
Python bindings for the open source electromagnetic simulator

MEEP.

Emmanuel Lambert1, Martin Fiers1, Shavkat Nizamov2, Martijn Tassaert1, Steven G. Johnson3,
Peter Bienstman1, Wim Bogaerts1

1
Ghent University - IMEC, Department of Information Technology (INTEC), Photonics Research Group, Sint-Pietersnieuwstraat

41, B-9000 Gent, Belgium

2
Samarkand State University, Physics Faculty, 140104, University blvd. 15, Samarkand, Uzbekistan

3

Massachusetts Institute of Technology, Department of Mathematics, Center for Material Science & Engineering, Research

Laboratory of Electronics, Cambridge MA 02139, USA

Part of this work was funded by the European Union in the framework of the FP7 integrated

project HELIOS. Martin Fiers and Martijn Tassaert acknowledge the UGent Special Research
Fund for a doctoral grant. Shavkat Nizamov acknowledges the RFBR grant 09-02-90205. Wim

Bogaerts acknowledges the Flemish Fund for Scientific Research (FWO) for a postdoctoral
grant.

Article abstract:

Meep is a broadly used and acknowledged open-source package for FDTD electromagnetic
simulations. We describe how Python bindings for Meep leverage the tool. We outline new

perspectives for integration of Meep with other libraries in the Python ecosystem. We show that

Python bindings allow using Meep more effectively in a large scale parallel computing
architecture. We describe the technical implementation of Python-Meep with SWIG and

describe different architectures for interfacing data with the Meep core engine. Some

applications of Python-Meep in our photonics and plasmonics research are briefly touched. We
illustrate generic benefits to the wider research and open-source community.

Introduction

In photonics and microwave design, it is essential to be able to simulate the

propagation of electromagnetic waves through sub-wavelength-scale structures

with high accuracy. One of the common approaches for this purpose is the
finite-difference-time-domain (FDTD) method [1]. Because it models Maxwell's

equations in a fully vectorial way, it is one of the most powerful and general,

but rather brute-force techniques. It is computationally intensive but well

suited for massive parallelism, making it scalable on large clusters or
supercomputers. While several commercial and open-source FDTD packages

are commonly used, many researchers have appreciated the excellent open-

source package Meep. Developed at MIT [2], it has a wide community of users.

In this article we describe how Python bindings for Meep leverage the tool in

several ways and how the research community benefits from this extension.

In the current standard version of Meep, a simulation is by default defined as a
script written in the Scheme language. Scheme is a powerful and compact

programming language, derived from LISP and belonging to the group of

functional programming languages [3][4]. It is mostly popular for educational

purposes. Newcomers can however experience a threshold in getting started

with the language. Scheme is not inherently more difficult, but it has a

somewhat different syntax, coding convention and execution strategy than
more mainstream languages (the so-called imperative languages). Quite a lot

of researchers interested in Meep are not familiar with this programming

paradigm. On the other hand, Python follows a more traditional approach. Like

Scheme, it offers the benefit of being a dynamically typed language and is thus
well suited for scripting and rapid prototyping. It has become widely adopted

during the past decade both in the industry (for example the Google Apps

Engine platform) and in many open source projects. It is especially popular in

scientific and academic communities: there are many Python libraries available
(mostly open source), covering a wide spectrum of functionalities. Some of

them will be discussed later in this article. Therefore, if Meep can be scripted

through Python, it lowers the threshold for many researchers to use Meep and

it allows for seamless integration with other existing Python software.

The use of Python in our research

In our research on silicon photonics (UGent/IMEC) and plasmonics (SSU), we

have deployed Python for many uses over the years. At UGent/IMEC, we have
developed a litho mask design toolkit for silicon photonics in pure Python. Add-

on tools and libraries have been developed for electromagnetic modeling,

design optimization [5] and process simulation [6]. The long-term goal is to

further automate closed-loop optimization of photonic circuits [7]. A powerful
tool like Meep enriches our modeling framework. It broadens our research

capabilities in design optimization because we can now leverage fully vectorial

3D FDTD simulations from inside a Python-driven design optimization process.

