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Summary

The growing demand for security has given raise to the increased use of video
surveillance systems in recent years. Surveillance cameras are rapidly appear-
ing in all sorts of places. This has highlighted various problems such as the
fact that it is practically impossible for surveillance operators to keep a con-
stant watch on the video from multiple cameras. Identifying and distilling the
limited relevant information is the greatest challenge currently facing the op-
erators of monitoring systems. To quote New Scientist magazine: “There are
too many cameras and too few pairs of eyes to keep track of them. There is
need for intelligent video content analysis to support the operators by asking
for attention only when unwanted behavior occurs (alarm)”.

In the last decade, intelligent video surveillance has occupied an impor-
tant position in the field of computer vision research. A considerable amount
of research has been conducted concerning the detection and recognition of
moving objects (people, vehicles, etc.). Furthermore, attention is also given to
algorithms for tracking these objects through a sequence of images or across
multiple overlapping and non-overlapping cameras. Given the considerable
research efforts, it is no surprise that a variety of commercial applications for
automated video analysis are coming to the market, such as perimeter security
systems, traffic applications and systems for tracking and counting people and
analyzing their behavior.

Intelligent video processing techniques for the detection and analysis of
fire are scarce. However, fire is one of the leading hazards affecting everyday
life around the world. To avoid large scale fire and smoke damage, timely and
accurate fire detection is essential. The sooner the fire is detected, the better
the chances are for survival. However, not only early detection is crucial, but
also it is important to have a clear understanding of the fire development and
the location. Where did the fire start? What is the size of the fire? What is
the direction of smoke propagation? How is the fire growing? The answer
to each of these questions plays an important part in safety analysis and fire
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fighting/mitigation, and is essential in assessing the risk of escalation. Never-
theless, the majority of the detectors that are currently in use just ring the bell
and are not able to model fire evolution, i.e. information about the fire circum-
stances is rarely available and difficult to measure. The research in this disser-
tation focuses on both problems and presents several video analysis techniques
that have proven to be useful in fast and accurate detection and localization of
flames and smoke. The proposed techniques are viable alternatives or com-
plements to the existing fire detection techniques and have proven useful to
solve several problems related to the traditional sensors. Those conventional
sensors, for example, are generally limited to indoors and are not applicable in
large open spaces such as shopping centers, airports and car parks; require a
close proximity to the fire; and most of them cannot provide additional infor-
mation about fire circumstances (location, dimension, etc.). Further limitations
of today’s fire alarm systems include the fact that it may take a long time for
particles to reach the detector, i.e., the transport delay. It is our belief that video
analysis can be applied in conditions in which conventional methods fail. The
major reason of the (future) success of video fire detection (VFD) is its poten-
tial to detect the fire from a distance in large open spaces. VFD also does not
have the transport and threshold delay that the traditional (point) sensors suffer
from. As soon as smoke or flames occur in one of the camera views, fire can
be detected. Finally, VFD cameras can also be used to extract useful non-fire
information, such as the presence of people caught in the fire.

VFD mainly focuses on the detection and analysis of smoke and flames in
consecutive video images. The research in this domain was started in the late
nineties. In the beginning mainly flame detection was investigated. Recently,
there is a tendency towards smoke detection. The reason for this can be found
in the fact that smoke spreads faster and in most cases will occur much faster
in the field of view of the cameras. This, of course, depends on the type of the
fire. The majority of the state-of-the-art detection techniques focuses on the
color and shape characteristics of the smoke and the flames and their temporal
behavior. However, due to the variability of shape, motion, transparency, col-
ors, and patterns of smoke and flames, many of the existing VFD approaches
are still vulnerable to false alarms. The research presented in this dissertation
tries to optimize this. In order to correctly localize and analyze the fire, accu-
rate detection is needed. Everything hinges on a good detection algorithm or
method.

Detection is the first step in almost any intelligent video surveillance sys-
tem and is often the most difficult one. Due to noise, shadows, illumination
changes and other visual artifacts in recorded video sequences, developing
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a reliable detection system is a huge challenge. Contrary to many other re-
search approaches, the proposed optimizations for the detection of flames and
smoke are more in the breadth than in the depth direction. Instead of dealing
with ever more complex visual fire detection algorithms, the focus of our re-
search is on investigating and combining multi-modal information from differ-
ent types of video sensors. It is our strong belief that combining multi-modal
video information leads to higher detection accuracy. Each sensor type has its
own specific limitations, which can be compensated by other types of sensors.
Originally, due to cost reasons, it was one of our objectives to develop a fire
detection system which could operate on the existing CCTV equipment. How-
ever, the cost of using multiple video sensors does not outweigh the benefit of
multi-modal fire analysis. The fact that manufacturers also ensure a decrease
in the sensor cost in the next years, fully opens the door to multi-modal video
analysis.

The combined detection in infrared and visual spectral range is not new.
The fusion of visible and infrared images has already started to be explored
as a way to improve the detection performance in many application domains.
Also, in the domain of fire detection some steps are already taken in this direc-
tion. When light conditions are bad, e.g., for detection at night, when smoke
occurs in the field of view of the camera or when the target’s color is similar to
the background, IR vision is a fundamental aid. Even other visual-specific fire
detection problems, such as fire-like colored objects, do not cause problems in
IR. Related to this, it is important to mention that all of the currently existing
visual-IR fire detectors focus on flame detection. The reason for this can prob-
ably be found in the fact that smoke becomes more and more transparent the
further in infrared spectrum. However, one of the multi-modal smoke detectors
proposed in this dissertation exactly uses this transparency feature of smoke in
long-wave infrared (LWIR) in order to detect it. Also, as the visual percepti-
bility decreases and the thermal perceptibility increases the further we go in
the infrared spectrum, hot objects (like flames) will be best visible and less
disturbed by other objects in the LWIR spectral range. As such, we have also
chosen the visual and LWIR spectral range for our infrared based multi-modal
flame detector.

Although the multi-modal detection of flames and smoke in visual and in-
frared video already shows good results, we have also investigated the added
value of time-of-flight (TOF) based VFD and its combination with visual fire
detection. TOF cameras are a relatively new innovation capable of providing
three-dimensional image data from a single sensor. TOF imaging takes advan-
tage of the different kinds of information produced by the TOF cameras, i.e.,
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depth and amplitude information. The ability to describe scenes using a depth
map and an amplitude image provides new opportunities in different applica-
tions, including visual monitoring (object detection, tracking, recognition and
image understanding), human computer interaction (e.g. gaming) and video
surveillance. The possibilities of TOF based fire detection have not yet been
investigated. As such, the TOF based flame detection methods presented in this
dissertation, are the first attempts in this direction. Preliminary experiments al-
ready show that the combination of amplitude, depth and visual information is
a win-win. However, problems arise in outdoor situations, outside the range of
the TOF camera and if smoke appears in the field of view of the TOF camera.
Under these circumstances the TOF depth map becomes unreliable and cannot
be used for accurate flame detection anymore. A solution to this TOF related
problem is also proposed in this dissertation.

Though the majority of vision based fire detection systems consists of sev-
eral cameras monitoring the same scene, the analysis is usually carried out
separately on each of the camera’s video sequences. In order to actually under-
stand and interpret the fire, however, this single-view processing is not enough.
By combining the detection results of each of the single-view cameras and
analyzing them together, more accurate detection and localization of smoke
and flames can be achieved and valuable fire characteristics are detected at
the early stage of the fire. In order to accomplish this valuable fire analysis
step, this dissertation also proposes a novel multi-view localization framework
which fuses low-cost video fire detection results of multiple cameras. The
framework merges the single-view detection results of the multiple cameras
by homographic projection onto multiple horizontal and vertical planes, which
slice the scene. The crossings of these slices create a 3D grid of virtual sensor
points, called the FireCube. Using this grid, information about the location of
the fire, its size and its direction of propagation can be instantly extracted from
the video data. Subsequently, this information can be used for video based
fire forecasting, i.e., the FWO project (from the Research Foundation Flan-
ders) in which this research was carried out. The Department of Flow, Heat
and Combustion Mechanics (FloHeaCom) at the Faculty of Engineering and
Architecture of Ghent University, which also cooperates in this project, uses
similar representations to model the fire circumstances.

Being able to model and forecast the fire can help emergency services to
work more efficiently and save lives. However, the calculations with current
modeling techniques still take too long and valuable time is often lost. Using
the multi-view fire analysis framework, which is able to give real-time infor-
mation about the state of the environment, these zone model-based predictions
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of the future state can (probably) be improved and accelerated. By combining
the information about the fire from models and real-time data, an estimate of
the fire can be produced that is better than could be obtained from using the
model or the data alone. This is the final goal of the video based fire fore-
casting FWO project, of which this work finalizes the first part. The second
part, i.e., linking the modeling and the real-time detection, is performed by
our colleagues of the Department of Flow, Heat and Combustion Mechanics,
under supervision of Prof. Bart Merci. Important to note is that not only flame
and smoke information is needed to efficiently forecast and fight the fire, but
also other information about the monitored scene can be of high importance.
For example, a broken window or a door which is opened can influence the
fire growth. Most of this data can also be delivered by an intelligent video
surveillance system. However, this is out of the scope of this dissertation.

This dissertation covers different aspects of an intelligent video based fire
detection system. Our first contribution treats the multi-modal processing of
visual, infrared and time-of-flight video images, which improves the visual de-
tection of flames and smoke. In order to keep the processing cost low, i.e.,
to ensure real-time detection, a set of ’low-cost’ fire features, which uniquely
describe smoke and flames, is selected for each sensor individually. For the
visual flame and smoke detection, we started by exploring the state-of-the-
art video fire detection building blocks, and selected those who (with small
modifications) could be used by our low-cost VFD algorithm. Experiments re-
vealed that the majority of these building blocks were also applicable to other
types of video images. As such, the step to TOF and infrared VFD is not that
big. Experimentally it was also found that by combining the different types
of video data, the number of missed detections and false alarms can be re-
duced drastically, which results in a significant improvement of video based
fire detection. In order to combine the multi-modal detection results, the cor-
responding objects in the scene need to be aligned, i.e., registered. The goal of
registration is to establish geometric correspondence between the multi-sensor
images so that they may be transformed, compared, and analyzed in a com-
mon reference frame. Because corresponding objects in visual and thermal
image may have different sizes, shapes, features, positions and intensities, the
fundamental question to address during registration is: what is a good im-
age representation to work with, i.e., what representation will bring out the
common information between the two multi-sensor images, while suppress-
ing the non-common information? Our second contribution treats this multi-
modal registration question and proposes a novel silhouette based registration
method, which (semi-)automatically aligns visual, TOF and infrared images.
Our third and last contribution treats methods for video-based fire analysis
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which, at a later stage, can also be used for fire forecasting. The main part
of this contribution consists of our novel multi-view fire analysis framework
which fuses low-cost video fire detection results of multiple cameras into the
FireCube. Using the FireCube, the location of the fire, its size, its propagation
and its direction can accurately be estimated. The proposed multi-modal detec-
tion and multi-view localization techniques have been tested thoroughly on fire
and non-fire video sequences and have proven to work. For example, under the
car park fire safety project (http://www.carparkfiresafety.be/), successful tests
were conducted for early detection of car fires in a car park.

To conclude, we hope to have convinced the reader that our research has
contributed in the development of an intelligent fire detection system. It is also
important to stress that the proposed contributions are not limited to fire de-
tection, but can easily be adapted to other application domains, such as multi-
modal object recognition. As such, the results in this thesis are not only of
scientific importance for fire detection, but also for video surveillance in gen-
eral. Based on this and on the fact that the video surveillance market is growing
rapidly, it is our belief that the results presented in this dissertation will increase
in value in the coming years. Finally, we would like to remark that there still
exist a lot of unrealistic expectations concerning the possibilities of intelligent
video surveillance. Many people expect that automatic video surveillance will
be able to detect and analyze everything without false alarms or missed detec-
tions and with only one simple configuration. To be honest, we believe this
will never be possible. As such, the techniques proposed in this dissertation
must not be seen as ‘the’ ultimate fire detection tools. They must be seen as a
complement to the existing techniques. Furthermore, there still exists a wide
gap between fire engineering and IT, for example in the field of interfacing and
communicating the data. As such, this dissertation must be seen as a first step
to bridge the gap between both worlds, which hopefully will be continued in
the future.



Samenvatting

De groeiende vraag naar meer veiligheid heeft de laatste jaren aanleiding ge-
geven tot een exponentieel toenemend gebruik van videobewakingssystemen
in ons dagelijks leven. Bewakingscamera’s duiken steeds meer en meer op in
het straatbeeld en op publieke plaatsen. De hiermee gepaard gaande groei in
het aantal camerabeelden heeft ervoor gezorgd dat het onmogelijk is geworden
voor menselijke operatoren om de vloedgolf aan camerabeelden te verwerken.
Het identificeren en distilleren van de beperkte relevante informatie is de groot-
ste uitdaging waarmee de operatoren vandaag de dag worden geconfronteerd.
Daarom is er nood aan intelligente beeldanalysetechnieken (∼ video content
analyse) als ondersteuning van de observant door deze alleen zijn aandacht te
vragen bij afwijkend gedrag (alarm).

In het laatste decennia heeft intelligente videobewaking een belangrijke
positie ingenomen binnen het onderzoeksgebied van de computervisie. Al heel
wat onderzoek is verricht betreffende de detectie en herkenning van bewegende
objecten (mensen, voertuigen, enz.). Daarnaast is er ook al uitgebreid aandacht
besteed aan algoritmes voor het volgen van deze objecten over verschillende
beelden of tussen verschillende al dan niet overlappende camera’s. Gezien de
enorme aandacht in de onderzoekswereld, hoeft het niet te verwonderen dat
er ook een verscheidenheid aan commerciële toepassingen voor automatische
videoanalyse op de markt komt/is. Voorbeelden hiervan zijn perimetrische
beveiligingssystemen, verkeerstoepassingen en systemen voor het volgen en
tellen van personen en het analyseren van hun gedrag.

Intelligente beeldanalysetechnieken voor de detectie en analyse van brand
zijn echter schaars. Brand is nochtans een van de grootste problemen waarmee
de wereld dagelijks wordt geconfronteerd. Om de materiële en lichamelijke
schade bij een brand te beperken is het van groot belang dat de brand vroeg-
tijdig kan worden gedetecteerd. Daarenboven is informatie over de brandont-
wikkeling heel nuttig tijdens de brandbestrijding. Tot op heden verloopt de
detectie echter vaak te traag en is de brandinfo beperkt en moeilijk meetbaar.
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Het onderzoek in dit doctoraat focust zich op beide problemen en bun-
delt verscheidene videoanalysetechnieken die waardevol zijn gebleken in de
zoektocht naar snelle en accurate detectie en lokalisatie van vlammen en rook.
De voorgestelde videoanalysetechnieken zijn complementair met de bestaande
branddetectietechnieken en lossen problemen op die gerelateerd zijn aan tra-
ditionele sensoren. Zo treden klassieke sensoren pas in werking als het vuur
of de rook de sensor bereikt en gaat vaak kostbare tijd verloren. Dikwijls zijn
deze sensoren ook enkel bedoeld voor binnen en zijn ze ook niet inzetbaar in
grote open ruimtes, zoals winkelcentra of luchthavens. Bovendien beperken
ze zich vaak enkel tot het genereren van een alarm en geven ze geen extra in-
formatie betreffende de brand (locatie, omvang, enz.). We zijn van mening dat
beeldanalyse kan worden ingezet daar waar de andere detectoren tekortschie-
ten. Videogebaseerde detectie kan immers detecteren van op afstand (zowel
binnen als buiten), nuttige brandinfo genereren en ook worden ingezet om an-
dere nuttige informatie uit de omgeving te ontrekken. Een voorbeeld hiervan is
het detecteren van de aanwezigheid van personen in de ruimte in welke brand
is gedetecteerd.

Videogebaseerde branddetectie focust zich hoofdzakelijk op het detecteren
en analyseren van rook en vlammen in opeenvolgende videobeelden. Het (al-
gemeen) onderzoek rond videogebaseerde branddetectie is eind jaren negentig
gestart. Eerst richtte men zich op vlamdetectie, nu ook steeds meer en meer op
rookdetectie. De reden hiervoor kan gezocht worden in het feit dat rook zich
sneller verspreidt en meestal ook sneller zichtbaar zal zijn voor de camera. Dit
is natuurlijk afhankelijk van het type brand. De meeste van de voorgestelde
detectietechnieken focussen op kleur- en vormeigenschappen en het temporeel
gedrag van rook en vuur. Na onderzoek is echter gebleken dat vele van deze
methodes niet bestand zijn tegen de variaties in rook en vlamkleur, rookdikte
en belichting. Wij proberen dit in dit doctoraat te optimaliseren. Voor een
goede lokalisatie is het immers belangrijk dat de detectie correct is. Alles staat
of valt met de detectie.

Detectie is meestal de eerste stap in een intelligent videobewakingssys-
teem en is ook vaak de moeilijkste. Ten gevolge van ruis, schaduwen, licht-
veranderingen en andere artefacten in de opgenomen videosequenties is het
ontwikkelen van een betrouwbaar detectiesysteem een enorme uitdaging. In
tegenstelling tot wat gebeurt in het werk van vele andere onderzoekers wordt
de voorgestelde optimalisatie voor de detectie van vlammen en rook niet uit-
gevoerd in de diepte, maar wordt een onderzoek gevoerd in de breedte. De
focus ligt niet zo zeer op het krachtiger maken van bestaande visuele detec-
tiealgoritmes, maar op het gebruiken en samenvoegen van verschillende types
van informatie en de meerwaarde die hiermee gecreëerd kan worden.
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We zijn van oordeel dat door het samenvoegen van multimodale informa-
tie, afkomstig van verschillende typen sensoren, een grotere detectiewinst kan
worden geboekt. Elk type sensor heeft immers zijn eigen specifieke proble-
men, welke gecompenseerd kunnen worden door de andere type sensoren.
Niettegenstaande dat, omwille van kostredenen, een van de doelstellingen bij
aanvang van dit onderzoek was om een branddetectiesysteem te ontwikkelen
dat kan functioneren op de reeds aanwezige (camera)-apparatuur, lijkt de extra
kost voor het gebruik van meerdere sensoren niet op te wegen tegen de meer-
waarde die multimodale analyse biedt. Het feit dat ook verwacht wordt dat de
sensorkost in de toekomst nog drastisch zal dalen, zet de deur naar multimo-
dale videoanalyse volledig open.

Detectie door combinatie van infrarood video en ordinaire video is reeds in
heel wat toepassingsdomeinen onderzocht. Ook in het domein van branddetec-
tie zijn er al enkele stappen in deze richting genomen. Waar videogebaseerde
systemen te kort schieten, zoals detectie tijdens de nacht, bij sterk variërende
belichting of bij hoge rookontwikkeling, is gebleken dat detectie op basis van
infrarood video een enorme meerwaarde biedt. Belangrijk hierbij op te mer-
ken is dat alle van de beschikbare visuele-IR branddetectoren zich focussen op
vlamdetectie. De reden hiervoor kan waarschijnlijk gevonden worden in het
feit dat rook onzichtbaar wordt naarmate men verder gaat in het infrarood spec-
trum. Een van de voorgestelde multimodale rookdetectoren in dit werk maakt
net gebruik van deze onzichtbaarheid van rook in lange golf infrarood video
om deze te kunnen detecteren. Ook voor visuele-IR vlamdetectie werd geko-
zen om te werken in de lange golf infrarood spectrale band, daar hete objecten,
zoals vlammen, hier het best zichtbaar zullen zijn en het minst verstoord zullen
worden door andere objecten.

Niettegenstaande de multimodale detectie van vlammen en rook met be-
hulp van visuele en infrarood video reeds goede resultaten oplevert, wordt in
dit werk ook de meerwaarde onderzocht van time-of-flight video en diens com-
binatie met visuele detectie. Time-of-flight video is een relatief nieuwe tech-
nologie, die anno 2010 in de gaming wereld zijn intrede heeft gedaan onder
de vorm van lichaamsgebaseerde interactie en sinds kort ook voor andere vi-
deoanalyse toepassingen wordt aangewend. Voor branddetectie zijn wij echter
de eerste die deze sensor hebben aangewend, en met succes, zoals blijkt uit
onze resultaten. Dit type sensor kent momenteel wel nog enkele problemen,
van welke zijn gelimiteerd werkgebied (maximaal 10m) mogelijks het meest
cruciale is voor detectie in grote open ruimten. In dit werk suggereren wij dan
ook een oplossing om dit probleem te omzeilen.
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De meeste videogebaseerde branddetectiesystemen geven alleen maar aan
dat er brand is. Geen verdere informatie is beschikbaar. Waar de brand is, hoe
groot die is, de snelheid waarmee hij groeit: daarover geven deze systemen
geen info. Nochtans zijn die gegevens heel belangrijk. Hoewel deze systemen
meestal bestaan uit meerdere camera’s die eenzelfde omgeving monitoren, zal
de analyse vaak voor elke sequentie afzonderlijk gebeuren. Door de infor-
matie afkomstig van de verschillende camera’s samen te voegen kan echter
het detecteren en lokaliseren van rook en vlammen nauwkeuriger gebeuren.
De in dit werk voorgestelde multi-view brandanalyse raamwerk combineert
info vanuit meerdere standpunten tot een driedimensionale kubus van virtu-
ele sensoren, de FireCube. Met behulp van het FireCube raamwerk zijn we
in staat om snel en accuraat informatie te geven over de plaats van de brand,
de dikte van de rooklaag en het brandproces. Deze informatie kan vervolgens
worden aangewend voor videogebaseerde brandvoorspelling, het FWO project
(van het Fonds Wetenschappelijk Onderzoek Vlaanderen) waarbinnen dit on-
derzoek kadert. De universitaire vakgroep ‘Mechanica van Stroming, Warmte
en Verbranding’ waarmee we in dit project samenwerken gebruikt gelijkaar-
dige voorstellingen voor het modelleren van brand.

Als je het verloop van een brand kan (voor)modelleren kunnen de hulp-
diensten efficiënter optreden en levens redden. De berekeningen met huidige
modelleringtechnieken duren nog steeds te lang en kostbare tijd gaat vaak ver-
loren. Als wij kunnen zeggen op elk moment, in real time, hoe dik een rook-
laag is, wat de dimensie is van de vlammen en waar de brand juist zit kunnen
de voorspellingen worden geoptimaliseerd. Dit is het finaal doel van het pro-
ject dat loopt tot 2012, waarvan dit onderzoek het eerste luik finaliseert. Het
tweede luik, de koppeling tussen modellering en real-time detectie wordt ver-
richt door de collega’s van de vakgroep ‘Mechanica van Stroming, Warmte en
Verbranding’ onder leiding van prof. Bart Merci. Belangrijk om op te merken
is dat het niet alleen vlam- en rookinformatie is die belangrijk is om brand te
voorspellen en te bestrijden, maar ook details uit de omgeving. Zo hebben een
springende ruit of een opengaande deur invloed op de brandontwikkeling. Ook
kennis van de structuur van het gebouw kan van nut zijn. Heel wat van deze
informatie kan een intelligent videobewakingssysteem ook aanleveren, doch
valt dit buiten de context van dit proefschrift.

In dit proefschrift worden verschillende aspecten van een intelligent video-
gebaseerd branddetectiesysteem onderzocht. In een eerste luik ligt de nadruk
op de multimodale verwerking van visuele, infrarood en time-of-flight video-
beelden, die de louter visuele detectie sterk verbetert. Om de verwerkings-
kost zo minimaal mogelijk te houden, met het oog op real-time detectie, is er
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voor elk van het type sensoren een set ’low-cost’ brandkarakteristieken gese-
lecteerd die vuur en vlammen uniek beschrijven. Voor de visuele vlam- en
rookdetectie zijn we vertrokken van bouwstenen voor automatische objecther-
kenning die voor handen zijn in de literatuur en die, mits enkele aanpassingen,
voor videogebaseerde branddetectie kunnen worden ingezet. Experimenteel
is ook vastgesteld dat vele van deze bouwstenen ook bruikbaar zijn op an-
dere typen videobeelden. De overstap naar TOF en infrarood videogebaseerde
branddetectie is dus niet zo groot. Door het samenvoegen van de verschil-
lende typen informatie kunnen het aantal gemiste detecties en het aantal valse
alarmen sterk worden gereduceerd, wat resulteert in een significante verbete-
ring van videogebaseerde branddetectie. Om de multimodale detectieresulta-
ten te kunnen combineren, dienen de multimodale beelden wel geregistreerd
(∼ gealigneerd) te zijn. Het tweede luik van dit proefschrift focust zich hoofd-
zakelijk op dit samenvoegen van multimodale data en behandelt een nieuwe
silhouet gebaseerde registratiemethode die semi-automatisch visuele, TOF en
infrarood beelden kan aligneren. In het derde en tevens laatste luik van dit
proefschrift worden methodes voorgesteld om videogebaseerde brandanalyse,
en in een latere fase ook brandmodellering, uit te voeren. Ons nieuw multi-
view brandanalyse raamwerk voegt door homografische projectie de detectie-
resultaten van meerdere camera’s samen in een 3D-kubus van de omgeving,
de FireCube. De kubus is een raster van virtuele videosensoren, de snijpunten
van de horizontale en verticale vlakken waarop we projecteren. Zo kunnen we
precies bepalen waar de rook en de vlammen zich bevinden. Tenslotte worden
ook technieken voorgesteld voor het detecteren van de rookpropagatie. Daar-
bij analyseren we de lokalisatieresultaten in de tijd en zien we hoe de rook
zich verplaatst en groeit. De in dit proefschrift voorgestelde technieken voor
multimodale detectie en multi-view lokalisatie van brand zijn uitvoerig getest
in de praktijk. Zo werden onder andere succesvolle testen uitgevoerd voor
de vroegtijdige detectie van wagenbranden in ondergrondse parkeergarages in
kader van het car park fire safety project (http://www.carparkfiresafety.be/).

We hopen de lezer overtuigd te hebben dat dit onderzoek een originele
bijdrage heeft geleverd tot de ontwikkeling van een intelligent branddetectie-
systeem. Ook in andere computervisiesystemen kunnen deze technieken inte-
ressant zijn, bijvoorbeeld voor multimodale objectherkenning. Hierdoor zijn
de resultaten in dit doctoraat niet enkel interessant voor vroegtijdige brand-
detectie, maar voor videobewaking in het algemeen. We zijn er dan ook van
overtuigd dat de resultaten die in deze verhandeling worden voorgesteld in de
komende jaren nog in waarde zullen toenemen. Tot slot willen we ook nog
opmerken dat er nog vaak onrealistische verwachtingen bestaan over de mo-
gelijkheden van intelligente videobewaking. Er werd en wordt nog steeds te
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veel verwacht dat automatische videoanalyse alles zal detecteren en analyse-
ren, zonder foutmarge en met één enkele configuratie. De voorgestelde tech-
nieken in dit doctoraat dienen dan ook niet te worden gezien als de ultieme
branddetectietechnieken, maar als een complement op de bestaande technie-
ken. Daarenboven zijn er ook nog heel wat hiaten op vlak van IT en fire en-
gineering, zoals gebruiksvriendelijke en compacte interfaces die de informatie
goed in kaart brengen. Dit proefschrift dient dus ook te worden gezien als een
eerste stap om de kloof te dichten tussen beide werelden, waaraan hopelijk in
de nabije toekomst nog verder wordt gewerkt.
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Chapter 1

Introduction

The focus of this chapter is on the introduction of an intelligent multi-
view/multi-modal fire detection system, whose main goal is to minimize the
risk of fire, i.e., flames and smoke, in large open spaces. First, an overview of
conventional fire detection methods is given and problems/limitations of each
of them are pointed out. Based on these limitations, the need for a video-based
fire detection (VFD) system is explained. Subsequently, the relevant stages of
a general video surveillance framework are highlighted. A basic knowledge of
these stages will facilitate the understanding of the research question, which
is discussed next. Based on this research question, we give the outline of this
dissertation and introduce our main contributions.

1.1 Context

Fire has always been constructive as well as destructive. On the one hand, it
has proven to be very useful in many daily activities, e.g., for cooking, heating,
signaling and industrial applications. On the other hand, it is still one of the
leading hazards affecting everyday life around the world. Recent fires, such as
the Kaprun (2000) and Gotthard (2001) tunnel fires, the Black Saturday bush-
fires in the Australian state of Victoria (2009), the Beijing CCTV fire (2009),
the 2010 Shanghai fire and the Texas bushfires (2011), have had big impact on
many of our contemporaries’ live. Because of its speed and destructive forces,
it is one of the most serious threats. An uncontrolled fire can destroy an entire
room within a few minutes and completely burn out a building in a couple of
hours. What is destroyed by fire is gone forever. To avoid large scale fire and
smoke damage, timely and accurate fire detection is essential. The sooner the
fire is detected, the better the chances for survival. Taking all this into account,
no one will deny that research on fire detection is of high importance.
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The history of fire detection dates back to the beginning of the 19th cen-
tury. Since then, the science and technology behind fire detection continued to
improve. The primary purpose for fire detection was, and still is, the reduction
of loss of life and property from fire. The role of a fire detection/alarm system
is to identify the fire in a timely manner, and to alert the building’s occupants
and fire emergencies. In order to do this, fire detection systems are designed to
detect the unwanted presence of fire by monitoring fire-related environmental
changes. Humans are able to easily monitor these changes, as they are able to
sense multiple aspects of a fire including the heat, flames, smoke, and odors.
This is also the reason why most fire alarm systems have one or more manual
alarm activation devices to be used by the person who discovers a fire. Un-
fortunately, humans can also be unreliable detectors, e.g., when they are not
present when a fire starts or when they do not raise an alarm in an effective
way. For this reason, automatic fire detectors have started to be developed.

The majority of the automatic fire detection systems used today is meant
to imitate one or more of the human senses to detect smoke, heat and light
generated by the fire. Thermal detectors are similar to our ability to identify
high temperatures, smoke detectors replicate the sense of smell, and flame de-
tectors are our electronic eyes. Unfortunately, these ‘conventional’ fire alarm
systems still pose many problems, e.g., they are generally limited to indoor
environments, require a close proximity to the fire, cannot provide additional
information about fire circumstances such as size, location, and propagation
and are unable to predict the fire spread. A further drawback of those tradi-
tional detectors is that they are subject to a transport and threshold delay, i.e.,
the time for particles to reach and to activate the detector. In order to provide
more reliable and faster information, research on video-based fire detection
(VFD) has started in the late nineties. This has resulted in a large amount
of vision-based detection techniques that can be used to detect the fire at an
early stage [1]. Based on the numerous advantages of video-based sensors,
e.g., fast detection (no transport delay) and the ability to provide fire progress
information, VFD is recently becoming a viable alternative or complement for
the more traditional fire sensors. By combining a video-based sensor with
other, e.g., conventional, sensors or by fusing the detection results of multiple
video sensors, it is even possible to develop an intelligent fire detection system
which can accurately perform alarming, monitoring/interfacing and forecast-
ing in case of fire. An overview of such a system is given in Fig. 1.1. In this
dissertation we mainly focus on the added value of multiple and different types
of video sensors within the system. We investigate the benefit of: multi-modal
data fusion of different types of video imagery, multi-view/multi-sensor fire
analysis and video-driven fire spread forecasting (∼sensor-driven prediction).
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Figure 1.1: General overview of intelligent fire detection system. In this dissertation
we mainly focus on the use, i.e., added value, of multiple and different types of video
sensors within the system.

Besides the fusion/analysis of different types of (video) sensors, an intelli-
gent fire detection system can also improve its performance by incorporating
metadata. This metadata, i.e., side information, can take many forms. Within
the scope of this dissertation, we only focus on two kinds of ‘fire’ metadata:
environmental characteristics (ground plane, time of day, etc.) and fire models.
More details on each of them are given in the chapters throughout this book.
We will now further focus on the sensors, and most specifically on VFD.

VFD is closely related to video surveillance. The initial objective of video
surveillance is to recognize an event. This could of course mean many things,
such as the detection of movement or detection of presence or absence of an
object. Today, video surveillance is already used in many application domains
as a mechanism to protect people and property, to monitor behavior, to monitor
production and so on. The detection of fire, i.e., smoke or flame events, is an
example of a mechanism to protect people and property. In order to detect vi-
sual smoke and flame characteristics, many VFD algorithms implement and/or
extend conventional video analysis building blocks that have already been used
successfully in many other video surveillance application domains. Although
this already gives satisfactory test results, real-life experiments show that prob-
lems can occur, especially when light conditions are bad or smoke production
is high. As a solution to these problems, the use of other types of video sensors
is started to be explored and data from multiple sensors is fused. This not only
leads to better detection results, but also opens the door to the extraction and
analysis of valuable fire characteristics, such as fire location, size and growth.
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The remainder of this chapter is organized as follows. Section 1.2 gives
a brief overview on how fire detection is performed in the ‘conventional’ way
and describes its limitations. Furthermore, the ‘large open spaces’ use case,
on which we focus our research, is discussed. Related to the limitations of
traditional fire detectors, Section 1.3 explains the need for video fire detection.
Subsequently, Section 1.4 presents some general video surveillance concepts,
which will help to better understand the research described in this dissertation.
Special attention is given to the concept of multi-modal and multi-view data
fusion, i.e., our ‘broad’ research solutions for the depth-related research prob-
lems. Next, Section 1.5 addresses the research question of this dissertation.
Finally, Section 1.6 lists the system requirements and Section 1.7 presents the
outline of this book.

1.2 Conventional fire detection

In general, fire detection systems to protect and preserve an institution’s build-
ings, operations and occupants are classified as either automatically actuated,
manually actuated, or both. Manual actuation is the oldest method of detec-
tion. In its simplest form, a person yelling can provide fire warning. However,
since a person’s voice may not always transmit the information throughout the
whole building, manual alarms - such as break glass stations, alarm buttons
and manual pull stations - are installed along paths of escape. These devices
are simple and can be highly reliable when the building is occupied. However,
one of their disadvantages is that they require human interaction, and hence
will not work when the building is unoccupied. Furthermore, they may also
be used for malicious alarm activations. Nonetheless, they are an important
component in any fire alarm system.

Automatically actuated systems, on the other hand, do not need human
activity. Those systems consist of hardware and software modules which im-
itate the human observer. Depending on what fire related physical changes
they focus on, such systems can vary dramatically in both price and complex-
ity. Through the years, numerous types of automatic fire detectors have been
developed each suited to different building types and applications. Without go-
ing too much into detail, most of the detectors can be categorized into smoke,
heat/temperature, flame/radiation or gas detection. In what follows, we give
a brief description on each of these ‘conventional’ detector types and discuss
their limitations. For more detailed information, the reader is referred to the
fire detection studies of Cote [2], NIST/NASA [3] and the NFPA 72 National
Fire Alarm and Signaling Code [4].
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1.2.1 Overview of conventional detector types

A. Heat/Thermal detectors

Heat or thermal detectors are the oldest type of automatic detection device,
originating from the mid 19th century with several types still in production
today. The most common type of thermal sensors is the fixed temperature
heat detector, which activates/triggers the alarm when the sensing mechanism
reaches its specific temperature threshold. Usually these kind of sensors con-
tain a fusible metal element which melts above the threshold temperature and
causes a short on the initiating circuit. The second most common thermal
units are rate-of-rise detectors, which identifies an abnormally fast tempera-
ture climb over a short time period. Both kind of heat detectors are ‘spot type’
detectors, meaning that they are regularly spaced along a ceiling or high on a
wall. The third detector type that is often used is the fixed temperature line
type detector, which consists of two cables and an insulated sheathing that is
designed to breakdown when exposed to heat. The advantage of this type over
spot detection is that thermal sensing density can be increased at lower cost.

Thermal detectors are highly reliable and are ideally suited to locations
where high sensitivity is required for change in heat and where smoke detec-
tors are found unsuitable for detection of fire. They are also very easy and in-
expensive to maintain. One of their major drawbacks, however, is that they do
not function until the room temperature has reached a substantial temperature,
at which point the fire is well underway and damage is growing exponentially.
Subsequently, they are usually not permitted in life safety applications and are
also not recommended in locations where there is a desire to identify a fire
before substantial flames occur.

