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Article abstract:  

 

Meep is a broadly used and acknowledged open-source package for FDTD electromagnetic 
simulations. We describe how Python bindings for Meep leverage the tool. We outline new 

perspectives for integration of Meep with other libraries in the Python ecosystem. We show that 

Python bindings allow using Meep more effectively in a large scale parallel computing 
architecture. We describe the technical implementation of Python-Meep with SWIG and 

describe different architectures for interfacing data with the Meep core engine. Some 

applications of Python-Meep in our photonics and plasmonics research are briefly touched. We 
illustrate generic benefits to the wider research and open-source community.  

Introduction  

In photonics and microwave design, it is essential to be able to simulate the 

propagation of electromagnetic waves through sub-wavelength-scale structures 

with high accuracy. One of the common approaches for this purpose is the 
finite-difference-time-domain (FDTD) method [1]. Because it models Maxwell's 

equations in a fully vectorial way, it is one of the most powerful and general, 

but rather brute-force techniques. It is computationally intensive but well 

suited for massive parallelism, making it scalable on large clusters or 
supercomputers. While several commercial and open-source FDTD packages 

are commonly used, many researchers have appreciated the excellent open-

source package Meep. Developed at MIT [2], it has a wide community of users. 

In this article we describe how Python bindings for Meep leverage the tool in 

several ways and how the research community benefits from this extension.  

In the current standard version of Meep, a simulation is by default defined as a 
script written in the Scheme language. Scheme is a powerful and compact 

programming language, derived from LISP and belonging to the group of 



functional programming languages [3][4]. It is mostly popular for educational 

purposes. Newcomers can however experience a threshold in getting started 

with the language. Scheme is not inherently more difficult, but it has a 

somewhat different syntax, coding convention and execution strategy than 
more mainstream languages (the so-called imperative languages). Quite a lot 

of researchers interested in Meep are not familiar with this programming 

paradigm. On the other hand, Python follows a more traditional approach. Like 

Scheme, it offers the benefit of being a dynamically typed language and is thus 
well suited for scripting and rapid prototyping. It has become widely adopted 

during the past decade both in the industry (for example the Google Apps 

Engine platform) and in many open source projects. It is especially popular in 

scientific and academic communities: there are many Python libraries available 
(mostly open source), covering a wide spectrum of functionalities. Some of 

them will be discussed later in this article. Therefore, if Meep can be scripted 

through Python, it lowers the threshold for many researchers to use Meep and 

it allows for seamless integration with other existing Python software.  

The use of Python in our research   

In our research on silicon photonics (UGent/IMEC) and plasmonics (SSU), we 

have deployed Python for many uses over the years. At UGent/IMEC, we have 
developed a litho mask design toolkit for silicon photonics in pure Python. Add-

on tools and libraries have been developed for electromagnetic modeling, 

design optimization [5] and process simulation [6]. The long-term goal is to 

further automate closed-loop optimization of photonic circuits [7].  A powerful 
tool like Meep enriches our modeling framework. It broadens our research 

capabilities in design optimization because we can now leverage fully vectorial 

3D FDTD simulations from inside a Python-driven design optimization process.  

Leveraging Meep with Python     
 
We see several generic benefits that Python bindings bring to the wider 

community of Meep users. Firstly, they enable the integration of Meep with 

existing Python open source libraries for scientific computing. The most 

acknowledged are Numpy and SciPy [8]. Numpy is an extension to the Python 

language which adds support for large, multi-dimensional matrix operations 
and related mathematical functions [9]. SciPy is a higher level library with 

mathematical tools and algorithms. Suppose for example that we want to 

explore a certain parameter space for the optimal configuration of a photonic 

waveguide (i.e. we want to simulate the electromagnetic behaviour of this 
waveguide with Meep for various parameter values). Optimization algorithms 

such as simulated annealing (provided by SciPy) or genetic algorithms 

(provided by PyGene), can now be used to explore this parameter space on a 

supercomputer and optimize against a certain target function. Numerical 
algorithms offered by Numpy can be used for processing of simulation results.  

