANN

Figure 3.18: Plots of the sample distribution of a run with Model Error sampling,
for the M-ANN and N-ANN model types. The plot shows the sample distribution
projected onto the W and Lm plane, clearly showing that for the M-ANN case, the
ridge is sampled intensively, while it is completely ignored in the N-ANN case,
where Model Error focuses on the uninteresting bottom part of the design space.

3.7. EXPERIMENTS 131

Figure 3.19: A bar chart of the root relative square error of all the runs performed in
this experiment. The bars represent (from left to right) the runs performed using
LOLA-Voronoi, Model Error, Voronoi and Random sampling schemes. It is clear
from the chart that LOLA-Voronoi performs the best in the last three cases, and is
only marginally outperformed by another sampling method in the first two. On
average, it is by far the most reliable method.

132 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

3.7.4 Broad analysis of LOLA-Voronoi with fixed accuracy

Three test cases will be examined in this study, each demonstrating the quality
and robustness of LOLA-Voronoi in a different context.

For each test case, we started the SUMO Toolbox run with a very sparse Latin
hypercube (10 samples) augmented with a 2-level fractional design. Because we
want to measure the efficiency of a sequential design strategy, the initial design is
kept very small, so that the majority of the samples is chosen adaptively.

The quality of the model is measured by comparing the model against a very
dense, pre-evaluated test set. Thus, the error is a very accurate estimate of the true
prediction error of the model. The root mean square error (RMSE) is defined as:

RMSE(f , f̃) =
√

1

n

n∑
i=1

∣∣ f (qi)− f̃ (qi)
∣∣2

(3.18)

where f is the target function, f̃ is the surrogate model and qi are the samples
in the dense pre-evaluated test set. At the end of each run, the number of samples
required to reach this accuracy will be recorded. To take into account noise caused
by random factors in the SUMO Toolbox (such as randomization in the model
parameter optimization algorithm), the configuration for each sampling strategy
will be run 10 times, and the average will be used for the results.

3.7.4.1 Case 1: Peaks function

The first test problem is a two-dimensional function called Peaks, which is avail-
able in Matlab as a built-in command. The Peaks function is obtained by translat-
ing and scaling Gaussian distributions. It is interesting to note that the function is
almost zero on the entire domain except for the region close to the origin, where
it has several local optima in close proximity. In order to demonstrate the ability
of LOLA-Voronoi to zoom in on nonlinear regions, the problem will be modelled
on three different domains: [−3,3]2, [−5,5]2 and [−8,8]2. We expect that the ad-
vantage of LOLA-Voronoi over the other methods will substantially increase as the
domain grows, because the larger domains will contain proportionally more flat
space. The Peaks function for all three domains is illustrated in Figure 3.20.

Because the Peaks function is a combination of Gaussian distributions, Krig-
ing is a natural choice for modelling this function. Kriging was already described
in Section 2.6.2. Because the correlation function for the random process Z (x) is
Gaussian, the Peaks function can be modelled accurately. However, the conver-
gence rate of the modelling process greatly depends on the sampling strategy. It is
expected that a sampling strategy which focuses extensively on the highly dynamic
area near the origin will converge faster than a strategy which samples the design
space uniformly, since many samples will be wasted on the flat regions near the
edges of the design space. After each sequential step, the hyperparameters of the
Kriging model are optimized dynamically.

3.7. EXPERIMENTS 133

3.7.4.2 Case 2: low-noise amplifier

The second test problem is again the input noise-current of the LNA problem
described in Section 2.6.2.3. This time, the 2D version of the problem is considered
again. The 2D version of the LNA problem modelled in this experiment is shown
in Figure 3.21.

To demonstrate the efficiency of LOLA-Voronoi in suboptimal conditions, the
LNA problem will be modelled with three different model types. The first model
type is artificial neural networks (ANN), because they have proven to be the best
choice for this test case in related studies [40]. The ANN models are based on
the Matlab Neural Network Toolbox, and are trained with Levenberg Marquard
backpropagation with Bayesian regularization [69] (300 epochs). The topology
and initial weights are optimized by a genetic algorithm. Furthermore, the LNA
problem will also be modelled with radial basis function models (RBF) and rational
models. In preliminary experiments, both RBF models and rational models have
more difficulty modelling the LNA problem than ANN. The goal is to demonstrate
that, even with a suboptimal pairing of model and problem, LOLA-Voronoi should
produce better results than uniform sampling.

3.7.4.3 Case 3: shekel function

The third and final test case is the Shekel function, which is a well-known multi-
dimensional test function from optimization [86]. We use the four-dimensional
version on a [2,6]4 domain, with a global optimum at (4,4,4,4). In order to demon-
strate the scalability of LOLA-Voronoi to higher dimensions, this problem was
modelled in 2D, 3D and 4D. For the 2D case, the last two inputs were fixed at 4,
while in 3D only the last input is fixed at 4. The 2D and 3D versions of the function
are shown in 3.22. Note that only one nonlinear region exists around (4,4,4,4). In
the 3D case, for other values of z besides 4, the function remains mostly zero.

This function was modelled in all dimensions with artificial neural networks,
because of their good overall performance and robustness. Because of the simple
nature of the surface, it is expected that, even for higher dimensions, it should be
relatively easy to model this problem using ANN.

134 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) [−3,3]

(b) [−5,5]

(c) [−8,8]

Figure 3.20: The Peaks problem on the [−3,3]2, [−5,5]2 and [−8,8]2 domains.

3.7. EXPERIMENTS 135

Figure 3.21: A plot of the input noise-current (
√

i 2
i n) of an LNA for inputs Ls and

W . The plot shows that the function is very flat, except for a tall ridge where W = 0.

136 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) Shekel 2D

(b) Shekel 3D

Figure 3.22: The 2D and 3D version of the Shekel function modelled in this
experiment.

3.7. EXPERIMENTS 137

3.7.5 Results

The results of the experiments are depicted in Table 3.2.

Table 3.2: Summary of the test results of modelling Peaks, LNA and Shekel with
different sampling strategies. The average number of samples required to reach
a RMSE of 0.05 and the standard deviation (over 10 runs) are shown for each
sampling strategy.

Sampling strategy Peaks [−3,3] Peaks [−5,5] Peaks [−8,8]
LOLA-Voronoi 90 ± 0 114 ± 4 135 ± 16
Voronoi 106 ± 6 247 ± 7 516 ± 26
Model error 126 ± 9 275 ± 31 648 ± 33
Random 141 ± 14 355 ± 92 720 ± 190

LNA ANN LNA RBF LNA rational
LOLA-Voronoi 95 ± 2 183 ± 19 131 ± 26
Voronoi 173 ± 8 > 1500 * 1112 ± 714
Model error 435 ± 74 > 1500 * 1048 ± 465
Random 263 ± 140 > 1500 * 1567 ± 756

Shekel-2D Shekel-3D Shekel-4D
LOLA-Voronoi 81 ± 12 195 ± 74 204 ± 69
Voronoi 122 ± 16 448 ± 107 543 ± 103
Model error 72 ± 6 199 ± 51 212 ± 63
Random 134 ± 26 511 ± 158 557 ± 274
* The RBF implementation in the SUMO Toolbox can only gener-
ate models up to 1500 data points, due to memory limitations in
Matlab. Since the accuracy was not reached at this point, the run
was halted.

For the Peaks function, LOLA-Voronoi produces the best results in every test
case, performing 15% better than Voronoi-based sampling, 29% better than Model
Error sampling and 36% better than random sampling on the [−3,3] domain.
Voronoi-based uniform sampling performs much better than random sampling
because the sample size is relatively small, resulting in large unsampled regions for
random sampling, while Voronoi-based sampling properly covers up the design
space quite uniformly. The Model Error method, even though it is an exploitation-
based method, performs worse than space-filling sampling using Voronoi, but still
better than random sampling. On the [−5,5] and [−8,8] domain, LOLA-Voronoi
only requires a small number of additional samples to fill up the flat regions, while
Voronoi-based, Model Error and random sampling both waste large amounts of
samples on these regions, resulting in a huge difference in the total number of
samples compared to LOLA-Voronoi. On the [−8,8] domain, Voronoi and Model
Error sampling require respectively about 3 and 5 times the number of samples
that LOLA-Voronoi needs to achieve the same accuracy.

For the LNA test case, a considerable improvement can be noted as well. Be-
cause there is only one small nonlinear region, focusing heavily on this region

138 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

greatly improves the accuracy. LOLA-Voronoi quickly identifies this nonlinear re-
gion and selects additional samples nearby. This allows LOLA-Voronoi to reach the
same accuracy as Voronoi with only half the number of samples in the ANN case.
In this test case, Model Error sampling needs considerably more samples than
random sampling. This again highlights an important issue with the Model Error
method: its inherent instability. Model Error sampling tends to cluster points
in locations that are difficult to approximate by the model type used, leaving
large portions of the design space undersampled and unexplored. If the initial
experimental design does not have any samples located on the ridge, the Model
Error method will focus on improving (relatively) uninteresting regions, instead
of exploring the design space to locate this ridge. This can severely reduce the
performance of the method.

For the other model types, the difference is even more dramatic: for RBF
models, LOLA-Voronoi only needs 183 samples, while the other methods fail to
achieve an accuracy of 0.05 at all before reaching 1500 samples, at which point
the SUMO Toolbox was aborted due to memory limitations. It is expected that,
eventually, an accuracy of 0.05 can be reached, but this might take thousands
of samples. For rational models, LOLA-Voronoi only needs 131 samples, while
the other methods require an order of magnitude more. This example highlights
the importance of focusing on difficult regions of the design space. Please note
again that these results were obtained by running the toolbox 10 times for each
configuration, thereby ruling out potential lucky runs.