B. Smoke detectors

Smoke detectors have gained wide usage during the seventies and eighties in
residential and life safety applications. Their primary purpose is to replicate
the human sense of smell and to identify a (smoldering) fire in its early stage.
The most common smoke detectors are spot type detectors. The majority of
them operate on either an ionization or photoelectric principle, with each type
having advantages in different applications. Photoelectric smoke detectors in-
terpret the reflection of a built-in light source (infrared LED) to detect the
smoke. In order to do this, the light is projected into a smoke sensing chamber
inside the detector assembly. In the absence of smoke, the light hits a black
background of the chamber and is absorbed. When smoke enters the chamber
it reflects the light on to a sensor inside the chamber. This causes the sensor
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to indicate an alarm. Ionization detectors, on the other hand, use an ionization
chamber and a source of ionizing radiation to detect the smoke. The radioac-
tive source ionizes the air passing through the chamber. As a result, the air
chamber becomes conductive permitting current to flow between two charged
electrodes. When smoke enters the chamber, it disrupts the flow of current,
which triggers the alarm.

For large open spaces such as galleries, warehouses and atria, beam detec-
tors are frequently used instead of the more traditional spot detectors, which
are difficult to install and maintain in these areas. A beam detector consists of
two components, a light transmitter and a receiver, that operate in line of sight
and are mounted at some distance (up to 100m) apart. As smoke migrates
between the two components, the transmitted light beam becomes obstructed
and the receiver cannot longer see the full beam intensity. This is interpreted
as a smoke condition, and the alarm is activated. Another type of smoke de-
tector, which has become widely used in extremely sensitive applications, is
the air aspirating detector. Such a detector aspirates air samples from various
locations into a tube where the sample is analyzed electro-optically for the ex-
istence of smoke. If smoke becomes present in the sample, it is detected and
an alarm signal is set.

The key advantage of each of the discussed smoke detectors is their abil-
ity to identify a fire (in many cases) before severe damage occurs. They are
usually the preferred detection method in life safety and high content value
environments. Their disadvantage, however, is that they are usually more ex-
pensive to install, when compared to thermal sensors, and are more sensitive
to false alarms. As already indicated, each type of smoke detector has advan-
tages in different applications. Ionization detectors, on the one hand, are better
at detecting fast, flaming fires than slow, and smoldering fires. Photoelectric
smoke detectors, on the other hand, sense smoldering fires better than flaming
fires. Hence, neither type of detector is always best, i.e., none of them provides
an overall/general solution.

C. Flame/radiation detectors

Flame detectors represent the third major type of automatic detectors, and im-
itate the human sense of sight. They ‘see’ the fire by detecting the electromag-
netic radiation emitted by the combustion products. Flame detectors are line
of sight detectors that operate on either an infrared, ultra-violet or combined
principle. Infrared detectors (IR) detect fires when a characteristic flame flicker
produced by the fire is received, while ultra-violet detectors (UV) detect fires
when any ultra-violet radiation produced by flaming combustion is detected.
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The advantage of flame detectors is that they can be used to protect large
areas and have rapid response because they do not have to rely on smoke or
heat from the fire. Furthermore, they can also be used in open air, unlike
the smoke detectors that need a ceiling to function effectively. However, a
disadvantage is that flame detectors must be looking directly at the fire source
and false alarms may be generated by radiation from other sources such as
sunlight and lamps.

D. Gas detectors

Since gases are produced in all stages of combustion, a specific gas signature
could also be used for reliable fire detection [5]. Techniques are available now
for measuring almost any stable gaseous species produced prior to or during
combustion. One such example, and probably one of the most popular types of
gas detector, is the carbon monoxide detector. Such a detector is used to notify
a threat of potentially hazardous amounts of carbon monoxide gas. Another
form of gas detector is an explosive gas detector, which essentially monitors
any type of ignitable gas. The most popular of threats for this type of detector is
natural gas, due to its high use in kitchens. The response time for gas detectors
is in between the response time of flame and smoke detectors. Its sensitivity
and false alarm resistance is similar to the one of smoke detectors, as is further
discussed in the comparison of the detector types in the next section.

E. Comparison of (conventional) fire detector types

Table 1.1 summarizes the pro and contra of each of the conventional detector
types and compares them to video based detectors. The table is mainly based
upon tests/data provided in [2, 5–7]. The following criteria are evaluated: the
purchase price, the installation cost, the response time, the sensitivity, the false
alarm resistance and the suitability for large open spaces and outdoor use. Each
of these criteria is evaluated on a scale ranging from – – to + +, indicating the
detector type its weaknesses and strengths respectively.

The results show that each of the detector types has advantages and limita-
tions, making each more or less suitable for certain applications/environments.
However, although it may seem that none of the detectors scores always best,
video based sensors have the best overall performance. Especially for outdoor
detection and detection in large open spaces, they seem the most appropriate.
This will further be addressed in the next sections, in which we discuss some
of the limitations of conventional detectors and emphasize the need for video
fire detection.
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1.2.2 Limitations of conventional detectors

As each type of the conventional fire detectors has advantages for different
applications, neither type of detector is always best. Furthermore, several lim-
itations are related to each of these traditional sensors. Most of these sensors,
for example, are generally limited to indoors and require a close proximity to
the fire. Most of them can also not provide additional information about fire
circumstances (location, dimension, etc.). Further limitations include the fact
that it may take a long time for particles to reach the detector (∼ the transport
delay) and the fact that traditional sensors are not able to understand the scene,
i.e., to detect/interpret environmental characteristics and changes.

NFPA statistics [8] also show that, despite the advances in traditional fire
alarm technology over the last century, losses caused by fire, such as deaths,
permanent injuries, property and environment damages still increase. In order
to decrease this, timely detection, early fire localization and detection of fire
propagation are essential. Until now, however, no fire alarming system exists
that is capable of giving this information in real-time. Since fires (frequently)
grow at an exponential rate, an increased detection time results in larger fires.
As such, a detector must try to be faster than the fire!

When focusing more on the specific use case of our research, i.e., fire de-
tection and analysis in large open spaces, none of the traditional sensors seems
somehow appropriate [9]. These spaces, e.g., atria, shopping malls, car parks,
stadiums, office buildings, and airports, represent some of the most difficult
fire protection challenges. Due to the open nature of these spaces, their large
dimensions and their (often) excessive ceiling heights, spot detectors are not an
option as the distance heat and products of combustion must travel to reach the
detector makes timely detection almost impossible. This is also confirmed by
recent studies, such as the study of Kuffner [10] on smoke detectors in spaces
with high ceilings. The study shows that, depending on the fire type and size,
it can take a long time for smoke to reach the ceiling and that there are limi-
tations in ceiling height (maximum 6m) for smoke to reach. Beam detectors
offer already some advantages over the spot detectors, as most often they can
detect the fire much faster. Similar to video sensors, beam detectors can also
be categorized as ‘volume-sensors’. The range you can monitor with a volume
detector is much bigger than with a traditional spot detector. As soon as smoke
occurs in the field of view of the beam detector, fire alarm is given. As such,
their ‘transport delay’ is also very low. The purchase cost of the newest types
of beam detectors, however, is between 800 and 1000 Euro. It is not expected
that their cost will decrease as fast as the cost of video technology, since con-
trarily to video sensors, their practical application is limited to fire detection.
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The installation cost, i.e., aligning the imager and the IR/UV emitter, is also
high. Furthermore, maintenance costs occur, e.g., due to the fact that beam
detectors are sensitive to building movement and, finally, they are also sensi-
tive to nuisance alarms. As such, other detection technology, i.e., video based
detection, is needed in order to detect and analyze the fire in large open spaces.

Several research experiments, such as those performed in [11], identified
that video fire detection (VFD) systems are an effective detection technology
for the protection of large industrial applications, atria and other spaces with
high ceilings. VFD can quickly detect a fire by recognizing either smoke or
flame anywhere within the field of view of the camera at a great distance. Fur-
thermore, they can provide live video immediately available upon detection.
This, for example allows surveillance operators to easily view the protected
area, to determine the extent of the fire and to identify the fire location. And
finally, VFD cameras can also be used to extract useful fire characteristics,
e.g., fire size and smoke layer height, and non-fire information, such as the
presence of people caught in the fire. However, despite the many advantages
of VFD, it has its own limitations such as illumination-related false alarms.
As will be discussed throughout this dissertation, we are able to compensate
for these limitations of VFD by using the multi-modal/multi-view functions of
the intelligent detection system proposed in Figure 1.1. But first, we further
elaborate on the need for VFD.

1.3 The need for video fire detection?

As already mentioned before, ordinary/traditional fire detection systems have
several limitations when applied in large open spaces. In order to cope with
these limitations, VFD is seen as one of the most promising candidates. The
best way to explain the need for video fire detection is to consider the following
quotes that we have collected during our research. Each of them gives an
answer to the question: why should we use video for fire detection?

• Yet most fire alarm systems just ring the bells

Until today, most of the fire alarms have a very limited function-
ality. They generate an alarm when a threshold is reached and that’s it.
No specific information about the fire circumstances can be given. By
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running intelligent VFD techniques on the images of a video camera
much more information concerning the fire can be given, e.g., the
flame size, smoke layer height and the fire location. Furthermore, the
video itself can also be used by surveillance operators to confirm the
alarm or to evaluate the fire risk, which also is not possible when using
traditional fire detectors. Perhaps, by combining multiple traditional
sensors (∼ sensor networks [12, 13]) using the proposed intelligent
detection system, or by combining video and traditional sensors, similar
information may perhaps be achieved. However, this is out of the scope
of our study.

• Smoke spreads faster than flames AND where there’s smoke, there’s fire

Compared to traditional fire detection, VFD is several steps ahead
when distance and large space is concerned. For example, similar to
beam detectors, VFD can detect the smoke even without it reaching
the sensor. Depending on whether the focus is on flames or smoke
characteristics, VFD can be split up into video image flame detection
(VIFD) and video image smoke detection (VISD). Both are based on
the analysis of color, motion, energy, and disorder information in video.
In early research, mainly flame detection was investigated, recently
there is a tendency towards smoke detection. Since in most cases smoke
occurs much faster in the field of view of the cameras, focusing on
smoke often offers a faster detection. Given a large open space, i.e.,
the proposed use case, smoke can travel in the air several times faster
to reach the field of view of the camera making it possible for early
detection.

• We must try to be faster than the fire

To avoid large scale fire and smoke damage it is important to
know the evolution of the smoke and flames and to try to be faster
than the fire. As such, besides timely and accurate detection and
analysis, also forecasting is very important. Although, this is not an
easy task, the experiments in this dissertation show that, contrary to
traditional sensors, video processing techniques can not only improve
and accelerate the detection, but also provides the analysis and the
forecast of the fire.
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• It is not just stay or go

In order to evaluate the fire risk, an alarm is not enough. Several
fire and environment characteristics can help in assessing the level of
danger. Where did the fire start? What is the size of the fire? What
is the direction of smoke propagation? How is the fire growing? The
answer to each of these questions plays an important role in safety
analysis and fire fighting/mitigation, and is essential in assessing the
risk of escalation. Using VFD and video fire analysis techniques, many
of these characteristics can automatically be measured. This gives
the opportunity to generate different levels of alarms and to forward a
detailed description of the fire event, together with the recorded video
data, to the appropriate authorities, e.g., operators and fire fighters.

• Delivering more than the sum of the points

First of all, video cameras are volume sensors. Contrarily to most
traditional detectors, which are point sensors, a single volume sensor,
such as a video camera, will be able to deliver more information about
the fire event. Each pixel of the video frame can be seen as an individual
detector for the region it monitors. By analyzing the behavior of neigh-
boring pixels in the video frame over time, a video sensor is able to
detect flame and smoke related features, e.g., flame flickering and flame
size disorder, which can not be detected by point sensors. As such, it
is already proven that a video sensor is able to deliver more than the
sum of the points. Furthermore, by combining multiple cameras (using
the intelligent detection system) it is also possible to automatically
distill very useful information about the fire circumstances, such as the
location of the fire, the smoke layer height and the flame size.

• Video surveillance can save your loved ones and your home

This ‘romantic’ quote is selected to convince people who (still)
are against video surveillance in general. It cannot be denied that the
opportunities of vision-based surveillance are numerous. There are so
many applications where video surveillance can help. This is also the
reason why we see an increased use of video surveillance systems in
recent years. Surveillance cameras are rapidly appearing in all sort of
places such as airports, city centers, road/rail networks and even in in-
dividual buildings. Large area monitoring, suspicious activity/package
detection and crowd/traffic analysis are some examples of applications
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that can ‘Save Your Loved Ones’ in these places. Related to the topic of
this dissertation, it should be clear that also VFD and video fire analysis
can help to save lives and reduce damage to ‘Your Home’.

• Small details make big differences

Not only flame and smoke information is needed to efficiently
forecast and fight the fire, but also other information about the moni-
tored scene can be of high importance. For example, a broken window
or a door which is opened can influence the fire growth. Most of this
data can also be delivered by an intelligent video surveillance system.
‘Scene understanding’, however, is a research topic on its own and is
out of the scope of this dissertation.

• CCTV is everywhere: there are too many cameras and too few pairs of
eyes to keep track of them

The number of surveillance cameras increases day by day. This
highlights various problems such as the fact that it is practically
impossible for surveillance operators to keep a constant watch on the
video from multiple cameras. Identify and distill the limited relevant
information is the immense challenge to which those operators are
faced today. Hence, there is need for intelligent video content analysis
to support them by asking for attention only when unwanted behavior,
such as fire, occurs. This is also the reason why recently a considerable
amount of research has been conducted concerning the intelligent
detection of special events, such as smoke and flames. As many
of these VFD algorithms work on ordinary video, they can be incor-
porated in existing surveillance systems at relatively low additional cost.

• Early detection saves life and can help shorten the timeline

Effective response to fire requires accurate and timely information
of its evolution. To avoid fire disasters, minimize damage, and save
lives, early fire localization and detection of fire propagation are essen-
tial. Until now, however, no system exists that is capable of accurately
detecting this valuable fire characteristics in real-time. However, it is
our strong belief that VFD can help shorten the timeline. For example,
in most cases VFD is able to see the fire much faster than traditional fire
detectors. As such, a lot of ’crucial’ time is saved. Furthermore, video
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driven fire spread forecasting, which is the final goal of this dissertation,
can help in predicting the future state of the fire. This can, together
with the video based retrieval of fire characteristics, help fire fighters in
making the right decisions without losing lots of time.

1.4 Video (Fire) Surveillance

Video based detection and analysis of fire is closely related to video surveil-
lance. Therefore, it should not be surprising that many VFD and video fire
analysis techniques are based on general video surveillance concepts. A basic
understanding of these concepts will facilitate the reading of this dissertation.
As such, before going more into detail on the detection of smoke and flames,
we first briefly discuss the ‘basics’ of a video surveillance system.

An automated video surveillance system can be divided into several stages,
as is described in the general framework introduced by Hu et al. [14]. An
overview of this framework is shown in Fig. 1.2. Its main task is to simplify
the management and analysis of the enormous volume of video data and to
detect events requiring attention as they happen. In order to perform this task,
the framework can be divided in five different levels of abstraction: environ-
ment modeling, motion segmentation, object classification, object tracking and
higher level tasks, such as behavior understanding/description, personal iden-
tification and fusion of information between multiple sensors. For each level,
many algorithms exist and are topic of active research [15]. In this disserta-
tion, we mainly focus on moving object detection, which groups the first three
levels, and on the fusion of information from multiple cameras.

1.4.1 Moving object detection

Moving object detection is the first step in nearly every visual surveillance sys-
tem. Its main aim consists of segmenting regions corresponding to moving ob-
jects, i.e., the foreground (FG), from the rest of an image, i.e., the background
(BG). Subsequent steps such as tracking and behavior recognition are greatly
dependent on it. The process of moving object detection usually involves the
first three levels of the general framework, i.e., environment modeling, motion
segmentation and object classification, which intersect each other during pro-
cessing. These levels, extended with higher level fusion strategies, also form
the main basis of the work described in this dissertation.
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Figure 1.2: General visual surveillance framework (Hu et al. [14]).

A. Environment modeling

Environment models are required to facilitate the localization of moving
objects and to evaluate their behavior and trajectories. The combination
of video(s) with a model of the environment, also called ‘contextualized
video(s)’, allows observers to see the activities in the videos in their proper
locations. In this case, spatial relations are presented in the visualization, al-
lowing some cognitive work to be offloaded onto the perceptual system [16].
Based on these facts, it should be obvious that the construction and updating
of an environment model is indispensable to video surveillance. In order to
create an environment model one can choose between a 2D model in the im-
age plane and a 3D model in real world coordinates. Today, the majority of
video surveillance applications still uses 2D models, but for the modeling of
indoor scenes a switch to 3D is noticeable. In the video fire analysis experi-
ments presented in this dissertation, both 2D and 3D environment models are
used to visualize the fire characteristics of our fire tests.
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B. Motion segmentation

The first step towards automated video surveillance is the detection/segmenta-
tion of interesting objects in the field of view of the camera. The definition of
an interesting object is of course context dependent, but for a general surveil-
lance system, the moving/motion part of the video sequence, such as people
and vehicles, is most interesting. Segmentation of this moving/motion part is
a fundamental and critical task, as errors made at this abstraction level are dif-
ficult to correct at higher levels. When an object is not detected at the lowest
level, it cannot be tracked and classified at the higher levels. As such, the more
accurate the segmentation at the lowest level, the easier tasks at the higher
levels become.

Currently, most segmentation methods use either temporal or spatial video
information and can be classified into four major groups: background subtrac-
tion, temporal differencing, optical flow and advanced statistical based meth-
ods [17, 18].

• Background subtraction: is (probably) the most popular method for
motion segmentation, especially under those situations with a relatively
static background. It detects moving regions in an image by taking the
pixel-by-pixel difference between the current frame, i.e., video image,
and an object-free model of the background. Usually, this reference BG
model is learned, for example by averaging consecutive initialization
frames over time. The pixels where the difference is above a threshold
are classified as FG, i.e., moving. Although BG subtraction techniques
perform well at extracting most of the relevant pixels of moving regions,
they are usually sensitive to dynamic changes when, for instance, sta-
tionary objects start to move or sudden illumination changes occur.

• Temporal differencing: is based on frame differencing and attempts
to detect moving regions by making use of the difference of consecutive
frames in the video sequence. This method is highly adaptive to dynamic
environments, but generally does a poor job of extracting the complete
shapes of certain types of moving objects.

• Optical flow: is an approximation of the local image motion and spec-
ifies how much each image pixel moves between adjacent images. Al-
though it is a complex method, it can achieve success of motion detec-
tion in the presence of camera motion or background changing, i.e., it
can detect the motion accurately even without knowing the background.
However, as most surveillance cameras in our work are static, this com-
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putationally complex optical flow approach is not necessary. Further-
more, it cannot be used real-time without specialized hardware.

• Advanced statistical based methods: make use of the statistical char-
acteristics of individual pixels. They have been developed to overcome
the shortcomings of basic BG subtraction. This is also the reason why
they are mainly inspired by the BG subtraction methods in terms of gath-
ering and dynamically updating statistics of the pixels that belong to the
background. FG pixels, i.e., the ‘moving’ part of the video frame, is
identified by comparing each pixel’s statistics with that of the advanced
BG model. Due to its reliability in scenes that contain noise, illumina-
tion changes and shadow, this approach is becoming more popular.

For our use case, i.e., the detection of fire using static cameras, (advanced)
background subtraction methods are the most interesting. The majority of the
proposed algorithms use a dynamic BG model, i.e., a model which is up-
dated continuously based on the FG/BG detection of the current frame. For
some of these algorithms we also investigated the added value of advanced
wavelet based background subtraction methods. Wavelet-based BG subtrac-
tion methods are able to stop low-frequency illumination changes and any
high-frequency noise in the input image scene. As such, it is expected that
they have much less problems with illumination changes compared to non-
wavelet based BG subtraction methods (which are currently used in VFD).
Especially when there are a lot of flame reflections and other fire-related il-
lumination changes, less false alarms and missed detections are expected in a
wavelet-based setup. This is further discussed/investigated in Section 2.5.

C. Object classification

Typical video scenes contain a variety of objects such as people, vehicles, and
natural phenomenon (e.g., rain, snow). To further track these objects and ana-
lyze their behavior/activities, it is necessary to correctly distinguish them from
other moving objects. This is the task of object classification, i.e., categoriz-
ing the type of the detected regions from the motion segmentation stage. At
present, there are two main categories of approaches towards moving object
classification: shape-based and motion-based classification. For our research,
we mainly use the former approach. For example, smoke and flame regions are
detected by temporal analysis of several low-cost shape characteristics, such as
the size, the boundary and the orientation of the detected region.



18 Introduction

1.4.2 Multi-view/multi-modal data fusion

Besides the moving object detection, which groups the first three levels of
the general surveillance framework (Fig. 1.2), the fusion of information from
multiple cameras is the second aspect of the framework on which we focus
in this dissertation. Although many tasks, such as moving object detection
and tracking, can be performed using a single camera, multiple cameras can
overcome many problems regarding the accurate detection and localization of
moving objects [19]. The main advantages of multi-camera systems is that by
exploiting the different viewpoints or different image modalities (when using
different types of video sensors) they are able to increase the overall field-of-
view, improve the accuracy and robustness of detection, handle the occurrence
of occlusions and enable 2D/3D positioning of moving objects. These advan-
tages, however, come at a price. Multi-camera systems have to deal with a
number of technical barriers, such as the complexity increase and the ‘costs’
related to installation, calibration, object matching, and data fusion [20].

Based on the camera configurations, multi-camera systems can be divided
into two categories. The first category, i.e., multi-view camera systems, fuse
multiple detection results from different viewpoints in order to improve ob-
ject detection and localization. The second category, i.e., multi-modal camera
systems, intelligently combines different kinds of imagery sensors, e.g., visual,
depth and thermal cameras, so that a single view can be provided with enriched
information improving detection performance and activity analysis.

A. Multi-view video surveillance

Multi-view camera systems can be divided into systems with disjoint, i.e., spa-
tially non-overlapping, camera views and systems with overlapping camera
views [21]. Disjoint views are effective for covering wide field of views. Over-
lapping views, on the other hand, take advantage of the redundant information
coming from different cameras monitoring the same scene to improve the ac-
curacy in the object detection and the estimation of the objects’ position and
size [22]. In our work, we mainly focus on the latter group, i.e., systems
with overlapping camera views, and fuse the local detection results of multiple
cameras into one global coordinate system. In order to do this, we use the ho-
mography [23] between the cameras and the coordinate system, i.e., a common
technique for multi-view image fusion.
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B. Multi-modal video surveillance

Contrarily to the simultaneous analysis of video from different points of view,
multi-modal video surveillance focuses on the simultaneous analysis of dif-
ferent types of video which lines of sight are close to each other. Similar to
multi-view detection, this multi-modal video processing improves the accu-
racy in video based object detection. Multi-modal camera systems take ad-
vantage of the different kinds of information represented by visual, thermal
and/or depth imaging sensors. The combination of these types of imagery
yields information about the scene that is rich in color, motion, depth and/or
thermal detail. Once registered, such information can be used to successfully
detect and analyze activity in the scene with fewer misdetections [24]. Since
each type of sensor has its own type of detection limitations, misdetections in
one sensor can be corrected by the other sensors. As such, the combination of
multi-sensor information is considered a win-win by many authors [19,25] and
have started to be actively used to improve the performance of object detection
and recognition [26].

1.4.3 Concluding remarks

Because the main purpose of this introductional chapter is to discuss topics di-
rectly related to the work in this dissertation, we decided not to include infor-
mation on the other levels of the general framework. For a general description
on object tracking, behavior understanding/description and personal identifi-
cation, the reader is referred to the work in [14, 15, 17, 18].

1.5 Research question

The central question of this dissertation is:

‘Can we develop an algorithm to timely and accurately detect/analyze
the fire in large open public places and can we use the extracted fire char-
acteristics for video driven fire forecasting?’.

In order to facilitate answering this question, it is helpful to break the ques-
tion down into smaller parts. The main goal of this dissertation is to give an
answer to each of these parts. The first part, i.e., ‘can we develop an al-



20 Introduction

gorithm to detect the fire’, is already answered by many authors. In the last
decade, the literature/research on video-based fire detection is growing rapidly,
and this has lead to several VIFD and VISD algorithms that can be used to de-
tect the presence of fire at an early stage. However, due to the variability of
shape, motion, transparency, colors and patterns of smoke, existing VFD ap-
proaches are still vulnerable to missed detections and false alarms. The main
cause of both problems is the fact that visual detection is often subject to con-
straints regarding the scene under investigation, e.g., changing environmental
conditions, and the target characteristics. To avoid the disadvantages of using
visual sensors alone, we believe that the use of other types of sensors, such
as infrared (IR) and time-of-flight (TOF∗), can be of added value. Chapter 2
mainly focuses on this aspect.

The second part of the research question, i.e., ‘in large open public
places’, makes the VFD problem even more difficult. Videos from this kind
of surveillance scenes, e.g., car parks, shopping malls and atria, often contain
difficulties, such as changing/limited illumination, shadows and noise, which
makes the detection error-prone. In order to achieve high accuracy for these
kind of scenes, we propose several low-cost multi-modal fire detectors (Chap-
ter 3) which are able to cope with many of the sensor-related ’limitations’. The
main benefit of (f)using multi-modal image data is that unreliably extracted
parts from one sensor might be reliably extracted from the other sensor. By us-
ing the strengths of each medium, fire detection can be done more accurately.

Within the context of a fire, ‘some seconds’ can make a huge difference.
This is also illustrated in Fig. 1.3, which illustrates the timeline of a fire. To
avoid large scale fire/smoke damage it is important to timely detect the fire.
Compared to traditional point sensors, which suffer with a transport delay,
volume sensors (like cameras) are able to detect smoke/flames as soon as they
occur in the cameras field of view. Realistically, however, a fire detection al-
gorithm in commercially available video surveillance systems has to run in
parallel with many other surveillance processes. For many of the state-of-the-
art fire detection techniques, real-time operation requires significant computa-
tional resources, which cannot always be guaranteed. As such, these methods
will have difficulties to timely detect the fire. By focusing on (computational)
‘low-cost’ fire features, the methods proposed in this dissertation are able to
keep the processing cost low, i.e., to run in real-time (∼ 25fps). As such,
they are able to ensure real-time detection, even when they are combined in
a multi-modal or multi-view setup. This is confirmed by recent experiments
which were performed in cooperation with Xenics [27]. As soon as smoke or
flames appear in the field of view of the camera, fire alarm is given.
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Figure 1.3: Timeline of a fire (image from http://publicsafety.utah.
gov/firemarshal/FMdocs/timeline_of_a_fire.pdf).

Related to the ‘timely’ operation is the accuracy aspect of the research
question. A general definition of accuracy, however, does not exists. It depends
on the context, environment and/or application in which the detectors are used.
A fire detector is said to be accurate if it detects all the fires, with as few false
alarms as possible. Missing a fire is much worse than detecting a non-fire
event (false alarm). As such, the recall (i.e., the probability of detecting an
item given that it is relevant) is the most important for fire detection. However,
although it is (almost) not used as an evaluation metric in video fire literature,
precision (i.e., the probability that an item is relevant given that it is detected
by the algorithm) is also important. This is mainly because too many false
alarms will make the operators less attentive.

∗ TOF cameras are a relatively new innovation capable of providing three-
dimensional image data from a single sensor. TOF imaging takes advantage
of the different kinds of information produced by the TOF cameras, i.e., depth
and amplitude information. The ability to describe scenes using a depth map
and an amplitude image, provides new opportunities in different applications,
including video surveillance (object detection, tracking and recognition) and
human computer interaction (e.g., gaming). The possibilities of TOF based
fire detection have not yet been investigated. As such, the TOF-based detectors
which are presented in this dissertation are a first attempt in this direction.

http://publicsafety.utah.gov/firemarshal/FMdocs/timeline_of_a_fire.pdf
http://publicsafety.utah.gov/firemarshal/FMdocs/timeline_of_a_fire.pdf
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In general, a fire detection system will be more valuable if it has a higher
detection rate (∼recall) and if its number of false alarms are lower. Secondly,
a system its value also depends on what the system is able to do, i.e., the sys-
tem functionality. For example, the proposed intelligent fire detection system
is able to detect, analyze and forecast the fire. Compared to the SOTA sys-
tems, which are (mainly) limited to detection, our system is, as such, more
‘valuable’. Lastly, a system its value can also be evaluated based on its com-
putational efficiency. In order to evaluate this computational efficiency, one
must be able to test the systems using a standard dataset and with standard-
ized evaluation metrics. For video based fire detection, however, both do not
exist (yet). This is also the reason why the details on computational efficiency
throughout this dissertation are limited.

The fourth aspect of the research question concerns ‘video fire analysis’.
A study of the literature revealed that the amount of research in this direction
is limited. Even today, most video-based fire alarm systems just ring the bells,
i.e., they only detect the presence of fire and are not able to model fire evo-
lution. Even though the majority of these systems consist of several cameras
monitoring the same scene, the analysis is usually carried out separately on
each of the camera’s video sequences. In order to perform more accurate de-
tection and localization of smoke and flames, and to detect valuable fire char-
acteristics at the early stage of the fire, we propose to combine the detection
results of each of these single-view cameras and analyze them together into
our novel multi-view fire analysis framework (Chapter 4). The main goal of
the framework is to provide a more valuable video fire analysis tool than the
existing SOTA work, which results are still limited and interpretation of the
provided information is not straightforward.

The fifth and last part of the research question is: ‘can we use the ex-
tracted fire characteristics for video driven fire forecasting’. To the best of
our knowledge, we are the first to tackle this subject. The proposed work on
video driven fire spread forecasting should be seen as a first step in the direction
of an application aiding firefighters in assessing the fire risk more efficiently. It
should be able to serve as a solid basis for the extraction of fire characteristics
and how this information can be used to estimate the future state of the fire.
Initially, real-time estimations of smoke layer height and fire size will be used
to accelerate fire models. The main reason for choosing these characteristics is
that they can be extracted rather easily from video images. The proposed video
driven fire forecasting is a prime example of how video-based detectors will
be able to do more than just generate alarms. Detectors can give information
about the state of the environment, and using this information, predictions of
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the future state can be improved/accelerated. By combining information about
the fire from models and real-time data an estimate of the fire can be produced
that is better than could be obtained from using the model or the data alone.

Related to the research question, it is also important to have a clear un-
derstanding of the requirements to which the proposed VFD and video fire
analysis techniques must adhere. As such, we briefly discuss the system re-
quirements in the following section.

1.6 System requirements

As it is important to develop a system which meets the needs expressed by
partners in the field [28], the following list of requirements is defined:

• Easy (re-)calibration: automatic registration (∼alignment) of multi-
sensor/multi-view images.

• Low computational cost: the flame and smoke detectors and the fire
analysis framework must be able to run in real-time.

• Low number of false alarms and no missed detections.

• Fast warning / alarming with different levels of detection: higher levels
of detection should only be activated if the global ‘fire risk value’ is high.

• Sequence/scene independent with low number of thresholds.

• Low purchasing price / installation costs.

Furthermore, the proposed algorithms should be generally applicable, i.e.,
they should be easy to adapt when the environment changes or when they are
applied in a slightly different scene. It is preferred to use algorithms for which
the parameters/thresholds are easy to set. This means that either the perfor-
mance of the algorithm should not rely heavily on the value of the parameter,
or we should be able to deduct the parameter value from real world variables.
Finally, it is also important to note that we impose the restrictions that the
scene is intended to be recorded using static cameras, that the cameras in a
multi-view setup overlap and that the lines of sight of the cameras in a multi-
modal setup are close to each other.
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1.7 Outline

This dissertation is organized as follows. Chapter 2 presents the work done
in single-view flame and smoke detection. We present (computational) low-
cost detectors based on visual, thermal and time-of-flight imaging. First, we
perform a thorough study of related work within the domain of video fire de-
tection. Next, we give an in-depth overview of our single-view detectors and
analyze them by including a comparison with related work. Both an objec-
tive (by evaluating the correctness of the detections against a manually created
ground truth) and subjective (visual examples) evaluation is shown.

In Chapter 3, we present a set of novel multi-modal flame and smoke de-
tection techniques that combine the different kinds of information provided
by visual, thermal, and depth sensors. Again, we elaborate on related work,
presenting several multi-modal vision applications, with a strong focus on the
underlying techniques that can be of use for multi-modal fire detection. The
registration of multi-modal images is also briefly touched and important con-
cepts for this dissertation are explained. Subsequently, we present our multi-
modal flame and smoke detectors. Next, as in Chapter 2, we compare the
proposed algorithms with related work and discuss the performance (in terms
of objective and subjective results).

Chapter 4 focuses on multi-view object localization and shows how this is
applicable to automatic fire analysis. Our work to solve the fire localization
problem is done in the domain of homography based plane slicing. We present
a novel framework for video-based fire analysis which, in a later stadium, can
also be used for fire forecasting. The framework fuses low-cost video fire de-
tection results of multiple cameras into a grid of virtual sensor points, called
the ‘FireCube’. Using the FireCube, the location of the fire, its size, its prop-
agation and its direction can accurately be estimated. Finally, Chapter 5 lists
the conclusions of this dissertation and points out directions for future work.
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Overview publications

The work described in this dissertation has resulted in a number of publications
listed in the Science Citation Index: one paper is published in Elsevier’s Fire
Safety Journal and another paper is accepted for publication in Springer’s Ma-
chine Vision and Applications (both as a first author). Four other papers are un-
der review with Springer’s Multimedia Tools and Applications, Sage’s Journal
of Fire Sciences, Springer’s Fire Technology and Elsevier’s Fire Safety Jour-
nal respectively. Our work also contributed to a book chapter (as a first author)
in Intech’s Video Surveillance book. Next to this, the work described in this
dissertation contributed to 16 papers as first author and 7 as co-author, which
were presented at international conferences. Lastly, our work is also high-
lighted in an annual report and newsletter of the EGOLF (The European Group
of Organizations for Fire testing, Inspection and Certification) and IAFSS (In-
ternational Association for Fire Safety Science) community. A detailed list of
all the publications can be found in the Publications section at the end of this
dissertation.

On November 17th 2011, the proposed work also won the Fireforum
Award 2011. More info/photos can be found on the Fireforum website:
http://www.fireforumawards.be/.
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Chapter 2

Video fire detection

Based on the underlying techniques of the state-of-the-art (SOTA) algorithms
and the results of real-world experiments, we propose a set of novel video fire
detection (VFD) algorithms. Our main contribution is the exploration of the
added value of infrared (IR) and time-of-flight (TOF) fire detection. The latter
one, i.e., TOF fire detection, is the first attempt ever. In order to keep the
processing cost low, i.e., to ensure real-time detection, a set of computational
‘low-cost’ fire features, which uniquely describe smoke and flames, is selected
for each sensor type individually. Experiments show that this feature based
approach gives good results for each of the proposed single sensor detectors.

2.1 Introduction

Video processing techniques for automatic flame and smoke detection have
become a hot topic in computer vision during the last decade. Several vision-
based detection algorithms that have been proposed in literature have led to a
large amount of VFD algorithms that can be used to detect the presence of fire
at an early stage. Section 2.2 focuses on the SOTA of these VFD algorithms
in the visible spectral range. Due to noise, shadows, illumination changes and
other visual artifacts, developing a reliable VFD system is, however, shown
to be a huge challenge when only using ‘ordinary’ video. As such, the use
of other types of sensors started to be explored in the last decade. Instead of
dealing with ever more complex visual fire detection algorithms, these new
approaches perform fire detection using IR imaging sensors, which operate
in short-, mid- or long-wave infrared spectral range. The research in these
spectral ranges is also discussed in our SOTA-study. As we believe, and will
experimentally show, that a TOF sensor can also be used for fire detection, the
SOTA study finishes with an overview on TOF based video surveillance.
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Section 2.3 proposes our novel (computational) low-cost visual flame and
smoke detection algorithms. In order to ensure real-time detection, the compu-
tational cost of both algorithms is kept as low as possible. They both consist of
only two building blocks: a moving object detection and a set of ‘low-cost’ fire
features, which uniquely describe smoke and flames. By analyzing the values
of these features, a fire alarm can be raised. Subsequently, Section 2.4 presents
our thermal long-wave infrared (LWIR) flame detector, which mainly reuses
most of the ‘visual’ building blocks. Additionally, the moving object detection
is extended with a hot object segmentation step to extract the hottest objects
out of the set of LWIR foreground (FG) objects. Only these hot FG objects
are further analyzed using the set of LWIR flame features. A fire alarm is also
raised on the basis of the values of these features.