Leveraging Meep with Python

We see several generic benefits that Python bindings bring to the wider

community of Meep users. Firstly, they enable the integration of Meep with

existing Python open source libraries for scientific computing. The most

acknowledged are Numpy and SciPy [8]. Numpy is an extension to the Python

language which adds support for large, multi-dimensional matrix operations
and related mathematical functions [9]. SciPy is a higher level library with

mathematical tools and algorithms. Suppose for example that we want to

explore a certain parameter space for the optimal configuration of a photonic

waveguide (i.e. we want to simulate the electromagnetic behaviour of this
waveguide with Meep for various parameter values). Optimization algorithms

such as simulated annealing (provided by SciPy) or genetic algorithms

(provided by PyGene), can now be used to explore this parameter space on a

supercomputer and optimize against a certain target function. Numerical
algorithms offered by Numpy can be used for processing of simulation results.

Combining these libraries with Meep is a promising option for many researchers

already familiar with them.

Visualization of the electromagnetic fields relies on external tools in the

currently deployed versions of Meep (with files for interchange of data) and it is
largely a manual process. With Meep now being Python-aware, we can develop

visualization functionality using popular Python libraries such as Matplotlib (for

2D) [10] and Mayavi2 (for 3D) [11] and tightly integrate them with the

simulation script. We can automatically generate the visualization of the
waveguide, the position of the excitation source and the data-collecting flux

planes. This allows for rapid, visual verification of the Meep script before

running it. At UGent, we have built such functionality on top of the standard

Python-Meep, which we integrated with a more general simulation framework
used by our research group (for this latter reason, it is currently kept as a

proprietary extension, not included in the public release of Python-Meep). The

figure below illustrates a 2D-visualization made by this framework. Because the

Python bindings provide direct access to core Meep functionality, we could even

make a live visualization of the fluxes or the electromagnetic fields as the
simulation progresses. The latter has however not yet been implemented.

Generally speaking, such automated and advanced visualization functionalities

save time and can save reiterations of failed or ill-conditioned simulations.

Figure 1 illustrates the automatic visualization of a 2D simulation landscape based on Python-

Meep and Matplotlib : it shows a ring resonator with access waveguide in silicon (red), the
position of the source (yellow line), two fluxplanes (green line) and a probing point (blue

circle).

The standard version of Meep can be enabled for MPI-run, which means that

the computation is distributed over multiple computing cores (on one or more
nodes). MPI is an industry standard which defines message passing between

software components executing in parallel [12]. An FDTD algorithm can easily

be parallelized using MPI. We can split up the simulation problem in cells: in a

given time step, the calculation for one cell is only dependent of the previous
state(s) of the cell and the boundaries of the surrounding cells. Each computing

core processes one cell and exchanges boundary information with its

neighbors. The Python-Meep bindings are fully compatible with the MPI-

capabilities of Meep. However, such an MPI-distribution does not scale
infinitely: adding cores increases communication and synchronization overhead,

which at some point limits further scaling. Even if we have a massive amount

of cores at our disposal (such as on a supercomputer or cluster), we cannot

efficiently exploit the full capacity with one MPI-run alone.

At UGent we are developing a generic photonic simulation framework based on
IPython [13]. This is a Python environment which is enhanced for parallel

computing. It largely abstracts the technical aspects of parallel computing from

the user and allows robust error handling. It allows submitting scripts to a

controller, which in turn scatters the code to engines on several nodes for
execution. Results and exceptions are gathered back and presented to the

client shell in a user friendly manner.

The Python bindings for Meep enable the integration of Meep with this IPython

framework. Such integration shows a clear benefit. We can now combine MPI-

runs of Python-Meep with the scatter-gather capabilities of IPython. In this
architecture, we basically have a 2-dimensional space over which we can

spread a large number of simulations (e.g. in a parametric scan), as illustrated

in figure 2a. The first dimension is the number of computing cores to which we

can scale one simulation in an MPI-run. The other dimension is the number of
different simulations that we want to run simultaneously (with each simulation

assigned a set of MPI-enabled IPython engines). In this scheme, we can use

the capacity of a cluster or supercomputer in an optimal way for a large set of

simultaneous Python-Meep simulations. A user interface allows to launch
simulations for a certain set of parameters and to view the progress of a

specific simulation (figure 2c).