Combining these libraries with Meep is a promising option for many researchers 



already familiar with them. 

 

Visualization of the electromagnetic fields relies on external tools in the 

currently deployed versions of Meep (with files for interchange of data) and it is 
largely a manual process. With Meep now being Python-aware, we can develop 

visualization functionality using popular Python libraries such as Matplotlib (for 

2D) [10] and Mayavi2 (for 3D) [11] and tightly integrate them with the 

simulation script. We can automatically generate the visualization of the 
waveguide, the position of the excitation source and the data-collecting flux 

planes. This allows for rapid, visual verification of the Meep script before 

running it. At UGent, we have built such functionality on top of the standard 

Python-Meep, which we integrated with a more general simulation framework 
used by our research group (for this latter reason, it is currently kept as a 

proprietary extension, not included in the public release of Python-Meep). The 

figure below illustrates a 2D-visualization made by this framework. Because the 

Python bindings provide direct access to core Meep functionality, we could even 

make a live visualization of the fluxes or the electromagnetic fields as the 
simulation progresses. The latter has however not yet been implemented. 

Generally speaking, such automated and advanced visualization functionalities 

save time and can save reiterations of failed or ill-conditioned simulations.  

Figure 1 illustrates the automatic visualization of a 2D simulation landscape based on Python-

Meep and Matplotlib : it shows a ring resonator with access waveguide in silicon (red), the 
position of the source (yellow line), two fluxplanes (green line) and a probing point (blue 

circle).  



 

The standard version of Meep can be enabled for MPI-run, which means that 

the computation is distributed over multiple computing cores (on one or more 
nodes). MPI is an industry standard which defines message passing between 

software components executing in parallel [12]. An FDTD algorithm can easily 

be parallelized using MPI. We can split up the simulation problem in cells: in a 

given time step, the calculation for one cell is only dependent of the previous 
state(s) of the cell and the boundaries of the surrounding cells. Each computing 

core processes one cell and exchanges boundary information with its 

neighbors. The Python-Meep bindings are fully compatible with the MPI-

capabilities of Meep. However, such an MPI-distribution does not scale 
infinitely: adding cores increases communication and synchronization overhead, 

which at some point limits further scaling. Even if we have a massive amount 

of cores at our disposal (such as on a supercomputer or cluster), we cannot 

efficiently exploit the full capacity with one MPI-run alone.  

At UGent we are developing a generic photonic simulation framework based on 
IPython [13].  This is a Python environment which is enhanced for parallel 

computing. It largely abstracts the technical aspects of parallel computing from 

the user and allows robust error handling. It allows submitting scripts to a 

controller, which in turn scatters the code to engines on several nodes for 
execution.  Results and exceptions are gathered back and presented to the 



client shell in a user friendly manner.  

The Python bindings for Meep enable the integration of Meep with this IPython 

framework. Such integration shows a clear benefit. We can now combine MPI-

runs of Python-Meep with the scatter-gather capabilities of IPython. In this 
architecture, we basically have a 2-dimensional space over which we can 

spread a large number of simulations (e.g. in a parametric scan), as illustrated 

in figure 2a. The first dimension is the number of computing cores to which we 

can scale one simulation in an MPI-run. The other dimension is the number of 
different simulations that we want to run simultaneously (with each simulation 

assigned a set of MPI-enabled IPython engines). In this scheme, we can use 

the capacity of a cluster or supercomputer in an optimal way for a large set of 

simultaneous Python-Meep simulations. A user interface allows to launch 
simulations for a certain set of parameters and to view the progress of a 

specific simulation (figure 2c).  

 
Figure 2a shows a schematical representation of 100 simulations (each with different 
parameter set) on a supercomputer. Each simulation executes in an IPython engine and is 

scaled with MPI over 16 computing cores. 