Our SOTA study of visible and IR fire detectors shows that most detectors
start from simple background (BG) subtraction in spatial domain, e.g., frame
differencing and running average. Hence, the influence of the BG model in
VFD is not yet fully explored. As such, Section 2.5 describes a first attempt in
this direction and investigates the added value of a discrete wavelet transform
(DWT) based BG subtraction method for VFD.

Next, Section 2.6 proposes our novel TOF based flame detector. To the
best of our knowledge this is the first attempt to develop a fire detection sys-
tem based on the use of a TOF depth sensor. The proposed detector focuses on
both the depth and amplitude image of a TOF camera. Using this multi-modal
information, experiments have shown that flames can be detected very accu-
rately. At the end of this section, first steps towards TOF-camera based smoke
detection are also discussed. Finally, Section 2.8 finishes this chapter and lists
the conclusions and suggestions for future work.

2.2 State-of-the art in video fire detection

2.2.1 Video fire detection in visible/visual spectral range

Over the last years, the number of papers about visual fire detection in the com-
puter vision literature is growing exponentially [1]. As is, this relatively new
subject in vision research is in full progress and has already produced promis-
ing results. A chronological overview of the state-of-the-art, i.e., a collection
of frequently referenced papers, is presented in Tables 2.1, 2.2 and 2.3. For
each of these papers we investigated the underlying algorithms and checked
the appropriate techniques. In the following, we will discuss each of these
detection techniques and analyze their use in the listed papers.
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A. Color detection

Color detection was one of the first detection techniques used in VFD and
is still by far the most popular. The majority of the color-based approaches in
VFD makes use of RGB color space, sometimes in combination with HSI/HSV
saturation [32, 46, 49, 50]. The main reason for using RGB is the equality in
RGB values (R ≈ G ≈ B) of smoke pixels and the easily distinguishable
red-yellow range (R ≥ G � B) of flames, as is shown in Fig. 2.1. The ma-
jor rule-based techniques used to detect the fire colored pixels are Gaussian-
smoothed color histograms [29], statistically generated color models [37], and
blending functions [42]. Although the test results of color-based fire detection
in the referenced work seems promising at first, the variability in color, den-
sity, lighting, and background do raise questions about its applicability in real
world detection systems, especially for smoke detection. A far more interest-
ing color-based smoke detection mechanism seems the detection of chromi-
nance decrease [36], which is also used by our visual flame detector presented
in Section 2.3.2.

Figure 2.1: Color detection: smoke and flame crop show smoke RGB equality and
easily distinguishable red-yellow range (R ≥ G � B) of flames. (sequence from the
IBBT ISYSS project [59])
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B. Moving object detection

Moving object detection is the second technique that is frequently used as a
first step in VFD to eliminate the disturbance of stationary non-smoke objects.
In order to detect possible motion, which may be caused from fire, the moving
part in the current video frame is detected by means of a motion segmenta-
tion algorithm. To determine if the motion is due to smoke or an ordinary
moving object, further analysis of moving regions is necessary. The most ef-
fective algorithms to perform moving object detection are background (BG)
subtraction [35, 36, 38–40, 42–44, 49, 50, 52, 56], temporal differencing [41],
and optical flow analysis [30, 31, 51].

In Fig. 2.2, an example is shown of BG subtraction using the dynamic BG
model proposed by Collins et al. [60]. This model has already been used in
many of the works listed in Tables 2.1, 2.2 and 2.3, and is discussed in detail
in Section 2.5. As can be seen, this simple BG subtraction performs well
for ordinary moving objects. The moving person can easily been extracted
from the background and the small illumination problems on the ceiling can be
removed using clean-up post-processing techniques. For flames, however, the
background subtraction does not generate appropriate results, as it also detects
the reflections of the flames and the illumination change of the scene as part
of the moving object(s). This is probably one of the most challenging visual-
related problems video fire analysis is faced with in indoor environments.

Figure 2.2: Moving object detection: background subtraction using dynamic back-
ground model. (sequence from the CAR PARK FIRE SAFETY project [28])
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C. Flicker/Energy (wavelet) analysis

Other frequently used fire detection techniques are flicker detection [34, 35,
40, 46, 49, 50, 52] and wavelet-based energy analysis [36, 42, 43, 48, 53, 61].
Both focus on the temporal behavior of flames and smoke. Flickering is the
temporal periodicity with which pixels appear and disappear at the edges of
turbulent flames. For turbulent flames, the research in [38, 40] shows exper-
imentally that the flicker frequency is around 10Hz and that it is not greatly
affected by the burning material and the burner. As such, these works propose
to use frequency analysis to differentiate flames from other moving objects.
However, due to the time-consuming transformation from the time domain
to the frequency domain, and due to the fact that Yang and Wang [62] and
Toreyin et al. [36] observed that the flame flicker process is far from periodic,
i.e., flames generally oscillate with a frequency in the range of 0.5 - 20Hz, the
time domain analysis of the oscillation frequency by Chen et al. [49] seems
more appropriate. For smoke, the flicker frequency is even more time-varying.
As such, smoke flicker detection does not seem to be a very reliable technique.

More interesting for detecting the temporal behavior of smoke is wavelet
based energy analysis. As smoke gradually smoothens the edges in an im-
age, Toreyin et al. [36] found the energy variation between background and
current image as a clue to detect the presence of smoke. In order to evaluate
the energy variation, they use the Discrete Wavelet Transform (DWT). The
DWT is a multi-resolution decomposition of the image obtained by convolv-
ing the intensity image with several filter banks. The 9/7 Daubechies-based
DWT decomposition, shown in Fig. 2.3, produces four wavelet subimages:
the compressed version of the original image Ct , and the horizontal, vertical
and diagonal high frequency images Ht, Vt, and Dt. The energy (Eq. 2.1) is
evaluated blockwise dividing the image It in blocks bk of arbitrary size, and
summing up the square contribution of each high-frequency, i.e., high detail,
wavelet subimage:

E(bk, It) =
∑
i,j∈bk

H2
t (i, j) + V 2

t (i, j) +D2
t (i, j) . (2.1)

As the energy value of a specific block varies significantly over time in
the presence of smoke, temporal analysis of the ratio between the current input
frame energy and the background energy is used to detect the smoke (Fig. 2.3).
This wavelet-based energy analysis is also used by the visual smoke detector
proposed in Section 2.3.2.
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Figure 2.3: DWT based energy analysis: in case of smoke the ratio between the input
frame energy and the BG energy decreases and shows a high degree of disorder.

D. Spatial difference analysis

Fire also has the unique characteristic that it does not remain a steady color,
i.e., the flames are composed of several varying colors within a small area.
Spatial difference analysis [35,46,50,54] focuses on this characteristic. Using
range filters [46], variance/histogram analysis [54], or spatial wavelet analy-
sis [35, 50], the spatial color variations in pixel values are analyzed to elim-
inate ordinary fire-colored objects with a solid flame color. In Fig. 2.4 the
concept of spatial difference analysis is further illustrated by means of a his-
togram based approach, which focuses on the standard deviation of the green
color band. It was found by Qi and Ebert [46] that this color band is the most
discriminative for recognizing the spatial color variation of flames. This can
also be seen by analyzing the histograms: green values vary more than red and
blue values. If the standard deviation of the green color band exceeds tσ = 50
(∼ Borges [54]), the region is labeled as candidate flame. For smoke detection,
on the other hand, experiments revealed that these techniques are not always
applicable, because smoke regions often do not show as high spatial color vari-
ation as flame regions. Furthermore, textured smoke-colored moving objects
are difficult to distinguish from smoke and can cause false detections.
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Figure 2.4: Spatial difference analysis: in case of flames the standard deviation σG
of the green color band of the flame region exceeds tσ = 50 (∼ Borges [54]).

E. Dynamic texture and pattern analysis

Dynamic texture and pattern analysis [51, 55, 57] is closely related to spatial
difference analysis. Recently, these techniques are also gaining importance
in flame and smoke detection. A dynamic texture or pattern, such as smoke,
flames, water or leaves, can be simply defined as a texture with motion [63],
i.e., a spatially repetitive, time-varying visual pattern that forms an image se-
quence with a certain temporal stationarity [64]. Although dynamic textures
are easily observed by the human eye, they are difficult to discern using com-
puter vision methods as the spatial location and extent of dynamic textures
can vary with time and they can be partially transparent. Currently, geomet-
ric, model-based, statistical and motion based techniques are used for dynamic
texture detection [65]. From all these approaches, the motion based tech-
niques, such as the motion vectors based method in [66], are found the most
appropriate [67].

In Fig. 2.5, examples are shown from the dynamic texture detection and
segmentation algorithm by Fazekas et al. [64,67,68], which input videos were
taken from the DynTex dynamic texture databases. [69]. Contours of dynamic
texture regions, e.g., fire, water and steam, are shown in the figure. As the
results show, the DynTex approach is promising, i.e., the dynamic regions are
segmented very well. Due to its high computational cost, this technique is,
however, not used by our low-cost algorithms. If future improvements could
lower this computational cost, e.g., by using hardware accelerators, we encour-
age/plan to use this technique.
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Figure 2.5: Dynamic texture detection: contours of detected dynamic texture regions
are shown in the figure. (Results from DYNTEX dynamic texture detection [69])

F. Disorder analysis

Also interesting for fire detection is the disorder analysis of smoke and flame
regions over time. Some examples of frequently used metrics are random-
ness of area size [45, 54], boundary roughness [33, 36, 50, 54], and boundary
area disorder [40]. Although those metrics differ in definition, the outcome of
each of them is almost identical. In our visible smoke detector (Section 2.3.2),
disorder analysis of the Boundary Area Roughness (BAR) is used, which is de-
termined by relating the perimeter of the region to the square root of the area
(Fig. 2.6). Another, slightly different technique for disorder analysis is the
histogram based orientation accumulation by Yuan [44]. This technique also
produces good disorder detection results, but it is computationally more com-
plex than the former methods. Related to the disorder analysis is the growing
of smoke and flame regions in the early stage of a fire. In [53, 56], for exam-
ple, region-of-interest growing is used to detect this fire related characteristic.
Compared to disorder metrics, however, growth analysis is less effective in
detecting the smoke.

Figure 2.6: Boundary area roughness of consecutive flame regions.
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G. Subblocking, training, and clean-up post-processing

Although not directly related to fire characteristics, subblocking, training, and
clean-up post-processing are three modules which are commonly used to sim-
plify and improve the detection process.

Subblocking [42–44, 47, 48, 55] reduces measurement disturbances, i.e.,
filters out errors and measurements inaccuracies. Input images are subdivided
in ‘n x n’ blocks, mostly 16x16 pixels, and a block value is computed as the
average of all the pixel values in the block. Thereafter, further analysis is
performed on block level instead of on pixel level.

Training is used to create background [39, 43, 49] and color models [29,
39,49,52,56,58], which augment ordinary moving object detection and color-
based fire detection, as they use a probabilistic approach instead of a ’naive’
threshold. Over the last years, more complicated training (∼ classifier) mod-
ules, such as Bayesian classifiers [52, 54], neural networks [51, 57], Markov
models [50, 55] and support vector machines [48], are also started to be used.
Due to their high computational cost, however, they are not covered in this
dissertation.

Finally, clean-up post-processing, like median filtering, morphological op-
erations [70], and clustering [58], is mostly used as a final step to remove
outliers and to group neighboring elements.

H. Concluding remarks

In order to improve the detection performance, the majority of the referred
works use a combination of the discussed fire features. Depending the fire/en-
vironmental characteristics, one combination of features will outperform the
other and vice versa. Furthermore, it is also important to mention that, al-
though the reported results in the SOTA show that ordinary video promises
good fire detection results, our experiments revealed that vision-based detec-
tors still suffer from a significant amount of missed detections and false alarms.
The main cause of both problems is the fact that visual detection is often
subject to constraints regarding the scene under investigation, e.g., changing
environmental conditions, and the target characteristics. To avoid the disad-
vantages of visual sensors, the use of other types of sensors is started to be
explored in the last decade. Instead of dealing with ever more complex visual
fire detection algorithms, the majority of these new approaches performs fire
detection using infrared imaging sensors.
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2.2.2 Video fire detection in infrared spectral range

When light conditions are bad or the color of the target is similar to the back-
ground, IR vision is a fundamental aid. Even other visual-specific object de-
tection problems, such as shadows, do not cause problems in IR [71]. Further-
more, due to the fact that IR imaging is heading in the direction of higher res-
olution, increased sensitivity and higher speed, it is already used successfully
as an alternative for ordinary video in many video surveillance applications,
e.g., traffic safety, airport security and material inspection. As manufacturers
ensure reduction of price in time, it is even expected that this number of IR
imaging applications will further increase significantly in the near future [72].

Although the trend towards IR-based video analysis is noticeable, the num-
ber of papers about IR-based fire detection is still limited [73–77]. As this is
a relatively new subject in vision research, it has still a long way to go. Nev-
ertheless, the results from existing work already seem very promising and en-
sure the feasibility of IR video in fire detection. Owrutsky et al. [73] work
in the near infrared (NIR) spectral range and compare the global luminosity
L, which is the sum of the pixel intensities of the current frame, to a refer-
ence luminosity Lb and a threshold Lth. If there are a number of consecutive
frames whereL exceeds the persistence criterionLb+Lth, the system goes into
alarm. Although this fairly simple algorithm seems to produce good results in
the reported experiments, its limited constraints do raise questions about its
applicability in large open uncontrolled public places.

Toreyin et al. [74] detect flames in IR by searching for bright-looking mov-
ing objects with rapid time-varying contours. A wavelet domain analysis of the
1D-curve representation of the contours is used to detect the high frequency na-
ture of the boundary of a fire region. In addition, the temporal behavior of the
region is analyzed using a Hidden Markov Model (HMM). The combination
of both spatial and temporal clues seems more appropriate than the luminosity
approach and, according to the authors, greatly reduces false alarms caused by
ordinary bright moving objects. A similar combination of temporal and spa-
tial features is also used by Bosch et al. [75]. Hotspots, i.e., candidate flame
regions, are detected by automatic histogram-based image thresholding. By
analyzing the intensity, signature, and orientation of these resulting hot ob-
jects’ regions, discrimination between flames and other objects is made. The
proposed IR-based fire detector (Section 2.4) mainly follows the latter feature-
based strategy, but contrary to Bosch et al.’s work a dynamic background sub-
traction method is used, which is more suitable to cope with the time-varying
characteristics of dynamic scenes. Also, by changing the set of features and
combining their values into a global fire risk value, a decrease in computational
cost is achieved with no negative effect on the detection results.



40 Video fire detection (VFD)

To conclude the SOTA study on IR fire detection, it is important to mention
that IR imaging has its own specific limitations, such as thermal reflections, IR-
blocking and thermal-distance problems. In some situations IR based detection
will perform better than visible VFD, but under other circumstances, visible
VFD can improve IR flame detection. As such, it is our strong belief that only
by combining multi-modal video information higher detection accuracy can
be achieved under all circumstances. Each sensor type has its own specific
limitations, which only can be compensated by other types of sensors. This is
further discussed in Chapter 3.

2.2.3 Video object detection using time-of-flight imaging

To the best of our knowledge, the TOF based flame and smoke detection, which
is described further, is the first attempt to develop a fire detection system based
on the use of a TOF depth sensor. Nevertheless, the use of TOF cameras for
video analysis is not new.

A. Time-of-flight based video surveillance

Recently, as an alternative for IR and visual sensors, TOF imaging sensors are
started to be used as a way to improve everyday video analysis tasks. The
results of these first approaches already seem very promising and ensure the
feasibility of TOF imaging in other domains, such as fire detection. So far,
TOF imaging devices are used for:

• Video surveillance: Hügli and Zamofing [78] explore a remedy to shad-
ows and illumination problems in ‘conventional’ video surveillance by
using range cameras. Tanner et al. [79] and Bevilacqua et al. [80] pro-
pose a TOF-based improvement for the detection, tracking and counting
of people. Similarly, Grassi et al. [81] fuse TOF and IR images to detect
pedestrians and to classify them according to their moving direction and
relative speed. Tombari et al. [82] detect graffiti by looking for station-
ary changes of brightness that do not correspond to changes in depth.

• Image/video segmentation: In [83], Bleiweiss et al. state that the fu-
sion of depth and color images results in significant improvements in
segmentation of challenging sequences. For example, in tracking algo-
rithms [84], segmentation is performed easily using a combination of a
visual and a depth classifier, which is shown to be more functional in
cluttered scenes.
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• Face detection/recognition: Hansen et al. [85] improve the performance
of face detection by using both depth and gray scale images; Meers et
al. [86] generate accurate TOF-based 3D face prints, which are suitable
for face recognition with minimal data and search times.

• (Deviceless) gaming: TOF imaging also increases the gaming immer-
sion, as with this technology, people can play video games using their
body as controllers. This is done by markerless motion capture, i.e.,
tracking and gesture recognition, using a single depth sensor. The sen-
sor smoothly projects the player’s movements onto the gaming char-
acter. Recently, several companies, e.g., Omek Interactive and Soft-
kinetic, started to provide commercially available TOF technology for
gesture-based video gaming. Furthermore, Microsoft also focuses on
this new way of gaming with its recently launched TOF-like camera,
called Kinect.

• Human Computer Interaction: TOF cameras also pave the way to new
types of interfaces that make use of gesture recognition [87] or the user’s
head pose and facial features [86]. These novel interfaces can be used in
a lot of systems, e.g., view control in 3D simulation programs, video
conferencing, support systems for the disabled and interactive table-
tops [88], which increase the attractiveness of board games.

• Other applications: e-health (e.g., fall detection [89]), interactive shop-
ping and automotive applications (e.g., driving assistance and safety
functions such as collision avoidance [90, 91]).

B. Time-of-flight imaging: working principle

The working principle of TOF imaging is shown in Fig. 2.7. In order to mea-
sure the depth for every pixel in the image, the TOF camera is surrounded
by infrared LEDs which illuminate the scene with a frequency modulated IR
signal. This signal is reflected on the scene, and the camera measures the
roundtrip time t of the signal. If the emitter and the receiver are punctual and
located at the same place, then ∆t allows us to measure the depth of each pixel,
as the depth d = c∆t/2, where c is the signal’s speed (c ' 3 ∗ 108m/s for
light). Simultaneously, the camera also measures the strength of the reflected
infrared signal, i.e., its amplitude, which is an indicator about the accuracy of
the distance estimation [87].
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Figure 2.7: Working principle of TOF imaging: Modulated light is emitted from IR
LEDs on the sensor. Light is reflected on the object and captured by the sensor. The
time between emission and reception and the measured amplitude is used to generate
the depth and the intensity images.

As the depth and amplitude information is obtained using the same sen-
sor, the depth map (Fig. 2.8a) and the amplitude image (Fig. 2.8b) are aligned
on each other (Fig. 2.8c). Compared to other multi-modal detectors, no addi-
tional processing is required for correspondence matching, which is one of the
strengths of the TOF sensor. Other advantages of TOF imaging are:

• Not sensitive to light changes/shadows: the TOF camera uses its own
(invisible) light, which simplifies moving object detection a lot.

• Minimal amount of post-processing, giving application-processing more
time for real time detection.

• The depth map, of which the information represents the physical proper-
ties of object location and shape, can help in dividing the objects during
occlusion or partial overlapping [92].

• Low price compared to other IR-based video surveillance cameras.

In general, one can conclude that time-of-flight data compensates for the
disadvantages and weaknesses, e.g., noise and other problematic artifacts,
present in other data [83]. However, time-of-flight imaging also has its dis-
advantages:

• Low spatial resolution: The average commercially available TOF cam-
era has a QCIF resolution (176× 144 pixels), which is rather low. How-
ever, as with traditional imaging technology, resolution is increasing
steadily with each new model.
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Figure 2.8: Correspondence matching between (a) TOF depth map and (b) amplitude
image; (c) registration check. As a side note, this figure also shows a color-depth bar,
which clarifies the meaning of the ‘depth colors’ in the depth maps.

• Measurement artifacts: Objects too close can be poorly illuminated lead-
ing to low quality range/depth measurements (Fig. 2.9a). Significant
motion can also cause corrupt range/amplitude data, because the scene
may change during consecutive range acquisitions. The sensor also has
a limited ‘non-ambiguity range’ (< 10m) before the signals get out of
phase (Fig. 2.9b). In small rooms, this is no problem, but in large rooms
this can do raise problems.

• Need for active illumination: This increases power consumption and
physical size, complicates thermal dissipation, but perhaps most impor-
tantly, limits the useful operating distance of the cameras. However, the
proposed detectors can also focus on the IR emitted by the flames them-
selves. This way, the active illumination can (probably) be switched off.

C. Time-of-flight based fire detection?

Using a depth sensor like TOF camera to detect fire is not immediately in-
tuitive, i.e., it is not obvious to link depth sensors, like TOF cameras, to fire
detection. However, these kind of cameras focus on new object characteristics:
depth, amplitude and reflectivity. As we expected that these ‘new’ character-
istics could possibly be linked to flame characteristics, it seemed worth inves-
tigating this new image modalities. This was also the reason why we started
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investigating thermal (LW)IR cameras. Furthermore, TOF cameras are not
sensitive to light changes/shadows, need minimal amount of post-processing
and have a low purchasing cost. Since they are also volume sensors, their infor-
mation can easily be mapped on the other types of sensors that are investigated
in our research.

Based on preliminary experiments with a Panasonic D-Imager [93], of
which some exemplary TOF flame images are shown in Fig. 2.10, it is already
possible to state that TOF cameras have great potential for flame detection in
indoor environments. Flames produce a lot of measurement artifacts (i.e., TOF
noise), which most likely can be attributed to the emitted infrared (IR) light of
the flames themselves. Contrarily to ordinary objects, like people, the depth of
flames changes very fast over time. Furthermore, the amplitude of the bound-
ary pixels of flames shows a high degree of disorder. For smoke, on the other
hand, the experiments do not directly show appropriate features. However, fur-
ther testing (Section 2.6.2) will show that TOF-based smoke detection is also
possible. Finally, the experiments show that in outdoor situations, outside the
range of the TOF camera, and in case that smoke appears in the field of view
of the TOF camera, the TOF depth map becomes unreliable. In order to cope
with this problem, a multi-modal visual-TOF flame detector is proposed in the
next chapter (Section 3.6).

Figure 2.9: Measurement artifacts of TOF sensor: (a) poor illumination and (b) out
of phase problem.
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Figure 2.10: Exemplary TOF flame images: (a) depth maps and (b) corresponding
amplitude images; (c) ordinary video (not registered).

2.3 Visual flame/smoke detection

Based on our experimental results [94,95] and the discussed state-of-the-art, a
computational low-cost flame and smoke detection algorithm (Fig. 2.11) for vi-
sual VFD is presented in this Section. In order to keep the processing cost low,
i.e., to ensure real-time detection, both detectors consist of only two building
blocks: a moving object detection and a set of ‘low-complexity’ fire features,
which uniquely describe smoke and flames. By analyzing the values of these
features, a fire alarm can be raised. As will be shown, these (computational)
low-cost algorithms yield good detection results, which are comparable to, and
sometimes better than, the results of the investigated state-of-the-art. Hence,
in addition to their low computational cost, they outperform the SOTA algo-
rithms.
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2.3.1 Computational low-cost flame feature analysis

The proposed flame detection starts with a dynamic background (BG) subtrac-
tion [35, 60], which extracts moving objects by subtracting the video frames
with everything in the scene that remains constant over time, i.e., the esti-
mated background. Next, to avoid unnecessary computational work and to
decrease the number of false alarms caused by noisy objects, the temporal fil-
tering removes objects which are not detected over multiple frames. Each of
the remaining foreground (FG) objects in the video images is then further an-
alyzed using a set of visual flame features, i.e., the bounding box disorder, the
principal orientation disorder and the flame color rate. In the following sub-
sections, detailed information is given on each of these visual flame features
and how they are combined into a global flame risk value. For more detailed
information on the BG subtraction, the reader is referred to Section 2.5.

A. Bounding box disorder (BBD)

Experiments (Fig. 2.12), on a set of fire and non-fire video sequences with
varying environmental characteristics, revealed that the bounding box BB of
flames varies considerably over time in both directions and that this variation
shows a high degree of disorder. As such, the BBD (Eq. 2.2) is chosen as a
feature to distinguish between flames and other ‘moving’ objects:

BBD =
|extrema(BBwidth

1 :N )|+ |extrema(BBheight
1 :N )|

N
. (2.2)

The BBD is related to the number of extremes, i.e., local maxima and min-
ima, in the set of N consecutive BBwidth and BBheight data points (where a
data point is the measured value at frame number t in time). By smoothing
these data points using a moving average filter, small differences between con-
secutive points are filtered out and are not taken into account in the extrema
calculation, which increases the strength of the feature. Flames, with a high
number of extremes, will have a BBD close to 1, while for more static objects
it will be near to 0. Important to mention is that all the flame and smoke fea-
tures that are discussed in this chapter follow the same ‘feature strategy’, i.e.,
the feature values of flames/smoke objects will always be close to 1, while for
more static objects it will be near to 0.
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Figure 2.12: Bounding box disorder of flames (a,b) and moving person (c,d).

B. Principal orientation disorder (POD)

During our experiments on a set of fire and non-fire video sequences with vary-
ing environmental characteristics, we also found that the disorder in principal
orientation is remarkably higher for flames than for more static objects like
people (as is shown in Fig. 2.13). This orientation equals the angle α between
the x-axis and the major axis of the ellipse that has the same second-moments
as the object region. The POD (Eq. 2.3) focuses on this orientation disorder
and is calculated in a similar way as the BBD :

POD =
|extrema(α1:N )|

N/2
. (2.3)

C. Flame color rate (FCR)

Based on our experiments and the work of others [32,46], it is also reasonable
to assume that the color of flames belongs to the red-yellow color range. The
flame color rate FCR focuses on this color-related aspect of flames in order to
eliminate non-flame-colored objects. The FCR (Eq. 2.4) is defined as the ratio
of the number of pixels #R−Y (Ω) within the red-yellow range (R ≥ G� B)
and the total number of pixels #pixels(Ω) within the object region Ω:
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Figure 2.13: Principal orientation disorder of flames (a) and moving person (b).

FCR =
#R−Y (Ω)

#pixels(Ω)
. (2.4)

Furthermore, experiments showed that the flame color does not remain
steady, i.e., flames are composed of several varying colors. If necessary, one
can also incorporate this color-changing aspect of flames in order to better
eliminate ordinary flame-colored objects with a solid flame color. However,
since we want to keep the proposed algorithm low-cost, the detector already
performs well and preliminary experiments show that the gain of using this
color-changing feature is limited, this is not incorporated in our detector.

D. Global flame risk value

Each of the proposed visual flame features possesses a value between 0 and
1, indicating whether the object has the flame characteristic. The global flame
risk value P visualflame (Eq. 2.5) combines these different features, i.e., equals the
average of the three feature values, and indicates whether the object should be
classified as flames. P visualflame is defined as follows:

P visualflame =
BBD + POD + FCR

3
. (2.5)

In our experiments it was found that a P visualflame of 0.7 is an appropriate value
to generate the fire alarm. As such, the tflame threshold is set to 0.7. If the
P visualflame of an object exceeds tflame, the frame in which it appears is labeled as
fire. The sensitivity of tflame, however, needs to be further investigated. Most
important is that, based on the flame risk value, operators can concentrate their
attention on the sequences which most probably contain flames.
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2.3.2 Low-cost smoke feature analysis

As can be seen in (Fig. 2.11), the smoke detection starts with the same moving
object segmentation and temporal filtering as the flame detection algorithm.
Next, a set of low-cost visual smoke features, i.e., the boundary-area disor-
der, the energy disorder and the chrominance disorder, is used to analyze the
remaining FG objects. Similar as for the BBD and the POD in the flame de-
tection algorithm, the selected features vary considerably over time in case of
a smoke object. As such, they are appropriate features to distinguish between
smoke and other objects. Finally, the values of these features are combined
into a global smoke risk value.

Due to the dynamic character of smoke, the perimeter and the area of
smoke objects show a high degree of disorder [40]. By temporal analysis of
the boundary-area roughness BAR, which focuses on the areaA and perimeter
P of the FG object (Eq. 2.6), this disorder can be detected. The boundary-area
disorder BAD is calculated in a similar way as the flame BBD and POD fea-
tures and is related to the number of extrema in the set of N consecutive BAR
data points:

BAR =
P

2
√
πA

,

BAD =
|extrema(BAR1 :N )|

N/2
.

(2.6)

The energy disorder feature focuses on the temporal behavior of the energy
within smoke regions. In order to measure the energy E, the same discrete
wavelet transform (DWT) based function as in the work of Calderara and Pic-
cinini [42, 43] is used. In presence of smoke, the energy value of the smoke
region varies significantly over time. Using the Energy Disorder ED (Eq. 2.7),
which is related to the number of extrema in the set of N consecutive E data
points, this energy disorder is measured:

ED =
|extrema(E1 :N )|

N/2
. (2.7)

Experiments also revealed that the chrominance values of smoke regions
change a lot in the beginning of a fire. The chrominance disorder CD focuses
on this chrominance-related behavior of smoke and is based on the number of
extrema in the average chrominance value C of the smoke region:
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CD =
|extrema(C1 :N )|

N/2
. (2.8)

Each of the proposed smoke features also possesses a value between 0
(non-smoke) and 1 (smoke), indicating whether the object should be classified
as non-smoke or smoke respectively. As such, the global smoke risk value
can be calculated in the same way as the global flame risk value. The Psmoke
(Eq. 2.9) equals the average of the boundary-area disorder BAD , the energy
disorder ED and the chrominance disorder CD . Based on this global risk
value, fire alarm is given if the risk value exceeds the smoke threshold tsmoke
of 0.6, which was found experimentally. The sensitivity of tsmoke, however,
also needs to be further investigated. P visualsmoke is defined as follows:

P visualsmoke =
BAD + ED + CD

3
. (2.9)

2.3.3 Evaluation of (single-view) smoke and flame detector

The video images in Fig. 2.14 are some exemplary frames of the fire and non-
fire realistic video sequences which were captured to test the proposed flame
and smoke detection algorithm. As can be seen, different types of fires were in-
vestigated. This gives us the opportunity to ensure that the proposed detectors
are suited for different environments and will work under different conditions.

In order to objectively evaluate the detection results of the proposed algo-
rithms, and to compare them to other state-of-the art methods, the ‘detection
rate’ metric [94] is used. This metric is comparable to the evaluation methods
used by Celik et al. [96] and Toreyin et al. [35]. The detection rate equals
the ratio of the number of correctly detected frames as fire, i.e., the detected
frames as fire minus the number of falsely detected frames, to the number of
frames with fire in the manually created ground truth (GT).

Table 2.4 summarizes the detection results for all the tested sequences. As
these results indicate, the combination of both algorithms yields good detection
results, which are comparable to, and sometimes better than, the evaluated
state-of-the-art (SOTA) results. The SOTA methods, which were chosen for
comparison with the proposed smoke and flame detection algorithm (Method
1), are a combination of the flame detection method by Celik et al. [96] and
the smoke detection by Toreyin et al. [36] (Method 2) and a combination of
the feature-based flame detection method by Borges et al. [45] and the smoke
detection method by Xiong et al. [40] (Method 3).
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Figure 2.14: Fire and non-fire realistic test sequences.

The reason for making the comparison with the flame detection methods by
Celik and Borges and the smoke detection methods by Toreyin and Xiong, is
that these four methods are commonly referenced methods which contain sim-
ilar techniques as those used by the methods proposed throughout this disser-
tation. However, in order to keep the computational cost low, the complexity
of the techniques used within the proposed detectors is kept as low as possi-
ble, contrarily to those (sometimes) used in the investigated SOTA algorithms.
Also important to mention is that switching the evaluated SOTA combinations
has almost no effect on the combined detection results.

To end this section, Fig. 2.15 gives some examples of false positive frames,
which were on the basis for investigating other image modalities such as time-
of-flight and infrared (thermal) images. In these examples, the BBD and POD
of flames are very low, due to the specific circumstances of the fire.
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Figure 2.15: Examples of VFD false positive frames.

2.4 Infrared flame detection

The proposed infrared flame detector operates in the long-wave infrared
(LWIR) range, as is discussed in Section 2.4.1. Similar to the visual flame
detector, the detection algorithm (Fig. 2.16) starts with a dynamic background
subtraction (Fig. 2.17a-c) and morphological filtering. Then, it automati-
cally extracts hot objects (Fig. 2.17d) from the foreground thermal images
by histogram-based segmentation (Section 2.4.2). After this thermal filtering,
only the relevant hot objects in the scene remain in the foreground. These
objects are then further analyzed using a set of three LWIR fire features:
bounding box disorder, principal orientation disorder, and histogram rough-
ness (Section 2.4.3). The set of features is based on the distinctive geometric,
temporal and spatial disorder characteristics of bright flame regions, which are
easily detectable in LWIR thermal images. By combining the values of these
fast retrievable features we are able to detect the fire at an early stage.

Figure 2.16: Low-cost LWIR flame detector: moving hot object detection and flame
feature analysis.
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Figure 2.17: Hot object segmentation by BG subtraction and histogram-based dy-
namic thresholding.

2.4.1 Selection of the spectral range: SWIR, MWIR or LWIR?

Since SWIR is so near the visible bands, its behavior is similar to visible light.
Energy in this band must be reflected from the scene in order to produce good
imagery, which means there still must be some external illumination. MWIR
and LWIR do not have this restriction since they image radiated energy. Also,
the further we go in the infrared spectrum the more the visual perceptibility
decreases and the thermal perceptibility increases. As such, hot objects like
flames will be best visible and less disturbed by other objects in the LWIR
spectral range (8-12 µm). Thermal cameras in this range only focus on the
temperature: the warmer an object is, the brighter it appears on the images.
Moreover these cameras are not sensitive to dust, smoke, and fog, making it
possible to even see flames through the smoke.
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2.4.2 Histogram-based hot object segmentation

Histogram-based segmentation is used in addition to BG subtraction to ex-
tract the hottest objects out of the set of LWIR FG objects. Only these hot
FG objects are further analyzed using the set of LWIR flame features. Like in
the work of Bosch [75], hot objects representing possible flames are extracted
by separating the highly brightened objects from the less brightened objects
(Fig. 2.17). This segmentation step uses Otsu’s method [97], which automat-
ically performs histogram-based dynamic image thresholding (Fig. 2.18), as-
suming that the image to be processed contains two classes of objects. Itera-
tively the optimum threshold t separating those two classes is calculated so that
their combined spread, i.e., the intra-class variance, is minimal. The intra-class
variance σ2

w(t) is given by:

σ2
w(t) = ω1(t)σ2

1(t) + ω2(t)σ2
2(t) , (2.10)

where weights ωi are the probabilities/cardinality of the two classes separated
by a threshold t and σ2

i are the variances of these classes.

For thermal images, the rather simple Otsu method is sufficient enough to
achieve high accuracy under all circumstances. Of course, more recent thresh-
olding techniques, like local adaptive thresholding [98,99], perform much bet-
ter than Otsu’s method when applied to challenging visual segmentation prob-
lems. However, thermal images do not suffer with the illumination/shadow
related problems which are the main cause of Otsu’s visual thresholding prob-
lems. So, because of its advantages of simple implementation and time saving,
Otsu is chosen in our approach. Important to mention is that the Otsu algorithm
assumes, like many histogram-based algorithms, that its input histogram is bi-
modal (which is mostly the case in our fire videos). However, this can be seen
as one of its limitations as, for example, in the unimodal case segmentations
problems can arise. In order to cope with these problems within our ‘context’,
we suggest to quantize the histogram before performing the thresholding and
to analyze its local maxima(s). If only one maxima exists, e.g., when only
flames or only moving objects occur, no thresholding needs to be performed.