Figure 2a shows a schematical representation of 100 simulations (each with different
parameter set) on a supercomputer. Each simulation executes in an IPython engine and is

scaled with MPI over 16 computing cores.

Suppose for example that we have a computer cluster with 1600 cores at our

disposal and that we want to scan a parameter space with 150 combinations of

parameters. Let's assume that each simulation can be efficiently scaled over 16

cores with MPI. Combining MPI and IPython, we can run 100 Python-Meep

simulations simultaneously, with each simulation consuming 16 cores. If each

simulation takes 30 minutes to complete, then we can execute the full

parameter space in just one hour (30 minutes for 100 simultaneous simulations

on 16 cores per simulation, followed by another 30 minutes for the subsequent
50 simultaneous simulations).

Both dimensions are independent of one another and have different scaling

properties. The scaling behaviour of Python-Meep over the first dimension (the

number of cores for MPI-run) is similar to the standard Meep: the Python layer
does not interfere with the MPI-specific commands in the Meep core. Figure 2b

shows the scaling of a benchmark 3-dimensional simulation with MPI. The total

calculation time is shown for different resolutions (i.e. sizes of the

computational volume). This is compared with the scaling that we ideally
expect: i.e. when we double the number of nodes, we expect the calculation

time to halve. For a given resolution, there is an upper limit to the number of

cores over which we can scale efficiently. For a 3-dimensional simulation, the

communication and synchronization overhead increases with the 4th power of

the number of computing cores. At some point, the added benefit of extra
calculation power is smaller than the additional overhead that is created: in

such a case, the total calculation times even increases. In figure 2b, we can see

that scaling performance is better for more complex, high resolution problems.

Figure 2b illustrates the scaling of a 3D Python-Meep simulation with MPI. The actual
calculation times are show for different resolutions and compared with the calculation times

that we ideally expect.

For the second dimensions (the IPython engines), there is no inherent scaling

limit as the different IPython engines are essentially separated programs
running in parallel, with no intercommunication.

Figure 2c below shows a graphical user interface that was built with PyQt [14]

on top of this IPython based framework: we can conveniently launch new

Python-Meep simulations and inspect results of simulations that have

terminated.

Figure 2c illustrates the graphical user interface of the photonic simulation framework of UGent.
It shows the parameters used in a range of Python-Meep simulations with the corresponding

result for each simulation, i.e. the transmission calculated from the fluxes. It offers the
possibility to inspect results and subsequently launch new simulations (with different

parameters) to a computing cluster. This high level of automation aids in the rapid design of

new components.

A taste of Python-Meep

In figure 3a, we give a short example of a Python-Meep script, so that readers

can get a flavor of the coding conventions. In this example, we calculate the
2D-electromagnatic field profile in response to a line source located at the left

of a straight waveguide. The Ez component of the field is periodically written to

a HDF5 file, which can then be further processed by the user (HDF5 is a

standard file format for scientific datasets [15]). In figure 3b we show an
equivalent script implemented with Scheme. From these code samples, it can

be seen that the Scheme version defines the problem more in terms of higher

level expressions. Functional languages like Scheme are inherently very

expressive [16][17] and this feature was fully exploited by the authors of Meep
when they created the Scheme interface. That way, they overcame the fairly

low level style of the Meep C++ core. Additionally, the Scheme interface was

complemented with user-friendly functionality which is not available in the

underlying Meep C++ core (and thus not by default in Python-Meep).
The Python-bindings directly expose the low-level Meep C++ core and this is

reflected in the coding style of the Python script. In Python-Meep, we are now

also adding similar high level helper functions to facilitate the writing of

simulation scripts and we will increase this effort in future versions. While such

functions are useful, they are however not necessary to use the functionalities

that Meep offers.

Users of the Scheme interface are limited to using the functionality offered at
that level while users of Python-Meep have more flexibility: they can use both

the low-level functionality of the Meep C++ core and the higher-level helper

functions that are being added to the Python interface.

Figures 3a/3b : a basic Python-Meep simulation script (a) and it’s equivalent in Scheme (b).

Note that the coordinate system is different in both versions.

Technical implementation of the Python bindings

Integrating the Meep callback mechanism

The Meep core library (written in C++) provides a mechanism of callbacks for

integration with the simulation script: whenever the runtime engine needs

information about specific properties of the simulation, a function defined by
the user is called. This mechanism is used intensively, for example in the

definition of the material properties of the simulation volume or in the definition

of a custom electromagnetic source.