 
 
Suppose for example that we have a computer cluster with 1600 cores at our 

disposal and that we want to scan a parameter space with 150 combinations of 

parameters. Let's assume that each simulation can be efficiently scaled over 16 

cores with MPI. Combining MPI and IPython, we can run 100 Python-Meep 



simulations simultaneously, with each simulation consuming 16 cores. If each 

simulation takes 30 minutes to complete, then we can execute the full 

parameter space in just one hour (30 minutes for 100 simultaneous simulations 

on 16 cores per simulation, followed by another 30 minutes for the subsequent 
50 simultaneous simulations).  

Both dimensions are independent of one another and have different scaling 

properties. The scaling behaviour of Python-Meep over the first dimension (the 

number of cores for MPI-run) is similar to the standard Meep: the Python layer 
does not interfere with the MPI-specific commands in the Meep core. Figure 2b 

shows the scaling of a benchmark 3-dimensional simulation with MPI. The total 

calculation time is shown for different resolutions (i.e. sizes of the 

computational volume). This is compared with the scaling that we ideally 
expect: i.e. when we double the number of nodes, we expect the calculation 

time to halve. For a given resolution, there is an upper limit to the number of 

cores over which we can scale efficiently. For a 3-dimensional simulation, the 

communication and synchronization overhead increases with the 4th power of 

the number of computing cores. At some point, the added benefit of extra 
calculation power is smaller than the additional overhead that is created: in 

such a case, the total calculation times even increases. In figure 2b, we can see 

that scaling performance is better for more complex, high resolution problems. 

 

Figure 2b illustrates the scaling of a 3D Python-Meep simulation with MPI. The actual 
calculation times are show for different resolutions and compared with the calculation times 

that we ideally expect. 



 

 

For the second dimensions (the IPython engines), there is no inherent scaling 

limit as the different IPython engines are essentially separated programs 
running in parallel, with no intercommunication. 

Figure 2c below shows a graphical user interface that was built with PyQt [14] 

on top of this IPython based framework: we can conveniently launch new 

Python-Meep simulations and inspect results of simulations that have 

terminated.  

Figure 2c illustrates the graphical user interface of the photonic simulation framework of UGent. 
It shows the parameters used in a range of Python-Meep simulations with the corresponding 

result for each simulation, i.e. the transmission calculated from the fluxes. It offers the 
possibility to inspect results and subsequently launch new simulations (with different 

parameters) to a computing cluster. This high level of automation aids in the rapid design of 

new components.  



 

A taste of Python-Meep  

In figure 3a, we give a short example of a Python-Meep script, so that readers 

can get a flavor of the coding conventions. In this example, we calculate the 
2D-electromagnatic field profile in response to a line source located at the left 

of a straight waveguide. The Ez component of the field is periodically written to 

a HDF5 file, which can then be further processed by the user (HDF5 is a 

standard file format for scientific datasets [15]).  In figure 3b we show an 
equivalent script implemented with Scheme. From these code samples, it can 

be seen that the Scheme version defines the problem more in terms of higher 

level expressions. Functional languages like Scheme are inherently very 

expressive [16][17] and this feature was fully exploited by the authors of Meep 
when they created the Scheme interface. That way, they overcame the fairly 

low level style of the Meep C++ core. Additionally, the Scheme interface was 

complemented with user-friendly functionality which is not available in the 

underlying Meep C++ core (and thus not by default in Python-Meep).  
The Python-bindings directly expose the low-level Meep C++ core and this is 

reflected in the coding style of the Python script. In Python-Meep, we are now 

also adding similar high level helper functions to facilitate the writing of 



simulation scripts and we will increase this effort in future versions. While such 

functions are useful, they are however not necessary to use the functionalities 

that Meep offers.  

Users of the Scheme interface are limited to using the functionality offered at 
that level while users of Python-Meep have more flexibility: they can use both 

the low-level functionality of the Meep C++ core and the higher-level helper 

functions that are being added to the Python interface.    