2.4.3 LWIR flame feature analysis

The LWIR flame feature analysis is mainly based on the same features as its
visual counterpart, which was discussed earlier in this chapter. The first two
features, i.e., the BBD and POD, are the same in LWIR as in visual. As such,
they are only briefly discussed. The third feature, i.e., the histogram roughness
(HR), is an LWIR specific feature, and is described more in detail.
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The LWIR experiments revealed that the bounding box of LWIR flame
objects also varies considerably over time in both directions and that this vari-
ation shows a high degree of disorder. As such, the BBD is also chosen as a
feature to distinguish between flames and other hot objects in LWIR. Flames,
with a high number of BB extremes, will have a BBD (Eq. 2.2) close to 1,
while for more static hot objects it will be near to 0. During the experiments,
we also found that the disorder in principal orientation is remarkably higher
for flames than for more static hot objects. For this reason, the LWIR flame
feature analysis also uses the POD feature, which focuses on this orientation
disorder characteristic. Again, flames, with a high number of orientation ex-
tremes, will have a POD (Eq. 2.3) close to 1, while more static hot objects
their POD will be near to 0.

By inspection of the histograms H of hot objects, we observed that his-
tograms of flame regions are very rough (Fig. 2.19). Also, we found that the
intensities of these regions range almost over the whole histogram, while for
non-flame objects these intensities are more centered on some specific inten-
sity bins and have a smaller range. The histogram roughness HR focuses on
these two findings. As Eq. 2.11 shows, the HR equals the mean range of
the histogram multiplied by the average disorder over all the non-zero bins
(which is calculated by extrema analysis and is the indicator of the histogram
roughness over time):

HR =
range(H)

N
∗
|extremabins 6=∅(H)|

N/2
. (2.11)

In Eq. 2.11, the range is the number of bins over which the histogram is spread
and the mean range is the average of these ranges within a time window of N
frames. The extrema() function counts the local maxima and minima in the
set of N consecutive data points.

Figure 2.18: Histogram-based dynamic thresholding.
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Figure 2.19: Histogram roughness of flames (a) and moving person (b).

Each of the proposed LWIR flame features also possesses a value between
0 and 1, indicating whether the object has the LWIR flame characteristic. The
global LWIR flame risk value Pflame (Eq. 2.12) combines these different fea-
tures, i.e., equals the average of the three values, and indicates whether the hot
object should be classified as flames:

PLWIR
flame =

BBD + POD + HR

3
. (2.12)

In our experiments it was found that a global flame risk value of 0.7 is
an appropriate value to generate the fire alarm. As such, the tLWIR

flame threshold
is set to 0.7. If the PLWIR

flame of an object exceeds this threshold, the frame in
which it appears is labeled as fire.
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2.4.4 Experimental results

The proposed LWIR flame detector was tested with a Xenics Gobi-384 LWIR
camera [27], which works in the 8 - 14 µm spectral range. Using the Xen-
ics Xeneth software we were able to extract appropriate grayscale video im-
ages out of the thermal imaging camera. These images were then further ana-
lyzed by our own LWIR detection algorithm. The LWIR images in Fig. 2.20
are some exemplary frames of the fire and non-fire realistic video sequences,
which were captured to test the LWIR flame detection algorithm. For each of
these sequences manually annotated ground truth (GT) was created, at which
the automatic detection results are evaluated.

Table 2.5 summarizes the detection results for all the tested sequences. As
the results indicate, the proposed algorithm already yields good detection re-
sults. For uncontrolled fires, e.g., burning paper, the flame detection rate is
higher than 90% and for controlled fires, e.g., a Bunsen burner, it is around
75%. Furthermore, the number of false detections is very low. Although no
real comparison is made with the discussed SOTA LWIR detection algorithms
(Section 2.2.2), it is expected that the proposed method outperforms the lu-
minosity based method by Owrutsky et al. [73]. Although Owrutsky’s fairly
simple algorithm seems to produce good results in the reported experiments,
its limited constraints do raise questions about its applicability in large open
uncontrolled public places. Since it is a global metric, an object heating up,
like a radiator, can cause a false alarm. In general, this method does not fo-
cus enough on the (real) flame characteristics and just rings the bells (i.e., no
further analysis is possible).

Compared to the object-based methods by Toreyin et al. [74] and Bosch
et al. [75], which also combine both spatial and temporal clues, the proposed
algorithm yields similar results. Contrary to these methods, however, the pro-
posed algorithm is computationally less complex.

The results in Table 2.5 also show that the LWIR detector performs slightly
better than our visual flame detector (Section 2.3.1). However, under other
circumstances (e.g., when there are a lot of thermal reflections), the visible
flame detection can improve the LWIR flame detection. As such, it is our
strong belief that only by further analyzing the detection results using multi-
modal VFD (∼Chapter 3), a ‘better’ detector can be achieved providing high
accuracy under all circumstances.
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2.4.5 Performance of LWIR cameras in a real fire environment?

To end this section, we briefly comment on the performance of LWIR cameras
in a real fire environment. As most of our recordings were performed using
cold smoke generated by a smoking machine or by controlled fires, we did
(mainly due to security reasons) not yet investigate the impact of real fires on
the camera technology. However, it is definitely something that needs further
investigation. The same holds for the other types of cameras that are investi-
gated throughout this dissertation.

If we ask the performance question to thermal imager manufacturers they
ensure incomparable vision, even in very hot, smoke-filled environments (as
could be expected). However, during the car fire tests of the car park fire
project, the fire engineers from the Brandweer Vereniging Vlaanderen [100],
highlighted some limitations of their thermal imager when the smoke layer be-
came to hot. Do we see hot smoke/flames or is it the wall which is heating
up? It was sometimes difficult to say. This triggered us to further investigate
this topic and so we found an article [101] by the National Institute of Stan-
dards and Technology (NIST). In this NIST Technical Note an answer is given
to this performance-related question of LWIR (thermal) cameras in a real fire
environment.

Figure 2.20: LWIR test sequences: (a) Attic - fire and people, (b) Pool fire, (c) Attic
- moving people, (d) Car fire, (e) Corridor and (f) Forklift.
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The Technical Note of NIST starts by reporting that thermal imaging cam-
eras (TIC) are becoming an important tool for many firefighters and other first
responders. However, due to the lack of performance standards for TIC, a wide
variety of designs and capabilities are provided to end users with little consis-
tency in reported performance. In order to understand the performance char-
acteristics of TIC during fire fighting applications, it is critical that a set of per-
formance metrics and standard testing protocols be developed to allow the fire
service to evaluate TICs. This was the reason for NIST to conduct research to
characterize and understand TIC performance. Their research is mainly based
on first responder feedback, literature search, and full- and bench-scale testing
results and serves as a basis for defining testing conditions that challenge TIC
in meaningful ways.

In order to evaluate the TIC’s performance, NIST proposes the following
metrics:

• Contrast: measures how well the thermal imaging camera can represent
temperature differences.

• Effective temperature range: measures the maximum temperature at
which the TIC is able to produce an image.

• Spatial resolution: measures how well the thermal imaging camera can
discern small details.

• Non-uniformity: measures the quantity of noise present in the image.

• Thermal sensitivity: measures the smallest possible temperature differ-
ence within the thermal image.

Based on these metrics, [101] proposes a testing methodology. Following
this methodology, the authors have performed some preliminary experiments
on which they also report in the technical note. One of these experiments is
shown in Fig. 2.21. Three different types of TIC are simultaneously viewing
an identical thermal scene: a long corridor with a heated mannequin on the
floor, and reflective and heated targets mounted on the wall at the end. A fire
room is located adjacent to the corridor on the right. Visual inspection, i.e.,
subjective evaluation, already shows that camera technology has definitely a
big influence on what we see.

Within the proposed testing methodology, NIST also reports on multiple
kind of test setups. In Fig. 2.22, for example, TICs are positioned in the hot
upper layer viewing a target through heavy toluene smoke, and in the lower
layer viewing flames and high heat conditions.



2.4. Infrared flame detection 63

Figure 2.21: NIST experiment on TIC camera technology: camera technology has a
big influence on what we see.

Figure 2.22: NIST test setups: in (a) TIC is positioned in the hot upper layer viewing
a target through heavy toluene smoke, and in (b) TIC is positioned in the lower layer
viewing flames and high heat conditions.

Based on these preliminary experiments, NIST has formulated the follow-
ing conclusions (and recommendations):

• Presence of dust and water vapor do not significantly impair the imaging
performance of TIC, even in high concentrations.

• Hot smoke and flames in the field of view, however, do have a negative
impact on TIC imaging performance. It was found that the TIC detec-
tor technologies tested, an amorphous silicon (ASi), a vanadium oxide
(VOx), and a barium-strontium-titanate (BST), did not perform consis-
tently across the different test conditions. Although the detector tech-
nology alone is not a sufficient indicator of TIC imaging performance, it
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appeared that low heat conditions were more amenable to microbolome-
ters (VOx and Asi) than BST detectors. Conversely, conditions in which
a wider range of gas and surface temperatures are present appear to be
more suitable for BST detector technology.

• Some problems related to the practical application: besides the fire-
related limitations, these devices also have a poor depth perception, i.e.,
it is difficult to judge how far away objects are. An additional limitation
of infrared technology is that, since materials at the same temperature
are shown as the same color, the display will not depict many details
normally viewable in visible light. Finally, firefighters inside the struc-
ture, whether they are using the TIC to assist in fire attack or primary
search, must remember to not become overconfident because this tool
allows them to see in virtual zero visibility.

Based on the above discussed performance metrics, the test methodology
and the experimental test setups proposed by NIST, we plan to pay more atten-
tion to this real fire performance aspect in our future investigations.

2.5 Influence of the background model

Inspection of the several visual and infrared flame and smoke detection al-
gorithms that have been proposed in literature shows that most of them start
from simple background subtraction in spatial domain, e.g., frame differenc-
ing and running average. The influence of the background model, as such,
is not yet fully explored. This section describes a first attempt in this direc-
tion and investigates the added value of a DWT based background subtraction
method for segmenting the input scene during video fire detection. The pro-
posed method focuses on both the high-pass, i.e., energy-rich, and low-pass
images of the DWT input video frames in spatial domain. Experimental re-
sults show that the DWT based method leads to better fire detection results
than non-wavelet based background subtraction methods in both visual and in-
frared spectral range. Especially when there are a lot of flame reflections and
other fire-related illumination changes, less false alarms and missed detections
occur in the wavelet-based setup.

First, each of the ‘traditional’ BG subtraction methods from our evalua-
tion are briefly discussed. Subsequently, the novel DWT based background
subtraction method is discussed more in detail. Finally, all these methods are
evaluated on a set of visual and infrared test videos and results of this evalua-
tion are analyzed.
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2.5.1 Running average based background subtraction

Currently, the majority of fire detectors is based on rather simple dynamic
background subtraction methods, such as the running average based method
which is used in [36,74,75]. This type of background models extracts moving
objects by subtracting the LWIR/video frames with everything in the scene
that remains constant over time, i.e., the estimated background BGn . This
estimation is updated dynamically after each segmentation using:

BGn+1 [x, y] =

{
αBGn [x, y] + (1− α)Fn[x, y] if Fn[x, y]→ BG

BGn [x, y] if Fn[x, y]→ FG ,
(2.13)

where the update parameter α is a time constant that specifies how fast new
information supplants old observations. Here α (=0.95) was chosen close to 1
as in the work of Toreyin et al. [74]. Only pixels which are labeled as BG in
Fn are updated in BGn+1 using their pixel value. FG labeled pixels, on the
other hand, are not updated, i.e., for these pixels BGn+1 = BGn .

2.5.2 Advanced MGM: simple mixture of models (SMM)

Mixture of Gaussians Model (MGM) is one of the most popular background
subtraction techniques, which can handle highly complex, multi-modal scenes
with difficult situations like moving trees and bushes, clutter, noise, and perma-
nent changes of the background. However, although MGM gives good results
in many video surveillance applications, the use of the Gaussian models and
the update scheme are complex.

To overcome the complexity of the traditional MGM, a simple mixture
of models technique (SMM) is proposed by Poppe et al. [102]. The SMM
models consist of an average, an upper and lower threshold, a maximum dif-
ference with the last background value, and an illumination allowance based
on Skellam parameters. In many cases, only performing temporal background
subtraction is insufficient, so SMM is extended with spatial information, i.e.,
fast edge-based image segmentation, to improve the detection results. The
experimental results in [102] show that this advanced MGM method is more
robust than ‘standard’ MGM and more recent techniques, resulting in less false
positives and negatives. This is also the reason why SMM is selected as one
of the non-wavelet based BG subtraction methods in our evaluation. For more
detailed information on SMM, the user is referred to the original work [102].
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2.5.3 Discrete Wavelet Transform based FG extraction

Our novel Discrete Wavelet Transform (DWT) based FG extraction algorithm
is schematized in Fig. 2.23. First, the input video frame is transformed using
a DWT, which convolves the image with several banks of filters. This leads to
a multi-resolution decomposition of the image. Given the input image In, the
decomposition produces four sub-images: the compressed (low-pass) version
of the original image Cn, the horizontal detail (high-pass) image Hn, the ver-
tical detail image Vn and the diagonal detail image Dn. Next, the algorithm
is split up into two parts, which can run simultaneously. The first part further
analyzes the low-pass Cn image and extracts its moving part using a similar
running average based BG subtraction as the one which is described in Sec-
tion 2.5.1. Only its input differs: here also the previous extracted foreground
FGc

n−1 of Cn−1 is used in combination with the compressed BG model. The
second part focuses on the high-pass detail images Hn, Vn and Dn, and com-
bines them into an ‘energy’ image using Eq. 2.1. This kind of energy analysis
is also used with success in [36,42] for flame feature analysis. However, to the
best of our knowledge, it is the first time this is used for BG subtraction.

Figure 2.23: DWT based FG extraction.

Subsequently, the moving part of En is subtracted with the energy BG
model, which is constructed in the same way as the compressed BG model.
Finally, both the compressed and energy moving part are merged and filtered.
Only objects which have overlapping compressed and energy moving parts are
labeled as foreground (FG), i.e., moving object. Some exemplary test results
are shown in Fig. 2.24. As these examples show, flame reflections or fire based
illumination changes do not cause any problem.
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Figure 2.24: Visual and LWIR example of DWT based FG extraction. Orange bound-
ing boxes show detected fire regions.

2.5.4 Evaluation

In order to objectively evaluate the detection results of the proposed wavelet-
based BG subtraction method, and to compare it to state-of-the-art non-wavelet
based moving object detectors, the detection results are evaluated against man-
ually created ground truth (GT) data. Important to mention is that this eval-
uation is done on an object level basis, which is more strict than the more
commonly used frame-based evaluation techniques [103]. The object-based
comparison compares the bounding box (BB) of every detected flame object
to all the BBs of the GT flame objects which occur on the same frame. Based
on all these comparisons we calculate four detection metrics [104]:

precision =
TP

TP + FP
, (2.14)

recall =
TP

TP + FN
, (2.15)

specificity =
TN

TN + FP
, (2.16)

accuracy =
TP + TN

TP + TN + FP + FN
. (2.17)

TP = True Positive; TN = True Negative
FP = False Positive; FN = False Negative
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Table 2.6 summarizes the detection results for all the tested sequences. By
comparing the four detection metrics (Eq. 2.14 - Eq. 2.17) for the investigated
BG subtraction methods, the added value of wavelet versus non-wavelet based
BG subtraction can easily be seen. The higher these metrics score, the better
the flame detector, and more specific its BG subtraction, performs. As the
results indicate, the DWT yields best detection results. It performs especially
better than the investigated state-of-the-art non-wavelet based methods when
light conditions are bad, such as in the car park fire test. By further inspecting
these results one can also see that the overall gain of using wavelet based BG
subtraction is bigger in the visual domain than in the thermal domain. This
is logic, as illumination and light-related problems are visual artifacts, which
do not have much influence on the thermal images. Finally, it is important to
remark that the precision and recall in the human actions is left blank, as the
GT for this sequence is empty. For this sequence, however, it is important to
investigate the specificity, i.e., the true negative rate, since this is an indication
of the number of objects which are falsely detected as flames. Also in this
case, the wavelet-based method outperforms the non-wavelet based methods.
In order to further evaluate the quality of the detectors we have also proposed a
confidence metric in [105], which is related to the BB area overlap (percentage
overlap).

2.6 Time-of-flight based fire detection

The main topic of this section is a novel time-of-flight based fire detection
method for indoor fire detection. The indoor detector is based on the depth
and amplitude image of a time-of-flight camera. Using the information from
both image modalities, flames can be detected very accurately by fast chang-
ing depth and amplitude disorder detection. In order to detect the fast chang-
ing depth, depth differences between consecutive frames are accumulated over
time. Regions which have multiple pixels with a high accumulated depth dif-
ference are labeled as candidate flame regions. Simultaneously, the amplitude
disorder is also investigated. Regions with high accumulative amplitude differ-
ences and high values in all detail images of the amplitude image its discrete
wavelet transform, are also labeled as candidate flame regions. Finally, if one
of the depth and amplitude candidate flame regions overlap, fire alarm is given.

At the end of this section, first steps towards TOF based smoke detection
are also discussed. The proposed histogram based smoke detector mainly fo-
cuses on global changes in the depth maps, which have no influence on the
amplitude images. Preliminary experiments already show the effectiveness of
the proposed approach.
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Table 2.6: Performance evaluation of ‘traditional’ and wavelet-based BG subtraction
methods for visual and LWIR flame detection.

sequence precision recall specificity accuracy
method / range

hexane pool fire

SIMPLE / visual 0 0 0 0
/ IR 0 0 0 0

SMM / visual 0.46 0.44 0 0.29
/ IR 0.97 0.97 0.86 0.95

DWT / visual 0.74 0.74 0.52 0.70
/ IR 0.97 0.92 0.81 0.91

outdoor pit fire

SIMPLE / visual 0.59 0.66 - 0.49
/ IR 0.76 0.82 - 0.68

SMM / visual 0.55 0.89 - 0.52
/ IR 0.84 0.91 - 0.79

DWT / visual 0.81 0.98 - 0.80
/ IR 0.88 0.92 - 0.83

car park fire

SIMPLE / visual 0.58 0.53 0.47 0.52
/ IR 0.92 0.44 0.97 0.63

SMM / visual 0.67 0.58 0.52 0.55
/ IR 0.99 0.42 1 0.65

DWT / visual 0.78 0.58 0.76 0.65
/ IR 0.98 0.52 0.98 0.70

human actions

SIMPLE / visual - - 0.47 0.47
/ IR - - 0.59 0.59

SMM / visual - - 0.54 0.54
/ IR - - 0.66 0.66

DWT / visual - - 0.82 0.82
/ IR - - 0.96 0.96
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Figure 2.25: General scheme of the TOF based flame detector. By combining the
detection results of the fast changing depth detection and the amplitude disorder de-
tection, flames can be detected.

2.6.1 Indoor TOF based flame detector (distance < 10m)

A general scheme of the indoor TOF based flame detector is shown in
Fig. 2.25. The proposed algorithm consists of three stages. The first two
stages, i.e., the fast changing depth detection and the amplitude disorder de-
tection, are processed simultaneously. The last stage, i.e., the region overlap
detection, investigates the overlap between the resulting candidate flame re-
gions of the prior stages. If there is an overlap, fire alarm is given. Because
the proposed algorithm requires reliable depth maps, its detection distance is
limited to the range of the TOF camera, which is between one and ten meter.

A. Fast changing depth detection

The fast changing depth detection starts with calculating the accumulated
frame difference AFDn (Eq. 2.18) between the current depth frame F depthn

and the previous and the next depth frame, i.e., F depthn−1 and F depthn+1 respec-
tively. By rounding the absolute frame differences, the AFDdepth

n is able to
distinguish fast changing flames from more slowly moving ordinary objects.
Pixels which AFDdepth

n is greater than zero, get a label 1 in the candidate
flames image Flamesdepth

n . Other pixels get a label zero:
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AFDdepth
n = b |F depthn − F depthn+1 |+ |F

depth
n − F depthn−1 | e , (2.18)

Flamesdepth
n =

{
1 where AFDdepth

n > 0

0 otherwise .
(2.19)

Next, a morphological closing with a 3 × 3 structuring element connects
neighboring candidate flame pixels, i.e., pixels with a label 1 in Flamesdepth

n .
Subsequently, a morphological opening filters out isolated candidate flame pix-
els using the same structuring element. The resulting connected flame pixel
group(s) of Flamesdepth

n form(s) the depth candidate flame region(s). An ex-
ample of the fast changing depth detection is shown in Fig. 2.26.

B. Amplitude disorder detection

The amplitude disorder detection starts with a similar accumulated frame dif-
ferencing as the one which was used for the fast changing depth detection:

AFDamp
n = b |F ampn − F ampn+1 |+ |F

amp
n − F ampn−1 | e . (2.20)

However, as high AFDamp
n frame differences also occur at the boundary

pixels of ordinary moving objects which are close to the TOF sensor, this fea-
ture alone is not enough for accurate flame detection.

Figure 2.26: Fast changing depth detection: (a) consecutive TOF depth images and
their (b) morphologically filtered accumulated depth difference (Flamesdepthn ).
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In order to distinguish flame pixels from the boundary pixels of ordinary
‘close’ moving objects, which also have high amplitude values when appear-
ing in front of the sensor, the discrete wavelet transform (DWT) [106] of the
amplitude image is also investigated. Experiments (Fig. 2.27) revealed that
flame regions are uniquely characterized by high values in the horizontal H ,
vertical V and diagonal D detail images of the DWT. Ordinary ‘close’ moving
objects do not have this characteristic. For this reason, an AFDamp

n region
Ω with high accumulated amplitude differences is only labeled as candidate
flame region if at least one pixel with a maximal H value (=1), one pixel with a
maximal V value (=1) and one pixel with a maximal D value (=1) can be found
in the object region DWT detail

Ω (which is detected by accumulated frame dif-
ferencing of consecutive amplitude images). Only then it gets a value of 1 in
Flamesamp

n :

DWT detail
Ω =

{
1 if max(HΩ)×max(VΩ)×max(DΩ) = 1

0 otherwise ,
(2.21)

Flamesamp
n =

{
1 where AFDamp

n > 0 AND DWT detail
Ω = 1

0 otherwise .
(2.22)

Analogously as in the fast changing depth detection, the morphological
filtering connects neighboring candidate flame pixels in Flamesamp

n and fil-
ters out isolated candidate flame pixels. The resulting flame pixel group(s) of
Flamesamp

n (Fig. 2.28) form(s) the amplitude candidate flame region(s).

Figure 2.27: Discrete wavelet transform of amplitude image: flames show high values
in horizontal (H), vertical (V) and diagonal (D) detail images.
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Figure 2.28: Amplitude disorder detection: (a) consecutive TOF amplitude images
and their (b) morphologically and DWT filtered accumulated amplitude differences
(Flamesamp

n ).

C. Region overlap detection

This last stage investigates the overlap between the depth and the amplitude
candidate flame region(s), i.e., Flamesdepth

n and Flamesamp
n respectively. Im-

portant to mention is that, in order to do this, the depth map and the amplitude
image need to be registered. However, as they are both obtained using the
same sensor, both TOF outputs are already aligned on each other. In order to
detect the overlap, it is sufficient to perform a logical AND operation between
Flamesamp

n and Flamesdepth
n . If the resulting binary image contains one or

more ‘common’ pixels, i.e., pixels with a value of 1, fire alarm is given. In
Fig. 2.29, an example of this region overlap detection is shown.

D. Experimental results

The TOF camera used in this work is the Panasonic D-Imager [93]. The D-
imager is one of the leading commercial products of its kind. Other appro-
priate TOF cameras are the CanestaVision from Canesta, the SwissRanger
from Mesa Imaging, the PMD[vision] CamCube and the Optricam from
Optrima [107]. The technical specifications of the D-Imager are shown in
Fig. 2.30.
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Figure 2.29: Region overlap detection: (c) logical AND of (a) depth and (b) amplitude
candidate flame regions.

Figure 2.30: D-Imager and its technical specification.
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To illustrate the potential use of the proposed indoor TOF based flame
detector, several realistic fire and non-fire indoor experiments were performed.
An example of these experiments, i.e., the paper fire test, is shown in Fig. 2.31.
As can be seen in the depth maps, the measured depth of flames changes very
fast. Even between two consecutive frames, very high depth differences are
noticeable. In the amplitude images, on the other hand, it can also be seen that
the boundaries of the flames have a very high amplitude.

Simultaneously to the TOF recording with the Panasonic D-Imager, we
also recorded the experiments with an ordinary video camera. As such, the
TOF detection results can be compared to the proposed visible flame detection
algorithm (Section 2.3) and state-of-the-art VFD methods.

The results in Table 2.7 show how robust fire detection in indoor environ-
ments (distance < 10m) can be obtained with relatively simple TOF image
processing. Compared to the VFD detection results of our visible flame detec-
tor, i.e., an average detection rate of 93% and an average false positive rate of
2%, the proposed TOF-based flame detector, with its 96% detection rate and
no false positive detections, performs better for these primary experiments.
The TOF based fire detector, however, is not able to detect the fire in outdoor
situations or outside the range of the TOF camera. Main reason of its failing
is the fact that its depth maps becomes unreliable under these circumstances.
In order to cope with this problem, an outdoor visual-TOF flame detector is
introduced in the next chapter (Section 3.6).

Figure 2.31: Paper fire test: (a) TOF depth map and (b) corresponding amplitude
image of two consecutive frames; (c) ordinary video (not registered).
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Table 2.7: Performance evaluation of indoor TOF-based fire detection.

Video # fire # detected # false TOF flame visible flame
sequence frames fire frames positive detection detection

(GT) detections rate rate

Paper fire 517 496 0 0.96 0.93
Wood fire 1038 1021 0 0.98 0.94
Straw fire 645 611 0 0.95 0.92
People 0 0 0 - -

* detection rate = (# detected fire frames - # false alarms) / # fire frames

The missing 5% detection rate can mainly be attributed to the fact that
the resolution of the TOF camera, for the moment, is too low to detect small
objects over long distances. Very small flames (e.g., in the beginning of the
fire) are, as such, not detected. Furthermore, fire frames will not always have
high detail in H,V,D DWT images. But this is not really a problem, since for
detection/alarming purposes, the flame detection rate should not be 100%. For
the analysis however, this is of course more important.

Since we did not have both LWIR and TOF sensors available at the same
moment, we were not able yet to do a comparison between TOF and LWIR
detection. So, since they have only been tested within different experiments,
it is difficult to compare their behavior for the moment. Depending on the
environment characteristics, however, it is expected that one type of detector
will outperform the other and vice versa. Based on this fact, we state that only
by using multi-modal VFD, a ‘better’ detector can be achieved providing high
accuracy under all circumstances.

2.6.2 TOF based smoke detection

By further analyzing the TOF video sequences of the fire experiments, we no-
ticed that smoke causes a kind of global changing in the depth images. The
observed phenomenon (Fig. 2.32) can best be described as if the scene is float-
ing in depth direction. Furthermore, we noted that these smoke related ‘depth
changes’ have no significant impact on the amplitude images, i.e., the ampli-
tude images remain nearly the same. Based on this TOF related smoke behav-
ior, a novel TOF based smoke detector was started to be developed. Although
this detector is not yet fully evaluated, its preliminary results show that a TOF
sensor will be able to detect smoke when it appears in its field of view.
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A general scheme of the TOF based smoke detector is shown in Fig. 2.33.
The algorithm consists of three stages. The first two stages, i.e., the amplitude
based detection of background blocks and the average depth change detection,
are processed simultaneously. The last step, i.e., the block overlap detection,
checks the overlap between BG amplitude blocks and moving depth blocks.
Overlapping blocks, i.e., blocks with an average depth change which does not
cause changes in the amplitude values, are labeled as candidate smoke. If sev-
eral candidate smoke blocks occur in consecutive images, fire alarm is raised.

The proposed algorithm performs the smoke detection on a block level
instead of on pixel level. Each input frame F deptht and F ampt at time t is subdi-
vided in ‘n x n’ size blocks, in order to reduce measurement disturbances, i.e.,
to filter out errors and measurements inaccuracies. Depending the resolution
of the camera and the scene characteristics, an appropriate blocksize must be
chosen. In our experiments, blocks of 8-by-8 pixels have found to be the most
successful. For each block bdeptht [i, j], an average depth value F deptht [i, j] is
computed as the average of all the pixel values F deptht [x, y] in that block:

F deptht [i, j] =

∑(i+1)∗n−1
x=i∗n

∑(j+1)∗n−1
y=j∗n F deptht [x, y]

n ∗ n
. (2.23)

Figure 2.32: TOF smoke behavior: global change of the scene depth. Average depth
change between (a) start of smoke and (d) smoke at 30s is almost 1 meter.
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Figure 2.33: General scheme of TOF based smoke detector.

A. Amplitude based background detection

Small and large scale fire experiments revealed that smoke has no significant
impact on the amplitude images of a TOF camera. When smoke appears in
the field of view of the TOF camera, the amplitude images remains nearly the
same. In the depth images, contrarily, smoke causes a global changing in the
depth direction (as is discussed further on). In order to detect the non-changing
part of the amplitude images, i.e., the amplitude BG blocks, we perform a kind
of moving object detection algorithm. However, instead of looking for blocks
with certain level of motion, we now look for blocks which do not change
significantly. A BG amplitude block is determined by comparing the amplitude
values of the block bampn [i, j] in the current frame F ampn with the values of the
corresponding block in the BG model BGamp

n . If the sum dif amp
n [i, j] of the

absolute differences of the block pixels (Eq. 2.24) is lower than the dynamic
threshold tampBG [50, 52], the block is labeled as BG block:

dif amp
n [i, j] =

(i+1)∗n−1∑
x=i∗n

(j+1)∗n−1∑
y=j∗n

|F ampn [x, y]− BGamp
n [x, y]| , (2.24)

bampn [i, j]→


BG , if dif amp

n [i, j] < tampBG

FG , otherwise .
(2.25)
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B. Average depth change detection

The average depth change detection performs a temporal analysis of the aver-
age depth values (Eq. 2.23) of the current block bdepthn [i, j] and the previous
blocks bdepthk:n−1[i, j]. If the standard deviation of these average depth values ex-
ceeds the tdepthσ threshold of 0.1, the block is labeled as moving depth block:

bdepthn [i, j]→


MOVING , if σ(bdepthk:n [i, j]) > tdepthσ

NON −MOVING , otherwise .
(2.26)

C. Block overlap detection

The block overlap detection, i.e., the last step of our TOF based smoke de-
tector, checks the overlap between BG amplitude blocks bampn [i, j] and mov-
ing depth blocks bdepthn [i, j]. Overlapping blocks, i.e., blocks with an average
depth change which does not cause changes in the amplitude values, are la-
beled as candidate smoke block:

bn[i, j]→

 SMOKE , if bdepthn [i, j] = MOV ING
and bampn [i, j] = BG

NON − SMOKE , otherwise .
(2.27)

If several, i.e., at least two, candidate smoke blocks occur in three con-
secutive TOF images, fire/smoke alarm is raised. Depending the ‘monitoring
characteristics’, however, the number of candidate smoke possibly needs to be
adjusted, but this is currently out of the scope of our work.

D. Experimental results

In order to evaluate the proposed TOF based smoke detector, we performed
a wood/paper fire and a Christmas tree fire experiment (Fig. 2.34). The first
experiment, i.e., the wood/paper fire, was performed in a garage box of 3-by-7
meter. The Christmas tree fire experiment, on the other hand, was performed in
a car park of 30-by-30 meter. Besides the fire, ordinary moving objects were
also present in each of the sequences. As a preliminary evaluation, we test
how fast the proposed algorithm detects the smoke, and compare it to the GT
smoke start. Results (Table 2.8) show that smoke is detected within less than
10 seconds (if it appears in the field of view of the camera). Although this may
seem long, this is (often) much faster than traditional sensors.
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Figure 2.34: Exemplary depth and amplitude frames of TOF smoke experiments: (a)
wood/paper fire and (b) Christmas tree fire. Smoke causes a kind of global change
of the depth images, which does not influence the amplitude images. Visual images
(right column) are given as a reference.

The reason why it takes longer to detect the wood/paper fire compared
to the Christmas tree fire can most probably be found in the fact that Christ-
mas trees generate much more smoke in the beginning of the fire and will,
as such, faster disturb the sensor. The timing results in Table 2.8 also show
that the TOF based smoke detector achieves quasi similar detection times as
our visible smoke detector (Section 2.3.2). Furthermore, more recent experi-
ments revealed that depending the environment characteristics, the TOF smoke
detector can outperform the visible detector and vice versa. Based on this
fact, we state again that it is our strong belief that only by using multi-modal
VFD (Chapter 3), a ‘better’ detector can be achieved providing high accuracy
under all circumstances. Combining the best of both worlds will always be
a win-win. However, in order to keep the complexity low, the multi-modal
detectors should be low-cost, i.e., the requirement to which all the proposed
single-sensor detectors adhere.
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Table 2.8: Performance evaluation of TOF-based smoke detection.

Video smoke TOF TOF visible
sequence start detected delay detected

(GT) smoke start delay

Wood/paper fire 17s 26s 9s 13s

Christmas tree fire 36s 41s 5s 4s

2.7 General remarks and future improvements

In order to further improve the proposed detection algorithms, future work will
mainly focus on two topics: the investigation/evaluation of feature alternatives
and more advanced strategies to combine the feature values. Related to this,
some general remarks about our feature-based approach are also discussed in
the following two subsections.

2.7.1 Feature combinations and alternatives

As was already indicated in Section 2.3, we use the flame color rate (FCR)
to identify pixels that are within the red-yellow range. For the moment, we
do not incorporate the color-changing aspect of flames, mainly to keep the
algorithm low-cost. However, as the color of flames does not remain as steady
as the flame-colored background objects, one could wonder if it might not be
more interesting to use this color-changing aspect instead of the flame color
rate. However, experiments on our set of fire and non-fire video sequences
revealed that FCR is more discriminative than the color-changing aspect. Of
course, using this extra feature will improve the detection, however, the added
value will be limited. Furthermore, since textured moving objects will have
similar color-changing behavior, color filtering will (always) be necessary to
distinguish them from flames.

Since the BBD and POD flame features seem the most discriminative, one
could also argue to only focus on these two features. However, based on our
experimental experience we expect that this will increase the number of missed
detections and false alarms. Fig. 2.35a shows some examples of more ‘con-
trolled’ fires which will most possibly not be detected when focusing only on
BBD and POD.
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Figure 2.35: BBD/POD experiments: examples of (possible) (a) missed detections
and (b) false alarms.

Furthermore, objects like flags, moving crowds/groups or a person who
is dancing (shown in Fig. 2.35b) can have the same BBD and POD behavior
as flames. In these cases, FCR can help in ‘deciding if the object is a fire or
non-fire object. Finally, for some types of fires, like pool fires, FCR will be the
most discriminative and also in the early stages of a fire, BBD and POD will
not always be high. A similar remark holds for fires at large distance. Within
this context, we have performed some additional tests (shown in Fig. 2.36), in
which our algorithms are used to detect the fire at a distance of more than 1km.
If we only focus on BBD and POD, the combined fire risk value is sometimes
too low to detect the fire.

Current research [108] at Bilkent University (under supervision of Prof.
Enis Cetin), focuses on two new feature alternatives: the axes of bounding
ellipse disorder (ABED) and the center of mass disorder (CMD). ABED, on the
one hand, can be seen as an alternative for the Bounding Box Disorder (BBD)
and Principal Orientation Disorder (POD) which focuses on changes in the
axes lengths of the bounding ellipse around the object (Fig. 2.37). It combines
the two ‘flame characteristics’ of BBD and POD. As such, it is expected that
ABED will be high when POD and/or BBD are high. We do not think that
using ABED in combination with POD and BBD will improve the detection
performance a lot, since it does not really focuses on new flame characteristics.
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Figure 2.36: BBD/POD long range distance tests: fire at a distance of more than 1km.