Finally, the Shekel function demonstrates that LOLA-Voronoi works just as
well in higher dimensions. For this test case, Model Error sampling shows that
under the right circumstances, it can produce very good results, obtaining an
average number of samples marginally lower than LOLA-Voronoi for the 2D case,
and marginally higher for 3D and 4D. These two methods perform considerably
better in 2D, 3D and 4D than Voronoi-based and random sampling. In the 4D
case, LOLA-Voronoi needs less than half of the samples that Voronoi needs, and
little more than one third of the samples random sampling needs. The Shekel

function has only one nonlinear area near in the middle of the design space. In
higher dimensions, the part of the design space that is completely linear is much
larger than in lower dimensions. Therefore, the gap between exploitation-based
and exploration-based methods is much larger in higher dimensions. Even though
Model Error sampling performs very well for this last test case, the previous two
cases show that it is a very unstable method, which can do very well and very
poorly, and its performance is largely dependant on the problem at hand and the
model type used. LOLA-Voronoi, on the other hand, works very well for all the
test cases, for different model types and for multiple dimensions, due to its robust
implementation of exploration and exploitation.

To illustrate how LOLA-Voronoi identifies nonlinear regions while still main-
taining proper domain coverage, one run with the LOLA-Voronoi algorithm for
each test problem is shown in Figure 3.23. Figure 3.23(a) contains all the points
that were selected by LOLA-Voronoi during one of the runs for the Peaks problem
on the [−5,5] domain, while Figure 3.23(b) contains the samples selected during
one run of the LNA problem. Finally, Figure 3.23(c) shows one run for the 2D ver-

3.7. EXPERIMENTS 139

sion of the Shekel problem. It is clear that the hybrid strategy efficiently located
the nonlinear regions and focused sampling heavily on those regions, without
completely neglecting the other parts of the design space. In Figure 3.23(a), the
flat region near the edges is sampled sparsely, but the samples are distributed
quite evenly over the entire flat region. The steep slopes in the middle are sampled
much more densely than gentler slopes, which are still sampled more densely than
the flat regions. In Figure 3.23(b), the tall ridge is sampled much more densely
than the rest of the design space. Due to this intelligent sampling approach, the
average number of samples required is reduced drastically, potentially saving lots
of resources and time.

140 CHAPTER 3. OUTPUT-BASED SEQUENTIAL DESIGN

(a) The Peaks function.

(b) Input noise-current

√
i 2
i n of an LNA

(c) Shekel 2D

Figure 3.23: The sample distribution of one run of the first two test cases using the
LOLA-Voronoi hybrid sampling strategy.

3.8. CONCLUSIONS 141

3.8 Conclusions

In this chapter, we proposed a novel hybrid sequential design technique that com-
bines an exploration metric based on Voronoi tessellations with an exploitation
metric using local linear approximations. We showed that LOLA-Voronoi performs
better than Model Error-based, Voronoi-based and random sampling in a number
of different test cases, thus demonstrating the usefulness of hybrid sequential
design methods. It was shown that LOLA-Voronoi outperforms the other methods
for different model types, problems and in multiple dimensions.

LOLA-Voronoi was also succesfully applied to multiple real-world test cases
from different problem domains by users of the SUMO Toolbox. Fellow researchers
have succesfully used LOLA-Voronoi for problems from electrical engineering
[18, 37, 40, 41], aerospace engineering [37] and hydrology [14]. Because of its
efficiency, it has since become the default sequential design strategy for the SUMO
Toolbox.

The first study showed that LOLA-Voronoi is especially efficient for local ap-
proximation models such as RBF and Kriging, which assume a correlation between
simulator output and geometrical distance in the design space. This property is
magnified for problems in which the function is relatively flat in large parts of the
design space and is highly dynamic in small regions. LOLA-Voronoi will quickly
locate these unstable areas and focus on them, without neglecting the rest of the
design space.

The Model Error method, while also very effective, is not as reliable as LOLA-
Voronoi, as it may fail to locate important features of the system, resulting in
useless models. Voronoi-based sampling is very reliable, but completely ignores
system behaviour, and therefore tends to produce models that perform worse than
LOLA-Voronoi. When using large amounts of samples, its performance is often
only slightly better than random sampling. Its simplicity and reliability make it a
viable choice if no better alternatives are available.

LOLA-Voronoi was designed as a very robust, reliable and widely applicable
sequential design method, able to produce good results with any model type,
regardless of the problem at hand. To achieve this, the only information used to
guide the sampling process consists of previously evaluated samples and their
output values. The robustness of the sequential design method comes at a cost,
however. It is rather slow compared to other sequential design methods, mainly
due to the expensive pre-processing required to estimate the gradient (O(n2) in the
number of samples). However, this additional cost becomes negligible in a real-life
environment in which sample evaluations may take hours or even days, and many
heuristics are available to substantially reduce the overhead of LOLA-Voronoi.

CHAPTER 4
Software

Stop! The beast contained herein shall not be set free... Not even by you!
— Tyrael

143

144 CHAPTER 4. SOFTWARE

Motivation

In order to properly implement and present the sequential design methods pro-
posed in this thesis, two software packages were developed. The SUMO Toolbox is
a Matlab toolbox for adaptive surrogate modelling with sequential design, while
the SED Toolbox is a Matlab toolbox for generating sequential designs. Both tool-
boxes contain all the methods proposed in this thesis, but present them to the
user in a different way. Where the SUMO Toolbox is a all-round tool that deals
with the entire surrogate modelling process, the SED Toolbox is a specialized tool
for generating sequential designs, easily integrated in the modelling pipeline of
the user.

4.1 SUMO Toolbox

SUMO is a Matlab toolbox that automatically builds accurate surrogate models of
a given data source (simulation code, data set, script, ...) within the accuracy and
time constraints set by the user. In doing so the toolbox minimizes the number
of data points (which it chooses automatically) since they are usually expensive.
The toolbox tries to be as adaptive and autonomous as possible, requiring no user
input besides an initial configuration.

However, since there is no such thing as a one-size-fits-all, the toolbox has been
designed to be fully pluggable and extensible using standard object oriented design
patterns. Implementations of the different components (model types, sampling
strategies, model selection criteria, hyperparameter optimization algorithms,...)
can be plugged in, compared, or replaced by custom implementations. In this way
the SUMO Toolbox provides a common platform to easily test and benchmark
different sampling and approximation strategies, while still being easy to integrate
in the engineering design process.

The work-flow of SUMO is illustrated in Figure 4.1. First, an initial design is
generated and evaluated. Then, a set of surrogate models is built, and the accuracy
of these models is estimated using a set of measures. Each model type has several
hyperparameters which can be modified, such as the order of numerator and
denominator for rational models, number and size of hidden layers in neural
networks, smoothness parameters for RBF models, and so on. These parameters
are adjusted using a hyperparameter optimization technique, and more models
are built until no further improvement can be made by changing the hyperparam-
eters. If the overall desired accuracy has not yet been reached, a call is made to
the sequential design routine, which selects a new sample to be evaluated, and
the algorithm starts all over again. The algorithm is halted when the stopping
condition (total number of samples or required accuracy) is reached.

In order to deal with the different problems and issues encountered during
the surrogate modelling process, SUMO splits the surrogate modelling problem
up into smaller subproblems, which are solved by different components. The
following subproblems can be identified:

4.1. SUMO TOOLBOX 145

Figure 4.1: Flow-chart of the SUMO toolbox.

• Everything starts with the initial design. Because the simulator is assumed
to be a black box, the initial design must be a space-filling design, because
no information is available to base the design on besides the dimensionality
of the problem. The initial design must be sufficiently large as to allow for
the sequential design strategy to get a good start. For input-based sequential
design methods, the initial design should be kept at a bare minimum (for
example, the two corner points), while for output-based sequential design
methods such as LOLA-Voronoi, the initial design should be a little bit larger
(for example, 10 or 20 points), because otherwise the sequential method has
no output information to base its decisions on.

• The model type is the next important component. Because little or no
information is available about the simulator up front, choosing the right
model can be a very difficult or even impossible task. SUMO features a whole
set of surrogate models: Kriging, rational, polynomial, radial basis function
(RBF) models, splines, artificial neural networks (ANN) and least squares
support vector machines (LS-SVM). Additionally, for all of these model types,
different hyperparameter optimization algorithms are available. To make

146 CHAPTER 4. SOFTWARE

matters worse, the right model does not only depend on the simulator; some
sequential design methods work better with certain model types, so this
should be taken into account as well.

• Once a model has been generated, it must be validated through some means
of model selection. In order to determine the quality of the model, and
see if it is a better model than previously generated models, many different
measures are available in the SUMO Toolbox: cross-validation, external
validation set, leave-one-out, model difference, etc.

• When the best model is not good enough yet, additional samples must be
selected using a sequential design method. These methods were already
thoroughly discussed in Chapters 2 and 3. Multiple methods can also be
combined, by selecting part of a batch of new samples with one method and
the other part with another. This allows methods to cancel out each other’s
issues.

SUMO is configured by means of a two configuration files:

• The simulator config defines the properties of the simulator. It determines
the number of inputs and outputs, the type of the outputs (real, complex, ...),
the executables (Matlab, native, java, ...) and datasets associated with the
simulator and the constraints defined on the inputs. This config file should
be constructed once to serve as an interface between the simulator files and
the SUMO Toolbox.