The Python-Meep bindings were developed using SWIG, an open source tool

that allows connecting programs written in C/C++ with a variety of high-level

programming languages [18]. The flexibility of SWIG allows for an elegant

integration with this callback mechanism. Based on our experiences with

performance and ease of use for the end user, the actual implementation

technique evolved in three phases (described below and illustrated in figure 4).

Figure 4 illustrates the alternative architectures that were implemented for definition of the

material properties in the simulation volume. First architecture: using a pure Python class for

callback (a). In this case, the C++/Python boundary is crossed whenever callback occurs
(potentially millions of times for material definition). Second architecture: using inline C/C++

for large simulation volumes with many grid points (b): the callback occurs completely in the

C/C++ domain (great performance). Third architecture: the user works in Python only,
creating a Numpy matrix with the material definition (c). Meep can directly access this matrix

using a pointer, while the user works in pure Python (also with great performance but with

increased memory consumption).

In a first straightforward implementation, Python-Meep provides an abstract

Callback class, from which the user inherits in pure Python. In that class, the

user implements the required functionality, such as definition of the material

properties (see figure 3). For many complex simulations however (i.e. with
high resolution), the performance of this pure Python callback was not

sufficient : the callback function for definition of the materials is typically called

a million times or more. The overhead of swapping from C++ to Python,

subsequently running a piece of interpreted Python code and returning the
results back to C++ is small, but it becomes problematic when the callback is

executed hundreds of thousands or millions of times.

Initially, this drawback was solved by allowing users to define a callback

function in C or C++, with the rest of the simulation script in Python. In this
scheme, the user’s C++ code is compiled at runtime and dynamically linked

with the Python-Meep bindings: the callback is then done completely inside the

C++ domain. This solution provides the required performance. The Python

package “weave” allows for very elegant inclusion of inline C/C++. It largely

abstracts the overhead for the user of mixing Python with C/C++.
Nevertheless, combining 2 languages remains a drawback for certain end

users, many of whom are not familiar with C/C++.

In the original Scheme interface, the performance issue with this repeated

callback occurs less often: in this implementation, the standard callback
mechanism is largely bypassed by the authors of Meep. A tighter integration of

the C++ core and definitions in Scheme is realized.

We subseqently worked towards a similar solution that would allow a pure

Python definition of even complex high-resolution simulations. The
breakthrough came by combining SWIG with Numpy matrices. Numpy is known

for its great performance, thanks to the fact that Numpy stores and processes

its data in C and exposes only a thin interface to Python. Therefore, if we

define a Numpy matrix in Python with the material properties of our simulation

volume, that matrix is directly accessible from Meep using C coding
conventions (basically a pointer). The integration then comes down to writing a

wrapper around the Meep callback functionality. This wrapper retrieves the

actual values from the Numpy matrix and returns them to Meep. Figure 4

further illustrates this architecture in contrast with the other two. Code-wise,

we provide a user-friendly class CallbackMatrix from which the user inherits. In

the class, he creates a Numpy matrix with size corresponding to the discretized

simulation volume (or a multiple for better accuracy). This architecture offers

excellent performance, while allowing the user to work in pure Python. A

drawback is the increased memory consumption, as we have to store the
Numpy matrix before it is interfaced to Meep. Figure 5 illustrates the technique

for the straight waveguide example of figure 3.

Figure 5 : use of the technique with Numpy matrix for describing the straight waveguide of

figure 3. The user inherits from CallbackMatrix2D and assigns the Numpy matrix to an

attribute.

As we see in the last line of the code snippet of figure 5, the Python-Meep

function set_matrix_2D is used for interfacing the Numpy matrix with the

underlying C++ code. In the C++ code of the Python-Meep wrapper, the

function signature is :

 void set_matrix_2D(double* matrix, int dimX, int dimY, ...)

Similarly, for a 3D-simulation we have :

 void set_matrix_3D(double* matrix, int dimX, int dimY, int dimZ, ...)

The first parameter is of type double* and is a pointer to the actual values in

the Numpy matrix. The following two or three int parameters indicate the

matrix dimensions. In Python the matrix is of type numpy.ndarray.