However, since it combines both features into one ‘feature’, it can be used
as an alternative to POD/BBD, which (possibly) reduces the computational
cost. The added value of ABED will further be evaluated within the context of
the EU-FP7 FIRESENSE project [109], in which both Bilkent University and
UGent-IBBT participate. CMD, on the other hand, will in our opinion be less
discriminative than the other features. Moving objects (e.g. dancing people),
can have similar CMD behavior, which (possibly) increases the risk on false
alarms. However, this will depend on how the features are combined, as is
discussed next.

Figure 2.37: Axes of bounding ellipse for (a-b) fire and (c-d) moving person.
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2.7.2 Advanced strategies to combine feature weights

Depending the type of the fire, one feature can be more discriminative than the
other and vice versa. For example, when analyzing pool fires (i.e., a kind of
controlled fire), BBD and POD will not always be high, while the FCR will
(more likely) be high. As such, we admit that further research is needed regard-
ing the feature weights, i.e., how the features are combined. Instead of taking
the average of the feature values, one could also think of ‘learning/training’,
for example using support vector machines (SVM), the feature combinations
of flames and non-flames objects. However, in order to have a good fire/non-
fire classifier, there is need for an exemplary/training fire dataset. Currently,
such a dataset is not yet available. So, although first SVM results [108] of
Bilkent University show good results, further research on this topic is needed.

Another way of intelligently combining the features is by using context-
dependent feature weights, which is (slightly) suggested in Section 3.4. For
example, if there is a lot of wind/air circulation it could be logical to increase
the impact of POD. This is also related to sensor-feedback, in which detection
criteria (such as thresholds and weights) are linked on other sensors knowledge
about the environment. On both topics, i.e., automatic detection of context-
dependent feature weights and sensor feedback, we will start working after
this PhD.

2.8 Conclusions

Early detection of smoke and flames is a prerequisite to limit both human and
material losses in case of fire. However, due to several limitations of traditional
sensors, which are still in use today, it is not always possible to timely detect
the fire. Especially in large open spaces, crucial time is often lost. In order to
deal with this problem, video based fire detection is gaining increasing impor-
tance in the last years and can be seen as a viable alternative or complement
to the existing fire detection techniques. VFD can be applied in conditions in
which conventional methods fail, e.g., to detect the fire from a distance in large
open spaces. As soon as smoke or flames occur in one of the camera views,
the fire can be detected.

Although VFD has proven useful to solve several problems related to the
traditional sensors, real-world fire experiments revealed that the video based
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detection of fire also suffers from some vision related problems. For example,
missed detections and false alarms often occur when the light conditions are
bad. Hence, developing a reliable VFD system in the visible spectrum is shown
a tough challenge. Our main contribution to this problem is the introduction
of video sensors operating in other spectral bands. Contrary to many other
research approaches, the proposed optimizations for the detection of flames
and smoke are more in the breadth than in the depth direction. Instead of
dealing with ever more complex visual fire detection algorithms, the focus of
our research is on investigating the benefit of infrared and time-of-flight image
processing for fire detection. The latter one, i.e., TOF fire detection, has not
been covered by related work until now.

Firstly, state-of-the-art video fire detection algorithms are investigated.
Based on this SOTA and our experiments, a low-cost visual flame and smoke
detection algorithm is proposed. In order to ensure real-time detection, the
computational cost of both algorithms is kept as low as possible. They both
consist of only two building blocks: a moving object detection and a set of
‘low-cost’ fire features, which uniquely describe smoke and flames. The dis-
criminative features for flame detection are the Bounding Box Disorder (BBD),
the Principal Orientation Disorder (POD) and the Flame Color Rate (FCR).
The smoke detection, on the other hand, uses the Boundary-Area Disorder
(BAD), Energy Disorder (ED) and chrominance disorder (CD) features. By
analyzing the values of these features, a fire alarm is raised. The concept of
using ‘low-cost’ features for fire detection was originally presented by Bosch
et al. [75] in their work on object discrimination by infrared image processing.
Contrary to most of our features, they use moment-based features (similar to
those proposed by Bilkent University [108]). Bosch et al. their features are:
intensity, signature and orientation. In their work, no real analysis is done on
these features. As such, our extrema-analysis can be seen as a contribution to
their work. The extraction of the ‘signature’ also has a higher computational
cost, compared to our features. Furthermore, before doing the feature analysis,
we perform a dynamic BG subtraction, which is more suitable to cope with the
time-varying characteristics of dynamic scenes.

Instead of using a simple (dynamic) background model, we also investi-
gated the benefit of using a DWT based background subtraction method for
segmenting the input scene during video fire detection. Experiments revealed
that the DWT based method leads to better fire detection results than non-
wavelet based background subtraction methods. Especially when there are a
lot of flame reflections and other fire-related illumination changes, less false
alarms and missed detections occur in the wavelet-based setup.
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Subsequently, our thermal LWIR flame detector is proposed. When light
conditions are bad or when smoke occurs in the field of view of the camera,
thermal LWIR vision is a fundamental aid for flame detection. The detector
mainly reuses most of the building blocks of our ‘low-cost’ visual flame de-
tector. Additionally, the moving object detection is extended with a hot object
segmentation step to extract the hottest objects out of the set of LWIR fore-
ground (FG) objects. Only these hot FG objects are further analyzed using the
set of LWIR flame features, i.e., BBD, POD and Histogram Roughness (HR).
Again, a fire alarm is raised on the basis of the values of these features. Im-
portant to mention is that the cost of a thermal IR camera is still too high to
widely use them for video surveillance purposes. Depending the application it
can as such, at the moment, be better to choose one of the other detectors.

Finally, we investigated the possibilities of time-of-flight (TOF) based
flame and smoke detection. The TOF based fire detection methods presented
in this chapter are the first attempts in this direction. Preliminary experiments
already show that the combination of amplitude and depth information is a
win-win. However, problems arise for flame detection in outdoor situations
and outside the range of the TOF camera. Under these circumstances the TOF
depth map becomes unreliable and cannot be used anymore for accurate flame
detection. In order to cope with this problem, a multi-modal detector using
visible and TOF amplitude information is suggested in the next chapter.

Experiments revealed that each of the proposed detectors is able to accu-
rately detect smoke or flames. Depending on the environment characteristics,
however, one type of detector outperforms the other and vice versa. Based on
this fact, we state that only by using multi-modal VFD, which is discussed in
the next chapter, a ‘better’ detector can be achieved providing high accuracy
under all circumstances. Each sensor type has its own specific limitations,
which can only be compensated by other types of sensors. Nevertheless that,
due to cost reasons, it was one of our objectives at the start of this research
to develop a fire detection system which could operate on the existing CCTV
equipment, the cost of using multiple video sensors does not outweigh the
benefit of multi-modal fire analysis. The fact that manufacturers also ensure a
decrease in the sensor cost, fully opens the door to multi-modal video analysis.

To finalize this chapter, we shortly discuss one of the main directions for
future work, i.e., pan-tilt-zoom (PTZ) based VFD. As should be clear from the
examples in this chapter, the proposed algorithms are developed to work on
static cameras, i.e., cameras which do not change position during acquisition of
the images. Hence, to monitor a large area, many cameras can be needed. For
several video surveillance applications, e.g., wildfire detection and monitoring
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of large car parks, this is unaffordable. Instead of using multiple cameras,
these applications mostly use a dynamic PTZ camera. One of the drawbacks
of PTZ, however, is that the position of everything in the scene can change
between consecutive image acquisitions, which complicates for example the
background modeling and object tracking/analysis. This makes it difficult to
predict how the proposed algorithms will behave in a PTZ setting and how
costly (required) adaptations for PTZ fire detection will be. A recent literature
survey did not reveal many research in this direction [110].

Besides the research on PTZ based VFD, a more thorough investigation of
the fire detection capabilities of the different IR spectral bands (NIR/SWIR,
MWIR, LWIR) seems also interesting as a future work.
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Chapter 3

Multi-modal fire detection

Single-sensor video fire detectors are plagued by a number of difficulties in
real-world scenes. Many of these difficulties are mainly caused by limitations
due to the type of sensors used. In most cases, each of these sensor specific lim-
itations can be compensated by other types of sensors. As such, instead of deal-
ing with ever more complex single-sensor fire detection algorithms, the focus of
this chapter is on investigating and combining multi-modal information from
the different types of video sensors that are discussed in the previous chapter.
The main contribution of this chapter treats the registration of multi-modal
images and proposes a novel silhouette based registration method, which is
able to (semi-)automatically align visual, time-of-flight (TOF) and/or infrared
(IR) images. The geometric parameters found using this registration method
are further used by each of the multi-modal fire detectors that are presented at
the end of this chapter. Based on several fire and non-fire experiments, these
multi-modal smoke and flame detectors are identified as the best solution to
achieve high accuracy under all circumstances. Combining the appropriate
‘fire’ features of visual, TOF and/or IR imagery, i.e., using the strengths of
each medium, is shown to be a win-win situation.

3.1 Introduction

Developing an accurate video fire detector relying on only one type of video
sensor is a huge challenge. A visual fire detector, for example, can fail due
to noise, shadows, illumination changes, and other visual artifacts. Reflec-
tions and IR-blocking, on the other hand, can mislead an infrared detector.
Although several ‘single-sensor’ solutions have already been proposed to cope
with these problems, most of these depth-related research techniques cannot
be guaranteed to work under all conditions.
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In order to better compensate for the specific limitations, i.e., artifacts,
of each type of sensors, a study on the combination of multiple sensors is a
much more interesting track to follow. Due to the fact that, depending on
the environment circumstances, one detector outperforms the other and vice
versa, it is our strong belief that only by using multi-modal video fire detection
(VFD) a ‘better’ fire detector can be achieved providing high accuracy under
all circumstances.

The combined detection in the IR and visual spectral range is not new. The
fusion of visual and IR images has already been proposed as a way to improve
the detection performance in many application domains. Also in the domain
of fire detection some steps are already taken in this direction. Contrarily, on
the combination of a visual or IR camera with a time-of-flight (TOF) camera,
only recently studies have begun. Concerning multi-modal fire detection, the
visual-TOF flame detector presented in this chapter, is the first of its kind. For
more details on the previous work in multi-modal fire detection, surveillance
and image registration, section 3.2 lists the state-of-the-art in these domains.

An important problem when (f)using/combining detection results of dif-
ferent types of sensors is how to align the corresponding objects in the scene.
This problem is also known as the registration problem. The goal of registra-
tion is to establish geometric correspondence between the multi-sensor images
so that they may be transformed, compared, and analyzed in a common ref-
erence frame. Because corresponding objects in visual, thermal and/or depth
images may have different sizes, shapes, features, positions and intensities, the
fundamental question to address during registration is: what is a good image
representation to work with? Section 3.3 treats this multi-modal registration
question and proposes a novel silhouette based registration method, which is
able to (semi-)automatically align visual, TOF and infrared images. As we as-
sume parallel sensors whose lines of sight are close to each other, the proposed
multi-modal registration strategy consists of a rigid transformation, which can
be decomposed into a 2-D rotation, scaling and translation.

The proposed multi-modal registration method has successfully been used
by each of the multi-modal fire detectors that has been investigated in our work.
The first of these detectors is a long-wave infrared (LWIR)-visual flame detec-
tor (Section 3.4), which improves the visual flame detector proposed in Sec-
tion 2.3. Similarly to all of the existing multi-modal fire detectors it focuses
on the combined analysis of thermal and visual flame features. The second
detector is an LWIR-visual smoke detector. To the best of our knowledge,
no literature exists on the multi-modal detection of smoke using visual and
infrared imagery. The reason for this can probably be found in the fact that
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smoke becomes more and more transparent further in infrared spectrum, and
as such, is hard to detect in this spectral range. However, the proposed LWIR-
visual smoke detector (Section 3.5) makes use of this transparency feature.
By temporal analysis of the silhouette coverage of moving objects in regis-
tered long-wave infrared (LWIR) and visual images, this multi-modal smoke
detector is able to accurately ‘see’ the smoke. Our third and last multi-modal
detector (Section 3.6) is a visual-TOF flame detector which can be used in out-
door situations, outside the range of the TOF camera and in case that smoke
appears in the field of view of the TOF camera. Due to the fact that the TOF
depth maps become unreliable under these circumstances, the proposed ‘out-
door’ detector only uses the TOF amplitude images in combination with our
visual flame detector. Experimentally we found that by combining the differ-
ent types of video data, the number of missed detections and false alarms can
be reduced drastically, which results in a significant improvement of VFD.

Due to cost reasons it was one of our objectives at the start of our re-
search to develop a fire detection system which could operate on the existing
closed-circuit television (CCTV) equipment. However, the cost of using mul-
tiple video sensors does not outweigh the benefit of multi-modal fire analysis.
The fact that manufacturers also ensure a decrease in the sensor cost in the
next years, fully opens the door to multi-modal video analysis. Furthermore,
increasing the number of sensors does not much affect the software/processing
costs, since the detections itself can run in parallel. To summarize, one can say
that low cost algorithms running on multiple sensors will start to take over the
ever more complex single-sensor algorithms that are proposed in most publi-
cations today. It is our strong belief that the fusion of multi-modal data will
become the keyword in video surveillance. In the conclusions (Section 3.7), at
the end of this chapter, we further elaborate on this statement.

3.2 State-of-the art in multi-modal fire detection

Research on multi-modal fire detection has only started in the last decade and
is still limited. The most interesting works are the studies of Arrue et al. [25]
and Martinez-de Dios et al. [111] which use visual information to improve
infrared detection of wildfires. The former work is an IR-visual false alarm
reduction system which discriminates false alarms by analyzing the ratio be-
tween the alarm areas in visual and infrared images. In order to reduce the high
false alarm rate due to infrared emissions from other sources, the system takes
advantage of the information redundancy from visual and infrared cameras.
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Figure 3.1: False Alarm Reduction system by Arrue et al. [25]

This is also the idea behind the multi-modal flame detectors proposed in this
chapter. However, compared to the system of Arrue et al., which is shown in
Fig. 3.1, our novel methods are computationally less complex and do not use
additional information from meteorological sensors and from a geographical
information database.

Similar to the method of Arrue et al., the work by Martinez-de Dios et al.
presents how potential fire alarms from both thermal and visual images can be
fused to obtain more reliable fire detection characteristics. In order to have di-
rect vision of the (wild)fire this system makes use of unmanned aerial vehicles
(UAVs), which also facilitate the computation of the geographical position of
the detected alarms. For the specific use case of our research, however, the use
of UAVs is too expensive and is practically not possible. For the registration of
the multi-modal images Martinez-de Dios et al. make use of a homography-
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based estimation of the transformation parameters (using a calibration board).
The novel video fire analysis framework proposed in Chapter 4 uses a similar
registration technique for the analysis of multi-view detection results. How-
ever, for the novel multi-modal detectors presented in this Section, which fuse
the detection results of nearly co-located (adjacent and parallel) cameras, a
low-complex registration method based on silhouette mapping is computation-
ally more efficient.

Although the trend towards multi-modal VFD is not yet widely ‘visible’,
the combination of detection in different spectral ranges has already proven
successful in many other types of vision applications, as is further discussed.

3.2.1 Multi-modal video surveillance

The main benefit of (f)using multi-modal image data is that unreliably ex-
tracted parts from one sensor might be reliably extracted from the other sensor.
This provides an opportunity for improving the detection performance. The
combination of several types of imagery yields information about the scene
that is rich in color, motion, depth and/or thermal detail. Once registered, such
information can be used to successfully detect and analyze activity in the scene
with fewer misdetections [24]. As a logical consequence of these benefits,
multi-modal imaging is considered a win-win by many authors [19, 25] and
has started to be actively used to improve the performance of object detection
and recognition [26].

The majority of the research in multi-modal video analysis focuses on
the fusion of infrared and visual images, especially in the field of surveil-
lance [112], automatic target recognition [113], tracking [24] and medical im-
age analysis [114]. The most interesting related work is the multi-sensor image
fusion for the detection of weapons by Chen et al. [112,115]. An object which
can be seen in infrared, but not in visual, is detected as a candidate weapon.
Similarly, we detect candidate smoke regions as moving objects which can be
seen in visual, but not in infrared. Without the fusion of multi-modal detection
information, i.e., when only relying on one sensor, it would be very difficult to
detect these type of objects or to distinguish them from other types of objects
which have similar thermal or visual features. By focusing on both objects’
‘visible-invisible’ feature, which can only be detected with multi-modal video
analysis, Chen’s and our method achieve better detection results, be it in dif-
ferent application domains. Compared to Chen’s registration method, which
is based on the maximization of the mutual information criterion [114], our
silhouette-based multi-modal registration method only performs low-complex
geometric operations in order to estimate the transformation parameters.
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Figure 3.2: Example of decision fusion based on epipolar geometry (Benezeth et
al. [116]).

Another interesting work is the optimized people detection and tracking
proposed by Benezeth et al. [116]. In this work, it is shown how LWIR and
daylight cameras can collaborate inside a stereo vision setup to reduce the false
positive rate inherent to their individual use. Based on the epipolar geome-
try [117] of the stereo-vision system, Benezeth’s multi-modal detector checks
if the IR detected object corners (AIRi , BIR

i ) are close enough to the epipolar
lines (dAvis

i , dBvis
i ) of the projected corners (Avisi , Bvis

i ) of a visual object. If
so, the object is considered a ‘human’; otherwise, it is discarded. An example
of this decision fusion based on epipolar geometry is shown in Fig. 3.2. Al-
though this multi-modal approach optimizes the detection of moving objects,
its lack in an exact mapping, for example, makes it infeasible for our multi-
modal smoke detector (Section 3.5) which mainly focuses on the percentage
overlap of multi-modal moving objects.

The fusion of visual and TOF images, on the other hand, only recently
started to be used as a way to improve everyday video analysis tasks. The main
reason for this can be found in the fact that the TOF camera is a much ‘younger’
technology which only recently became commercially available. The results
of first approaches (Section 2.2.3) already seem very promising and ensure the
feasibility of TOF imaging in other domains, such as fire detection. For ex-
ample, Bleiweiss and Werman [83] fuse time-of-flight depth and RGB color
images to solve common problems in tracking and segmentation of RGB im-
ages, such as occlusions, fast motion, and objects of similar color. Since the
camera they have used provides them directly a registered TOF and visual im-
age, they do not report on the registration problem and mapping but on the
fusion of multi-modal data itself. As such, their focus is different than ours.
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In [118], Gould et al. augment a 2D object detector with 3D information from a
depth sensor to produce a multi-modal object detector for robots. Their exper-
imental results show that the multi-modal detector provides an average gain of
15% over a 2D detector for the detection of common household/office objects,
i.e., an example of the multi-modal win-win. Sabeti et al. [84] describe two
separate particle filter trackers, one using color and the other using TOF data,
and compare them on a variety of video sequences. They conclude that each
performs better in different environments and that combining the two would
be beneficial, i.e., a similar statement as the one made in our introduction.

3.2.2 Multi-modal image registration

In order to combine the information in a multi-modal setup, e.g., for medi-
cal imaging and computer vision [119, 120], the corresponding objects in the
scene need to be registered. The goal of registration is to establish geometric
correspondence between the multi-modal images so that they may be trans-
formed, compared, and analyzed in a common reference frame [121]. Since
corresponding multi-modal objects may have different sizes, shapes, features,
positions and intensities, as is shown in Fig. 3.3, a good image representation
needs to be found that brings out the common information between the two
multi-sensor images, while suppressing the non common information [122].

When choosing an appropriate registration method, a first distinction can
be made between automatic and manual registration. In applications with man-
ual registration, e.g., using a calibration checkerboard [24], a set of corre-
sponding points are manually selected from the two images to compute the
parameters of the transformation. The registration performance is evaluated
by subjectively comparing the registered images based on these parameters.
This is repeated several times until the registration performance is satisfied. If
the background changes, e.g., due to camera movement, the entire procedure
needs to be repeated. Because this manual process is labor intensive, automatic
registration is more desirable and therefore preferred in our system.

Within the range of (automatic) registration methods, a distinction can be
made between region, line and point feature-based methods [123]. It is nec-
essary to use features that are stable with respect to the sensors, i.e., the same
physical artifact produces features in both images. Compared to the correspon-
dence of individual points and lines, region-based methods, such as silhouette
mapping, provide more reliable correspondence between color, IR and TOF
image pairs [115]. For example, comparing the visual, IR and TOF images
in Fig. 3.3, one can see that some information varies a lot, but what is most
similar are the silhouettes. Therefore, the proposed image registration method
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Figure 3.3: Comparison of corresponding objects in LWIR, visual and TOF images.

performs a match of the transformed color silhouette of the calibration object,
i.e., a moving person, to its TOF or IR silhouette. The mutual information,
i.e., the silhouette coverage, is assumed to reach its maximal value when both
images are registered. However, knowing that the same silhouettes extracted
from visual, TOF and/or IR images can have different details (as can be seen
in Fig. 3.3), a complete exact match is (quasi) impossible. It is also important
to mention that instead of using a person as the calibration object, also other
objects in the scene can be used, as long as they are moving.

Although the proposed (semi-)automatic registration method performs
good results, full automatic methods, such as the one proposed in [124], are
the most desirable. This method automatically registers IR with visual image
data using geometric structures that are matched with a partial graph match-
ing algorithm. Another benefit of this method is that re-calibration can be done
without the need of moving objects, as the method can calibrate on background
geometry. However, due to its higher computational cost, we decided to use
our own low-cost silhouette based registration method which, contrarily to the
cited SOTA works, fulfills all the requirements stated in Section 1.6. Basically
we can also align the multi-modal data using the calibration knowledge of the
sensors, and always move the sensors together. However, in a real situation, it
is more useful to align the images without imposing anything on the starting
condition of the cameras and their relative position.
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Based on this state-of-the-art basis on multi-modal video surveillance and
image registration, the following section presents our novel silhouette based
multi-modal image registration. The proposed registration method has suc-
cessfully been used by each of the multi-modal fire detectors that are discussed
at the end of this chapter.

3.3 Silhouette based multi-modal image registration

The proposed silhouette contour based image registration algorithm, shown
in Fig. 3.4, coarsely registers the images taken simultaneously from the vi-
sual, LWIR and/or TOF parallel sensors whose lines of sight are close to each
other. The registration starts with a silhouette extraction [115] in the visual,
thermal and/or TOF amplitude image to separate the calibration objects, i.e.,
the moving foreground, from the background, which is assumed to be static.
The novelty of the proposed silhouette extraction method is its combination
of several existing concepts, which improves the performance of each of the
‘stand-alone’ concepts. So, none of its building blocks are really new, but it is
their combination that makes the difference.

Key components of the moving object silhouette extraction are the dy-
namic background subtraction, automatic thresholding and morphological fil-
tering with growing structuring elements, which grow iteratively until a result-
ing silhouette is suitable for multi-modal silhouette matching. After silhouette
extraction, the multi-modal silhouettes are used to estimate the transformation
parameters for the image registration. First, 1D contour vectors are gener-
ated from the resulting visual, thermal and/or TOF silhouettes using silhouette
boundary extraction. This is followed by a Cartesian to polar transformation
and a radial vector analysis. Next, in order to retrieve the rotation angle and
the scale factor between the visual, LWIR and/or TOF image, these contours
are mapped onto each other using circular cross correlation [125] and contour
scaling. Finally, the silhouette mapping calculates the translation between the
multi-modal images using maximization of binary correlation. The retrieved
transformation parameters are used to align the multi-modal image(s).

In what follows, a more detailed description is given of each step in the
silhouette-based registration. First, the extraction of visual (Section 3.3.1),
thermal (Section 3.3.2) and/or TOF silhouettes (Section 3.3.3) of the calibra-
tion object is discussed. Next, the image registration is presented for the anal-
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ysis of the visual and thermal silhouettes (Section 3.3.4). In order to detect
the rotation, scale and transformation between the visual-LWIR multi-modal
images, we perform a 1D contour vector generation, a contour mapping and a
silhouette mapping. In the same way, image registration between other types
of multi-modal images, e.g., visual-TOF and TOF-LWIR, can be performed.
Due to the high similarity in the registration process, these other types of multi-
modal image registrations, however, will not be discussed.

At the end of the section, examples of the registration process in different
real-case scenarios are given to illustrate the accuracy of the proposed tech-
nique and to show its superiority over SOTA alternatives (Section 3.3.5).

3.3.1 Visual silhouette extraction

In order to extract the visual silhouette of the calibration person from the back-
ground, we propose the algorithm shown in Fig.. 3.5, in which intensity, color
and edge information of the moving part of the visual images are merged.
Merging these three types of information is the only way we can guarantee the
entire moving object silhouette is found under all circumstances (in our exper-
iments). The algorithm uses the visual frame Fn, i.e., the input RGB video
frame at time n, in which the calibration person is in the scene (Fig. 3.6b), and
the visual background estimation BGn, in which we assume that no moving
objects occur (Fig. 3.6a). The algorithm starts with two image transforma-
tions to convert Fn into the intensity image In and the color image Cn. The
color image Cn equals the ratio of input image Fn by the intensity image In:

Cn = Fn/In . (3.1)

In short, the pixel values of each of the RGB color bands of Fn are divided
by the intensity values of the corresponding pixels in the intensity/grayscale
image In. This gives us the color values of the color image Cn (Eq. 3.1). More
detailed information on the creation of Cn can be found in [126].

Next, a dynamic background subtraction [60] extracts the moving fore-
ground (FG) out of In and Cn using the intensity and color image of the visual
background estimation. By computing the absolute difference between In and
Cn with everything in the scene that remains constant over time, i.e., BGn ,
only the moving part of those images remains. The intensity BG estimation is
updated dynamically after each segmentation using:
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Figure 3.5: Visual silhouette extraction.

BGn+1 [x, y] =


αBGn [x, y] + (1− α)In[x, y]

if Sn[x, y]→ BG

BGn [x, y]

if Sn[x, y]→ FG ,

(3.2)

in which [x, y] are the pixel coordinates, Sn is the final silhouette image
and α is the update parameter. The closer α is to 1, the faster new information
replaces old observations. Here α(= 0.95) was chosen close to 1, as suggested
by Toreyin et al. [35]. The color BG estimation is updated analogously.
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Figure 3.6: a) Background (BG) estimation and b) calibration input frame; c) BG
subtracted intensity and d) BG subtracted color image.

After background subtraction, the resulting intensity and color foreground
IFG,n andCFG,n are thresholded automatically using automatic gamma cor-
rection, (adaptive) k-means clustering and morphological filtering with grow-
ing structuring elements, which grow iteratively until the resulting silhouette
is suitable for thermal-visual silhouette matching. It was found in our experi-
ments, for example in Section 3.5.3, that the combination of these three steps
gave the best results, compared to other frequently used segmentation tech-
niques such as histogram equalization and contrast stretching [127, 128].

Gamma correction changes the brightness distribution of images. Using an
appropriate gamma, this correction results in a more useful input image for k-
means clustering, making details in both light and dark portions of the image
more visible. To automatically generate an appropriate value an automatic
gamma correction was used (details are presented in [129]). Based on the
mean and standard deviation of the input image, for example IFG,n, the gamma
value γ for the automatic correction is calculated using:
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IF IFG,n > 0.5

γ = 1 +
|0.5− IFG,n|

σ
ELSE

γ =
1

1 +
|0.5−IFG,n|

σ

.

(3.3)

In the same way, the gamma value for CFG,n can be calculated.

As the images in Fig. 3.7 and our results in Section 3.5.3 show, the gamma
correction improves the segmentation results a lot when light conditions are
bad or the color difference between the human calibration object and the back-
ground is minimal. Similar results can be achieved with homomorphic filter-
ing [130]. However, the proposed technique is computational less complex,
which is essential to achieve the system requirements (Section 1.6).

For the extraction of the human silhouette in the gamma-corrected color
and intensity foreground images, different thresholding techniques can be
used. Among all of these techniques, automatic thresholding, like the Otsu
method [97] and k-means clustering [131], are widely used because of their
simple implementation and low computational cost. These methods automat-
ically select an optimal gray-level threshold value for separating objects of
interest from the background, based on their gray level distribution. However,
since these standard methods only focus on Euclidean intensity distance, they
are sometimes insufficient in forming the desired clusters in real-world image
segmentation. The Otsu method, for example, fails if the histogram is uni-
modal or close to unimodal [132], as is the case in our experiments. Instead, a
weighted distance measure, such as the spatial constrained k-means [133], the
two-dimensional Otsu [134], the histogram valley emphasis [132], or the k-
means adaptive clustering [135], performs much better by utilizing both local
pixel/histogram information and pixel intensity. In our work the latter k-means
adaptive clustering, with two clusters, is used. It was the only method which
gave satisfactory results for each of the experimental setups, in with varying
environmental conditions were tested. As the color silhouette extraction in
Fig. 3.7 and the results in Section 3.5.3 show, this clustering achieves favor-
able results, even in low-light images. Similar results are retrieved for the
intensity silhouette extraction.
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Figure 3.7: Results of color silhouette extraction with and without gamma correction.

In order to discard noisy objects and to improve the quality of the color
and intensity silhouette, morphological filtering [70] is performed on the bi-
nary images after k-means clustering. First, small noisy FG objects are re-
moved using a blob filter. Next, a morphological closing connects neighboring
silhouette parts. Finally, a filling operator fills the remaining holes in the sil-
houette. The results of this morphological filtering are shown in Fig. 3.7. Com-
bining gamma correction, k-means and morphological filters clearly results in
appropriate silhouette extraction. In order to determine an optimal size for
the structuring elements of the morphological filters, the structuring elements
grow iteratively until the resulting silhouette is suitable for thermal-visual sil-
houette matching, i.e., until one FG silhouette object remains with adequate
thermal-visual correspondence.
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Figure 3.8: Silhouette merging.

As it is not always possible to extract the full silhouette out of the color
or intensity images, as is shown in Fig. 3.8, we finally merge the color and
intensity silhouette. In addition, the resulting silhouette is also merged with an
edge silhouette, which is created using a standard Canny edge detection [70]
and morphological filtering on the FG intensity images. The main reason why
the Canny edge detector is used on the intensity images, and not on the color
images, is that the intensity images are much richer in edge information than
the color images. This is logical, as in the construction of the color images a
lot of edge information, i.e., intensity variations, is discarded by dividing the
input frame by the intensity image.

By merging the three different types of information into the final silhou-
ette image Sn, accurate visual silhouette extraction is achieved. The merging
itself starts by adding the binary values of the intensity, color and edge image
together. Next, the resulting image is thresholded. Non-zero regions which
contain one or more values that are bigger than 1, i.e., pixels that are fore-
ground in more than one of the silhouettes, are mapped to foreground. All
other regions are mapped to background. In this way, objects which have only
been detected in one of the three silhouettes are discarded. So, the proposed
algorithm is also able to cope with specific visual artifacts, such as (discon-
nected) shadows. As such, the combination of color, intensity and edges is a
winning combination.
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3.3.2 Thermal silhouette extraction

As already stated in Section 2.4.1, the body of a person can seldom be imaged
as a whole warm object in thermal images. Due to the insulating properties
of some clothes, for example, it is difficult to segment the whole body from
the background. As such, problems can arise during silhouette extraction. The
here proposed silhouette extraction copes with those problems by focusing on
the absolute intensity differences between the current frame and the thermal
BG estimation, instead of focusing on the pure intensity values.

Figure 3.9: LWIR silhouette extraction.

The main steps of the thermal LWIR silhouette extraction algorithm are
shown in Fig. 3.9. The algorithm uses the thermal frame FLWIR

n , in which
the calibration person is in the scene (Fig. 3.10a), and the thermal BG estima-
tion BGLWIR

n , in which no moving objects occur (Fig. 3.10b). The algorithm
starts with the same dynamic background subtraction as the one used for vi-
sual extraction. The BG subtraction extracts the thermal foreground FGLWIR

n

(Fig. 3.10c) out of FLWIR
n by calculating the absolute difference of FLWIR

n

and the thermal background estimation BGLWIR
n , which is also updated dy-

namically using the final thermal silhouette SLWIR
n .

Subsequently, automatic thresholding extracts the candidate thermal sil-
houette out of FGLWIR

n using the same automatic gamma correction and k-
means clustering as for the visual silhouette extraction. Finally, the thermal
extraction also uses morphological filtering with iterative growing structuring
elements to discard remaining noisy objects and to improve the silhouette qual-
ity of the thermal silhouette SLWIR

n . As shown in Fig. 3.10d, the combination
of these steps produces satisfactory results not only for visual, but also when
applied to thermal images.
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Figure 3.10: Example of LWIR silhouette extraction: calibration person (a); thermal
BG estimation (b); BG subtraction (c); thresholding and morphological filtering (d).

3.3.3 TOF silhouette extraction

As shown in Fig. 3.11, the TOF silhouette extraction follows the same three
steps as the thermal silhouette extraction. First, the dynamic background sub-
traction extracts the TOF amplitude foreground FGTOF

n from the TOF am-
plitude image F TOFn (Fig. 3.12a) using the TOF BG estimation BGLWIR

n

(Fig. 3.12b). Next, the TOF amplitude FG image FGTOF
n (Fig. 3.10c) is

thresholded automatically and morphologically filtered in the same way as the
thermal and visual FG images.

The silhouette extraction result in Fig. 3.12d illustrates that the combina-
tion of dynamic background subtraction, automatic thresholding and morpho-
logical filtering produces satisfactory results not only for visual and thermal,
but also when applied to TOF amplitude images. The silhouette of the cali-
bration person is successfully segmented from the background. As such, the
proposed technique can be seen as a ‘generic’ silhouette extraction technique
for video-based sensors which produces satisfactory results on visual, thermal
and TOF images.
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Figure 3.11: LWIR silhouette extraction.

Further on, we will discuss the visual and LWIR image registration using
the visual and thermal body silhouettes. In the same way, image registration
between other types of multi-modal images, e.g., visual-TOF and TOF-LWIR,
can be performed. Due to the high similarity in the registration process, these
other types of multi-modal image registrations will not further be discussed in
detail. In our experiments (Section 3.3.5), we report on their performance.

Figure 3.12: Example of TOF amplitude silhouette extraction: calibration person (a);
BG estimation (b); BG subtraction (c); thresholding and morphological filtering (d).
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3.3.4 Visual and LWIR image registration

After the extraction of the visual and thermal body silhouettes from the color
image and its synchronous thermal image respectively, registration of both im-
ages is performed using a three-step registration algorithm. The goal is to
determine the transformation parameters in order to align the LWIR with the
visual image. Assuming that the distance between the cameras and the calibra-
tion person is large, the human surface from the camera view can be approx-
imated as planar and the geometric transformation can be strictly represented
by a projective transformation. Furthermore, assuming that the image planes
of both visual and LWIR cameras are approximately parallel, the geometric
transformation can be further simplified to a rigid transformation, which can
be decomposed into a 2-D rotation, scaling and translation [71]. As such, a
point (X,Y ) in the visual image plane is transformed into the point (X,Y ) in
the thermal image plane as follows:

(
X ′

Y ′

)
= s

(
cos θ sin θ
−sin θ cos θ

)(
X

Y

)
+

(
∆X

∆Y

)
, (3.4)

where θ is the rotation angle, s is the scaling factor and (∆X ,∆Y ) is the
translation vector. A similar geometric transformation for image registration
is also proposed by Liu et al. [136].

In order to estimate each of the three geometric parameters, i.e., rotation
angle θ, scaling factor s and translation vector (∆X ,∆Y ), the contours and the
correlation of the visual and thermal silhouettes are analyzed, as is discussed
in detail in the following subsections. First, the rotation is computed using sil-
houette contour extraction and circular cross correlation. Next, contour scaling
is used to estimate the thermal-visual scale factor. Finally, the translation vec-
tor is estimated by maximization of binary correlation.