• The toolbox config defines which components will be used to model a
given simulator. It determines the global SUMO settings such as stopping
criteria (time limit, sample limit, ...), output directory and so on. It also
allows the user to select the right component for the task, and fine-tune this
component if so desired.

The modular structure of the SUMO Toolbox allows the user to experiment
with different component combinations to find the best match for the problem
at hand. A default configuration containing all of these components with pre-
configured options is distributed with the SUMO Toolbox, ready to be used in an
experiment. If the user has enough knowledge of the inner workings of a given
component, the user can change its settings and options through the toolbox
config to fine-tune the modelling process even further. Alternatively, the user can
implement (in Matlab) his own components, and add them to the toolbox config
as well. All component types available in the Toolbox are exposed through simple
interfaces that can be implemented to add new self-made components.

For documentation on how to download, install, configure and use the SUMO
Toolbox, please refer to the website: http://sumo.intec.ugent.be. A detailed
overview of the different subsystems and code structure of the SUMO Toolbox
can be found in [35]. In the next sections, we will briefly discuss the choice of
components in the context of sequential design. These sections can be used

http://sumo.intec.ugent.be

4.1. SUMO TOOLBOX 147

as a guide for determining the right configuration of the SUMO Toolbox for the
right job.

4.1.1 Initial design

Several initial designs are available in the SUMO Toolbox. Of these, the following
are the most interesting:

• FactorialDesign is a simple factorial. It can also be used to add the corner
points of the design space to another design; this is always a good idea,
because some surrogate models are only stable in the bounds defined by the
outermost samples. Adding the corner points to the initial design ensures
that at least the model will behave nicely inside the design space.

• LatinHypercubeDesign is the standard go-to initial design in most cases.
Latin hypercubes have optimal projected distance properties, and, if op-
timized well, extremely good space-filling properties as well. The Latin-
HypercubeDesign implementation in the SUMO Toolbox uses a waterfall
model. It automatically tries to find the best possible Latin hypercube
for the number of samples and the input dimension requested. First, it
checks if a pre-optimized design is available for download from the web-
site http://www.spacefillingdesigns.nl/. These designs are highly
optimized and have very good space-filling properties. If such a design is
not currently available, or if the internet connection fails, a local cache is
searched for designs previously downloaded from the website. If no design
is found in the cache, a Latin hypercube is generated and optimized on
the fly, using the algorithm described in [56]. While these designs are far
from optimal, as demonstrated in Chapter 2, they still serve as an adequate
starting point for the SUMO Toolbox.

• DatasetDesign allows the user to input previously evaluated samples in a
new run of the SUMO Toolbox. This is useful if a previous run was aborted,
and the resulting model did not suffice. By re-adding the evaluated samples
as the initial design, no previously evaluated samples go to waste.

Overall, the lhdWithCornerPoints component defined in the default config
should be the initial design of choice for most problems. By default, a Latin
hypercube of 20 points augmented with the corner points is generated. Depending
in how computationally intensive a simulation is, the number of points in the
Latin hypercube can be lowered or raised.

4.1.2 Model type

The first concern in choosing the model type should obviously be any knowledge
about the simulator. But care should be taken that the right sequential method
is chosen with the right model type. Not every model type works equally well
with each sequential method. We will now discuss the most popular model types

http://www.spacefillingdesigns.nl/

148 CHAPTER 4. SOFTWARE

available in the SUMO Toolbox, and suggest the right sequential method to go
with them.

4.1.2.1 Rational models

Rational models can be highly efficient at modelling simulators that are internally
based on rational functions. It is possible to achieve very accurate or even perfect
models for black box simulators, but rational models also tend to produce very
bad models with asymptotes in the design space [14]. Rational models work
very well with most sequential design methods. However, due to the unstable
nature of the model type, a Model Error sampling component should definitely
be included. Model Error sampling will identify asymptotes because of the large
output difference with other models, and will select samples in these regions
to reduce the chance of an asymptote re-appearing there later. However, LOLA-
Voronoi, due to its robust nature, is also a good choice. The default sequential
method in SUMO is a combination of LOLA-Voronoi (70% of the samples) and
model error (30%) of the samples, which is a good option for rational models.

4.1.2.2 Kriging models

Kriging models have proven to be a very good choice in most circumstances,
because they are very stable and interpolate between the samples, guaranteeing
a 100% accuracy in the sampled locations. Kriging models internally use basis
functions that depend on the euclidean distance of points from each other (LS-
SVM uses an RBF kernel), so the distribution of samples is very important for the
accuracy of this model type.

LOLA-Voronoi seems like a very good fit, but some issues arise when a lot of
samples are clustered in one (nonlinear) region. When points are placed too close
to each other, the correlation matrix in Kriging becomes ill-conditioned, and the
model will collapse [39, 70]. Therefore, LOLA-Voronoi should be used with care
for Kriging models. As long as points are not placed too close to each other, an
increase in accuracy can be achieved, but once a certain threshold is passed, the
models can actually become worse.

In order to demonstrate this, a test run of the SUMO Toolbox was performed
for the 2D LNA problem described in Section 3.7.4.2. The results as the num-
ber of samples increases is shown in Figure 4.2. Note that after 34 samples, the
model starts to resemble the correct surface already. After 84 samples, the overall
shape is captured correctly, and the run seems to be converging to the correct
surface. However, after 134, due to many samples placed too close to each other
on the ridge, the correlation matrix has become ill-conditioned, and the model col-
lapses. As more samples are selected, the accuracy actually drops further instead
of improving.

This problem does not always occur. The Peaks function from Section 3.7.4.1
was succesfully modelled with a combination of Kriging and LOLA-Voronoi, with-
out any instability issues. Whether this problem occurs depends on the sur-
face to be modelled and how much LOLA-Voronoi focuses on one area in the

4.1. SUMO TOOLBOX 149

(a) 34 samples

(b) 84 samples

(c) 134 samples

Figure 4.2: Plots of the Kriging surface generated after respectively 34,84 and 134
samples were selected with the LOLA-Voronoi method.

150 CHAPTER 4. SOFTWARE

design space. If this risk cannot be afforded, space-filling methods such as
mc-intersite-proj-th should be considered instead. By spreading samples out
over the design space, these methods will make sure the Kriging model remains
stable. mc-intersite-proj-th is available in the default config under the name
density.

4.1.2.3 Artificial neural networks

Artificial neural networks (ANN) are very flexible and powerful models capable
of modelling extremely complex, highly nonlinear system behaviour. Training
and optimizing the hyperparameters of an ANN can be extremely slow compared
to Kriging or rational models. However, experiments have shown that they often
do produce the most accurate models [39, 40, 41, 42], so if simulations are truly
expensive, the additional computational cost of training the ANN models may still
be negligible.

Several implementations of ANN models are available in the SUMO Toolbox:
an implementation based on the Matlab Neural Network Toolbox, an implementa-
tion based on the Network Based System Identification Toolbox (NNSYSID tool-
box) developed by Norgaard et al. [74] and an implementation based on the
Fast Artificial Neural Network Library (FANN), which is available for download on
http://leenissen.dk/fann/wp/. Of these, the Matlab Neural Network Toolbox
is both the slowest and most accurate overall.

Because neural networks do not suffer from the instability issues from Kriging,
LOLA-Voronoi is a very good match with them. Additionally, if the time investment
to go for neural networks is already made, the additional computational cost of
LOLA-Voronoi becomes irrelevant, since training neural network models is still
considerably slower than selecting additional samples with LOLA-Voronoi.

4.1.2.4 Heterogeneous model builders

The idea behind heterogeneous model builders is that, since the simulator is
assumed to be a black box, it is difficult in advance to predict which model type
will perform well for a particular problem. One way to deal with this issue is
by performing multiple runs of the SUMO Toolbox with different model types,
and take the best final model. However, if a simulation is expensive, this is often
infeasible, because each run will select new samples from scratch.

Instead a heterogeneous model selection approach can be adopted. A hetero-
geneous model builder starts with a set of model types, and will automatically
look for the model type that best matches the problem at hand, by using a genetic
algorithm to determine the fittest and least fit models. After a number of mod-
elling (and sampling) iterations, certain model types will come out on top as most
succesful, and these will be focused on in consequent iterations. This approach is
integrated in the SUMO Toolbox, so that it can be executed automatically in one
run, without having to perform multiple runs with new sample selections for each
model type.

http://leenissen.dk/fann/wp/

4.1. SUMO TOOLBOX 151

Additionally, the hetereogeneous model builder can also produce so-called
ensemble models. Ensemble models are models that combine the (weighted)
outputs of other (succesful) models to produce an averaged output that better
matches the problem. Ensemble models reduce the impact of erroneous predic-
tions of one of the models by averaging over a number of models, and can perform
better than individual models [34, 66, 84].

Because the heterogeneous model builder will train completely different types
of models during each iteration, the sampling strategy should be independent of
the model type. The sampling strategy should be based solely on the inputs and
outputs from the simulator, and should make no assumptions about the model
type that is being used. This makes the input-based and output-based methods
presented in Chapter 2 and 3 especially interesting for this model builder. These
methods will produce designs that will work well with any model type currently
used by the heterogeneous model builder, since it is not fine-tuned towards one
particular model.