We want to seamlessly pass the Numpy matrix as parameter to the functions

set_matrix_2D and set_matrix_3D. It is therefore required to define some kind

of translation between the Python type numpy.ndarray and an equivalent tuple

of parameters double* and int in C++. In SWIG, the technique for such a

translation is called a typemap. Normally, the definition of typemaps is a

complicated and tedious task. Luckily, a range of typemaps for Numpy are
already available in the open source community ("numpy.i" [19]). They are

called IN_ARRAY2 and IN_ARRAY3 for respectively 2- and 3-dimensional Numpy

arrays.

In our SWIG definition file, we have to link up the signature of the

set_matrix_2D function with the typemap. This is done using the code below.

When we pass a Numpy array to the function in Python, it is automatically

expanded in the three or four corresponding parameters of the C++ function.

//Include the Numy header file, so that Numpy types are known

%{

#define SWIG_FILE_WITH_INIT

#include <numpy/npy_common.h>

%}

//Include the Numpy typemaps

%include "numpy.i"

%init %{

 import_array();

%}

%apply (double* IN_ARRAY2, int DIM1, int DIM2)

 {(double* matrix2, int dimX, int dimY)};

%apply (double* IN_ARRAY3, int DIM1, int DIM2, int DIM3)

 {(double* matrix3, int dimX, int dimY, int dimZ)};

Similarly, typemaps were needed for interfacing parameters that represent

complex numbers. Both Python and C++ have seperate definitions of a complex

type and thus a mapping or translation is required for seamless integration.

The definition of these typemaps is quite complicated. Interested readers can

consult the file py_complex.i in the public Python-Meep distribution.

All three of the above techniques for defining material matrices are available to

users of Python-Meep. The approach with the Numpy matrix is the preferred

one for simulations of moderate size. For very large simulation volumes, using
a C/C++ callback function may currently be more appropriate, as it has lower

memory requirements. In future versions, we are planning to explore PyTables

[20] as an approach for processing very large matrices: PyTables combines

HDF5 and Numpy and allows storing huge matrices on disk, thus limiting the
memory consumption.

The choice for SWIG

Initially we compared both “SWIG” [18] and “Boost.Python” [21] as alternative

approaches for implementing our Python wrapper.
Boost is a well established and recognized set of open source C++ libraries

which runs on almost any operating system. “Boost.Python” is a subset which

supports seamless interopability between Python and C++. We had very good

experiences with “Boost.Python” during our evaluation: a tutorial is available,

the semantics of the API are clear and the amount of code that we had to write
was limited. However, there was one important drawback: during the technical

build process, our code needed to be linked to Boost-specific dynamic libraries

(dll’s). While these libraries can be compiled from source, they have a large

footprint. This is a major dependency which poses an additional threshold for
deployment on third party systems like a supercomputer for example. We

preferred to keep Python-Meep lightweight with as little dependencies as

possible. Therefore, we decided to use SWIG.

SWIG is a dedicated framework for connecting C/C++ programs with a large

variety of programming languages. One must write an interface file from which

the SWIG engine generates two additional files: one file with C code and one

file with Python code. There are no other dependencies. Once this code is
generated, it can be transferred to any operating system and compiled there.

The footprint is thus limited and a SWIG installation is not needed on the host

system. The SWIG documentation is very detailed but the semantics of various

constructs are not always easy to understand. The technical implementation
was rather complicated and we needed a lot of trial and error before the

required behaviour was obtained. Especially the definition of typemaps was

error prone and hard to debug. These were serious drawbacks, but once up and

running, the Python/C++ interface works without a flaw.

Interfacing external data with a Python-Meep script

A frequently asked question in FDTD mailing lists concerns the problem of

specifying "external" sources, i.e. electromagnetic sources that are defined by
some other software and exported in the form of a datafile. Python has

extensive features for interchanging data which come in handy in such a case.