A. Contour vector generation

In order to estimate the rotation angle between the two silhouettes (∼ rotation
angle between the two camera views), we propose to analyze the translation
of the 1-D contour centroid distance (CCD) of both silhouettes. The contour
centroid distance CCD(u) (in which u is the index of the extracted boundary
point) represents the distance between the boundary points (x(u), y(u)) and
the centroid (xc, yc) of the silhouette. As such, the 2-D silhouette matching
problem is converted to a one-dimensional signal matching problem, i.e., the
matching of silhouette contours.
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The 1D contour vector is generated from both visual and thermal LWIR
silhouette using a boundary extraction algorithm [137], and by measuring the
one-dimensional signal from the center of mass, i.e., the centroid, to the bound-
ary for each silhouette [125]. The centroid (xc, yc) is computed as follows:

xc =
1

N

N−1∑
u=0

x(u) yc =
1

N

N−1∑
u=0

y(u) . (3.5)

The CCD(u) is computed as follows:

CCD(u) =
√

(x(u)− xc)2 + (y(u)− yc)2 . (3.6)

In Fig. 3.13, both the boundary extraction (Fig. 3.13a,b) and the one-
dimensional visual and thermal CCD (Fig. 3.13c,d) of the calibration silhou-
ettes are shown. Although visual inspection of the CCDs can already reveal a
rough estimation of the rotation, automatic analysis on this 1-D signal is not
straightforward due to the different number of boundary points of both CCDs.
For direct comparison of both CCDs and in order to estimate the rotation and
scale, they must have the same size. Therefore, we propose to convert each
contour point (x(u), y(u)) from Cartesian to polar coordinates [138] using
Eq. 3.7 and compute the one-dimensional CCDpolar (u). This CCDpolar (u)
is obtained by computing the distance r(u) (= CCD(u)) from the centroid
(xc, yc) of the silhouette to the silhouette boundary as a function of the turning
angle θ(u) (−π <= θ(u) < π):

r(u) =
√

(x(u)− xc)2 + (y(u)− yc)2 = CCD(u)

θ(u) = tan−1(
y(u)− yc
x(u)− xc

)

CCDpolar (θ(u)) = r(u) .

(3.7)

The CCDpolar of the thermal and visual calibration silhouette are shown
in Fig. 3.13e,f. Although the range of the CCDs is already equal ([−π, π[), the
number of points in both signals is still different due to the fact that multiple
boundary points can be detected under the same angle. To cope with this prob-
lem, we propose to perform a radial vector analysis, i.e., a novel CCD map-
ping technique which discretizes the CCDpolar signal over 64 equally spaced
intervals.
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Figure 3.13: One-dimensional visual and thermal CCD of the calibration silhouettes:
boundary extraction (a,b); CCD (c,d); polar CCD (e,f); discretized polar CCD (g,h).
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The reason for choosing 64 intervals is that the turning angle θ(u) is quan-
tized over [−π, π[ with a step-size of 0.1. Within each interval, the maximum
max (CCDpolar ) in that interval is chosen as the representative boundary value
for the interval, since those points best match the outer part of the silhou-
ette, and as such, only a limited amount of information is lost. The resulting
CCDpolar

64 values are shown in Fig. 3.13g,h. Alternatively, it is also possible to
super-sample the smallest signal, as in [125]. However, by converting to polar
coordinates and quantize the signal, we reduce the 2D silhouette boundary to
a 64-element vector and keep the computational cost low.

B. Contour mapping

Contour alignment (for rotation estimation)

Using the CCDpolar
64 of the thermal and visual silhouette, the rotation of both

camera views can easily be calculated by finding the translation which maxi-
mizes the thermal-visual CCDpolar

64 correlation. This is based on the fact that
translating the 1-D signals in centroid contour distance space over k locations
corresponds to rotating the associated silhouette image in 2D pixel space over
k/64 ∗ 360◦. The thermal-visual CCDpolar

64 translation is found by calculat-
ing the location k at which the circular cross-correlation CXC (k) reaches its
maximum. The circular cross-correlation [125,139] of CCDpolar

64 (S LWIR
n ) and

CCDpolar
64 (S VISUAL

n ) is defined by:

CXC (k) =
64∑
i=1

CCDpolar
64 ,i (SLWIR

n ) ∗ CCDpolar
64 ,i⊕k (SV ISn ) , (3.8)

with k = 0...63 and ⊕ = addition modulo 64.

For the CCDs shown in Fig. 3.13, we found that CXC reaches its max-
imum for k=0. As such, the rotation angle between the thermal and visual
silhouette equals 0/64 ∗ 360 = 0, as could be expected based on the rough
visual estimation. In Fig. 3.14 we also show an example with rotated views.
In this example, the thermal camera is placed upside down (i.e., the rotation
angle = 180◦). The ‘rotation estimation’ result of this experiment, which is
174◦ (k = 31), shows that the proposed technique is a good rotation estimator.
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Figure 3.14: Rotation estimation for rotated thermal camera(a) and visual camera(b);
boundary extraction (c,d); polar CCD (e,f); discretized polar CCD (g,h).



3.3. Silhouette based multi-modal image registration 113

Contour scaling (for scale factor estimation)

After rotating, i.e., aligning the thermal and the visual CCD, the scale factor
between both views is estimated by analyzing the ratio (CCDratio) of the ther-
mal and visual aligned CCDs. The ratios for the calibration example are shown
in Fig. 3.15. As can be seen in the image, the ratios are not constant and show
some disorder. The reason for this behavior is twofold. First of all, the horizon-
tal and vertical dimensions of both sensor images do not relate equally, which
implies some deformation and influences the vertical-horizontal scale ratios.
Second, the edge transitions in visual and thermal images are not always iden-
tical and, as such, the thermal and visual boundaries can differ. Furthermore,
visual and thermal artifacts, such as (connected) shadows and reflections, can
also increase the ratio disorder.

In order to cope with the CCDratio-related problems, we propose to use
the median ratio as the scale factor. The main reason for choosing the median
ratio instead of, for example, the mean ratio is that the median ratio is not
influenced by outliers, while for the mean ratio this cannot be guaranteed. The
calculation of s is shown in Eq. 3.9.

Figure 3.15: Scale factor estimation based on CCD ratio analysis.

Instead of using one scale factor s for both horizontal and vertical direc-
tion, it is also possible to use different scale factors sx and sy for each di-
rection. For example, in case of reasonable vertical-horizontal deformation,
due to non-parallel sensor placement or highly non-related sensor dimensions,
different scale factors can be necessary to coarsely map the silhouettes. To
estimate both the vertical and horizontal scale factor, we propose to use the
median ratio in [−3π/4,−π/4] and [π/4, 3π/4] for sy, and the median ratio
in the remaining ranges for sx (as illustrated in Fig. 3.15):
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CCDratio =
CCDpolar

64 (SLWIR
n )

CCDpolar
64 ,k (SV ISUALn )

s = median(CCDratio)

sx = median(CCDratio [
−π
4

:
π

4
,
3π

4
:
−3π

4
[)

sy = median(CCDratio [
−3π

4
:
−π
4
,
π

4
:

3π

4
[) .

(3.9)

C. Silhouette mapping (for translation estimation)

The last transformation parameter, estimated by the registration algorithm, is
the translation vector (∆X , ∆Y ). Translation can occur due to the placement
of the cameras, but also due to the different sensor resolutions, i.e., the image of
one sensor can be a cropped version of the other. To correct this translation and
to be able to perfectly align the thermal and visual image, the binary correlation
technique (Fig. 3.16) proposed by Chen et al. [112] is used to determine the x-
and y-displacements.

Figure 3.16: 2D/3D correlation-based translation estimation and registration result.
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After rotating and scaling up the LWIR image using the estimated rotation
angle θ and the scaling factor s, the translation vector (∆X , ∆Y ) is computed
by binary correlation, i.e., template matching, in the frequency domain. The
correlation between the thermal image and the visual image is computed by
rotating the thermal image 180◦ and then using the Fast Fourier Transform
(FFT)-based convolution technique. This can be done since convolution is
equivalent to correlation when rotating the kernel by 180◦. Similar to [112],
we represented the two levels of the silhouette images by -1 (BG) and 1 (FG),
so that by maximizing the correlation function both parts are matched as much
as possible. The 2D/3D result of correlating the thermal silhouette with the
visual silhouette is shown in Fig. 3.16.

The point (transx , transy ), at which the correlation reaches its maximum,
is used to calculate (∆X ,∆Y ) as follows:

(
∆X

∆Y

)
=

(
transx

transy

)
−
(

sizex (SLWIR
n )

sizey(SLWIR
n )

)
, (3.10)

with sizex (SLWIR
n ) and sizey(SLWIR

n ) the x and y dimension of SLWIR
n .

The estimation of the translation vector finishes the proposed three-step
registration algorithm, and using the retrieved transformation parameters θ, s
and (∆X , ∆Y ), registration between LWIR and visual images can be per-
formed. As the registration result in Fig. 3.16 shows, the visual and thermal
silhouette of the calibration object map coarsely. The overlapping part of the
silhouettes is shown in white and the non-overlapping part is shown in gray.

3.3.5 Experimental results

A. Silhouette based LWIR-visual image registration

A visual, i.e., subjective, evaluation of the silhouette based LWIR-visual regis-
tration experiments in Fig. 3.17 already indicates that the proposed registration
algorithm is able to coarsely align the thermal and visual images. However, in
order to evaluate the registration more objectively, we propose to use the cov-
erage metric COV which equals the percentage overlap between the thermal
SLWIR
n and visual SV isualn registered silhouettes:

COV (SLWIR
n , SV isualn ) =

SLWIR
n ∩ SV isualn

SLWIR
n ∪ SV isualn

. (3.11)
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Figure 3.17: Experimental results of LWIR-visual registration.

Since COV depends on the performance of the silhouette extraction meth-
ods, one can also use the registration precision proposed in [71]. Similarly to
Eq. 3.11, the registration precision is defined as P (A,B) = (A∩B)/(A∪B),
where A and B are manually labeled human silhouette pixel sets from the orig-
inal visual image and the transformed thermal image, respectively. However,
different to the approach of Han and Bhanu [71] where the registration is done
manually, our method automatically calculates the COV precision.

The silhouette maps and the coverage results in Fig. 3.17 show that the
proposed approach achieves good performance for image registration between
color and thermal image sequences. The visual and IR silhouette of the person
are coarsely mapped onto each other with an average coverage above 80%.
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However, due to the individual sensor limitations, such as shadows in visual
images, thermal reflections and soft thermal boundaries in LWIR, exact match
is quasi impossible. For example, in Fig. 3.17, small artifacts at the boundary
of the merged silhouettes can still be noticed. Also, if the cameras are not per-
fectly aligned, i.e., the assumption of parallel image planes is not satisfied, or
if the vertical and horizontal dimensions of both sensors do not relate propor-
tionally, deformation can arise between the detected objects and coverage can
be low.

To cope with the above mentioned problems, the proposed approach can
be extended using more complex moving object detectors and transformation
models, such as, for example, is done in the work of Benezeth et al. [116],
which is based on epipolar geometry. Further improvement can (possibly) also
be achieved by averaging the results over multiple frames instead of using only
one frame or by refining the registration results, for example by maximization
of mutual information using the techniques described by Maes et al. [114]
and Liu [136]. However, for our application, the average calibration coverage
above 80% is sufficient. Also, compared to the results of related work, e.g.,
the registration method in [71], our proposed method achieves similar results.
For more details, the reader is referred to [127, 128].

B. TOF-visual image registration

Similarly to the LWIR-visual registration experiments, tests were also per-
formed on the automatic registration of TOF-visual images. Also here, the
proposed registration method was used to automatically find the correspon-
dence between the ‘moving’ silhouettes extracted from synchronous TOF and
visual images. Again, we found both subjectively and objectively that the pro-
posed registration algorithm is able to coarsely map the multi-sensor TOF and
visual images. Some exemplary TOF-visual ‘mappings’ in Fig. 3.18 show the
effectiveness of the TOF-visual registration.

Due to the absence of appropriate TOF-thermal video sequences, i.e., se-
quences captured with parallel TOF and thermal sensors whose lines of sight
are close to each other, we have not yet evaluated the automatic registration
of TOF-thermal images. However, similar results as the above are to be ex-
pected. This also holds for the combined registration of visual, thermal and
TOF images.
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Figure 3.18: Examples of visual and TOF amplitude image registration: (a) visual
and (b) TOF amplitude images; (c) registration check.

In the following sections, the proposed silhouette based registration algo-
rithms are used to map the detection results of single-sensor LWIR, visual
and/or TOF fire detectors on each other. As such, multi-modal fire detectors
are created which outperform the single-sensor detectors discussed in Chap-
ter 2. The first of these multi-modal detectors is a LWIR-visual flame detector,
which combines the detection results of a thermal LWIR detector and a visual
detector in order to improve the accuracy of each of the individual detectors.

3.4 LWIR-visual flame detection

The multi-modal LWIR-visual flame detector, shown in Fig. 3.19, first searches
for candidate flame objects in both LWIR and visual images by using moving
object detection and flame feature analysis. These steps have already been
discussed in Section 2.4 and Section 2.3.1 of the previous chapter. Next, it
uses the registration information, i.e., rotation angle, scale factor and trans-
lation vector, to map the LWIR and visual candidate flame objects on each
other (Section 3.3). Finally, the global flame risk value is calculated using the
risk values of the mapped objects. In case objects are detected with a high
combined multi-sensor risk value, a fire alarm is given.
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Figure 3.19: Multi-modal LWIR-visual flame detection.

3.4.1 Global flame risk value

As discussed in the previous chapter, each of the visual and LWIR flame fea-
tures possesses a value between 0 and 1, indicating whether the object has the
flame characteristic. By averaging these flame values, the risk values PLWIR

flame

and P visualflame are retrieved, which indicate whether the object should be clas-
sified as flames in the respective spectral range. The global flame risk value
combines these two risk values, using:

Pflame = β ∗ PLWIR
flame + (1− β) ∗ P visualflame , (3.12)

into an overall flame risk value Pflame. The parameter β in this equation
is a weight factor that specifies how much of PLWIR

flame and P visualflame must be
taken into account in the overall flame risk calculation. Depending the cir-
cumstances, e.g., night or day, an appropriate β value can be chosen. The
(automatic) selection of such an appropriate β value is related to the general
remark in Section 2.7 on context-dependent feature weights. At the end, the
overall risk value Pflame is compared to an alarm threshold tflame. If the flame
risk value exceeds this threshold, a fire alarm is raised. In our experiments it
was found that a good value for tflame is 0.7. The sensitivity of this threshold,
however, needs to be further investigated in future work. Most important is
that, based on the risk value, operators can concentrate their attention on the
sequences which most probably contain flames. Furthermore, it is important
to mention is that changing the β value in Eq. 3.12 to 0 or 1, transforms the
multi-sensor detector into a standalone visual or LWIR detector respectively.
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Figure 3.20: Multi-modal LWIR-visual flame detection results of visual (a,c,e,g) and
LWIR (b,d,f,h) Attic, Corridor and Lab sequence.
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3.4.2 Experimental results

In order to verify the proposed LWIR-visual flame detector we performed sev-
eral fire and non-fire experiments. Exemplary shots of these experiments are
shown in Fig. 3.20. The multi-modal sequences were acquired by a Xen-
ics Gobi-384 LWIR camera and a Canon MD110 camera, which work in the
8− 14µm spectral range and the visual spectrum respectively. The Gobi ther-
mal imager has a resolution of 384x288 pixels and a frame rate of 28-30fps.
The Canon’s resolution is 576x720 and its frame-rate is 25fps. In order to cope
with the different frame rates and resolutions, and also with the differences in
the field of view of the cameras, the LWIR-visual frames are spatio-temporal
registered using temporal frame alignment and the proposed silhouette-based
registration.

As can be seen in Table 3.1, the multi-sensor flame detector yields better
results than the LWIR detector alone (Table 2.5). In particular for uncontrolled
fires, a higher flame detection rate with fewer false alarms is achieved. Com-
pared to the rather limited results of standalone visual flame detectors [1], the
multi-sensor detection results are also more positive. As such, the combined
detector is a win-win. As the images of the experiments (Fig. 3.20) show, only
objects which are detected as fire by both sensors do raise the fire alarm.

3.5 LWIR-visual smoke detection

In the previous section we described the working principle of a novel multi-
modal LWIR-visual flame detector and evaluated its performance over individ-
ual video flame detectors. Similarly, this section presents a novel LWIR-visual
smoke detector, which also takes advantage of the different kinds of informa-
tion represented by visual and thermal LWIR imaging sensors.

The LWIR-visual smoke detector analyzes the silhouette coverage of mov-
ing objects in visual and long-wave infrared registered (∼aligned) images. The
registration is also performed using the proposed silhouette-based image reg-
istration method (Section 3.3) which detects the rotation, scale and translation
between moving objects in the multi-spectral images. The geometric param-
eters found at this stage are then further used to coarsely map the silhouette
images and coverage between them is calculated. Since smoke is invisible in
long-wave infrared its silhouette will, contrarily to ordinary moving objects,
only be detected in visual images. As such, the coverage of thermal and visual
silhouettes will start to decrease in case of smoke.
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Due to the dynamic character of the smoke, the visual silhouette will also
show a high degree of disorder. By focusing on both the visible-invisible char-
acter of smoke in visual-LWIR images and visual smoke silhouette disorder
behavior, the system is able to accurately detect the smoke and to distinguish
between smoke and non-smoke moving objects. Experiments on smoke and
non-smoke multi-sensor sequences indicate that using the low-cost silhouette
analysis, a fast warning, with a low number of false alarms, can be given. It
is important to mention that, as smoke becomes more and more transparent
further in the infrared spectrum, IR cameras in the long wave IR range (LWIR,
8− 12µm) have the highest added value for detecting smoke. As is illustrated
in Fig. 3.21, a LWIR camera can even look through the smoke. By focusing
on the visible-invisible character of smoke in visual-LWIR images, our multi-
sensor detector can detect the smoke very accurately.

The detection algorithm, shown in Fig. 3.22, starts with the similar moving
object silhouette extraction (Section 3.3) as the one used for image registration
in LWIR-visual flame detection (Section 3.4). Then, it uses the registration
information, i.e., the rotation angle, the scale factor and the translation vector,
to map the thermal and visual silhouette images onto each other. Next, the
coverage of the resulting thermal-visual silhouette map is computed and is
analyzed over time using the silhouette coverage analysis (SCA). This SCA is
the first phase of our novel two-phase decision algorithm. The SCA focuses
on the silhouette coverage of the thermal-visual registered images and gives
a kind of first smoke warning when a decrease in silhouette coverage occurs.
In the second phase, the smoke warning is further investigated by analyzing
the disorder characteristics of the visual silhouette SV isualn . If this silhouette
shows a high degree of disorder, the smoke hypotheses is confirmed and a fire
alarm is raised. In the next few sections we will discuss each of these phases
more in detail and evaluate their performance in real-world experiments.

Figure 3.21: Smoke transparency in visual, short wave infrared (SWIR) and long
wave infrared (LWIR) range. (source: www.xenics.com)
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3.5.1 Phase 1: silhouette coverage analysis

The SCA starts with the calculation of the LWIR-visual coverage of the regis-
tered visual SV ISUALn and thermal silhouette SLWIR

n . Contrary to the COV
coverage metric introduced for registration in Eq. 3.11, the SCA uses a slightly
different metric, since we are only interested in the percentage of the visual
silhouette that is also detected by the thermal silhouette. The SCA coverage
metric COV SCA is defined as:

COV SCA(SLWIR
n , SV isualn ) =

SLWIR
n ∩ SV isualn

SV isualn

. (3.13)

Under normal conditions, if there is no smoke, the COV SCA does not
change much over time. This is also shown by the silhouette coverage graph
of the moving person sequence in Fig. 3.23a, where the COV SCA stays within
the [0.8; 1] coverage range. Contrarily, in the case of smoke (Fig. 3.23b), the
COV SCA strongly decreases below 0.8. Even when no moving objects are
present in the scene (COV SCA = 1), a similar decrease is noticeable when
smoke occurs. For detection of this decrease, we propose a sequence/scene
independent technique based on slope analysis of the linear fit, i.e., trend line,
over the ten most recent silhouette coverage values. If the slope of this trend
line is negative and decreases continuously, smoke warning is given.

Since it is the global trend of a sequence of adjacent points which is ana-
lyzed, low noise coverage results do not cause any problems. Furthermore, the
delay caused by analyzing the set of adjacent points is negligible. Since the
algorithm is able to run at 25 fps, a delay of 10 frames, for example, does not
much affect the ‘real-time’ character of the proposed method.

The trend line, i.e., the linear fit of consecutive coverage results, is found
by linear regression [140]. Suppose there are n data points [COV SCA

i , xi]
where i = 1, 2, ...n and xi = i. The goal is to find the equation of the straight
line COV SCA = α + βx which would provide a best fit for the data points,
i.e., the line which minimizes the sum of squared residuals of the linear regres-
sion model. Using the least squares method the problem can be formulated as
follows:

Find minα,βQ(α, β)

where Q(α, β) =

n∑
i=1

(COV SCA
i − α− βxi)2 .

(3.14)
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Figure 3.23: Silhouette Coverage Analysis (SCA). a) SCA of moving person se-
quence; b) SCA of smoke (straw fire) sequence.
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It can be shown [140] that the values of α and β that minimize Q are:

β = corr(x,COV SCA)
σ(COV SCA)

σ(x)

α = COV SCA − βx .
(3.15)

where corr() is the correlation coefficient, σ() is the standard deviation and x
and COV SCA are the means of x and COV SCA. Substituting the values of α
and β in COV SCA = α+ βx provides the equation of the trend line.

A positive slope of the trend line indicates that the line increases, whereas
a negative slope indicates a decrease. As such, in order to detect a continuous
decrease in silhouette coverage, it is sufficient to analyze the slope over time. If
more than two consecutive slope values are negative and grow in the negative
direction, smoke warning is given. Since the silhouette coverage of ordinary
objects can also have a small negative slope over time, due to the thermal-
visual differences, small negative slopes (β > −0.1) are not taken into account
in the slope analysis. The analysis of the slope also causes a small delay.
However, this delay of three frames is also negligible.

An example of the slope analysis for 4 consecutive frames from the moving
person sequence and the smoke sequence is shown in Fig. 3.24. The slope
for the moving person is very small and does not change much over time.
Contrarily, in the smoke sequence, the slope becomes negative and grows in the
negative direction as soon as smoke occurs. After more than two consecutive
negative slope decreases, the smoke warning is given.

3.5.2 Phase 2: disorder analysis of visual silhouette

The second phase of the multi-sensor smoke detection is only executed if a
smoke warning is given in the first phase. If a warning is given, foreground
(FG) objects in the visual silhouette are further investigated by temporal disor-
der analysis in order to distinguish true detections from false alarms, such as
shadows. Due to the dynamic character of smoke, the perimeter and the area
of FG smoke objects in the visual silhouette SV isualn show a high degree of
disorder. By temporal analysis of the boundary-area roughness R [40], which
focuses on both the area A and perimeter P of the FG object, this disorder can
be detected. The R of a FG object in SV isualn is given by:

R =
P

2
√
πA

. (3.16)
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Figure 3.24: Slope analysis for a) moving person and b) smoke sequence (∼
Fig. 3.23). Graphs show frame number versus visual/thermal coverage COV SCA

for four consecutive frames. If more than two consecutive negative slope decreases
occur, smoke warning is given.
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Figure 3.25: Boundary-area roughness for moving person and smoke objects.

As Fig. 3.25 shows, the boundary-area roughness of both smoke objects
shows a high temporal disorder, while the disorder for the person remains quasi
constant. For each object, its degree of disorder can automatically be detected
by low-cost extrema analysis [94] using the roughness variance metric:

Rvar =
|extrema(R)|

N/2
, (3.17)

which is related to the number of extrema |extrema(R)|, i.e., local maxima
and minima, in the set of N consecutive R data points.



130 Multi-modal fire detection

By smoothing these data points using a moving average filter, small differ-
ences between consecutive points are filtered out and are not taken into account
in the extrema calculation, which increases the strength of the disorder feature.
Smoke, with a high roughness disorder, will have a Rvar close to 1, while for
more static objects it will be close to 0. Important to mention is that, in order
to keep the delay low, N is chosen equal to the number of coverage points for
trend line analysis. Since both can be calculated simultaneously, the buffering
and (optional) analysis of the boundary-area roughness values causes no extra
delay.

If for one (or more) FG object(s)Rvar is high, i.e., close to 1, the fire alarm
is raised. If necessary, further analysis of the visual silhouette using other low
cost smoke-features can be performed. However, by only focusing on both
proposed silhouette behaviors, the multi-sensor smoke detector is already able
to accurately detect the smoke, as shown by the experimental results below.

3.5.3 Experimental set-up and results

In order to verify the proposed LWIR-visual smoke detector we performed sev-
eral real-life fire and non-fire experiments in a closed car park at Warrington-
FireGent [28]. An example of these real case scenarios is shown in Fig. 3.26a-
b, where the left-most images are the visual and LWIR camera views of the
’moving people’ and ’car fire’ test sequence.

As the graphs in Fig. 3.26 show, the moving people sequence has a quasi
constant silhouette coverage, and as such, no smoke warning is given so phase
2, i.e., the visual disorder analysis, is not performed. Contrarily, the silhouette
coverage of the smoke sequence shows a high decrease after 45 frames, which
activates the smoke warning. As a reaction to this warning, phase 2 is acti-
vated and analyzes the boundary-area roughness variance Rvar of the visual
silhouette objects. Since the Rvar for the largest object is high, fire alarm is
given.

In order to objectively evaluate the proposed method, we performed five
different test setups: car fire, straw fire, moving people, moving car, and paper
fire. For each of these fire and non-fire test setups we generated several video
sequences. In total the test set contains 18 multi-modal fire videos and 13
non-fire video sequences with varying environment characteristics. For each
of these sequences, we also generated a manual ground truth (GT). The per-
formance results in Table 3.2 summarize the experimental results of all these
tests for different algorithm configurations. Each of these configurations will
be analyzed in more detail below.
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Figure 3.26: Multi-sensor smoke detection experiments: a) (non-smoke) moving per-
son and b) smoke (car fire) sequence.

A. Evaluation of different algorithm configurations

During the tests, four different configurations of the algorithm were tested to
evaluate and justify the steps taken in the proposed approach: proposed setup
without gamma correction; without merge of visual color, edge and intensity
information (only intensity was used); without adaptive k-means clustering (as
an alternative, we used the Otsu method); and the proposed approach.

As the results indicate, the proposed configuration yields the best smoke
warning / fire alarm rate. For the fire tests, the overall fire alarm rate is 98%.
This means that almost each of the tested fires, which were manually annotated
during ground truth (GT) creation, is detected. Without gamma correction or
visual merge, these results are significantly lower. It can also be seen that the
influence of the adaptive k-means is not so big, but since this kind of automatic
thresholding results in an extra seven percent gain, its use in the proposed
approach is justified.
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By comparing the smoke warning and the fire alarm rate of the non-fire
tests, the influence of the visual disorder analysis, i.e., the second phase in the
smoke detector, becomes also visible. As most of the non-fire test sequences
which falsely generate a smoke warning are corrected by the visual disorder
analysis, the fire alarm percentage for the proposed approach is close to zero.
As such, the number of false alarms is very low, one of the main requirements
mentioned in the introduction. Only if the moving object has similar temper-
ature profile as the background AND its Boundary Area Roughness is high, a
false alarm will occur. Besides smoke, it is expected that not much objects will
have both characteristics simultaneously.

B. Evaluation of silhouette FG extraction alternatives

In order to evaluate the effectiveness of the proposed foreground extraction,
the results of the silhouette-based approach are compared to a simple frame
differencing and dilation algorithm. Furthermore, comparison is also made
with a popular running average based dynamic background subtraction algo-
rithm [60].

The results in Table 3.2 show that the detection results of the proposed
method outperform the results of the dynamic background subtraction, which
on his turn achieves better results than the simpler frame difference approach.
Especially when light conditions are bad, like in the car park experiments, the
frame differencing and the dynamic BG subtraction have a lot of FG detection
problems, which do not occur when using the proposed method. As such, the
use of the silhouette-based FG extraction is objectively found more efficient
than the investigated FG extraction alternatives.

C. Evaluation of disorder analysis alternatives

Over the last decade, many solutions for object shape changing detection have
been proposed in literature, e.g., randomness of area size, boundary (area)
roughness and the similarity disorder of distance transformations. In previ-
ous work [1], we already discussed some of these state-of-the-art disorder de-
tection metrics and stated that their performance is quasi identical. Recent
experiments, of which the results are shown in Table 3.2, also confirm this
hypothesis. It is found that, although each of these shape changing detection
techniques differ in definition, the outcome of each of them is almost identi-
cal. Furthermore, the experiments revealed that the disorder analysis of the
boundary (area) roughness and the randomness of area size are computation-
ally more efficient than the distance transformation technique. As such, one of
these prior techniques is chosen.
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D. Comparison with SOTA alternatives

As can be seen in Table 3.3, the proposed 2-phase multi-sensor detector yields
good detection results, which outperforms the investigated state-of-the-art
smoke detectors of:

• Xiong et al. [40]: based on BG subtraction and flicker/disorder analysis;

• Calderara et al. [42]: based on mixture of Gaussians (MoG) of DWT
energy variation and color blending;

• Toreyin et al. [36]: based on block-based spatial wavelet analysis and
Hidden Markov Model (HMM).

Especially when light conditions are bad, like in the car park experiments,
the proposed algorithm detects the smoke more accurately. The main reason
for this can be found in the fact that, contrarily to the SOTA (visual) clues
that can be used for smoke detection, the change rate of FG area between
visual and IR video images focuses on the visible-invisible character of visual-
LWIR smoke regions, which is much less prone to misdetections. From these
alternatives, the method of Toreyin et al. performs best. In the FireSense
project [109], our method will further be evaluated against this method.

Since other aerosols such as fog and dust can possess similar visual-LWIR
silhouette behavior as smoke, further visual object investigation, for example
by energy (∼ visual obscuration) analysis [35, 42, 61] and dynamic texture
analysis [68, 141, 142], can be necessary to eliminate those phenomena. How-
ever, this is out of the scope of this dissertation and will be part of future work.

Table 3.3: Comparison of proposed algorithm to state-of-the-art smoke detectors of
Xiong et al. [40], Calderara et al. [42] and Toreyin et al. [36].

FIRE TESTS NON-FIRE TESTS

configuration smoke fire smoke false
warning alarm warning alarm

proposed approach 98% 98% 5% 2%
Xiong et al. 71% 68% 9% 7%
Calderara et al. 85% 83% 6% 4%
Toreyin et al. 88% 86% 7% 4%
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3.6 Visual - TOF flame detection

In Section 3.4 we proposed a novel multi-modal LWIR-visual flame detector
and evaluated its performance over individual video flame detectors. Similarly,
this section presents a novel visual-TOF flame detector, which takes advantage
of the different kinds of information represented by registered visual and TOF
imaging sensors. The registration between the sensors is also performed using
the silhouette-based image registration method proposed in Section 3.3.

The visual-TOF flame detector builds on the proven concepts of the single-
sensor TOF flame detector proposed in Section 2.6.1. This TOF flame detec-
tor is based on the combined analysis of the depth and amplitude images of
a TOF camera. Experiments (Section 2.6.1) revealed that, using this multi-
modal TOF information, flames can be detected very accurately. One of the
drawbacks of this detector, however, is that it is limited to indoor detection
within the range of the TOF camera. In outdoor situations or outside the range
of the TOF camera (distance>= 10m), the detection fails. Main reason of this
failing is the fact that the depth maps become unreliable under these circum-
stances. In order to cope with this problem one could think of only using the
TOF amplitude information. However, relying on this feature alone causes a
lot of mis-detections. A better approach is to combine the TOF amplitude de-
tection (Section 2.6.1) with a visual flame detector (Section 2.3), what is done
in the visual-TOF flame detector presented in this section. Since the amplitude
image and the visual image focus on different ‘characteristics’ of the fire, we
believe that combining both image modalities is definitely a win-win.

3.6.1 General scheme of visual-TOF flame detector

A general scheme of the ‘outdoor’ visual-TOF based flame detector is shown
in Fig. 3.27. The proposed algorithm consists of three stages and is similar to
the ‘indoor’ TOF based flame detection algorithm described in Section 2.6.1.
The first two stages, i.e., the low-cost visual flame detection and the ampli-
tude disorder detection are processed simultaneously. The last stage, i.e., the
region overlap detection, investigates the overlap between the resulting candi-
date flame regions of the prior stages. If they overlap, fire alarm is given.

The low-cost visual flame detector is the one which was discussed in Sec-
tion 2.3, and the amplitude disorder and region overlap detection are also the
same as in Section 2.6.1. The novelty of the ‘outdoor’ visual-TOF flame detec-
tor, compared to the indoor TOF flame detector, is that we now combine visual
and TOF detection results and analyze them together using the region overlap
detection. Important to mention is that, in order to perform the region overlap
detection, the visual and amplitude images need to be registered.
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Figure 3.27: General scheme of the TOF-VISUAL based flame detector.

Some types of TOF cameras, e.g., the OptriCam [107], already offer both
TOF sensing and RGB capabilities and their visual and TOF images are al-
ready registered. The majority of TOF cameras, however, still does not have
this RGB capabilities. As such, a visual-TOF registration, i.e., the calculation
of the transformation parameters (Section 3.3), is necessary.

3.6.2 Experimental results of TOF-visual flame detector

Analogously as for the evaluation of the indoor TOF based flame detector
(Section 2.6), several realistic fire and non-fire experiments were performed
to illustrate the potential use of the outdoor visual-TOF flame detector. An ex-
ample of these experiments, i.e., the Christmas tree fire, is shown in Fig. 3.28.
In order to test the detection range of the proposed multi-sensor detector, the
distance between the sensors and the fire is also varied during the experiments.

As the results in Table 3.4 show, robust flame detection can be obtained
with the proposed multi-sensor visual-TOF image processing. Compared to
the VFD detection results, i.e., an average detection rate of 88% and an average
false positive rate of 4%, the outdoor detector, with its average detection rate of
92% and no false positive detections, performs better. By further inspecting the
results, one can also see that increasing the distance between the cameras and
the fire source, does not much influence the detection results. For example, the
detection rate of the outdoor wood fire test at 22 meters is around 89%, which
is quasi as good as the 91% of the straw fire test at 7 meters and the 95% of
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the Christmas tree fire at 10m. It seems that it is more the type of burning
material that influences the detection results, i.e., some materials burn much
more rapidly than others and will show the discriminative flame characteristics
much faster. The results also show that, compared to the indoor detector, the
average detection rate of the outdoor detector is a little lower. This can mainly
be attributed to the fact that the resolution of the TOF camera, for the moment,
is too low to detect small objects over long distances. Very small flames (e.g.,
in the beginning of the fire) are, as such, not detected.

Figure 3.28: Christmas tree experiment: (a) TOF depth map and (b) corresponding
amplitude image; (c) ordinary video.

Table 3.4: Performance evaluation of outdoor visual-TOF fire detection.

Video sequence # fire # detected # false flame
(distance) frames fire frames positive detection

(GT) detections rate

Outdoor wood fire (22m) 1230 1090 0 0.89

Christmas tree fire (10m) 815 771 0 0.95

Outdoor straw fire (7m) 460 419 0 0.91

Non-fire activities (> 10m) 0 0 0 -
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3.7 Conclusions

The majority of the SOTA systems in video based fire detection are plagued
by a number of difficulties in real-world scenes, e.g., lighting, reflections and
noise. Many of these difficulties are caused by limitations due to the type of
sensors used. Until today, most work still concentrates on systems that operate
purely on visual inputs and largely ignores other sensor modalities. However,
despite the progress made down this track, the goal of accurate fire detection
in cluttered environments, such as car parks, remains unsolved.