The heterogeneous model builder is very slow, because it needs to train a
multitude of different models and compare them against each other. However,
in a black box setting, this may very well be worth it, because the alternative is
either generating a design up front and using it with many different model types,
or picking one model type and going with it. Whether this time investment is
worth it is up to the user.

For an in-depth analysis of the heterogeneous model builder and experimental
results on its performance, please refer to [41]. The heterogeneous model builder
is available in the default config as heterogenetic.

4.1.3 Sequential design method

The advantages and disadvantages of the different sequential design methods
were already thoroughly discussed in the previous chapters. In this section, we will
first briefly summarize the results from the previous chapters, and then discuss
the implementation strategy used in the SUMO Toolbox for all these methods.

4.1.3.1 General guidelines

If the sequential design method needs to be fast, or if LOLA-Voronoi poses prob-
lems with the given model type, either mc-intersite-proj-th (available in
SUMO asdensity) oroptimizer-intersite (available asdensity-optimizer)
should be used, depending on the computational time available and the dimen-
sionality of the problem.

If the problem is highly nonlinear in certain regions and linear in others, LOLA-
Voronoi (available as lola-voronoi) is an excellent choice. LOLA-Voronoi can, if
desired, be augmented with the Model Error sampling method, so that the model
itself is also taken into account during the sampling process. This hybrid approach
(available as default) will select samples in undersampled regions, nonlinear
regions or regions where the models have high uncertainty.

152 CHAPTER 4. SOFTWARE

4.1.3.2 Implementation

All of these components are implemented as part of the sequential design frame-
work of SUMO. This framework was designed to be extremely flexible, allowing
the programmer or user to swap, combine and implement small pieces of each
method. This allowed the authors to easily construct many different sequential
design methods and variations of these methods, and to compare them to each
other efficiently.

In order for a sequential design method to be able to interact with the SUMO
Toolbox, it must implement the SampleSelector interface. This interface con-
tains one simple function:

[this, newSamples, priorities] = selectSamples(this, state);

It takes the state of the SUMO Toolbox, and returns a set of new samples to
evaluate, and priority values for each sample, that can be used by the sample
evaluator to determine the order of evaluation. state is a struct containing an
array of previously evaluated samples, the samples that failed to evaluate (due to
an error in the sample evaluator or because the sample just can’t be evaluated due
to physical limitations), a list of previously built models and the number of new
samples requested this iteration.

Several built-in sample selectors implement this interface directly: most no-
tably, LOLA-Voronoi and random. The others, however, use some of the frame-
works that make designing new methods much easier. Two such frameworks are
currently available in the SUMO Toolbox: the PipelineSampleSelector and the
OptimizeCriterion.

A flow chart of the PipelineSampleSelector is shown in Figure 4.3. The
pipeline sample selector consists of three components, which are called in order:
the candidate generator (CandidateGenerator interface) one or more candidate
rankers (CandidateRanker interface) and a merge criterion (MergeCriterion
interface). These components are implemented as separate classes, allowing the
user to switch and combine each part of the pipeline sample selector at will.

Figure 4.3: A flow chart of the PipelineSampleSelector.

4.1. SUMO TOOLBOX 153

The candidate generator must generate a number of candidates from which
eventually the new samples will be selected. If constraints are specified in the
simulator config, they must be respected by the candidate generator. Examples of
candidate generators are a random candidate generator, a Delaunay-based candi-
date generator that generates the centers of the Delaunay triangles as candidates,
a projected distance random candidate generator that only generates candidates
in regions that respect the projected distance threshold, and so on.

The candidates generated by the candidate generator are then ranked by one
or more candidate rankers. These must score and order the candidates accord-
ing to some criterion. Examples of criteria are intersite and projected distance,
Manhattan distance, φp , and so on.

Once the scores for each candidate are calculated, they must be combined
into a single score that will serve as the final ranking between candidates. This is
done by the merge criterion. The simplest merge criterion is WeightedAverage.
This criterion will simply take the weighted average of all the scores and take this
as the final score for the candidate. It will take the nnew best-scoring samples, and
use their weighted average as the priority score for the sample evaluator.

WeightedAverage is a good choice if samples are selected one by one; in
other words, if nnew = 1. But if nnew > 1, a problem may occur that can seriously
jeopardize the quality of the design. This is illustrated in Figure 4.4. In this example,
the SUMO run starts with an initial design of 50 points, and 10 additional points are
requested from the sample selector. The sample selector uses a random candidate
generator, and ranks the points according to the intersite and projected distance,
as in the mc-intersite-proj method. However, because the highest ranking
points tend to be clustered together near the optima, the newly selected points
are not distributed properly over the design space, but clustered in 3 groups. This
results in very bad space-filling designs. This problem can easily be resolved by
selecting the points one by one; however, this would also mean more modelling
iterations and thus a slower run of the SUMO Toolbox. The sample selector will
also be slower, because a new set of candidates will be generated for each new
sample.

This problem is solved by the ClosenessThreshold merge criterion. This
criterion will make sure that no samples are selected too close to each other
at each iteration, by defining a threshold. The highest ranking point is always
selected, but then the criterion will go down the list until it encounters a sample
that does not violate the threshold, thereby guaranteeing a minimum distance
between the newly selected points and a good spread over the design space. While
the quality of the final design will never be on the same level as when the samples
are selected one by one, this method will avoid the clusters generated by the
weighted average criterion. This is illustrated in Figure 4.5, which shows the same
configuration as in Figure 4.4, but with the closeness threshold criterion instead
of the weighted average criterion. Note that samples are now spread nicely over
the design space.

The pipeline sample selector framework is used by several of the methods pro-
posed in this thesis, including mc-intersite-proj, mc-intersite-proj-th
and delaunay. Without the flexible pipeline framework, it would have been much

154 CHAPTER 4. SOFTWARE

Figure 4.4: The weighted average merge criterion combined with the random
candidate generator, while selecting 10 samples at once. The circles are the points
from the initial design, the crosses are the 10 newly selected samples.

more difficult to design, implement and compare these specialized methods.

The second framework available in SUMO is the optimize criterion. A flow
chart of this framework is shown in Figure 4.6. This method uses the same candi-
date rankers as the pipeline framework, but sees a candidate ranker as an objective
function and uses an optimizer to optimize this function. Optionally, a candidate
generator can be used to set the initial population of the optimizer. Several fallback
candidate rankers can be defined as well; if the optimizer fails to find (one or more)
new samples using the first ranker, the second ranker is used, and so on. Not every
optimizer uses this feature, as some optimizers always return new samples.

Many different optimizers are available, and some were written specifically
for a given sequential design method. General-purpose optimizers include a hill
climber, a pattern search optimizer, a genetic algorithm, a particle swarm opti-
mizer, and so on. But for complicated methods such as optimizer-intersite
and optimizer-projected, specialized optimizers were necessary that respect
the boundary constraints. However, implementing them was still considerably
easier thanks to the optimizer framework that was in place. Without the flexibility
of these frameworks, developing and comparing all these methods would have
been much more difficult.

4.2. SED TOOLBOX 155

Figure 4.5: The closeness threshold merge criterion combined with the random
candidate generator, while selecting 10 samples at once. The circles are the points
from the initial design, the crosses are the 10 newly selected samples.

4.2 SED Toolbox

The Sequential Experimental Design (SED) Toolbox is a subset of the SUMO Tool-
box that focuses on the sequential design features available in SUMO [16]. It
packages them into an easy-to-use, standalone package that does not depend on
external libraries or Java binaries. SED was designed to be integrated easily in the
work-flow of any user, allowing through both command-line and XML configu-
ration to quickly generate high quality designs on the fly. The key features of the
SED Toolbox are:

• Includes several highly efficient space-filling sequential experimental design
algorithms, which generate designs competitive with state-of-the-art one-
shot experimental design techniques such as Latin hypercubes.

• Optimized for speed: several algorithms are included, ranging from ex-
tremely fast, even in high-dimensional problems, to slightly slower (yet still
relatively fast).

• All methods support constraints of any kind (linear and nonlinear). These
constraints can be specified with a Matlab function.

156 CHAPTER 4. SOFTWARE

Figure 4.6: A flow chart of the OptimizeCriterion.

• Includes the powerful LOLA-Voronoi algorithm, which distributes design
points sequentially according to the nonlinearity of the problem, following
the assumption that nonlinear regions are more difficult to understand than
linear ones.

• Support for rectangular input spaces: not every input is necessarily equally
important, so weights can be given to each input and the algorithms will
take this into account when selecting design points.

• Easy to use and configure, with examples amptly available in the documen-
tation and in the distribution.

• Proper object-oriented design.

The SED Toolbox has two modi it can operate in. If the toolbox is configured
through XML files, a simplified layout similar to the one used by the SUMO Toolbox
is used. This modus allows for the most flexibility, and makes it easy to fine-tune
the options of each method. The command-line based method, however, is easier
to use, and can be learned in seconds by anyone familiar with Matlab. It uses
Matlab structs to define the input and output dimension of the problem and other
settings.

The SED Toolbox uses the same frameworks and code used by the sample
selector part of the SUMO Toolbox, but wraps them in a smaller, easier to use
package. Hence, it also uses the flexible implementation described in 4.1.3.2, and
has all the advantages of this framework.

For documentation on how to download, install, configure and use the SED
Toolbox, please refer to the website: http://sumo.intec.ugent.be.

