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Abstract. The environmental footprint of ICT is rising. Data centers are a key 

contributor to this footprint. In this paper we investigate the influence of the 

renewal rate of servers on the footprint of the data center. We take into account 

both the use phase power consumption as well as the contributions of the other 

life cycle stages. Based on this we construct an analytical model. From the 

results, we demonstrate that in a scenario where the data center needs to keep 

up with the increasing processing capacity of the servers, the footprint increases 

annually and keeping the servers in operation as long as possible is necessary. 

However, when the capacity remains constant, the footprint is decreasing and 

an optimal renewal rate is obtained. 
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1 Introduction 

In the past years, it has become clear that increasing carbon emissions are a global 

challenge. In every sector of the economy, initiatives are being taken, and endorsed by 

governments to reduce carbon footprint. Also in ICT these challenges need to be 

tackled. Studies [1,2] have shown the power consumption of ICT is growing even 

faster than the world’s global power consumption, thus being responsible for an 

increasing fraction of this global power consutmption. Data centers are currently 

responsible for about 1/6
th

 of the ICT footprint. It has already been demonstrated that 

also their power consumption is increasing. [3,4] 

On the other hand, it is estimated that ICT can play an important role in the 

reduction of the global carbon footprint. Through dematerialization of streams, ICT 

services enable people to massively reduce their carbon footprint while still fulfilling 

their needs. In the SMART 2020 report [2], it is estimated that ICT can reduce up to 5 

times its own footprint. It is important to note that these claims will only be achieved 

when a certain adoption of these technologies is obtained. 



Hence, it is essential that the ICT sector can keep its own carbon footprint under 

control, and even reduce it in the near future in order to be able to support the claims 

of the carbon footprint reduction capabilities of ICT. The sector itself realizes this and 

has taken several initiatives to tackle this issue. In the work that is being performed in 

these initiatives (e.g. [5,6]), however, the focus is mainly on energy consumption of 

equipment. However, in order to estimate the full impact of a technology, we need to 

take into account the full impact of a product’s life cycle (i.e. from material extraction 

until disposal of the product). As we will demonstrate in this paper, if the life cycle 

impact is not taken into account, wrong conclusions might be drawn and efforts to 

reduce the carbon footprint could lead to an increase of carbon footprint. Vice versa, 

decisions that seem to increase the carbon footprint could actually lead to overall 

reductions thanks to other life cycle stages that are more advantageous. 

In this work, we will focus on the carbon footprint of data centers. In section 2, we 

will investigate the power consumption of the ICT equipment in a data center. Next, 

we will relate this power consumption to full life cycle impact of the ICT equipment. 

In section 3 we identify values of the key parameters in the model. Then, in section 4, 

we compare the influence of the different factors on the overall datacenter power 

footprint. Finally, in section 5 we analyze these results and draw the main 

conclusions. 

2 Modeling the Footprint of the Data Center 

We construct a model that describes the footprint of a data center. We analyze the 

server power consumption and the related footprint. For this, we consider two 

scenarios. In the ‘constant number of servers’ scenario, we assume that the number of 

servers in a data center remains constant, and every removed server is replaced by a 

new server. In the ‘constant data center capacity’ scenario, we assume the processing 

capacity of the data center remains constant and that, with increasing server capacity, 

a higher number of old servers is replaced by a lower number of new servers. 

2.1 Server Power Consumption 

We consider a data center. In this data center a number of servers are present. 

Every year, new servers are brought into the data center. In this model, we assume 

this happens at the beginning of the year. At the same time, old servers are removed 

from the data center. We assume that a server is used for n years before being 

removed. This means, in a given year y, there are servers present from year y, y-1, … , 

y-n+1. We denote the number of servers added in year y as Ny. When we denote the 

average power consumption of a server purchased in year y as  we get for the total 

server power consumption in the data center: 

  . (1) 



We assume an exponential growth rate for the server power consumption. We 

denote the growth factor as β. This implies: 

  . (2) 

Constant number of servers – First, let’s assume that every old server gets 

replaced by a new server. This means that Ny is constant. Since every year we replace 

Ny servers which remain in the data center for n years, the total number of servers in 

the data center is n×Ny, which we denote as N. With (2), we get for the power 

consumption:  

  . (3) 

Or, with the formula for geometric series: 

  . (4) 

Constant data center capacity – In the previous case we assumed the number of 

servers in the data center to remain constant. However, this does not take into account 

the fact that server capacity is increasing. From Moore’s law, we know that the 

processing capacity of a server doubles every 18 months. This means, if we replace 

servers, that we can replace them by a smaller number of servers if we want the 

processing capacity of out data center to remain the same. 