To overcome the ‘visual’ limitations of current VFD systems, multiple
types of sensors, like a color, thermal and/or depth camera, can be used by
applying the multi-modal registration and detection techniques described in
this chapter. The proposed multi-modal flame and smoke detectors take ad-
vantage of the different kinds of information represented by thermal, visual
and/or depth images in order to accurately detect flames and smoke. By fus-
ing the multi-modal modalities and using the strengths of each medium, fire
detection is done more accurately and with fewer false detections. Merging
information from multi-modal sensors has, as such, proven to be a win-win.

In order to combine the information in a multi-modal setup, the corre-
sponding objects in the scene need to be registered. The proposed silhouette
based registration algorithm analyses the contours and the correlation of vi-
sual, thermal and/or TOF FG silhouettes. First, the rotation is computed using
silhouette contour extraction and circular cross correlation. Next, contour scal-
ing is used to estimate the thermal-visual scale factor. Finally, the translation
vector is estimated by maximizing the binary correlation. The geometric pa-
rameters found during this registration phase are further used by each of the
multi-modal detectors to coarsely map the visual, thermal and/or depth images.

To evaluate our system, the proposed multi-modal flame and smoke detec-
tors are tested on several fire and non-fire experiments and are compared to
their single-sensor alternatives. We have shown objectively that each of the
detectors outperform the single-sensor detectors and adhere to all the relevant
requirements: object-based automatic calibration/registration, low number of
false alarms, no missed detections and fast warning/alarming with different
levels of detection. Due to the low-cost of the proposed techniques, such as the
silhouette coverage analysis and the visual silhouette disorder analysis (which
is only performed if smoke warning is given), the multi-modal detectors are
also less computational expensive as many of the existing individual detectors.
This makes them suitable for real-time operation, for example, in a CCTV
environment.
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Unfortunately, due to the unavailability of one of the cameras, we have
not (yet) been able to compare the proposed multi-modal detectors, e.g., the
visual-TOF and LWIR-visual flame detector, against each other. Based on
their individual experiments, however, it is expected that they will give similar
performance.

Future work on multi-modal fire analysis will mainly focus on investigat-
ing the benefit of using different infrared spectral cameras. Xenics [27], i.e.,
one of our research partners, already started research on the technical aspect in
this direction [143]. For further evaluation of the work presented in this chap-
ter, Xenics has also made arrangements within the FireSense [109] project to
cooperate in their future experiments. This gives us the opportunity to test our
multi-modal algorithms on a broader scale.
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Chapter 4

Multi-view fire analysis

The main focus of this chapter is on the development of a video fire analy-
sis framework which can be used for video driven fire-spread forecasting. To
the best of our knowledge, no such framework yet exists. Our main contri-
bution consists of a virtual sensor grid based on multi-view 3D plane slicing,
the use of dynamic camera maps and spatial and temporal 3D filters, which
extend existing 2D concepts. Using the framework, the location of the fire, its
size, its propagation and its direction can accurately be estimated. The pro-
posed multi-view localization techniques have been tested thoroughly on fire
and non-fire video sequences and have shown to work. Furthermore, prelimi-
nary experiments show the feasibility of video driven fire-spread forecasting.

4.1 Introduction

In order to actually understand and interpret the fire, detection is not enough. It
is also important to have a clear understanding of the fire development and the
location of the fire. Where did the fire start? What is the size of the fire? What
is the direction of smoke propagation? The answer to each of these questions
plays an important role in safety analysis and fire fighting/mitigation, and is
essential in assessing the risk of escalation. Unfortunately, most video-based
fire alarm systems still just ring the bells, i.e., they only detect the presence
of fire. Even though the majority of these systems consist of several cameras
monitoring the same scene, the analysis is usually carried out separately on
each of the camera’s sequences. However, by combining the detection results
of each of these single-view cameras and analyzing them together, more ac-
curate detection and localization of smoke and flames can be achieved and
valuable fire characteristics can be detected at the early stage of the fire. These
characteristics, in turn, can be used for fire-spread forecasting.
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Being able to model and forecast the fire can help emergency services to
work more efficiently and save lives. However, the calculations with current
modeling techniques still take too long and valuable time is often lost. Using
the multi-view fire analysis framework proposed in this chapter, which is able
to give real-time information about the state of the environment, these zone
model-based predictions of the future state can be improved and accelerated.
By combining the information about the fire from models and real-time data
an estimate of the fire can be produced that is better than could be obtained
from using the model or the data alone. This is the final goal of video based
fire forecasting, of which the proposed framework is the first part. The second
part, i.e., linking the modeling and the real-time detection, is performed by our
fire engineering research partners [144].

The first part of this chapter (Section 4.2) focuses on the state-of-the-art
methods and tools for video fire analysis and discusses their advantages and
limitations. The results of these first approaches are still limited and interpre-
tation of the provided information is not straightforward. As such, the main
goal of our work is to provide a more valuable video fire analysis tool, i.e.,
our novel multi-view fire analysis framework. The second part of this chap-
ter (Section 4.3) presents a global description of the proposed framework. By
fusing the low-cost video fire detection results of multiple cameras into a grid
of virtual sensor points, i.e., the FireCube, valuable fire characteristics are de-
tected at the early stage of the fire.

Next, in Section 4.4, a more detailed description is given on homography-
based multi-view plane slicing, i.e., one of the main components of the frame-
work. The proposed plane slicing technique merges the single-view detection
results of the multiple cameras by homographic projection onto multiple hor-
izontal and vertical planes, which slice the scene. Subsequently, Section 4.5
explains how a 3D grid of virtual sensor points, called the FireCube, is cre-
ated at the crossings of these slices. Using this grid and subsequent spatial and
temporal 3D clean-up filters (Section 4.6), information about the location of
the fire, its size and its direction of propagation can be instantly extracted from
the video data. This is further discussed in Section 4.7. In Section 4.8 we also
briefly introduce the concept of video driven fire spread forecasting.

A subjective, i.e., visual confirmation, and objective evaluation (Sec-
tion 4.9) shows that the proposed multi-view fire localization framework is
able to accurately detect and localize the fire. It is found that two cameras are
already sufficient to achieve a dimension accuracy of 90% and a position accu-
racy of 98%. By further increasing the number of cameras, it is even possible
to achieve a dimension accuracy of ±96% and a position accuracy of ±99%.
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The experiments also shows that increasing the number of cameras has a posi-
tive effect on the detection rate, as was expected. Finally, Section 4.11 finishes
this chapter and lists the conclusions.

4.2 State-of-the art in video fire analysis

Only recently, a few approaches have been proposed in literature which are
capable of providing additional information on the fire circumstances, such as
size and location. Yasmin [47] proposes a dynamic programming (DP) match-
ing algorithm, which analyzes the set of contour pixels of subblocked bina-
rized images from consecutive frames. For each of the contour pixels, the DP
matching generates a displacement vector. These vectors are further analyzed
by histogram analysis to obtain the orientation with the highest number of dis-
placement vectors, i.e., the global direction of the smoke. Despite the fact that
this single-view approach offers some interesting insights, the output is very
limited for further analysis, since it is restricted to four directions in 2D. Fur-
thermore, it seems impossible to perform valuable fire analysis with one single
camera, since a lot of crucial information can be missed. For example, when
the propagation of the flames and/or smoke is not well aligned with the camera
view, analysis of growing size and propagation becomes very complicated.

The system of Martinez-de Dios et al. [145] analyzes visual and IR movies
of a propagating fire front in order to supply the time evolutions of the fire
front shape and position, flame inclination angle, height and base width. As
secondary outputs their system also provides the fire front rate of spread (RoS)
and a 3D graphical model of the fire front that can be rendered from any virtual
view.The experimental setup of the system is illustrated in Fig. 4.1. The 3D
model of the instantaneous fire front is constructed in real-time, based on mea-
sures of the fire front base (rear and leading edges position), and flame height
and inclination angle. This graphical representation can be rendered from any
point of view, simulating the image obtained by a virtual camera. Subjective
evaluation of the 3D fire model viewed by camera3 (Fig. 4.1d) and the true
image of camera3 (Fig. 4.1e), shows that their system achieves good perfor-
mance. Although the system is directly aimed at, and is only demonstrated in
laboratory experiments on a flat burn table, the authors indicate that it can also
be extended to field applications [146, 147]. However, as both the laboratory
and the field tests require a frontal camera view (the camera axis is perpendicu-
lar to the fire front) and a lateral camera view (the camera axis is parallel to the
fire front), questions do also arise about the system’s real-world applicability.
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Figure 4.1: Video fire analysis system by Martinez-de Dios et al. [145]. Test with
linear fire front, 30 s after ignition: a) camera configuration; b) image of Camera1
(infrared, frontal); c) image of Camera2 (visual, lateral); d) 3D fire model based on
the images of Cameras1 and 2, viewed by Camera3 (virtual image); and e) true image
of Camera3 (visual, frontal).

Furthermore, in order to estimate certain fire characteristics, such as the lead-
ing edge of the fire front, an observer must supply additional information about
the fire ‘circumstances’ (e.g., the type of ignition), which further limits it suit-
ability for fire analysis in real-world environments.

Similar lab experiments to those of Martinez-de Dios et al. are also dis-
cussed in [148]. In this work, Pastor et al. present a method for the fast and
accurate calculation of the RoS by processing single-view infrared images. In
order to calculate the RoS (∼ flame front’s position as a function of time)
the correspondence between the coordinate system of the image (expressed in
pixels) and the real coordinate system (expressed in meters) is needed. They
propose to estimate this correspondence, i.e., the homography matrix, using
the direct linear transformation (DLT) algorithm. The same technique is used
by the novel video fire analysis framework proposed in this chapter. A draw-
back of the system of Pastor et al., from our point of view, is that it is based on
an application for linear frame fronts that are generated on flat surfaces with
known dimensions. Although technical guidelines are given for the extrapola-
tion of their method to experimental scenarios on a larger scale, they discuss
themselves some problems/bottlenecks related to the system’s applicability in
a real-world environment. Furthermore, the assumption of a frontal view is
again seen as a limitation.
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Far more interesting than the prior approaches is the stereo vision work
of Akhloufi and Rossi [58, 149, 150]. This approach, which is illustrated in
Fig. 4.2, uses two stereo-vision cameras to track the fire spread in 3D space.
First, a color based segmentation is used to extract the fire regions from both
cameras. These regions are then further analyzed by feature point detection
and matching between the two camera images. Feature points (also called in-
terest points or keypoints in literature) are locations in the image where the
signal changes two-dimensionally, such as corners and line intersections, as
well as locations where the texture varies significantly [151]. Based on the
feature point matching, 3D fire points are computed using stereo correspon-
dence. Finally, a 3D ellipsoid is fitted for volume reconstruction and for the
computation of fire characteristics such as spread dynamics, local orientation
and heading direction.

Figure 4.2: Video fire analysis system by Akhloufi and Rossi [58, 149, 150]: a) input
(stereo-vision) video sequences; b) general scheme of 3D modeling framework; c) 3D
position of corresponding ‘feature points’; d) 3D surface reconstruction of the fire.
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Although it is already possible to extract some valuable fire development infor-
mation by means of this stereo-vision based technique, questions arise about
its applicability in real-time scenarios without a priori knowledge of the fire.
Furthermore, we believe that a grid-based approach is more appropriate than
the ellipsoid modeling technique for fire development analysis, since interpre-
tation and temporal analysis of the latter is not straightforward.

Despite the limited results of the discussed video fire analysis approaches,
the results from existing ordinary multi-view object analysis approaches, such
as the people and vehicle trackers in [152–154], are already very promising
and their basics are also appropriate for video fire analysis. The majority of
these works relies on homographic projection [23] of camera views, which
also forms the basis of our framework.

4.3 Global description of the framework

Single-view VFD algorithms, such as the ones discussed in Chapter 2, are able
to accurately detect flames and smoke. However, due to visibility problems,
such as occlusion, and due to limitations in 2D→ 3D reconstruction, crucial
information on the location, size, and propagation of the fire is hard to retrieve.
On the other hand, this information is of great importance for a better under-
standing of the fire. In order to retrieve these valuable fire characteristics, a
new multi-view localization framework is proposed that detects the 3D posi-
tion and volume of the fire in an accurate manner. Fig. 4.3 presents the global
architecture of this framework.

Using the proposed localization framework, information about the fire lo-
cation and (growing) size can be generated very accurately and quickly. First,
the framework detects the fire, i.e., smoke or flames, in each single view. In
order to do this, the framework uses the low-cost flame and smoke detectors
which are discussed in Chapter 2. As an alternative, an appropriate single-view
smoke or flame detector can also be chosen out of the numerous approaches
already proposed in literature [1]. Secondly, the single-view detection results
of the available cameras are projected by homography [23] onto horizontal and
vertical planes which slice the scene. For optimal performance it is assumed
that the camera views overlap, such that each position is seen by at least two
cameras. Overlapping multi-camera views provide elements of redundancy,
i.e., each point is seen by multiple cameras, this way helping to minimize am-
biguities like occlusions and improving the accuracy in the determination of
the position and size of the flames and smoke. Next, the multi-view plane
slicing algorithm averages the multi-view detection results in each of the hori-
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zontal and vertical planes. This step is a 3D extension of Arsic’s multiple plane
homography [155]. Then, a 3D grid of virtual multi-camera sensors, i.e., the
FireCube, is created at the crossings of these planes.

At each sensor point of the 3D FireCube, the detection results of the hor-
izontal and vertical planes that cross in that point are analyzed and only the
points with stable detections are further considered as candidate fire or smoke.
Finally, 3D spatial and temporal filters clean up the grid and remove the re-
maining noise. The filtered grid can then be used to extract the smoke and fire
location, information about the growing process and the direction of propaga-
tion. The novel aspects in the proposed framework are the 3D grid analysis and
the spatial and temporal 3D filtering, which extends existing 2D filter concepts.
In the next sections, the major components, that make up the framework, are
described more in detail.

Figure 4.3: Global architecture of multi-view localization framework for 3D smoke
and flame analysis.
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4.4 Homography-based multi-view plane slicing

4.4.1 Homographic projections

The core of our multi-view localization framework is the planar homography
constraint [152–154], which is translated into the 3D structure of the FireCube,
as explained further. The constraint combines foreground likelihood informa-
tion, i.e., the probability of a pixel in the image belonging to the foreground
(FG), from different views to determine the locations of the FG objects on a
plane in a reference coordinate system. The constraint implies that only pixels
corresponding to the plane locations will consistently warp, under homogra-
phies of the reference plane, to the same FG location in the common reference
view. Points that do not meet this assumption are mapped, i.e., are projected,
to a skewed location on the reference plane.

Fig. 4.4, in which one person is viewed in one position by three cameras,
illustrates the concept of the homography constraint on a ground plane. As
can be seen, the parts of the person’s body (white FG pixels) that touch the
ground are consistently projected to the ground plane location of the person
in the common reference view. Other parts, for example the person’s legs, are
projected to skewed locations and do not overlap. This can best be seen in the
common reference view, which combines the projections of the three camera
views to the reference ground plane. It must be pointed out that the homogra-
phy constraint is not limited to the real ground plane. The constraint also ap-
plies to the homographic projection of virtual planes parallel and orthogonal to
the real ground plane, i.e., the planes that form the basis of the FireCube. The
creation of these planes is based on basic geometry and is fairly straightfor-
ward. Before going into details on this, the basics of homographic projection,
which forms the basis of our multi-view plane slicing, are discussed.

To project the FG views, i.e., the detected/moving parts of the single-view
camera VFD images, to a common plane, the homography matrix Hom of
each camera is needed:

Hom =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 . (4.1)

The Hom matrix maps the plane in the camera view to the plane in the
common view by transforming the coordinates of the points using the projec-
tion parameters hij (i, j = 1..3). The matrix can be calculated offline using
techniques such as the 4-point-based Direct Linear Transform (DLT) [23] or
even self-calibration methods can be used [156]. The proposed framework
uses the former method.
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Figure 4.4: Homography constraint.

During the camera calibration a set of four 2D to 2D correspondences xi
↔ x′i between the views and the ground plane are selected for each camera
and the homography matrix Hom is calculated by DLT, in the same way as
is explained in the work of Hartley and Zisserman [23]. An example of the
camera calibration for one of our cameras is shown in Fig. 4.5. A person is
placed at four predefined positions, i.c. a square of one by one meter, and the
coordinates xi of his feet, i.e., the lowest pixels, are used as calibration points.
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Figure 4.5: 4-point-based DLT homography estimation of camera 1. A person is
placed at four predefined positions, i.c. a square of one by one meter, and the coordi-
nates xi of his feet are used as calibration points.
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In order to map the flame and smoke risk values of each point [x, y] onto
the point [x′, y′] in the common reference plane, the homographic projection
of single-view VFD results uses the Hom-matrix of the selected view (Eq. 4.1)
and the transformations given by:

x′ =
h11x+ h12y + h13

h31x+ h32y + h33

y′ =
h21x+ h22y + h23

h31x+ h32y + h33
.

(4.2)

In order to know the overall flame and smoke risk value of [x′, y′], the average
risk value of all the mappings on [x′, y′] is taken.

4.4.2 Multi-view plane slicing

By detecting the presence of high flame and smoke risk values on different
virtual planes orthogonal and parallel to the ground plane, the precise 3D loca-
tions of the fire can be retrieved. In order to do this, the homography matrices
of these virtual planes need to be known. Selecting calibration points for each
of these planes is too time-consuming and error-prone, so that a technique is
needed to automatically generate the homography of these planes. From the
few horizontal multiple plane strategies that have recently been proposed in
literature, the computationally low complex multilayer homography by Arsic
et al. [155] is the most interesting. Other techniques, such as the plane slic-
ing of Khan and Shah [157] and Lai and Yalmiz [158], can also be used, but
since their calibration and height and distance estimation require more compu-
tational work, the prior one is chosen and extended to 3D in this work.

As in [155], the computational effort for creating the multiple plane ho-
mographies is kept at a minimum. Starting from the eight calibration points
shown in Fig. 4.6, the homography is computed for the six reference planes
connecting these points, i.e., two horizontal and four vertical planes. All other
homographies, for planes parallel to the calibration planes, are computed by
basic geometry. For example, the homography of a horizontal plane parallel to
the ground plane at height z is estimated using:

px,z = (px,1 − px,2)z/z2 + px,1

py,z = (py,1 − py,2)z/z2 + py,1 ,
(4.3)
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where px,1 and py,1, and, px,2 and py,2, respectively are the coordinates of the
calibration points p1 and p2 in the planes at height z1 and z2, i.e., the ground
plane and the head plane respectively. In our experiments the calibration points
were selected by detecting the lowest and highest pixels of a person’s feet and
head at some predefined positions, i.c. a square of one by one meter, as is
illustrated in Fig. 4.5.

Figure 4.6: Multi-plane camera calibration (2x 4-point-based DLT homography esti-
mation). Starting from eight calibration points, the homography is computed for the
six reference planes connecting these points.

Figure 4.7: Plane slicing in horizontal and vertical directions. Each of the ’virtual’
cuts represents an averaged detection plane, i.e., a combination of the projected multi-
view detection results to that plane.
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Similar to the calculation of the homography of a horizontal plane parallel
to the ground plane, the multi-view localization algorithm calculates the ho-
mography for any vertical plane orthogonal to the ground plane. As soon as
the homography of each view to the common plane is known, the overall flame
and smoke risk value on that plane is calculated by averaging the projected risk
values.

As is illustrated in Fig. 4.7, the plane slicing virtually cuts the scene in the
horizontal and vertical directions. Each of these cuts represents an averaged
detection plane, i.e., a combination of the projected multi-view detection re-
sults to that plane. By observing these detection planes, it is already possible
to obtain an estimate for the fire/smoke location and size, but in order to ensure
accurate localization and to automatically provide easy-interpretable data for
motion analysis, further processing of these plane detections is needed. For
this reason, the 3D FireCube is created, as described in Section 4.5. Before
going into detail on the FireCube, however, it is important to discuss the use
of dynamic camera maps, which facilitate the analysis of plane slices.

4.4.3 Dynamic camera maps

Since fire/smoke regions are not always visible in all views, or only partly vis-
ible, the detection/localization will be influenced by the number of cameras
having the fire/smoke position under surveillance. By making a camera map
that contains the number of cameras that are able to monitor the specific po-
sition, appropriate detection criteria can be determined. Fig. 4.8 shows the
creation of one of the camera maps that are used in our experiments.

The higher the value of a position on the dynamic camera map, the more
cameras that monitor that position. Special events, such as camera unavail-
ability and tampering [159], can be automatically detected and could also be
taken into account by dynamically updating the map. For example, when an
object blocks one of the cameras’ field of view or one of the cameras is bro-
ken/switched of, the binary mapping of this camera view can easily be sub-
tracted from the dynamic camera map and the camera will (temporally) not
participate in the video fire analysis.

A dynamic camera map can also be very useful during installation of a
multi-view camera system. Using the map, the optimal system configuration,
i.e., number of cameras, placement, etc., can easily be found. Furthermore,
they can also be a great tool for surveillance operators, for example, in order
to know which region is mapped by which camera.
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Figure 4.8: Camera mappings to (real) ground plane: (a) input video sequences; (b)
homography mappings to ground plane; (c) real ground plane; (d) BW-map of number
of views for each location by combination of mappings from (b).

4.5 Grid analysis

At the crossings of the horizontal planes PlaneH and vertical planes PlaneV1

and PlaneV2 , a grid, i.e., the FireCube (Fig. 4.9), is formed. The proposed
FireCube consists of virtual 3D sensor points (x, y, z) at which the detection
results, i.e., the corresponding smoke and flame risk value Psmoke and Pflames,
of PlaneH , PlaneV1 and PlaneV2 are analyzed using:

FireCube[x , y , z ] =


FG , if Pflames[x′, y′, z′] ≥ tflames

or Psmoke[x′, y′, z′] ≥ tsmoke
BG , otherwise .

(4.4)

Sensor points for which the average of its smoke or flame risk values is higher
than the tsmoke or tflames threshold are labeled as FG , i.e., fire/smoke. Based
on our experiments, a tsmoke of 0.6 and a tflames of 0.7 are found the best
values.
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Figure 4.9: Grid accumulation of horizontal and vertical planes.

The number of horizontal and vertical planes depends on the desired local-
ization accuracy. This accuracy is related to the distances between the planes
and the dimension of the scene. The higher the number of planes, the more
accurate the localization will be, but the more the computational cost will
increase. However, the cost of increasing the number of planes is limited,
since the calibration does not change and the homography matrices for the new
planes can be calculated off-line. The only additional cost at run-time will be
the projection of the detection results to the new planes (which possibly can
be accelerated with additional hardware). In order to reduce this trade-off be-
tween spatial accuracy and execution time, one may also think of enlarging the
temporal window between consecutive detections. However, the influence of
such frame skipping enhancement on the overall performance of the FireCube
is not investigated, but can be part of future work.

4.6 Clean-up filtering

For higher detection robustness, the localization framework also includes a
clean-up filtering step in the spatial and temporal domain. In the spatial do-
main, it filters out noisy FG points in the FireCube using a set of weighted
3D median filters and fills up holes in FG object regions using a 3D filling
operator. The temporal filtering on its turn removes FG object regions which
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do no overlap with one of the detected regions in the previous or subsequent
FireCubes. This implies that a FG object must be detected in at least two Fire-
Cubes of consecutive frames (in time) to be further considered as FG smoke
or fire.

4.6.1 Spatial filtering

Spatial 3D filters have already successfully been applied in many biomedical
applications. For example, in [160] the 3D morphological opening filter is
used as a kind of neighborhood operator to enhance the spatial data in medical
images. Another example is the 3D median filter, which is used to denoise
magnetic resonance images [161]. Although these filters perform well in the
referred work, they place too high constraints on the smoke points in the large
spaced FireCube’s grid. For this reason, a novel, less strict, filter is developed.

The set of weighted 3D-median filters collects the binary results of six
different weighted median filters and selects the median value, i.e., the middle
value, in the sorted results. The ‘local’ filters consist of a sliding 3-by-3-by-3
binary mask, centered at a central point. The mask is a binary matrix with ones
on positions where points must be taken into account and zeros on positions
where the value of the points does not affect the filter result. In order to be
labeled as candidate smoke, more than half of the considered points should be
non-zero. The six filters respectively use a horizontal, two vertical, a diagonal,
a crossed and a singular mask. Fig. 4.10 gives an overview of these masks.

The combination of weighted 3D-median filters reduces the effect of outly-
ing data points, i.e., noise, and preserves the edges at the object region bound-
aries. A clarifying example of how the weighted 3D-median filters work is
given in Fig. 4.11. As this example illustrates, only smoke points on the grid
which pass at least three of the six weighted median filters remain smoke; other
points are removed. It is also important to mention that mirrored boundary pix-
els are used to facilitate the filter operation at the FireCube boundaries. This is
a common mechanism for boundary processing in many filter operations.

The median filters denoise the FireCube, but do not resolve the problem
of possibly large holes in the remaining object regions, which can occur due
to similarity with the background or due to too large homogeneous regions in
the moving object. Since the dimension of the median filters is 3-by-3-by-3,
holes with a larger dimension will not be filtered out completely. In order to
accurately estimate the size of the objects and to analyze the objects’ motion,
these holes must, however, be filled. This is the task of the 3D filling operator.
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The 3D filling operator is a global filter which operates on the entire Fire-
Cube at once. The filling operator first pushes the BG points, touching the
boundary of the FireCube, onto a stack of BG boundary points. Next, the
3D filling iteratively removes a BG point from the stack and pushes its 6-face
BG neighbors, which are not yet investigated, onto the stack. When there are
no BG points left on the stack, the removal stops. The remaining BG points,
which have not been pushed onto the stack, are labeled as holes and filled up
in the FireCube, by relabeling them as FG. An example of this hole filling
procedure is shown in Fig. 4.12.

Figure 4.10: Masked windows for weighted 3D-median filtering.
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One could think that instead of filtering in 3D, the spatial clean-up post-
processing could be done on a 2D plane-slice level. However, 2D filtering
operations have a critical drawback when used in a 3D context. A single grid
point, existing on a slice in 2D, might be interpreted as noise, while in 3D this
grid point might be a tip of a fire/smoke object, not to be eliminated. Hence,
the use of a 3D noise removal filter and a 3D filling operator provides a better
technique for more reliable localization. As will be shown in Section 4.9,
experimental results confirm this hypothesis. By using 2D filtering operators
the dimension accuracy decreases with almost 3% and the position accuracy
with 2%.

4.6.2 Temporal filtering

After filtering out noisy points and filling up holes in the spatial domain, a 3D
temporal filtering is applied on consecutive FireCube grids to remove temporal
misdetections. This last clean-up operator filters out object regions that only
appear once in one of the consecutive grids FireCubet−1 , FireCubet , and
FireCubet+1 . Since the 3D spatial structure of the object region may vary
over consecutive frames, the detection does not search for a perfect match.
In fact, it checks if the 3D bounding box BBm of the mth object region in
FireCubet overlaps with one of the bounding boxes BB of the regions in the
previous FireCubet−1 and the following FireCubet+1 (Eq. 4.5). If no overlap
exists, the filter relabels the region as BG :

Figure 4.11: Example of ‘local’ weighted 3D-median filtering.
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Figure 4.12: ‘Global’ 3D hole filling example.

FireCubet [BBm] =


FG , if FireCubet [BBm] ∩ FireCubet−1 [BBi ] 6= ∅

or FireCubet [BBm] ∩ FireCubet+1 [BBi ] 6= ∅
∀i 6= m

BG , otherwise .
(4.5)

As the example in Fig. 4.13 shows, temporal misdetections are easily re-
moved using this 3D overlap filter. At the end only temporal stable fire/smoke
objects remain.
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Figure 4.13: Example of temporal 3D overlap filter.

The proposed fusion methodology of the FireCube and its subsequent
clean-up steps eliminate the majority of the errors created by misclassifica-
tion during single-view detections. By combining the detections of multiple
views and analyzing them in multiple planes in horizontal and vertical direc-
tions, a more accurate detection and localization is achieved. Further analysis
makes it possible to produce highly valuable 3D fire development information,
as is discussed in the next section.

4.7 Fire and smoke development analysis

The last phase in the proposed localization framework allows generating fire
and smoke development information, i.e., easily interpretable flame and smoke
characteristics that are of great value in evaluating the fire, such as location,
volume, height, orientation and growing size.

4.7.1 Retrieval of fire and smoke characteristics

Different approaches can be used to determine the fire and smoke characteris-
tics. First of all, for the simplicity of the model, one could think of estimating
them using the 3D bounding box of the FG region, which is the smallest rectan-
gular box containing all the FG points. Using this bounding box, the volume of
the fire region can be equated to the volume of the box, and the position can be
set equal to the centroid of the box. Further, the height of the box can be used as
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smoke layer height estimation, one of the most important determinants [162]
in evaluating the fire risk. Although this bounding box approach seems ap-
pealing at first sight, the box can become too large for particular shapes of fire
regions, and as such, the characteristics will incorrectly describe the region.

A more effective approach is to describe the fire regions using the 3D con-
vex hull, i.e., the smallest convex polyhedron that contains all the fire points,
which has more degrees of freedom and delivers a more accurate estimation.
Several algorithms have been proposed in literature to find the convex hull of
a set of 3D points, such as the gift wrap [163], the divide and conquer [163],
or the quick hull method [164]. Each of these methods are able to accurately
describe convex 3D point clouds. However, their computational cost is very
high and there are situations in which the convex hull will be too large to de-
scribe the fire region. For this reason, another technique is proposed, namely
an adaptive bounding box algorithm.

The proposed adaptive bounding box algorithm splits up the bounding box
of the fire/smoke region into 2 parts: the fire/smoke plume box and the smoke
layer box (Fig. 4.14). This strategy of splitting up the fire region in multi-
ple zones is also used in many other fire-related applications, e.g., fire zone
modeling [165]. The splitting starts with a horizontal shrinking of the origi-
nal bounding box. As long as more than ten percent of the box is filled with
BG points, the box is iteratively reduced in the upside direction. The residual
box of this reduction process forms the smoke layer box. Subsequently, the
FG points that have been removed during the shrinking are merged into a new
box, i.e., the fire/smoke plume box. In order to detect multiple fire sources, the
proposed adaptive bounding box algorithm needs to be changed slightly. For
example, connected component labeling can be performed on the resulting FG
blobs, after smoke layer extraction. Each of the resulting blobs can than be
merged in a separate plume box.

The smoke layer box and the plume box are very useful instruments for
further analysis of the fire. First of all, the spatial characteristics of both boxes,
such as the volume, the height and the central position, closely approximate
valuable real-world fire characteristics. For example, the centroid of the floor
plane of the plume box is a good indication for the location of the fire seat.
In addition, temporal analysis of these characteristics produces valuable fire
development information, such as growing size and propagation direction. An
approximation of the growing size can be retrieved by temporal analysis of the
ratios between the current volume of the box and its volume in the previous
video frames. An approximated propagation direction can be calculated using
a 3D variant of motion history images [166].
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Figure 4.14: Adaptive bounding box strategy for splitting up fire region in plume and
smoke layer box.

4.8 Video driven fire spread forecasting

Fire spread forecasting is about predicting the further evolution of a fire, in the
event of the fire itself. In the world of fire research, research on this topic is
only just starting to emerge [167]. Based on their common use in fire mod-
eling, computational fluid dynamics (CFD) calculations [168] look interest-
ing for fire forecasting at first sight. These are three-dimensional simulations
where the rooms of interest are subdivided into a large amount of small cells
(Fig. 4.15a). In each cell, the basic laws of fluid dynamics and thermody-
namics (conservation of mass, total momentum and energy) are evaluated in
time. These types of calculations result in quite accurate and detailed results,
but they are costly, especially in calculation time. As such, CFD simulations
do not seem to be the most suitable technique for fast fire forecasting. Zone
models [168], on the other hand, seem more appropriate to perform this task.
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Figure 4.15: Fire modeling techniques: a) Computational Fluid Dynamics (CFD)
model; b) zone model.

In a zone model, the environment is subdivided into two main zones. The
smoke of the fire is in the hot zone. A cold air layer exists underneath this
hot zone (Fig. 4.15b). The interface between these two zones is an essentially
horizontal surface. The height of the interface (hint) and the temperature of the
hot (Thot) and cold (Tcold) zones vary as function of time. These calculations
are simple in nature. They rely on a set of experimentally derived equations
for fire and smoke plumes. It usually takes between seconds and minutes to
perform this kind of calculations, depending on the simulated time and the
dimensions of the room or building. Therefore, it is much better suited for fire
forecasting than the use of CFD calculations [169].

The real aim of our fire forecasting research is to use measured data from
the fire, e.g., obtained by sensors or video images in the room of interest, in or-
der to replace or correct the model predictions [170,171]. This process of data
assimilation is illustrated in Fig. 4.16, which summarizes our future plans for
video driven fire forecasting [144]. As can be seen in the graph, the model pre-
dictions of the smoke layer depth (∼ zone model interface hint) are corrected
at each correction point. This correction uses the measured smoke character-
istics from our fire analysis framework. The further in time, the closer the
model begins to match the future measurements and the more accurate predic-
tions of future smoke layer height become. A preliminary experiment on video
driven fire forecasting is discussed hereafter. Real-time smoke height and fire
size measurements of a sofa fire are compared to zone-model measurements in
order to guide and accelerate the modeling.
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Figure 4.16: Data assimilation: video driven fire forecasting (∼ FireGrid [170]). The
FireCube gives information about the state of the fire, and using this information, zone
model-based predictions of the future state can be improved and accelerated.

The proposed video driven fire forecasting is a prime example of how
video-based detectors will be able to do more than just generate alarms. De-
tectors can give information about the state of the environment, and using this
information, zone model-based predictions of the future state can be improved
and accelerated. By combining the information about the fire from models
and real-time data an estimate of the fire can be produced that is better than
could be obtained from using the model or the data alone. Important to note is
that not only flame and smoke information is useful to efficiently forecast and
fight the fire, but also other information about the monitored scene can be of
high importance. For example, a broken window can influence the fire growth.
Most of this data can also be delivered by an intelligent video surveillance
system. However, this is out of the scope of this dissertation.

4.8.1 Experimental setup

As a preliminary experiment on video driven fire-spread forecasting, we have
performed an ISO 9705 room-corner test [172] in which a single seat sofa is put
on fire. The setup of this test is shown in Fig. 4.17. The proposed experiment
is based on a recently developed data assimilation methodology [171, 173],
which main objective is to assist emergency response (in case of a fire) based
on real time information. The under-lying idea is similar to Numerical Weather
Predictions (NWP), be it on different time and length scales. In our work at
hand, the methodology is extended to an ISO-room fire with open door. The
data used for assimilation is provided by a video camera. In the future, our
fire engineering research partners will also use thermocouple data to measure
the average upper layer temperature. The video camera was placed at the door
level to estimate the smoke layer depth and the fire size, i.e., the width and the
height of the flames. This real-time information is compared to the zone-model
measurements in order to guide and accelerate the modeling of the sofa fire.
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Figure 4.17: ISO room-corner test: sofa fire with open door. A video camera was
placed at the door level to estimate the smoke layer height. Thermocouples can be
located inside the room to measure the average upper layer temperature. For the mo-
ment, however, thermocouple data is not used.

The two-zone model was used as the assimilating model for our video
driven fire forecasting, because of its simplicity and efficiency in the calcula-
tion of tenability conditions in the early stages of a compartment fire. More
information on this model is already given in Section 4.8 and a detailed de-
scription on how the forecasting (∼ real-time evolution of the fire) is performed
using this model is given in [144]. In short, Fig. 4.18 summarizes the concept
of video driven fire forecasting. Further on, we will only focus on how the es-
timation of the smoke layer height and the fire size is performed, i.e., the first
part of the video driven fire forecasting (∼ sensor readings), and how close
these estimations match the zone model results.

4.8.2 Single view video fire analysis

Due to the lack of multi-view camera images, the estimation of the smoke
layer height and the fire size was performed using a novel single view video
fire analysis technique. Instead of using the proposed multi-view framework,
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a commonly used technique for the determination of the smoke layer interface
height [174], which relies on the second derivative of the temperature profile,
was translated into a novel video analysis approach. To the best of our knowl-
edge, this is the first time that a technique from the ‘fire world’ is applied to
video analysis.