Figures 3a/3b : a basic Python-Meep simulation script (a) and it’s equivalent in Scheme (b). 

Note that the coordinate system is different in both versions. 



 



 

 

Technical implementation of the Python bindings 

Integrating the Meep callback mechanism 
 

The Meep core library (written in C++) provides a mechanism of callbacks for 

integration with the simulation script: whenever the runtime engine needs 

information about specific properties of the simulation, a function defined by 
the user is called. This mechanism is used intensively, for example in the 

definition of the material properties of the simulation volume or in the definition 

of a custom electromagnetic source.  

The Python-Meep bindings were developed using SWIG, an open source tool 



that allows connecting programs written in C/C++ with a variety of high-level 

programming languages [18]. The flexibility of SWIG allows for an elegant 

integration with this callback mechanism. Based on our experiences with 

performance and ease of use for the end user, the actual implementation 

technique evolved in three phases (described below and illustrated in figure 4). 

Figure 4 illustrates the alternative architectures that were implemented for definition of the 

material properties in the simulation volume. First architecture: using a pure Python class for 

callback (a). In this case, the C++/Python boundary is crossed whenever callback occurs 
(potentially millions of times for material definition).  Second architecture: using inline C/C++ 

for large simulation volumes with many grid points (b): the callback occurs completely in the 

C/C++ domain (great performance).  Third architecture: the user works in Python only, 
creating a Numpy matrix with the material definition (c). Meep can directly access this matrix 

using a pointer, while the user works in pure Python (also with great performance but with 

increased memory consumption).  



 



 

In a first straightforward implementation, Python-Meep provides an abstract 

Callback class, from which the user inherits in pure Python. In that class, the 

user implements the required functionality, such as definition of the material 

properties (see figure 3). For many complex simulations however (i.e. with 
high resolution), the performance of this pure Python callback was not 

sufficient : the callback function for definition of the materials is typically called 

a million times or more. The overhead of swapping from C++ to Python, 

subsequently running a piece of interpreted Python code and returning the 
results back to C++ is small, but it becomes problematic when the callback is 

executed hundreds of thousands or millions of times.  

Initially, this drawback was solved by allowing users to define a callback 

function in C or C++, with the rest of the simulation script in Python. In this 
scheme, the user’s C++ code is compiled at runtime and dynamically linked 

with the Python-Meep bindings: the callback is then done completely inside the 

C++ domain. This solution provides the required performance. The Python 

package “weave” allows for very elegant inclusion of inline C/C++. It largely 

abstracts the overhead for the user of mixing Python with C/C++. 
Nevertheless, combining 2 languages remains a drawback for certain end 

users, many of whom are not familiar with C/C++.  

In the original Scheme interface, the performance issue with this repeated 

callback occurs less often: in this implementation, the standard callback 
mechanism is largely bypassed by the authors of Meep. A tighter integration of 

the C++ core and definitions in Scheme is realized.  

We subseqently worked towards a similar solution that would allow a pure 

Python definition of even complex high-resolution simulations. The 
breakthrough came by combining SWIG with Numpy matrices. Numpy is known 

for its great performance, thanks to the fact that Numpy stores and processes 

its data in C and exposes only a thin interface to Python. Therefore, if we 

define a Numpy matrix in Python with the material properties of our simulation 

volume, that matrix is directly accessible from Meep using C coding 
conventions (basically a pointer). The integration then comes down to writing a 

wrapper around the Meep callback functionality. This wrapper retrieves the 

actual values from the Numpy matrix and returns them to Meep. Figure 4 

further illustrates this architecture in contrast with the other two. Code-wise, 

we provide a user-friendly class CallbackMatrix from which the user inherits. In 

the class, he creates a Numpy matrix with size corresponding to the discretized 

simulation volume (or a multiple for better accuracy). This architecture offers 

excellent performance, while allowing the user to work in pure Python. A 

drawback is the increased memory consumption, as we have to store the 
Numpy matrix before it is interfaced to Meep. Figure 5 illustrates the technique 

for the straight waveguide example of figure 3.  