4.2.1 Quick start guide

In this section, we briefly explain how to install, configure and use the SED Toolbox.
This section can act as a manual for new users of the toolbox.

http://sumo.intec.ugent.be

4.2. SED TOOLBOX 157

Before the toolbox can be used, you have to set it up for use, by browsing to the
directory in which the toolbox was unpacked and running the startup command:

startup;

Now the toolbox is ready to be used. The SED Toolbox can be used in several
ways, based on how much freedom you want in configuring and fine-tuning the
parameters of the algorithms. We will now describe three ways the toolbox can be
used, in order of complexity, based on your requirements. If you prefer to learn
by example, you can check out the examples directory in the distribution, which
contains several applications and example problems for the toolbox.

4.2.1.1 You want an ND design of X points

In order to quickly generate a good ND design in X points, you can use the following
code:

startup; % configure the toolbox
config.inputs.nInputs = N; % set the number of inputs in the ...

config struct
generator = SequentialDesign(config); % set up the sequential design
generator = generator.generateTotalPoints(X); % generate a total ...

of X points
points = generator.getAllPoints(); % return the entire design

% optional:
generator.plot(); % plot the design
generator.getMetrics(); % get some metrics about the quality of ...

the design

4.2.1.2 You want to use the more advanced features of the SED Toolbox

If you want to use some of the more advanced features of the SED Toolbox, such as
input ranges and weights and constraints, you have two options. The first one is
to use Matlab structs as in the previous example. The second one is to use simple
XML files to configure the toolbox. Note that constraints will only work with XML
configuration. You can open the problem.xml file in the SED directory to get an
idea of how a problem configuration looks like. You can edit this file to suit your
needs and use it to configure the toolbox using the following command:

% generate a sequential design for the problem defined in ...
problem.xml:

generator = SequentialDesign('problem.xml');

% generate a sequential design using the specified method for the ...
problem defined in problem.xml:

generator = SequentialDesign('problem.xml', ...
'methods/mc−intersite−projected−threshold.xml');

158 CHAPTER 4. SOFTWARE

If you instead prefer to use Matlab structs, you can use the following code to
configure the toolbox:

config.inputs.nInputs = 2; % this is a 2D example
config.inputs.minima = [−1 −1]; % define the minimum of each input
config.inputs.maxima = [3 1]; % define the maximum of each input
config.inputs.weights = [2 1]; % the first input is twice as ...

important as the second one
generator = SequentialDesign(config); % set up the sequential design

4.2.1.3 You want full control over all the method parameters

If you want full control over all the parameters of both the problem specification
and the sequential design method, XML files are the only option. By editing the
method XML files, you can tweak each method to your own preferences. Even
though the options are documented, it might be difficult to understand their
effect on the sampling process. Note that the default settings have been chosen
based on extensive studies and comparisons, and are in most cases the best
choice. If you have any questions or suggestions, please contact the authors at
Karel.Crombecq@ua.ac.be.

In addition to the methods provided by the XML files packaged with the SED
Toolbox, SED also contains a huge library of components (such as candidate gen-
erators, optimizers, metrics) from which the user can compose his own sequential
design methods. This feature is undocumented and unsupported, but users are
free to experiment with them.

4.2.2 Function reference

This section will contain a list of all the functionality available in the SED Toolbox.

seq = SequentialDesign(problemStruct)
Create a sequentual design object for the specified problem, as described in
problemStruct. Uses the default algorithm (mc-intersite-projected-threshold)
to generate the design.

seq = SequentialDesign(’problem.xml’)
Create a sequentual design object for the specified problem, as described
in the problem.xml XML file. Uses the default algorithm (mc-intersite-
projected-threshold) to generate the design.

seq = SequentialDesign(problemStruct, ’methods/method.xml’)
Create a sequentual design object for the specified problem, as described in
problemStruct. Uses the algorithm described in methods/method.xml to
generate the design.

seq = SequentialDesign(’problem.xml’, ’methods/method.xml’)
Create a sequentual design object for the specified problem, as described

Karel.Crombecq@ua.ac.be

4.2. SED TOOLBOX 159

in the problem.xml XML file. Uses the algorithm described in method-
s/method.xml to generate the design.

[seq, newPoints] = seq.generatePoints(10)
Use the sequential design algorithm to generate an additional 10 points on
top of the already generated points. Will return the new points as the second
return parameter.

[seq, newPoints] = seq.generateTotalPoints(10)
Use the sequential design algorithm to generate a total of 10 points. If, for
example, 6 points were previously generated, 4 additional points will be
selected to get the total up to 10. Will return the new points as the second
return parameter.

seq.getInitialDesign()
The initial design is a set of samples which is generated in advance, to get
the sequential design algorithm started. In the SED Toolbox, these are kept
as small as possible (most methods need at least 2 points to get going, so the
initial design will typically be 2 points). Note that the initial design might not
respect the constraints. You can manually remove the initial points from the
design, or you can request all the points excluding the initial design using
the getAllPointsWithoutInitialDesign() function.

seq.getAllPoints()
Get all points generated thus far, including the initial design.

seq.getAllPointsWithoutInitialDesign()
Get all points generated thus far, excluding the initial design.

seq.plot()
Generate a plot of the design generated thus far. Will only work for 1-3D.

seq.getMetrics()
Will calculate some metrics about the quality of the design. Two metrics are
calculated and plotted: the intersite distance (minimum distance between
points) and the projected distance (minimum distance between points after
being projected onto one of the axes). These can be used as a basis of
comparison between designs.

metrics = seq.getMetrics()
Will return the same metrics as described above in a struct. Will not plot or
print any data.

metrics = seq.getMetrics(points)
Calculate the same metrics as above, but then for the points provided as
an argument instead of the design generated by the object. This function
can be used to compare a design from another source against the design
generated by the SED Toolbox.

160 CHAPTER 4. SOFTWARE

seq = seq.updatePoints(newPoints, newValues)
When using LOLA-Voronoi, you need to provide the outputs produced
through simulation after every call of generatePoints. This is required be-
cause LOLA-Voronoi uses the outputs to determine the optimal distribution
of points. When using the other methods, you do not need to call update-
Points.

seq = seq.plotLive(true)
This will enable live plotting of sample generation for 2D designs. If this is
enabled, after each point that is generated, a plot will be built that shows
the current design. This nicely demonstrates how points are selected and
distributed over the design space.

seq.save(’file.txt’)
Store the entire design in a text file called file.txt. Can later be loaded again
by calling data = load(’file.txt’).

4.2.3 Rules of thumb

The default sequential design method for the SED Toolbox is the Monte Carlo
method mc-intersite-proj-th, found in mc-intersite-projected-threshold.xml.
This method is very fast and can be applied to highly dimensional problems and
for large designs. It also works well with constraints and input weights. However,
there are some cases in which one of the other methods might be a better choice.
This section contains some rules of thumb for picking the right method for the
right job.

4.2.3.1 Constraints

the default method mc-intersite-proj can run into problems when you are
using very strict constraints. Because the Monte Carlo points are filtered by the pro-
jected distance threshold, it might be possible that no candidates remain that sat-
isfy the constraints. In that case, mc-intersite-proj (available as mc-intersite-
projected.xml) can be a good alternative. It produces slightly worse designs but is
much more robust in terms of constraints. Additionally, mc-intersite-proj-th
and all other methods available in the SED Toolbox besides mc-intersite-proj
need the corner points [−1, ...,−1] and [1, ...,1] to start, and if they violate the
constraints they will still be selected because the other methods need them to
even start. You can later request the design without these corner points using the
getAllPointsWithoutInitialDesign() function, so this might not be an issue, but
keep it in mind.

4.2.3.2 Quality vs speed

The slowest method available in SED is optimizer-intersite, but this method
also generates the best designs (slightly better than mc-intersite-proj-th). If

4.2. SED TOOLBOX 161

you have the time, consider using this method instead. It also supports constraints,
but might also run into problems with very tight constraints.

If time is of no concern, you can also consider increasing some of the method
parameters to further improve the design. For mc-intersite-proj-th, the can-
didatesPerSample option can be increased to improve the quality at the cost of
speed. In lower dimensions, this will not return much better results as shown in
Section 2.5.4.3, but it might help in higher dimensions. Foroptimizer-intersite,
as shown in Section 2.5.5.2, the nhypercubes option has the biggest influence on the
quality of the design. This option is called nPop in the XML file, and for 4D designs
and higher, increasing it can improve the deisgn.

4.2.3.3 Dimensionality

The Monte Carlo methods scale very well with the number of dimensions and
points and should work for high-dimensional problems. However, the optimizer
methods suffer more from the curse of dimensionality. optimizer-intersite should
work up to 10D, but will run into memory problems for higher dimensions.

CHAPTER 5
Conclusions

This kingdom shall fall... And from the ashes shall arise a new order, that will shake
the very foundations of the world.
— Arthas

In this thesis, we proposed several new input- and output-based sequential
design strategies in the context of adaptive surrogate modelling of deterministic,
black box computer experiments.

In Chapter 2, several state-of-the-art methods were proposed based on Monte
Carlo and local optimization techniques, and these new methods were compared
against popular and proven techniques from different research domains. It was
shown that the new methods offer many advantages over the classical methods.
Existing one-shot experimental designs can, given enough time, generate designs
of equal or better quality than the new methods, but do not have the advantages
of being a sequential method, and are prone to problems such as over- and under-
sampling.

In Chapter 3, we proposed a new output-based method called LOLA-Voronoi,
which was designed to distribute samples according to the local nonlinearity of the
system that is to be modelled, following the assumption that nonlinear regions are
more difficult to approximate than linear regions. It was shown that LOLA-Voronoi
is an extremely efficient and stable sequential design method, producing good
results in a large number of different test cases. LOLA-Voronoi does not make
any assumptions about the model type being used, and is therefore ideal for a
heterogeneous modelling environment, where multiple models are considered.