Lets denote the processing capacity of a server as . Again, we assume an 

exponential growth for this capacity:  

  . (5) 

The total capacity present in the data center is C
tot

. Since this remains constant, and 

each year we replace a fraction , we get: 

  . (6) 

This needs to be valid every year. Hence:  

  . (7) 



or, with (5):  

  . (8) 

Similar to the calculation of (4), we get:  

  . (9) 

In this formula, we can no longer simplify by eliminating Ny.  

2.2 Server Footprint 

After determining the power consumption of the server, we need to calculate the 

carbon emissions associated to this power consumption. First we need to multiply the 

power consumption (in W) with a factor of 8.766  to get the yearly 

electrical energy consumption (in kWh). Second, we need to account for the carbon 

emissions associated to this energy consumption. These carbon emissions are 

expressed as carbon emission intensity I, i.e. the mass of CO2 (in g) emitted per used 

kWh. This emission intensity is dependent on the production technology (e.g. based 

on oil, gas, charcoal, etc.). 

Next to the power consumption, we need to take into account the full life cycle of 

the server. Life cycle assessment is a field in which the environmental impact of a 

product or service is measured taking into account the material extraction, production, 

transportation, use and disposal. Only the use phase impact is determined by the time 

the product is operational. Thus, we can model the other life cycle impacts as a single 

emission at the moment the server is purchased. We denote the non-use-phase impact 

of a server as L. Every year Ny servers with this footprint are purchased.  

Based on the above, we get for the footprint (in kg CO2) in year y:  

  . (10) 

with  as denoted by either (4) or (9). 

2.3 Power Usage Effectiveness 

Next to the power consumption of the servers, other equipment is present in a data 

center as well. This equipment also consumes power. It is on the one hand other ICT 

equipment such as switches, storage networks, etc. and on the other hand equipment 

used for cooling, uninterruptable power supplies, lighting etc. The latter overhead is 

considered proportional to the ICT equipment power consumption and is expressed by 



Power Usage Effectiveness (PUE). By multiplying the ICT power consumption with 

the PUE one obtains the total data center power consumption. The PUE is considered 

to be approximately 2.[7] 

In many studies, the PUE is also considered in the modeling of the data center. 

This in itself is valid. However, in this paper we want to incorporate the life cycle 

impact of the servers. If we would incorporate the PUE, this would require accounting 

the life cycle impact of the other equipment as well. As we consider these impacts out 

of scope for the effects we wish to model, we do not account for PUE. 

3 Parameter Value Estimation 

After constructing the model, we identify the value of the different parameters in 

order to be able to draw conclusions. 

First, we need to understand how the server power consumption evolves. We used 

the server power consumption measurements submitted to SPEC using the SPEC 

Power benchmark [8]. In these measurements two values are important. The idle 

server power consumption P0 and the full load server power consumption Pfull.. With 

linear interpolation the average server consumption can be determined in function of 

the server CPU load λ:  

  . (11) 

In Fig. 1. we have displayed P0 and Pfull for the data collected in different years. 

We see that the fraction  is decreasing and thus the server power consumption 

becomes more and more dependent on the load. This means the server power 

consumption will have a different growth rate depending on the assumed load. We 

 

Fig. 1. Server Power Consumption P0 and Pfull for Different Years. 

 



assume an average load on the servers of λ=80%, which means that the server 

capacity in the data center is well used. 

Based on this data we performed a linear regression to determine the growth factor 

of the server power consumption. Note that in the benchmarking results in [8], next to 

the year of submission, the month is given as well. This allows for a more fine-

grained analysis. As a result, we get for the server power consumption in 2007 a value 

of 187 W. The growth rate of the power consumption is 5.2% p.a. (i.e. β=1.052). 

The dataset we used to perform the linear regression has the advantage of being a 

consistent dataset with 217 data points. On the other hand, the servers submitted in 

this dataset will probably be better performing in terms of power consumption than 

the average server as the submission of the results implies a consideration for power 

consumption aspects during the design of the machines.  