Figure 5 : use of the technique with Numpy matrix for describing the straight waveguide of 

figure 3. The user inherits from CallbackMatrix2D and assigns the Numpy matrix to an 

attribute. 



 

As we see in the last line of the code snippet of figure 5, the Python-Meep 

function set_matrix_2D is used for interfacing the Numpy matrix with the 

underlying C++ code. In the C++ code of the Python-Meep wrapper, the 

function signature is : 

 void set_matrix_2D(double* matrix, int dimX, int dimY, ...)  

 

Similarly, for a 3D-simulation we have : 

 
 void set_matrix_3D(double* matrix, int dimX, int dimY, int dimZ, ...)  

 

The first parameter is of type double* and is a pointer to the actual values in 

the Numpy matrix. The following two or three int parameters indicate the 

matrix dimensions. In Python the matrix is of type numpy.ndarray.   

We want to seamlessly pass the Numpy matrix as parameter to the functions 

set_matrix_2D and set_matrix_3D. It is therefore required to define some kind 

of translation between the Python type numpy.ndarray and an equivalent tuple 

of parameters double* and int in C++. In SWIG, the technique for such a 

translation is called a typemap. Normally, the definition of typemaps is a 

complicated and tedious task. Luckily, a range of typemaps for Numpy are 
already available in the open source community ("numpy.i" [19]). They are 

called IN_ARRAY2 and IN_ARRAY3 for respectively 2- and 3-dimensional Numpy 

arrays. 

In our SWIG definition file, we have to link up the signature of the 

set_matrix_2D function with the typemap. This is done using the code below. 

When we pass a Numpy array to the function in Python, it is automatically 

expanded in the three or four corresponding parameters of the C++ function.  



//Include the Numy header file, so that Numpy types are known 

%{ 

#define SWIG_FILE_WITH_INIT 

#include <numpy/npy_common.h> 

%} 

 

//Include the Numpy typemaps 

%include "numpy.i" 

 

%init %{ 

  import_array(); 

%} 

 

%apply (double* IN_ARRAY2, int DIM1, int DIM2)  

       {(double* matrix2, int dimX, int dimY)};                                                        

 

%apply (double* IN_ARRAY3, int DIM1, int DIM2, int DIM3)  

       {(double* matrix3, int dimX, int dimY, int dimZ)}; 

 

Similarly, typemaps were needed for interfacing parameters that represent 

complex numbers. Both Python and C++ have seperate definitions of a complex 

type and thus a mapping or translation is required for seamless integration. 

The definition of these typemaps is quite complicated. Interested readers can 

consult the file py_complex.i in the public Python-Meep distribution. 

All three of the above techniques for defining material matrices are available to 

users of Python-Meep. The approach with the Numpy matrix is the preferred 

one for simulations of moderate size. For very large simulation volumes, using 
a C/C++ callback function may currently be more appropriate, as it has lower 

memory requirements. In future versions, we are planning to explore PyTables 

[20] as an approach for processing very large matrices: PyTables combines 

HDF5 and Numpy and allows storing huge matrices on disk, thus limiting the 
memory consumption. 

 
The choice for SWIG 

Initially we compared both “SWIG” [18] and “Boost.Python” [21] as alternative 

approaches for implementing our Python wrapper.  
Boost is a well established and recognized set of open source C++ libraries 

which runs on almost any operating system. “Boost.Python” is a subset which 

supports seamless interopability between Python and C++. We had very good 

experiences with “Boost.Python” during our evaluation: a tutorial is available, 

the semantics of the API are clear and the amount of code that we had to write 
was limited. However, there was one important drawback: during the technical 

build process, our code needed to be linked to Boost-specific dynamic libraries 

(dll’s). While these libraries can be compiled from source, they have a large 

footprint. This is a major dependency which poses an additional threshold for 
deployment on third party systems like a supercomputer for example. We 

preferred to keep Python-Meep lightweight with as little dependencies as 

possible. Therefore, we decided to use SWIG. 