All these methods are freely available in both the SUMO and SED Toolboxes.
SUMO integrates these sequential design methods in a fully featured adaptive
surrogate modelling environment, with many different model types, hyperparam-
eter optimization techniques, simulator configurations and so on. SED, on the
other hand, offers these methods in a tight, easy to install and use package that

163

164 CHAPTER 5. CONCLUSIONS

can be integrated in the modelling pipeline of the user. Both toolboxes are free for
academic use and open source. Installation instructions and documentation can
be found on http://sumo.intec.ugent.be.

The methods presented in this thesis are competitive and mature enough for
use by engineers. However, there are still some open issues that can be adressed,
in order to build upon the foundations laid by this work, or to improve the existing
methods. Firstly, LOLA-Voronoi now only works with the Voronoi-based space-
filling method, even though it is not the best space-filling method, as shown in
Chapter 2. Voronoi was designed to produce a ranking of previously evaluated
points. This works nicely with the LOLA component, which does the same. The
other space-filling methods produce a ranking of candidate points, and therefore
can’t be used directly with LOLA. It might be worth investigating how these meth-
ods can be adapted to work with each other, so that Voronoi can be replaced by a
more competitive space-filling method.

Secondly, it was briefly touched in Section 2.5 that methods that produce
an optimal design at one iteration might get stuck in a local optimum on the
subsequent iterations. It should be interesting to investigate where that behaviour
comes from, and how it affects the quality of the resulting design. Most methods
in this thesis avoid this issue by using some random element in the algorithm, to
avoid getting stuck in the same optimum every time. Looking for other ways to
avoid this pitfall could lead to other good space-filling methods.

Thirdly, most methods proposed in this thesis support (linear and nonlinear)
constraints and rectangular input spaces (where each dimension is not equally
important, but some are considered more important than others, and hence
should be sampled more densely). However, these features were not thoroughly
tested, and no problems are presented in this thesis that use these features. It
should be interesting to perform a study with such problems.

Ultimately, this thesis takes several important steps towards highly efficient
sequential design strategies that can be used in a variety of circumstances. By
designing these methods and analyzing them on a wide range of problems, many
new insights were obtained in how good sequential designs can be generated.
Hopefully, these methods will aid engineers in more efficiently analyzing, optimiz-
ing and understanding the problems they encounter every day in a world where
computer simulation is everywhere, from the design of small microchips in cell
phones to entire airplanes.

http://sumo.intec.ugent.be

APPENDIX A
Publications

A.1 Journal papers

• The SED Toolbox: a Sequential Experimental Design Toolbox for Regres-
sion
K. Crombecq and T. Dhaene
Journal of Machine Learning Research, submitted

• A Novel Hybrid Sequential Design Strategy for Global Surrogate Modelling
of Computer Experiments
K. Crombecq, D. Gorissen, D. Deschrijver and T. Dhaene
SIAM Journal of Scientific Computing, accepted, 2011

• Efficient space-filling and non-collapsing sequential design strategies for
simulation-based modeling
K. Crombecq, E. Laermans and T. Dhaene
European Journal of Operational Research, Vol. 214, No. 3, pp. 683-696, 2011

• Adaptive Sampling Algorithm for Macromodeling of Parameterized S-Parameter
Responses
D. Deschrijver, K. Crombecq, H. M. Nguyen and T. Dhaene
IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 1, pp.
39-45, 2011

• Surrogate based sensitivity analysis of process equipment
D. W. Stephens, D. Gorissen, K. Crombecq and T. Dhaene
Journal of Applied Mathematical Modelling, Vol. 35, No. 4., pp. 1676-1687,
2011

• A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based
Design

165

166 APPENDIX A. PUBLICATIONS

D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene and P. Demeester
Journal of Machine Learning Research, Vol. 11, pp. 2051-2055, 2010

• Elastic characterization of membranes with a complex shape using point
indentation measurements and inverse modelling
J. Aernouts, I. Couckuyt, K. Crombecq and J.J.J. Dirckx
International Journal of Engineering Science, 48, pp. 599-611, 2010

• Sequential Modeling of a Low Noise Amplifier with Neural Networks and
Active Learning
D. Gorissen, L. De Tommasi, K. Crombecq and T. Dhaene
Neural Computation & Applications, Vol. 18, Nr. 5, pp. 485-494, 2009

A.2 Conference papers

• Efficient parameter estimation for discrete tomography using adaptive
modeling
W. van Aarle, K. Crombecq, I. Couckuyt, K. J. Batenburg, J. Sijbers
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, pp. 229-232, 2011

• Generating Sequential Space-filling Designs Using Genetic Algorithms and
Monte Carlo Methods
K. Crombecq and T. Dhaene
Simulated Evolution And Learning (SEAL-2010), Kanpur, India, pp. 80-84,
2010

• Automated Response Surface Model Generation with Sequential Design
I. Couckuyt, K. Crombecq, D. Gorissen and T. Dhaene
Soft Computing Technology in Civil, Structural and Environmental Engi-
neering, 2009

• Pareto-based multi-output model type selection
D. Gorissen, I. Couckuyt, K. Crombecq and T. Dhaene
Proceedings of the 4th International Conference on Hybrid Artificial Intelli-
gence (HAIS 2009), Salamanca, Spain Springer - Lecture Notes in Artificial
Intelligence, Vol. LNCS 5572, pp. 442-449, 2009

• Space-filling Sequential Design Strategies for Adaptive Surrogate Mod-
elling
K. Crombecq, I. Couckuyt, D. Gorissen and T. Dhaene
Soft Computing Technology in Civil, Structural and Environmental Engi-
neering, 2009

• A Novel Hybrid Active Learning Strategy for Nonlinear Regression
K. Crombecq, I. Couckuyt, E. Laermans and T. Dhaene
The 18th Annual Belgian-Dutch Conference on Machine Learning (Bene-
learn 09), pp. 109-110, 2009

A.3. BOOK CHAPTERS 167

• A Novel Sequential Design Strategy for Global Surrogate Modeling
K. Crombecq, D. Gorissen, L. De Tommasi and T. Dhaene
Proceedings of the 41th Conference on Winter Simulation, Austin, Texas,
December 2009, pp. 731-742, 2009

• A comparison of sequential design methods for RF circuit block model-
ing
K. Crombecq, L. De Tommasi, D. Gorissen and T. Dhaene
Proceedings of the 40th Conference on Winter Simulation, pp. 2942-2942,
Miami, Florida, 2008

• Adaptive Distributed Metamodeling
D. Gorissen, K. Crombecq, W. Hendrickx and T. Dhaene
7th International Meeting on High Performance Computing for Computa-
tional Science (VECPAR 2006), Rio de Janeiro (Brazil), Springer - Lecture
Notes in Computer Science, Vol. LNCS 4395, pp.579-588, 2007

• Adaptive Global Surrogate Modeling
D. Gorissen, W. Hendrickx, K. Crombecq, W. van Aarle and T. Dhaene
SIAM Conference on Computational Science and Engineering (CSE07),
Costa Mesa (CA), pp. 160, February 2007. Poster Session

• Integrating Gridcomputing and Metamodeling
D. Gorissen, W. Hendrickx, K. Crombecq and T. Dhaene
6th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2006), Singapore (Singapore), pp. 185-192, 2006

A.3 Book chapters

• Automatic Approximation of Expensive Functions with Active Learning
D. Gorissen, K. Crombecq, I. Couckuyt and T. Dhaene
Foundations of Computational Intelligence Volume 1: Learning and Ap-
proximation: Theoretical Foundations and Applications, Part I: Function
ApproximationŤ, Edited by A-E. Hassanien, A. Abraham, A.V. Vasilakos, and
W. Pedrycz, ISBN: 978-3-642-01081-1, pp 35-62, 2009

Bibliography

[1] Qhull. http://www.qhull.org.

[2] D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer
International Series In Engineering And Computer Science, 28, 1987.

[3] P. Audze and V. Eglajs. New approach for planning out of experiments. Prob-
lems of Dynamics and Strengths, 35:104–107, 1977.

[4] F. Aurenhammer. Voronoi diagrams–a survey of a fundamental geometric
data structure. ACM Computing Surveys, 23(3):345–405, 1991.

[5] L. Balewski and M. Mrozowski. Creating neural models using an adaptive
algorithm for optimal size of neural network and training set. 15th Interna-
tional Conference on Microwaves, Radar and Wireless Communications, 2:
543–546, 2004.

[6] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull
algorithm for convex hulls. ACM Transactions on Mathemathical Software,
22(4):469–483, 1996.

[7] R. R. Barton. Simulation metamodels. In D. J. Medeiros and Edward F. Watson,
editors, Proceedings of the 30th Winter Simulation Conference, pages 167–174,
1998.

[8] I. Batmaz and S. Tunali. Small response surface designs for metamodel
estimation. European Journal of Operational Research, 145(2):455–470, 2003.

[9] W. C. M. Van Beers. Kriging metamodeling in discrete-event simulation: an
overview. In N. Steiger and M. E. Kuhl, editors, Proceedings of the 37th Winter
Simulation Conference, pages 202–208, 2005.

[10] G. E. P. Box, J. S. Hunter, and W. G. Hunter. Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley-Interscience, 2005.