Second , we model the growth of the capacity of servers. Moore’s law states that 

the number of transistors on a chip doubles every 18 months. In the past, this increase 

was enabled by ever increasing the clock frequency of the CPU. Currently, the trend 

is to provide multiple cores per server. In this work, we assume Moore’s law also 

describes the increasing processing capabilities of servers. This implies γ=1.59 

(=2
2/3

). 

The value for the carbon emission intensity is based on either production 

technology of the energy or either the weighted average of the technologies used in 

the energy mix for a certain location. In [9] we can find values for the several energy 

production technologies as well as the regional averages. In this paper, we assume the 

world average emission intensity of I=504 gCO2/kWh. 

Finally, we need to determine the non-use-phase footprint of the server. In [10] an 

estimation is made expressed in Mega-Joules. Again using the world average 

emission intensity we get L = 1903 kgCO2 per server. Note that the operating model 

of the considered server in [10] is significantly different from the assumptions made 

in this paper. 

  
(a) Constant Number of Servers (b) Constant Server Capacity 

Fig. 2. Normalized Data Center Footprint in Function of the Server Renewal Rate n in 

2011. 

 



4 Results 

We evaluate the constant server and the constant capacity scenario for a data center 

in 2011. For the constant server scenario, we normalize the footprint to the footprint 

of 1 server. This implies dividing (4) by N. 

In the constant capacity scenario, we normalize to the capacity of one server in 

2011. This capacity in itself remains undefined but it allows us to make quantitative 

comparisons. This assumption implies substituting Ny by 1/n in (9). Note that in these 

assumptions, for γ=1, formulas (4) and (9) are equal. 

In Fig. 2, we have displayed the footprint for the considered data center in function 

of the renewal rate n. In Fig. 2(a) we consider the scenario with a constant number of 

servers. The longer the renewal rate, the lower the footprint becomes. This is because 

the non-use-phase footprint decreases and a direct consequence of the lower number 

of replaced servers. Additionally, since the server power increases yearly, the number 

of servers that is replaced is lower, and the overall power consumption decreases. 

In Fig. 2b, we have displayed the footprint for the considered data center in the 

constant capacity scenario. Now, there is an optimum for n=2. Because the server 

capacity is increasing, every year we need to install less servers. Since the capacity is 

increasing faster than the power consumption (γ/ β >1), the large amount of old 

servers outweighs their lower power consumption on the long term. This means, in 

this scenario, it is best to handle a replacement period of 2 years in order for the 

carbon emissions to be minimal. 

This analysis could lead to the conclusion that it is better to replace a larger number 

of servers. When we compare the values for n=8, one notices in the constant server 

scenario the footprint is a lot lower than in the constant capacity scenario. This is a 

wrong conclusion, though, and originates in the normalization to the server capacity 

from 2011. In Fig. 3, we represent both cases on a longer term. We now normalize for 

the year 2007 in the same way as described before and we look at the evolution of the 

total footprint until 2012. In the constant number of servers scenario the footprint 

increases yearly, due to the increasing server power consumption. In the constant 

capacity scenario, the footprint decreases due to the reduced equipment requirement. 

  
(a) Constant Number of Servers (b) Constant Server Capacity 

Fig. 3. Data Center Footprint Evolution in Function of the Server Renewal Rate n. 

 



5 Conclusions 

We evaluated the evolution of data center power consumption. We analyzed two 

scenarios. One in which we assume every old server needs to be replaced by new 

server and one where the processing capacity of the data center remains constant. 

If during the replacements, the number of servers remains constant, we see that 

over the years the footprint of the data center increases. In this case it is essential to 

extend the lifetime of the servers as long as possible. 

In the constant capacity case, there is a yearly decrease of the footprint. In this 

case, we also observe there is an optimal replacement period of about two years. 

The driver for the capacity is the software running on the servers. The fact that data 

center power consumption is still increasing indicates that software is increasingly 

demanding capacity. As long as this situation persists, it is key to keep servers in 

operation as long as possible in order to reduce the full life cycle cost of the servers. 

It is however important to strive for the scenario in which the software allows for 

the processing capacity to remain constant. In this case the power consumption of data 

centers will reduce. At this time however, we need to carefully evaluate the optimal 

renewal rate for data centers. 
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