SWIG is a dedicated framework for connecting C/C++ programs with a large 

variety of programming languages. One must write an interface file from which 

the SWIG engine generates two additional files: one file with C code and one 

file with Python code. There are no other dependencies. Once this code is 
generated, it can be transferred to any operating system and compiled there. 

The footprint is thus limited and a SWIG installation is not needed on the host 

system. The SWIG documentation is very detailed but the semantics of various 

constructs are not always easy to understand. The technical implementation 
was rather complicated and we needed a lot of trial and error before the 

required behaviour was obtained. Especially the definition of typemaps was 

error prone and hard to debug. These were serious drawbacks, but once up and 

running, the Python/C++ interface works without a flaw. 

Interfacing external data with a Python-Meep script 

A frequently asked question in FDTD mailing lists concerns the problem of 

specifying "external" sources, i.e. electromagnetic sources that are defined by 
some other software and exported in the form of a datafile. Python has 

extensive features for interchanging data which come in handy in such a case. 

One example is the excitation of a specific mode of a photonic waveguide (a 

photonic waveguide can typically guide waves with specific profiles, called 
modes). In realistic simulations, it is often required that only one specific mode 

is excited at a time. The only solution then is to create a source with the exact 

spatial amplitude shape of the mode that we want to excite. This problem is 

conveniently addressed with Python-Meep. The commercial package Fimmwave 
is well known for calculation of such modes [22]. We can use Fimmwave to 

calculate the spatial amplitude profile of the mode that we want to excite and 

export the resulting matrix to a text file. In Python-Meep, we create a callback 

function that uses this matrix to calculate the exact amplitude profile of the 
source. We then run the Python-Meep simulation with a custom source that 

matches accurately with the physical properties of the waveguide. At UGent, 

we have implemented such an integration scheme between Fimmwave and 

Python-Meep in a couple of simulations. During these efforts, the availability of 

the Python library Numpy proved useful: the resolution of the matrix that is 
exported by Fimmwave may not necessarily be the same as the resolution that 

we want to use later on in the Meep FDTD simulations. Using Numpy, we could 

conveniently interpolate values to get the field profile value at each wanted 

position in the FDTD grid. 
 
Figure 6 illustrates the field profile without spatial shaping of the source (a), versus a field 

profile when the source is shaped according to an amplitude matrix calculated by Fimmwave 
and imported by Python-Meep (b). A field profile that is useful for a realistic design should have 

a constant spatial distribution of the power intensity over time for a given cross-section: in (a), 

we see that there are major changes over time in the spatial distribution of the power intensity 
for the chosen cross-section. In constrast, the profile in (b) shows a constant spatial 

distribution of the power intensity over the full length of the waveguide.  



 

 

Open source 

The Python-Meep bindings are distributed by its authors under the terms of the 

GNU General Public License (v2). The source code is publicly available on 
Launchpad [23] and the community is invited to further contribute to the 

project's development.  

Conclusion 

We conclude that the recently released Python bindings for Meep bring 

interesting benefits for the wider research and open source community. First of 

all, Python is a convenient alternative for those researchers who want to use 
Meep but are not familiar with the Scheme programming language. The Python 

bindings enable the integration of Meep with other software libraries in the 

Python ecosystem (such as libraries for visualization and libraries with 

numerical and scientific algorithms).  We can also leverage the parallel 

computing capabilities of Meep by combining MPI with the IPython framework. 
We discussed the technical implementation of the Python-Meep bindings with 

SWIG and three different architectures for interfacing data with the Meep core 

engine. We have illustrated how we use Python-Meep in our silicon photonics 

and plasmonics research. Some options for improvement in future versions 
were discussed. We have released the Python-Meep bindings as open source: 

in this way, the community of users can contribute to its further development.   
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