[11] D. Busby, C. L. Farmer, and A. Iske. Hierarchical nonlinear approximation for
experimental design and statistical data fitting. SIAM Journal on Scientific
Computing, 29(1):49–69, 2007.

169

170 BIBLIOGRAPHY

[12] H. Cohn and A. Kumar. Universally optimal distribution of points on spheres.
Journal of the American Mathematical Society, 20(1):99–148, 2007.

[13] I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene. Automated response
surface model generation with sequential design. In First International Con-
ference on Soft Computing Technology in Civil, Structural and Environmental
Engineering (CSC), Funchal, Portugal, 2009.

[14] I. Couckuyt, D. Gorissen, H. Rouhani, E. Laermans, and T. Dhaene. Evolu-
tionary regression modeling with active learning: An application to rainfall
runoff modeling. In Proceedings of the International Conference on Adaptive
and Natural Computing Algorithms, pages 548–558, 2009.

[15] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry.
Springer, 1994.

[16] K. Crombecq and T. Dhaene. The sed toolbox: a sequential experimental
design toolbox for regression. Journal of Machine Learning Research, 2011,
submitted.

[17] K. Crombecq, I. Couckuyt, D. Gorissen, and T. Dhaene. Space-filling se-
quential design strategies for adaptive surrogate modelling. In The First
International Conference on Soft Computing Technology in Civil, Structural
and Environmental Engineering, 20 pages, 2009.

[18] K. Crombecq, D. Gorissen, L. De Tommasi, and T. Dhaene. A novel sequential
design strategy for global surrogate modeling. In Proceedings of the 41st
Winter Simulation Conference, pages 731–742, 2009.

[19] K. Crombecq, D. Gorissen, D. Deschrijver, and T. Dhaene. A novel hybrid
sequential design strategy for global surrogate modelling of computer experi-
ments. SIAM Journal of Scientific Computing, 33(4), 2011.

[20] K. Crombecq, E. Laermans, and T. Dhaene. Efficient space-filling and non-
collapsing sequential design strategies for simulation-based modeling. Euro-
pean Journal of Operational Research, 214(3):683–696, 2011.

[21] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2008.

[22] D. Deschrijver, T. Dhaene, and J. Broeckhove. Adaptive model based parame-
ter estimation, based on sparse data and frequency derivatives. International
Conference on Computational Science (LNCS 3037), pages 443–450, 2004.

[23] T. Dhaene, J. Ureel, N. Faché, and D. De Zutter. Adaptive frequency sam-
pling algorithm for fast and accurate s-parameter modeling of general planar
structures. In IEEE International Microwave Symposium, volume 3, pages
1427–1430, 1995.

BIBLIOGRAPHY 171

[24] H. Eres, G. Pound, Z. Jiao, J. Wason, F. Xu, A. Keane, and Simon Cox. Imple-
mentation of a grid-enabled problem solving environment in matlab. Inter-
national Conference on Computational Science (LNCS 2660), pages 420–429,
2003.

[25] K. T. Fang. Experimental design by uniform distribution. Acta Mathematice
Applicatae Sinica, 3:363–372, 1980.

[26] K. T. Fang and D. K. J. Lin. Uniform experimental designs and their applica-
tions in industry. Handbook of Statistics, 22:131–170, 2003.

[27] K. T. Fang, C. X. Ma, and P. Winker. Centered l2-discrepancy of random
sampling and latin hypercube design, and construction of uniform designs.
Mathematics of Computation, 71:275–296, 2002.

[28] A. Farhang-Mehr and S. Azarm. Bayesian meta-modelling of engineering
design simulations: a sequential approach with adaptation to irregularities
in the response behaviour. International Journal for Numerical Methods in
Engineering, 62(15):2104–2126, 2005.

[29] A. Forrester, A. Sobester, and A. Keane. Engineering Design Via Surrogate
Modelling: A Practical Guide. Wiley, 2008.

[30] D. A. Freedman. Statistical Models: Theory and Practice. Cambridge Univer-
sity Press, 2005.

[31] M. Fu. Stochastic gradient estimation, pre-print version of chapter 19. In
S. G. Henderson and B. L. Nelson, editors, Handbook on Operations Research
and Management Science: Simulation. Elsevier, 2005.

[32] M. C. Fu and S. D. Hill. Optimization of discrete event systems via simul-
taneous perturbation stochastic approximation. IEEE Transactions, 29(3):
233–243, 1997.

[33] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Y. Loh. Boat - optimistic decision
tree construction. SIGMOD Record, 28(2):169–180, 1999.

[34] T. Goel, R. Haftka, W. Shyy, and N. Queipo. Ensemble of surrogates. Structural
and Multidisciplinary Optimization, 33:199–216, 2007.

[35] D. Gorissen. Grid-enabled Adaptive Surrogate Modeling for Computer Aided
Engineering. PhD thesis, Ghent University, 2010.

[36] D. Gorissen, K. Crombecq, W. Hendrickx, and T. Dhaene. Adaptive distributed
metamodeling. High Performance Computing for Computational Science -
VECPAR 2006, 4395:579–588, 2007.

[37] D. Gorissen, K. Crombecq, I. Couckuyt, and T. Dhaene. Automatic approxi-
mation of expensive functions with active learning. In Foundation on Com-
putational Intelligence, Learning and Approximation. Springer Verlag, 2008.

172 BIBLIOGRAPHY

[38] D. Gorissen, L. De Tommasi, J. Croon, and T. Dhaene. Automatic model type
selection with heterogeneous evolution: An application to rf circuit block
modeling. In IEEE World Congress on Computational Intelligence (WCCI
2008), pages 989–996, 2008.

[39] D. Gorissen, L. De Tommasi, W. Hendrickx, J. Croon, and T. Dhaene. Rf circuit
block modeling via kriging surrogates. 17th International Conference on
Microwaves, Radar and Wireless Communications, 2008.

[40] D. Gorissen, L. De Tommasi, K. Crombecq, and T. Dhaene. Sequential model-
ing of a low noise amplifier with neural networks and active learning. Neural
Computation & Applications, 18(5):485–494, 2009.

[41] D. Gorissen, F. De Turck, and T. Dhaene. Evolutionary model type selection
for global surrogate modeling. Journal of Machine Learning Research, 10(1):
2039–2078, 2009.

[42] D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene. Multiobjective sur-
rogate modeling, dealing with the 5-percent problem. Engineering with
Computers, 26(1):81–98, 2010.

[43] D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene, and P. Demeester. A sur-
rogate modeling and adaptive sampling toolbox for computer based design.
Journal of Machine Learning Research, 11:2051–2055, 2010.

[44] R. Gramacy and H. K. H. Lee. Adaptive design of supercomputer experiments.
Technical report, Dept of Applied Math & Statistics, University of California,
2006.

[45] A. Grosso, A. Jamali, and M. Locatelli. Finding maximin latin hypercube
designs by iterated local search heuristics. European Journal of Operational
Research, 197(2):541–547, 2009.

[46] T. Hachisuka, W. Jarosz, R. Weistroffer, K. Dale, G. Humphreys, M. Zwicker,
and H. Wann Jensen. Multidimensional adaptive sampling and reconstruc-
tion for ray tracing. ACM Transactions on Graphics, 27(3):1–10, 2008.

[47] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2001.

[48] W. Hendrickx and T. Dhaene. Sequential design and rational metamodelling.
In N. Steiger and M. E. Kuhl, editors, Proceedings of the 37th Winter Simula-
tion Conference, pages 290–298, 2005.

[49] F. J. Hickernell. A generalized discrepancy and quadrature error bound.
Mathematics of Computation, 67:299–322, 1998.

[50] B. Husslage. Maximin Designs for Computer Experiments. PhD thesis, Tilburg
University, Center of Economic Research, 2006.

BIBLIOGRAPHY 173

[51] Agilent Technologies Inc. ADS Momentum Software. 2009.

[52] A. A. Jamshidi and M. J. Kirby. Towards a black box algorithm for nonlinear
function approximation over high-dimensional domains. SIAM Journal on
Scientific Computing, 29(3):941–963, 2007.

[53] R. Jin, W. Chen, and A. Sudjianto. On sequential sampling for global meta-
modeling in engineering design. In Proceedings of DETCŠ02 ASME 2002
Design Engineering Technical Conferences And Computers and Information
in Engineering Conference, pages 539–548, 2002.

[54] R. Jin, W. Chen, and A. Sudjianto. An effcient algorithm for constructing
optimal design of computer experiments. Journal of Statistical Planning and
Inference, 134(1):268–287, 2005.

[55] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance
designs. Journal of Statistical Planning and Inference, 26:131–148, 1990.

[56] V. Roshan Joseph and Y. Hung. Orthogonal-maximin latin hypercube designs.
Statistica Sinica, 18:171–186, 2008.

[57] A. J. Keane and A. P. Bright. Passive vibration control via unusual geometries:
experiments on model aerospace structures. Journal of Sound and Vibration,
190(4):713–719, 1996.

[58] J. P. C. Kleijnen and W. C. M. van Beer. Application-driven sequential de-
signs for simulation experiments: Kriging metamodelling. Journal of the
Operational Research Society, 55(8):876–883, 2004.

[59] J. Knowles and H. Nakayama. Meta-modeling in multiobjective optimization.
In Multiobjective Optimization: Interactive and Evolutionary Approaches,
pages 245–284. Springer-Verlag, 2008.

[60] S. B. Kotsiantis. Supervised machine learning: A review of classification
techniques. Informatica, 31:249–268, 2007.