A general scheme of the proposed algorithm is shown in Fig. 4.19. At start-
up of the system, multiple lines with high energy are automatically selected in
the video images. These lines show high similarity with the thermocouples
that are used for temperature profile analysis. In our experiment, four different
‘energy lines’ are selected. The energy values ElineN of these lines are cal-
culated using the same discrete wavelet transform (DWT) based function as in
Section 2.3.2. Also here, the energy is evaluated blockwise dividing ElineN
in blocks [x, y] of arbitrary size, and summing up the square contribution of
each high-frequency, i.e., high detail, wavelet subimage within each block. In
our set-up, a block-size of 8-by-8 pixels was experimentally found the most
appropriate value. Depending the environmental characteristics, e.g., the size
of the room and the camera position, a larger or smaller block-size can be
needed. However, no method yet exists for the appropriate block-size esti-
mation. Further experiments will investigate if model-based ’validations’ can
help in finding such an (automatic) estimator. Subsequently, the energy profile
EP lineN is constructed by blockwise normalization of all the energy values
in the energy line. Some exemplary energy profiles are shown in Fig. 4.20. It
can be noticed that these energy profiles show high similarity with temperature
profiles that are used in fire engineering.

Figure 4.18: General scheme of fire forecasting concept. The methodology consists
mainly of assimilating real-time data collected on the fire. The main parameters of
this (assimilated) model are then estimated, and a real-time evolution of the fire (i.e.,
forecast) is displayed.
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Figure 4.19: General scheme of single view video fire analysis algorithm for smoke
layer height (hint) estimation.

Figure 4.20: Exemplary smoke height estimations of ‘burning sofa test’: energy line
(left), energy profile (middle) and input frame + detected hint (right).
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In order to find the smoke layer depth, the gradient∇EP lineN of the energy
profile is analyzed. The first point at which the gradient shows a high increase,
i.e., exceeds the experimentally found threshold t∇(= 0.2), is labeled as the
smoke layer depth. Further (model-based) sensitivity analysis is needed to ver-
ify if this is the optimal threshold. By subtracting this smoke layer depth from
the height of the room, the smoke layer interface hint can easily be retrieved.
In Fig. 4.20, some exemplary smoke layer height estimations of our ‘burning
sofa test’ are shown. For each of the input video frames, one of the energy lines
and its energy profile is given. Furthermore, the detected smoke layer height
corresponding with this energy line is visualized in the video frame. A subjec-
tive, i.e., visual, evaluation of these exemplary frames already shows that the
proposed approach is effective in detecting the smoke layer height. However,
further objective evaluation is needed to confirm this.

For the detection of the fire size, i.e., the flame width and height, we use the
visual flame detector proposed in Section 2.3.1. Based on the detected flame
width Wf and height/length Lf , an indirect estimation Qc of the convective
heat release rate (HRR) of the fire is calculated. In fire engineering this is
known as the Heskestads correlation [175]:

Qc = (
Lf + 1.02Wf

0.235
)5/2 . (4.6)

4.9 Experimental results

In order to test the localization and the detection performance of the multi-view
localization framework, several fire experiments were performed in a car park.
In the first experiment, the proposed framework detects valuable characteristics
of smoke generated by a smoking machine. In this experiment, only visual
validation of the detection results is performed, because real ground truth, i.e.,
the exact position of the smoke location, is (quasi) impossible to retrieve. In the
second experiment, the location of a pool fire is detected, using the framework,
and compared to the real positions and dimension of the pool fire in the car-
park, i.e., the exact ground truth. Pool fires consist of a liquid fuel with a
horizontal surface of a specified area. They are widely used for testing in
fire engineering research. The third experiment investigates the influence of
the number of cameras on the detection performance of the proposed and the
investigated state-of-the-art detectors.
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All the experimental sequences were acquired by Linksys WVC2300 cam-
eras, which support 640x480 MPEG-4 video format at 30 frames per second.
Single-view fire detection results, i.e., the input for the localization framework,
were retrieved by using the flames and smoke detector proposed in Section 2.3.
Since the framework is independent of the type of VFD, also other detectors [1]
can be used here. As such, it is even possible to integrate other types of sen-
sors, such as the IR and TOF based fire detectors proposed in this dissertation.
It must also be pointed out here that, in order to reduce the computational cost,
a lot of work is done offline, before the detection is switched on. For exam-
ple, the calibration and the multi-plane homography estimation are some of the
time-critical parts which are performed during startup of the system. As such,
only the projections and FireCube analysis is performed at runtime, making
the framework suitable for real-time analysis.

4.9.1 Experiment 1: smoking machine test (subjective evaluation)

In this experiment, the proposed algorithm detects the location, the growing
size and the propagation direction of smoke generated by a smoking machine.
Exemplary shots of these experiments are shown in Fig. 4.21, where the upper
(a-c) and the lower images (d-f) are three different camera views of the test
sequences at frame 4740 and 5040 respectively.

Figure 4.21: Smoking machine experiments.
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As can be seen in the 3D model in Fig. 4.22, and the back-projections of
the 3D results in Fig. 4.23, the framework is able to detect the location and the
dimension of the smoke regions. In Fig. 4.22 the smoke regions are represented
by the dark gray 3D boxes, which are bounded by the minimal and maximal
horizontal and vertical FG slices. As a reference, also the bounding box of the
smoking machine is visualized in the 3D model.

Even if a camera view is partially or fully occluded by smoke, like for ex-
ample in frame 5040 of CAM2 (Fig. 4.21d), the framework localizes the smoke
region, as long as it is visible from the other views. Based on the detected 3D
smoke boxes, the framework generates the spatial smoke characteristics, i.e.,
the height, width, length, centroid position, and volume of the smoke region.
These characteristics are also shown in Fig. 4.22. By analyzing this informa-
tion over time, the growing size and the propagation direction can be estimated.
Both can be very helpful in fighting the fire.

The back-projections (Fig. 4.23) of the 3D smoke regions to the camera
views, using inverse homography, show that the multi-view slicing approach
produces plausible and acceptable results. Due to the fact that no 3D ground
truth data of this smoke test is available, only this kind of visual validation
is possible. However, based on this visual validation it is already possible to
state that, contrary to existing fire analysis approaches [13] which deliver a
rather limited 3D reconstruction, the FireCube outputs valuable 3D informa-
tion about the fire development. To further improve the evaluation process,
also comparison with fire zone modeling [27, 30] can be investigated, as is
done in Section 4.9.4.

4.9.2 Experiment 2: pool fire test (objective evaluation)

Contrarily to the evaluation method in the first experiment, which is mainly
a subjective (visual) validation, this second experiment objectively evaluates
the localization performance of the proposed framework. In order to do this,
the location of a pool fire is detected, using the framework, and compared to
the real positions and dimension of the pool fire in the car-park, i.e., the exact
ground truth.

Fig. 4.24 shows some exemplary images from the pool fire test. These
images are taken by four different cameras, placed at each side of the car park.
The dimension of the pool fire is 2.00 by 4.00 meters and its position, i.e., the
centroid, is at (14.00m, 15.00m). Since the exact position and the dimension
of the pool fire is known, the output of the framework can easily be evaluated
against these values. Table 4.1 and Table 4.2 list the results of this evaluation
for increasing number of cameras.
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Figure 4.22: Plane slicing-based smoke box localization.



172 Multi-view fire analysis

Figure 4.23: Back-projection of 3D smoke box results into camera view CAM1.

Figure 4.24: Pool fire experiments.

The results in Table 4.1 and Table 4.2 show that two cameras are already
sufficient to achieve a dimension accuracy of 90% and a position accuracy of
98%. By further increasing the number of cameras it is even possible to achieve
a dimension accuracy of 96% and a position accuracy of 99%. As such, it is
shown that the proposed framework is able to accurately detect the position
and the dimension of the flames, which are two valuable fire characteristics.
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Table 4.1: Dimension accuracy of the proposed localization framework for increasing
number of cameras (pool fire test).

# cameras dimension dimension
GT: 2.00m by 4.00m accuracy

width height 3D filtering 2D filtering

1 1.67m 3.49m 0.85 0.81

2 1.88m 3.42m 0.90 0.88

3 1.92m 3.84m 0.96 0.93

4 1.93m 3.87m 0.96 0.94

Table 4.2: Position accuracy of the proposed localization framework for increasing
number of cameras (pool fire test).

# cameras position position
GT: (14.00m,15.00m) accuracy

x y 3D filtering 2D filtering

1 13.48m 15.64m 0.98 0.95

2 13.82m 15.79m 0.98 0.95

3 13.80m 15.38m 0.99 0.97

4 13.85m 15.41m 0.99 0.98

Important to mention is that adding a fifth camera will not necessarily lead
to 100% dimension/position accuracy, since there is no kind of linear relation-
ship between the number of cameras and the accuracy. In most cases it will
of course improve, but how much is difficult to say. This, for example, will
depend on the camera positions and its detection accuracy.

In order to show the effectiveness of the proposed 3D clean-up filtering
(Section 4.6), Table 4.1 and Table 4.2 also contain the results of a 2D filter
variant of the 3D median and hole filling filters. These results show that the
use of a 3D noise removal filter and a 3D filling operator provides a better and
more reliable technique for localization. By using the 3D filtering operators,
the dimension accuracy increases on average with almost 3% and the position
accuracy with 2%.
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4.9.3 Experiment 3: influence of the number of cameras on the
detection performance (objective evaluation)

Experiment 2 revealed that the number of cameras has a positive influence
on the localization performance of the framework, especially on the dimen-
sion accuracy. This experiment investigates if the number of cameras causes
a similar effect on the detection performance of the proposed and investigated
state-of-the-art detectors. The detection results for increasing number of cam-
eras are listed in Table 4.3. It is important to mention that the combination of
the detection results of multiple cameras is performed by using the FireCube.

As the results in Table 4.3 show, the average gain of using two cameras
instead of one is only 1%. However, the gain of using four cameras instead of
one is already 3%. As such, this experiment shows that the number of cameras
has a positive effect on the detection rate, not only for our approach but also
for other state-of-the-art detectors. For more dynamic scenes, with a higher
number of occlusions, or for other types of fire, e.g., in which the flames are
more occluded by smoke, the gain of using multiple cameras is even expected
to be bigger.

4.9.4 Experiment 4: video driven fire-spread forecasting

A temporal plot of all the smoke layer height detection results of the ‘burning
sofa test’ is shown in Fig. 4.25. For each of the four (automatically detected)
energy lines, the evolution of the detected smoke layer height is presented. As
these results show, the evolution is quasi similar for all the energy lines. Only
near the end of the test, small differences can be noticed between Line4 and
the other energy lines. Most probably, these artifacts arise due to the presence
of high-energy flames within the low-energy smoke region of Line4. In order
to cope with this problem, the smoke layer height is averaged over all the
energy lines. It is also expected that in environments with a more energy-rich
background, less such artifacts will occur.

Comparing the mean smoke layer height to the ‘expected’ height from the
zone model reveals, i.e., objectively shows, that the proposed method performs
well in estimating the smoke layer height. This is shown in Fig. 4.26. Only at
the very beginning of the sofa fire, the video and the modeling data show some
significant differences. The reason for these differences is that the modeling
assumed the sofa started directly to burn. Afterwards, the video recordings
revealed that the fire was started with a wooden crib and that the sofa was
not really burning in the early beginning of the video sequences. As this was
assumed in the model, this resulted in a video/modeling mismatch.
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Based on future experiments, planned in 2012, further (model-based) sen-
sitivity analysis on the t∇ energy threshold will be performed to optimize the
‘fitting’ of the video and the modeling data.

Figure 4.25: Video-based estimation of smoke layer height for 4 energy lines.

Besides ‘forecasting’ the smoke layer height, estimating the fire size is
also an essential aspect of Fire Hazard Analysis (FHA). As discussed in Sec-
tion 4.8.2, the fire size (∼HRR) can be estimated directly from the flame width
and height using the Heskestads correlation (Eq. 4.6). A temporal plot of the
HRR of the ‘burning sofa test’ is shown in Fig. 4.27. Again, comparison with
the ’expected’ HRR of the zone model reveals that the proposed method per-
forms well in estimating the fire size. After a relatively short growth period,
the measured HRR is constant, around 98 kW. Therefore, in a first forecast,
a constant fire size can be assumed. Starting from 200s the fire size is no
longer constant and starts growing. Therefore, for example, the data collected
between 200s and 260s (∼ assimilation window) can be taken into account
to calculate the fire growth factor, as is explained in the ongoing work of our
research on video driven fire-spread forecasting [144, 169, 176]. Other fire
characteristics, such as a forecast of the temperature, can also be estimated
using the techniques described in these works.
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Figure 4.26: Comparison of zone-model and video-based estimation of hint.

Figure 4.27: Comparison of zone-model and video-based estimation of HRR.
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4.10 General remarks and future improvements

In order to further improve the proposed fire analysis framework, future work
will mainly focus on two topics: the use of sensor feedback/fine-tuning and
the investigation/evaluation of combining video-based sensors with conven-
tional/traditional fire detectors. Related to this, some general remarks about
our intelligent fire detection system (proposed in Fig. 1.1) are also discussed
in the following two subsections.

4.10.1 Sensor feedback and sensor fine-tuning

Within our framework, the sensors have no direct effect on each other. Each
sensor stands on its own, delivering video, thermal, depth or amplitude infor-
mation without taking into account feedback from the other neighboring sen-
sors. Possibly, the framework can be further enhanced if the available informa-
tion and intelligence of all sensors can be fed back to the sensors to optimize
their functionality. Sensor feedback can, for example, be used to improve the
BG modeling within each of the video detectors. Currently, their BG model
is updated solely on their own detection information. Furthermore, detection
criteria (thresholds) can be linked on other sensors ‘knowledge’ about the en-
vironment. In recent experiments on video-driven fire forecasting, we have
used thermocouples for sensor feedback, in order to evaluate the video-based
smoke layer height.

Related to sensor feedback, the framework can also use environmental
characteristics (such as geo-data and meteorological info) to select optimal
sensor parameters. Off-site and on-site metadata, i.e., side info about the en-
vironment, can be gathered/evaluated and used for real-time fine-tuning of the
sensor data. Both ideas, i.e., ‘sensor feedback’ and ‘context-based sensor fine-
tuning are currently included in an EU-FP7 proposal on mega-fires in which
we participate for the sensor WP.

4.10.2 Combination with conventional/traditional sensors

One can also think of combining information from, on one hand, video sensors
and, on the other hand, conventional/traditional non-video fire sensors to fur-
ther improve the reliability of the framework or to reduce its financial and/or
computational cost. However, the added value of ‘cheaper’ point sensors will
be low, due to the several limitations (Section 1.2.2) related to these type of
detectors (especially when they are used in large open spaces). Combining
volume sensors, like the Open-Area Smoke Imaging Detection (OSID) beam
detector of Xtralis [177], with video looks the most interesting.
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OSID can help, for example, in reducing steam/dust false alarms, which
are still difficult to detect with multi-modal video sensors. Similarly, video
can help to solve water/rain problems of OSID. This combination of OSID
beam detectors and multi-modal video will be (further) investigated within the
context of the car park fire project [28] of Prof. Bart Merci. Furthermore,
within the EU-FP7 project on mega-fires we also plan to further focus on this.

4.11 Conclusions

The detection of valuable fire characteristics, e.g., fire size, smoke propagation
and smoke layer height, is an important but difficult problem in fire analy-
sis. Most fire alarm systems only detect the presence of fire and are not able
to model fire evolution. Only recently a few video based approaches have
been proposed which are capable of providing additional information on the
fire circumstances. The results of these single-view fire analysis approaches,
however, are still limited and interpretation of the provided information is not
straightforward. In order to provide a more valuable video fire analysis tool,
a multi-view fire analysis framework has been proposed in this chapter. The
novel framework fuses fire detection results of multiple single-view cameras,
providing gains over ‘classical’ single-view fire analysis techniques.

The proposed 3D fire localization framework relies on 3D extensions to
homographic plane slicing. The framework merges single view VFD results of
multiple cameras by homographic projection onto multiple horizontal and ver-
tical planes which slice the scene under surveillance. At the crossings of these
slices, a 3D grid of virtual sensor points is created. At each of these points, the
detection results of the crossing planes are accumulated and compared to a dy-
namic camera map, which is also one of the novel aspects in our work. Using
this grid and subsequent spatial and temporal 3D clean-up filters, information
about 3D location, size, and propagation of the fire can be extracted.

The novel 3D grid, the use of dynamic camera maps, and the spatial and
temporal 3D filters, which extend existing 2D concepts, provide accurate lo-
calization and enable more reliable fire analysis. Objective and subjective ex-
perimental results, in which the flames and smoke development in a car park is
analyzed, confirm these findings and indicate that the proposed multi-view fire
localization framework is able to accurately detect and localize the fire. Two
cameras are already sufficient to achieve a dimension accuracy of 90% and a
position accuracy of 98%. By further increasing the number of cameras, it is



180 Multi-view fire analysis

even possible to achieve a dimension accuracy of 96% and a position accu-
racy of 99%. Furthermore, the experiments show that increasing the number
of cameras to monitor the scene has a positive effect on the detection rate. For
example, the gain of using four cameras instead of one is 3%.

The valorization potential of the proposed multi-view localization frame-
work is very high, as the (generic) framework can easily be adapted to other
applications. In order to analyze the behavior/evolution of other object types,
only the single-view detectors need to be changed. For example, in [178] the
generic framework is used to extract the body model of a person. Related to
fire fighting, the framework could for example also be used to localize and
rescue people in a burning building.

On top of the multi-view localization framework, this chapter also pre-
sented how the output from our video fire analysis techniques can be used for
video driven fire forecasting. Although this is ongoing research, first experi-
ments already show good results. The experiments revealed that the evolution
of the detected smoke layer height closely matches the expected evolution from
the computational zone model. Furthermore, the video based detection of the
flame height and width allowed us to estimate the convective heat release rate
(HRR) and to detect a change in the trend of the fire. Again, comparison with
the expected HRR of the zone model revealed that the proposed method per-
forms well in estimating the fire size and the fire trend.

Finally, it is important to mention that the proposed single-view algorithm
for the detection of the smoke layer height is mainly based on a fire engineering
technique. To the best of our knowledge, this is the first time that a technique
from the fire world is applied to video analysis. Based on the ‘positive’ result
of this first multidisciplinary interchange of techniques, we still see plenty of
room for further research on the interplay between both worlds. In the near
future, for example, experiments are planned in which fire modeling data will
be used to optimize/fine tune the video-based estimation of fire characteristics
in our fire analysis framework.
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Chapter 5

Conclusions

In this dissertation, we have focused on three research topics that concern the
video based detection and analysis of fire in large and open spaces. First,
we have dealt with the detection of flames and smoke using a single visual,
thermal or depth video sensor. Subsequently, we investigated the benefit of
multi-modal fire detection using a combination of these sensors. Finally, we
explored the possibilities of multi-view fire analysis in order to perform video
driven fire forecasting. In the following three sections, we present our contri-
butions on each of these topics. Finally, we point out directions for future work
and give an answer to the research question given in Chapter 1.

5.1 Video fire detection

The growing demand for security has given raise to the increased use of video
surveillance systems in recent years. Surveillance cameras are rapidly appear-
ing in- and outdoor in all sort of places. This has highlighted various problems
such as the fact that it is practically impossible for surveillance operators to
keep a constant watch on the video from multiple cameras. Hence, there is
need for intelligent video content analysis to support the operators by asking
for attention only when unwanted behavior occurs. This is also the reason
why, over the last decades, a considerable amount of research has been con-
ducted concerning the intelligent detection, recognition and tracking of ordi-
nary moving objects, such as people and vehicles. Recently, video processing
techniques for automatic fire and smoke detection, i.e., the first topic of this
dissertation, have also become a hot topic in video surveillance research. The
several vision-based detection algorithms that have been proposed in literature
have lead to a large amount of video fire detection (VFD) algorithms that can
be used to detect the presence of fire at an early stage.
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In order to detect the fire, i.e., smoke and/or flames, many VFD algorithms
start from video processing building blocks that have already been used suc-
cessfully in many other video surveillance application domains and extend
them with some fire specific feature analysis. Although this already gives satis-
factory test results, real-life experiments show that developing a reliable VFD
system in the visible spectrum is a tough challenge. Our main contribution
to this problem is the introduction of other types of video sensors operating
in other spectral bands. Contrary to many other research approaches, the pro-
posed optimizations for the detection of flames and smoke are more in the
breadth than in the depth direction. Instead of dealing with ever more complex
visual fire detection algorithms, the focus of our first research topic (Chapter 2)
is on investigating the benefit of infrared (IR) and time-of-flight (TOF) image
processing for fire detection. The latter one, i.e., TOF fire detection, has not
been covered by related work until now.

Subjective and objective evaluation (Section 2.3.3, 2.4.4, 2.5.4 & 2.6) on
fire and non-fire video sequences revealed that each of the proposed detectors
is able to detect smoke or flames at an acceptable level of accuracy. Depending
on the environment characteristics, however, one type of detector outperforms
the other and vice versa. Based on this fact, we (still) state that only by using
multi-modal VFD a ’better’ detector can be achieved providing high accuracy
under all circumstances. This hypothesis can also be inferred from Table 5.1,
which summarizes the pro and contra of each of the proposed visual, TOF,
LWIR, and multi-model smoke/flame detectors and compares them to each
other. The table is mainly based upon tests/data provided in this dissertation.
As the same evaluation criteria are used as in Table 1.1, the novel video-based
detectors can also easily be compared to the ‘traditional’ detector types which
were discussed in the introduction chapter of this book. Each of these criteria
is evaluated on a scale ranging from – – to + +, indicating the detector type its
weaknesses and strengths respectively.

As indicated in Table 5.1, the purchase price of a visual and TOF camera is
still (an order of magnitude) cheaper than a LWIR camera. Furthermore, it is
logical that a multi-modal detector is more expensive than the single sensors of
which it is composed. As sensor costs are decreasing, however, the purchase
price should not be a major criteria in the selection of the ‘best’ detector. Simi-
larly, as the response time for each of the detectors is within less than a second
after the smoke/flames appear in the field of view (fov) of the camera, this
time-related criteria also shouldn’t have much impact on the detector choice.
More ‘important’ criteria are the sensitivity and the false alarm resistance. As
can be seen in the table, the multi-modal detectors score best on these facets.
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The experiments throughout this dissertation revealed that the average gain of
using a multi-modal detector is almost 4% on the detection rate (∼ sensitivity),
with an average false alarm reduction of 3%. From the individual detectors,
the LWIR and TOF detector slightly outperform the visual detectors in our
experiments. However, as each of them has its own specific limitations, a
better detector can only be achieved by using multi-modal VFD. A drawback
of the multi-modal detectors (and the LWIR detector) is that their installation
cost (e.g., registration/calibration and temporal alignment) is higher. However,
as manufacturers start to combine multiple sensors within the same device, this
will soon no longer be an issue. Finally, multi-modal detectors have also shown
more suitable for large open spaces, outdoor use and poor lighting conditions.

5.2 Multi-modal fire detection

The majority of single-sensor VFD systems, such as those presented in Chap-
ter 2, are plagued by a number of difficulties in real-world scenes, e.g., light-
ing, reflections and noise. Many of these difficulties are caused by limitations
due to the type of sensors used. To overcome these sensor-related limitations,
multiple types of sensors, like a color, IR and/or TOF camera, can be com-
bined using the multi-modal detection techniques described in Chapter 3. The
proposed multi-sensor flame and smoke detectors take advantage of the differ-
ent kinds of information represented by thermal, visual and/or depth images
in order to accurately detect the fire. By fusing the multi-modal modalities
and using the strengths of each medium, high accuracy is achieved under all
circumstances, providing gains over ‘classical’ single-sensor VFD. Merging
information from multi-modal sensors has, as such, proven to be a win-win
(∼Table 5.1).

An important aspect when developing multi-modal algorithms is the reg-
istration of the multi-modal images. The goal of registration is to establish
geometric correspondence between the multi-sensor images so that they may
be transformed, compared, and analyzed in a common reference frame. The
proposed silhouette based registration algorithm analyses the contours and the
correlation of visual and thermal silhouettes of moving objects. First, the rota-
tion is computed using silhouette contour extraction and circular cross correla-
tion. Next, contour scaling is used to estimate the thermal-visual scale factor.
Finally, the translation vector is estimated by maximization of binary correla-
tion. The geometric parameters found during this registration phase are further
used by each of the multi-modal detectors to coarsely map the visual, thermal
and/or depth images.



5.3. Multi-view fire analysis 187

Based on experiments on different challenging fire and non-fire sequences,
it was found objectively that each of the detectors adhere to all the relevant
requirements: object-based automatic calibration/registration, low number of
false alarms, no missed detections and fast warning/alarming with different
levels of detection. Due to the low-cost of the proposed techniques, such as the
silhouette coverage analysis and the visual silhouette disorder analysis (which
is only performed if smoke warning is given), the multi-modal detectors are
also less computational expensive as many of the existing individual detectors.
Furthermore, as the ‘work’ is limited, real-time requirements imposed by the
fire industry are met.

To conclude, the visual-LWIR and visual-TOF flame and smoke detectors
have shown that the relevance and usefulness of multi-modal video analysis
cannot be ignored. But neither can the reality that single-sensor analysis will
continue to dominate at least the next couple of years. The downsides of multi-
ple types of sensors, e.g., the extra sensor costs, the (re)calibration/registration
and the setup time, still put up barriers for a potential breakthrough of multi-
modal video surveillance (at least in the short term). However, despite these
‘downsides’, it is still our strong belief that low cost algorithms running on
multiple sensors will soon start to take over the ever more complex single-
sensor algorithms that are proposed in most publications today. The fusion of
multi-modal data will definitely become the keyword in video surveillance in
the near future.

5.3 Multi-view fire analysis

In Chapter 4 we tackled the domain of video-based fire analysis. As we found
that single-view processing is not enough in order to actually understand and
interpret the fire, we decided to combine the detection results of multiple
single-view cameras and analyze them together. In this way, more accurate
detection and localization of smoke and flames is achieved and valuable fire
characteristics are detected at the early stage of the fire.

The main part of our fire analysis contribution consists of a novel multi-
view fire analysis framework which fuses low-cost video fire detection results
of multiple cameras into the FireCube. Using the FireCube, the location of
the fire, its size, its propagation and its direction can accurately be estimated.
The proposed multi-modal detection and multi-view localization techniques
have been tested thoroughly on fire and non-fire video sequences and have
proven to provide gains over ‘classical’ single-view fire analysis techniques.
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Two cameras are already sufficient to achieve a dimension accuracy of 90%
and a position accuracy of 98%. By further increasing the number of cameras,
it is even possible to achieve a dimension accuracy of 96% and a position ac-
curacy of 99%. Furthermore, the experiments show that increasing the number
of cameras to monitor the scene has a positive effect on the detection rate. The
gain of using four cameras instead of one is 3%.

The video-based detection of valuable fire characteristics, e.g., fire size
and smoke layer height, also opened the door to video driven fire forecasting.
Being able to model and forecast the fire can help emergency services to work
more efficiently and save lives. However, the calculations with existing mod-
eling techniques still take too long and valuable time is often lost. Using the
multi-view fire analysis framework, which is able to give real-time information
about the state of the environment, these zone model-based predictions of the
future state can be improved and accelerated. By combining the information
about the fire from models and real-time data, an estimate of the fire can be
produced that is better than could be obtained from using the model or the data
alone. This is also shown by our preliminary experiments, which will be con-
tinued in the ongoing ‘data assimilation’ work of one of our colleagues [144].
To conclude, we can say that the research in video driven fire forecasting is
only just starting to bloom and a wide-spread adoption and efficient use can be
predicted in the near future.

5.4 Future work

Future work directly in the line of this dissertation is evaluating the perfor-
mance of the different types of cameras and algorithms in more challenging
and real fire environments. As most of our recordings were performed on
rather controlled fires/environments, we did (mainly due to security reasons)
not yet investigate the impact of real fires on the camera technology and the de-
tection accuracy. This is definitely something that needs further investigation,
as was already discussed in Section 2.4.5. Another aspect that needs further re-
search is the investigation/evaluation of feature alternatives and more advanced
strategies to combine these feature values. This is already partially addressed
in Section 2.7 as one of the strategies to further improve the proposed detection
algorithms.

Related to the performance-related question of the different types of cam-
eras and algorithms, the evaluation and testing of video based fire detection
and analysis systems should also be standardized in the future. For the mo-
ment, several types of testing and evaluation are found in literature, which
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complicates the comparison of techniques. Commercial fire detection systems
mainly use the NFPA 72 standard [4], which was written to provide require-
ments for the installation, performance, testing, inspection, and maintenance
of a fire alarm. We think it would be a good idea to develop a video variant
of this standard, which can be used to easily evaluate VFD techniques against
each other and against other types of fire detectors.

Another point of interest is that, within the proposed fire analysis frame-
work, the sensors have no direct effect on each other. Each sensor stands on
its own, delivering video, thermal, depth or amplitude information without
taking into account feedback from the other neighboring sensors. Possibly,
the fire analysis framework can be further enhanced if the available informa-
tion and intelligence of all sensors can be fed back to the sensors to optimize
their functionality. Related to sensor feedback, the framework can also use
environmental characteristics (such as geo-data and meteorological info) to
select optimal sensor parameters. Both future research topics, i.e., the use
of sensor feedback/fine-tuning and the investigation/evaluation of combining
video-based sensors with conventional/traditional fire detectors, are discussed
in more detail in Section 4.10.

Similar to current efforts at Bilkent University [108], it could also be inter-
esting to extend the proposed VFD techniques to PTZ based VFD. To monitor
a large area, many cameras are often needed. For several video surveillance
applications, e.g., wildfire detection and monitoring of large car parks, this
is unaffordable. Instead of using multiple cameras, these applications mostly
use a dynamic PTZ camera. One of the drawbacks of PTZ, however, is that
the position of everything in the scene can change between consecutive image
acquisitions, which complicates for example the background modeling and ob-
ject tracking/analysis. This makes it, for the moment, difficult to predict how
the proposed algorithms will behave in a PTZ setting and how costly (required)
adaptations for PTZ fire detection will be. A recent literature survey did also
not reveal any research in this direction.

Besides the research on PTZ based VFD, a more thorough investigation of
the fire detection capabilities of the different IR spectral bands (NIR/SWIR,
MWIR, LWIR) seems also interesting as a future work. Related to this, we
also plan to investigate the benefit of fusing different infrared spectral cameras
into a multi-modal infrared detector. Xenics, i.e., one of our research part-
ners, already started research on the technical aspect in this direction [143].
Furthermore, extensions can be made to the fire analysis framework to further
optimize the video driven fire forecasting. We plan, for example, to incorporate
other non-video sensors, such as thermocouple data, into the FireCube.
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Finally, perhaps the most interesting topic for further research is to com-
bine the knowledge from the fire and the video world. As a first step in this
direction, Section 4.9.4 proposes an algorithm for the detection of the smoke
layer height, which is mainly based on a fire engineering technique. To the best
of our knowledge, this is the first time that a technique from the ‘fire world’ is
applied to video analysis.

Based on the ‘positive’ result of our first multidisciplinary interchange of
techniques, we still see plenty of room for further research on the interplay
between both the video and fire world. Related to this, future research should
also focus on further closing the gap between both worlds. In the field of
interfacing and communicating the fire data, for example, there still exists a
lot of research potential. We see the work in this dissertation as a first step to
bridge the gap and to stimulate the interaction with the fire world.

5.5 Answer to the research question

We end this dissertation with an answer to the different aspects of the research
question given in Chapter 1. The central question of this thesis was:

‘Can we develop an algorithm to timely and accurately detect/analyze
the fire in large and open public places and can we use the extracted fire
characteristics for video driven fire forecasting?’.

First of all, we can ‘develop an algorithm to detect the fire’. Several
video based smoke and flame detection algorithms existed even before our
research started. It is the second aspect: ‘in large and open public places’,
that makes the problem difficult. Videos from this kind of surveillance scenes,
e.g., car parks, shopping malls and atria, often contain difficulties, such as
changing/limited illumination, shadows and noise, which makes the detection
error-prone. For such scenes, our research advances the state of the art, for
example by introducing low-cost multi-modal fire detectors which are able
to cope with many of the sensor-related ’limitations’. The main benefit of
(f)using multi-modal image data is that unreliably extracted parts from one
sensor might be reliably extracted from the other sensor. By using the strengths
of each medium, fire detection is done more accurately and with fewer false
detections.
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As was already mentioned above, the presented work also fulfilled the
‘timely and accurately’ aspect of the research question. The several exper-
iments in this dissertation show a significant accuracy improvement, specifi-
cally due to the combination of low-cost flame and smoke features. By focus-
ing on ’low-cost’ fire features, we are able to keep the processing cost low, i.e.,
to ensure real-time detection. As soon as smoke or flames appear in the field
of view of the camera, fire alarm is given. Whether the proposed detectors are
already accurate enough for real-world operation is a more difficult question.
As the majority of our experiments were performed in a ‘controlled’ environ-
ment, we can only guarantee that the detectors are accurate enough in the less
difficult surveillance scenes, where not too many real-world objects appear si-
multaneously. Difficult scenes, with high moving object densities for example,
will possibly decrease the detection accuracy.

Related to the ‘timely and accurately’ aspect of the research question, we
would like to remark again that expecting automatic video surveillance to be
able to detect and analyze everything without false alarms or missed detections
and with only one simple configuration is unrealistic. To be honest, we believe
this will never be possible. As such, the techniques proposed in this disserta-
tion must not be seen as ‘the’ ultimate fire detection tools. They must be seen
as a complement to the existing techniques.

We see the video-based detection and analysis as a tool for operators,
which reduces/simplifies a lot of their work. Based on the visual, LWIR, TOF
and other sensors input, the operator/fire expert can then take a decision. In
the end, an operator will (mostly) be able to better estimate the risk of the fire
(based on his knowledge of the environmental context, his experience, etc.).
In Fig. 5.1 we show some examples of situations in which video fire detection
will have problems to see the difference between risky and non-risky fires.

The fourth aspect of the question concerned the ‘fire analysis’ capabili-
ties of a video system. Contrarily to fire detection , the amount of literature
in this direction was limited when we started our research. Even today, most
video video-based fire alarm systems just ring the bells, i.e., they only detect
the presence of fire and are not able to model fire evolution. Even though
the majority of these systems consist of several cameras monitoring the same
scene, the analysis is usually carried out separately on each of the camera’s
video sequences. However, by combining the detection results of each of these
single-view cameras and analyze them together, as is done in our work, more
accurate detection and localization of smoke and flames is achieved and valu-
able fire characteristics are detected at the early stage of the fire.
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The fifth and last part of the research question was: ‘can we use the ex-
tracted fire characteristics for video driven fire forecasting’. To the best
of our knowledge, we are the first who have tackled this subject. The work
described on video driven fire spread forecasting is a step in the direction of an
application aiding firefighters in assessing the fire risk more efficiently.

Figure 5.1: VFD problems: will cameras see the difference?
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However, the problem on ‘video driven fire forecasting’ is certainly not
completely solved. The work gives a solid basis for the extraction of fire char-
acteristics and how this information can be used to estimate the future state
of the fire. The next step is to further develop/improve the data assimilation
methodology, e.g., by incorporating thermocouple data, which is ongoing work
of one of our research partners.

Being able to answer each aspect of the research question, we hope to
have convinced the reader that multi-modal and multi-view fire analysis has
its advantages in safety analysis and fire fighting/mitigation, and is essential in
assessing the risk of escalation. Furthermore, it is important to stress that many
of the investigated aspects are not limited to fire detection. They can easily be
adapted to other application domains, e.g., multi-modal object recognition and
traffic analysis, which can benefit from the new insights in this dissertation.
As such, the results in this thesis are not only of scientific importance for fire
detection, but also for video surveillance in general. Based on this and on the
fact that the video surveillance market is growing rapidly, it is our belief that
the proposed contributions will only increase in value in the coming years.

I can see clearly now, the ’fire’ is gone!
- Johny Cash & Steven Verstockt -
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