[61] A. Lamecki, P. Kozakowski, and M. Mrozowski. Cad-model construction based
on adaptive radial basis functions interpolation technique. 15th International
Conference on Microwaves, Radar and Wireless Communications, 2:799–802,
2004.

[62] T. H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits 2nd ed.
Cambridge University Press, 2004.

[63] R. Lehmensiek and P. Meyer. Creating accurate multivariate rational inter-
polation models of microwave circuits by using efficient adaptive sampling
to minimize the number of computational electromagnetic analyses. IEEE
Transactions Microwave Theory and Technology, 49(8):1419–1430, 2001.

174 BIBLIOGRAPHY

[64] R. Lehmensiek, P. Meyer, and M. Müller. Adaptive sampling applied to mul-
tivariate, multiple output rational interpolation models with application to
microwave circuits. International Journal of RF and Microwave Computer-
Aided Engineering, 12(4):332–340, 2002.

[65] X. Rong Li and Zhanlue Zhao. Evaluation of estimation algorithms part i:
incomprehensive measures of performance. IEEE Transactions on Aerospace
and Electronic Systems, 42(4):1340–1358, 2006.

[66] D. Lim, Y-S. Ong, Y. Jin, and B. Sendhoff. A study on metamodeling tech-
niques, ensembles, and multi-surrogates in evolutionary computation. In
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-
putation, pages 1288–1295, 2007.

[67] Y. Lin. An Efficient Robust Concept Exploration Method and Sequential Ex-
ploratory Experimental Design. PhD thesis, Georgia Institute of Technology,
2004.

[68] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard. Dace: A matlab kriging
toolbox. Technical report, Technical University of Denmark, 2002.

[69] D. J. C. MacKay. Bayesian model comparison and backprop nets. In Ad-
vances in Neural Information Processing Systems 4, pages 839–846. Morgan
Kaufmann, 1992.

[70] J. D. Martin and T. W. Simpson. Use of kriging models to approximate deter-
ministic computer models. AIAA Journal, 43(4):853–863, 2005.

[71] D. C. Montgomery. Design and Analysis of Experiments. 2001.

[72] M. D. Morris and T. J. Mitchell. Exploratory designs for computer experiments.
Journal of Statistical Planning and Inference, 43:381–402, 1995.

[73] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Meth-
ods. Society for Industrial and Applied Mathematics, 1992.

[74] M. Norgaard, O. Ravn, L. Hansen, and N. Poulsen. The nnsysid toolbox - a
matlab toolbox for system identification with neural networks. Computer-
Aided Control System Design, pages 374–379, 1996.

[75] I. G. Osio and C. H. Amon. An engineering design methodology with mul-
tistage bayesian surrogates and optimal sampling. Research in Engineering
Design, 8(4):189–206, 1996.

[76] A. B. Owen. Orthogonal arrays for computer experiments, integration and
visualization. Statistica Sinica, 2:439–452, 1992.

[77] C.G. Panayiotou, C.G. Cassandras, and Wei-Bo Gong. Model abstraction for
discrete event systems using neural networks and sensitivity information.
pages 335–341, 2000.

BIBLIOGRAPHY 175

[78] F. J. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. Knowl-
edge Discovery and Data Mining, pages 23–32, 1999.

[79] Peter Z. G. Qian. Nested latin hypercube designs. Biometrika, 96(4):957–970.

[80] C. E. Rasmussen. Gaussian Processes for Machine Learning. MIT Press, 2006.

[81] R. G. Regis. Stochastic radial basis function algorithms for large-scale opti-
mization involving expensive black-box objective and constraint functions.
Computers & Operations Research, 38(5):837–853, 2011.

[82] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–435, 1989.

[83] E. B. Saff and A. B. J. Kuijlaars. Distributing many points on a sphere. Mathe-
matical Intelligencer, 19(1):5–11, 1997.

[84] E. Sanchez, S. Pintos, and N.V. Queipo. Toward an optimal ensemble of
kernel-based approximations with engineering applications. In Proceedings
of the International Joint Conference on Neural Networks, pages 2152–2158,
2006.

[85] M. J. Sasena. Flexibility and Efficiency Enhancements for Constrained Global
Design Optimization with Kriging Approximations. PhD thesis, University of
Michigan, 2002.

[86] J. Shekel. Test functions for multimodal search techniques. In Fifth Annual
Princeton Conference on Information Science and Systems, pages 354–359,
1971.

[87] T. W. Simpson, D. K. J. Lin, and W. Chen. Sampling strategies for computer
experiments: Design and analysis. International Journal of Reliability and
Applications, 2(3):209–240, 2001.

[88] T. W. Simpson, J. Peplinski, P. N. Koch, and J. K. Allen. Metamodels for
computer-based engineering design: Survey and recommendations. En-
gineering with Computers, 17(2):129–150, 2001.

[89] M. Sugiyama. Active learning in approximately linear regression based on
conditional expectation of generalization error. Journal of Machine Learning
Research, 7:141–166, 2006.

[90] B. Tang. Orthogonal array-based latin hypercubes. Journal of the American
Statistical Association, 88(424):1392–1397, 1993.

[91] C. J. Turner, R. H. Crawford, and M. I. Campbell. Multidimensional sequen-
tial sampling for nurbs-based metamodel development. Engineering with
Computers, 23(3):155–174, 2007.

176 BIBLIOGRAPHY

[92] E. R. van Dam, B. Husslage, D. den Hertog, and H. Melissen. Maximin latin
hypercube design in two dimensions. Operations Research, 55(1):158–169,
2007.

[93] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1999.

[94] F. A. C. Viana, G. Venter, and V. Balabanov. An algorithm for fast optimal
latin hypercube design of experiments. International Journal for Numerical
Methods in Engineering, 82(2):135–156, 2009.

[95] J. R. Wieland and B. W. Schmeiser. Stochastic gradient estimation using a
single design point. In Proceedings of the 38th Winter Simulation Conference,
pages 390–397, 2006.

[96] F. Xiong, Y. Xiong, W. Chen, and S. Yang. Optimizing latin hypercube design
for sequential sampling of computer experiments. Engineering Optimization,
41(8):793–810, 2009.

[97] K. Q. Ye, W. Li, and A. Sidjianto. Algorithmic construction of optimal symmet-
ric latin hypercube designs. Journal of Statistical Planning and Inference, 90
(1):145–159, 2000.

[98] J. Yin, S. H. Ng, and K. M. Ng. A study on the effects of parameter estimation
on kriging model’s prediction error in stochastic simulations. In Proceedings
of the 41st Winter Simulation Conference, pages 674–685, 2009.

[99] H. Zhao and D. Knight. Data driven design optimization methodology devel-
opment and application. International Conference on Computational Science
(LNCS 3038), pages 748–755, 2004.

	Contents
	Introduction
	Computer simulation
	Time cost
	Output type
	Input type
	Dimensionality
	Noise
	Black or white box

	Surrogate modelling
	Sequential design
	Sequential design methods
	Exploration and exploitation
	Optimal and generic sequential design
	Generic sequential design overview

	Research goals

	Input-based sequential design
	Motivation
	Important criteria for experimental designs
	Granularity
	Space-filling
	Good projective properties
	Orthogonality

	Optimization surface analysis
	Experimental setup
	Results

	Existing methods
	Factorial designs
	Latin hypercube
	Low-discrepancy sequences
	Random sampling

	New space-filling sequential design methods
	Voronoi-based sequential design
	Implementation
	Sampling strategy
	Performance analysis

	Delaunay-based sequential design
	Sequential nested Latin hypercubes
	Global Monte Carlo methods
	Intersite-projected distance criterion
	Search space reduction
	Performance analysis

	Optimization-based methods
	Optimize projected distance locally
	Optimize intersite distance locally

	Experiments
	Criterion-based comparison
	Model-based comparison
	Ackley's Path
	Results
	Electrical low-noise amplifier (LNA)
	Results
	Truss structure
	Results

	Conclusions

	Output-based sequential design
	Introduction
	Exploration using a Voronoi approximation
	Exploitation using local linear approximations
	Estimating the gradient
	Constructing the neighbourhoods
	The ideal neighbourhood
	The cross-polytope ratio
	The neighbourhood score

	Gradient estimation
	Nonlinearity measure

	Hybrid sequential design using Voronoi and LOLA
	Algorithm optimization
	Pre-processing of neighbourhood score function
	Adding a ``too far'' heuristic

	Multiple outputs and frequency-domain parameters
	Frequency-domain parametrs
	Example

	Experiments
	Other sampling methods
	SUMO research platform
	In-depth analysis of LOLA-Voronoi with fixed sample size
	Problem description
	Model types
	SUMO configuration
	Results

	Broad analysis of LOLA-Voronoi with fixed accuracy
	Case 1: Peaks function
	Case 2: low-noise amplifier
	Case 3: shekel function

	Results

	Conclusions

	Software
	SUMO Toolbox
	Initial design
	Model type
	Rational models
	Kriging models
	Artificial neural networks
	Heterogeneous model builders

	Sequential design method
	General guidelines
	Implementation

	SED Toolbox
	Quick start guide
	You want an ND design of X points
	You want to use the more advanced features of the SED Toolbox
	You want full control over all the method parameters

	Function reference
	Rules of thumb
	Constraints
	Quality vs speed
	Dimensionality

	Conclusions
	Publications
	Journal papers
	Conference papers
	Book chapters

	Bibliography