One example is the excitation of a specific mode of a photonic waveguide (a

photonic waveguide can typically guide waves with specific profiles, called
modes). In realistic simulations, it is often required that only one specific mode

is excited at a time. The only solution then is to create a source with the exact

spatial amplitude shape of the mode that we want to excite. This problem is

conveniently addressed with Python-Meep. The commercial package Fimmwave
is well known for calculation of such modes [22]. We can use Fimmwave to

calculate the spatial amplitude profile of the mode that we want to excite and

export the resulting matrix to a text file. In Python-Meep, we create a callback

function that uses this matrix to calculate the exact amplitude profile of the
source. We then run the Python-Meep simulation with a custom source that

matches accurately with the physical properties of the waveguide. At UGent,

we have implemented such an integration scheme between Fimmwave and

Python-Meep in a couple of simulations. During these efforts, the availability of

the Python library Numpy proved useful: the resolution of the matrix that is
exported by Fimmwave may not necessarily be the same as the resolution that

we want to use later on in the Meep FDTD simulations. Using Numpy, we could

conveniently interpolate values to get the field profile value at each wanted

position in the FDTD grid.

Figure 6 illustrates the field profile without spatial shaping of the source (a), versus a field

profile when the source is shaped according to an amplitude matrix calculated by Fimmwave
and imported by Python-Meep (b). A field profile that is useful for a realistic design should have

a constant spatial distribution of the power intensity over time for a given cross-section: in (a),

we see that there are major changes over time in the spatial distribution of the power intensity
for the chosen cross-section. In constrast, the profile in (b) shows a constant spatial

distribution of the power intensity over the full length of the waveguide.

Open source

The Python-Meep bindings are distributed by its authors under the terms of the

GNU General Public License (v2). The source code is publicly available on
Launchpad [23] and the community is invited to further contribute to the

project's development.

Conclusion

We conclude that the recently released Python bindings for Meep bring

interesting benefits for the wider research and open source community. First of

all, Python is a convenient alternative for those researchers who want to use
Meep but are not familiar with the Scheme programming language. The Python

bindings enable the integration of Meep with other software libraries in the

Python ecosystem (such as libraries for visualization and libraries with

numerical and scientific algorithms). We can also leverage the parallel

computing capabilities of Meep by combining MPI with the IPython framework.
We discussed the technical implementation of the Python-Meep bindings with

SWIG and three different architectures for interfacing data with the Meep core

engine. We have illustrated how we use Python-Meep in our silicon photonics

and plasmonics research. Some options for improvement in future versions
were discussed. We have released the Python-Meep bindings as open source:

in this way, the community of users can contribute to its further development.

References :

[1] - Allen Taflove and Susan C. Hagness (2005). Computational Electrodynamics: The Finite-

Difference Time-Domain Method, 3rd ed. Artech House Publishers. ISBN 1-58053-832-0.
http://www.artechhouse.com/Detail.aspx?strBookId=1123.

[2] - Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, J. D. Joannopoulos, and

Steven G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by

the FDTD method," Computer Physics Communications, vol. 181, pp. 687-702 (2010).

[3] - Gerald Jay Sussman and Guy Lewis Steele, Jr. (December 1975), "Scheme: An

Interpreter for Extended Lambda Calculus" (postscript or PDF), AI Memos (MIT AI Lab) AIM-

349

[4] - IEEE Standard for the Scheme Programming Language, IEEE part number STDPD14209.

[5] - D. Vermeulen, G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Duijn, E. Pluk,
G. Van den Hoven, "Silicon-on-insulator nanophotonic waveguide circuit for fiber-to-the home

transceivers", ECOC, Belgium, p.Tu.3.C.6 (2008)

[6] - P. Bienstman, L. Vanholme, W. Bogaerts, P. Dumon, P. Vandersteegen, "Python in

Nanophotonics Research", Computing in Science & Engineering, 9(3), p.46-47 (2007)

[7]- W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, R. Baets, "Closed-loop modeling of
silicon nanophotonics from design to fabrication and back again", Optical and Quantum

Electronics, 01/2009 - 40(11) p.801-811

[8] – Numpy and SciPy project page : http://www.scipy.org

[9] - Travis E. Oliphant, “Python for Scientific Computing”, Comput. Sci. Eng. 9, 10 (2007).

From the same author, the book “Guide to Numpy” (December 7, 2006) was released in the
public domain. It can be downloaded at http://www.tramy.us/numpybook.pdf

[10] – Matplotlib is an open source Python library for 2D plotting.

http://matplotlib.sourceforge.net/

[11] – Mayavi2 is a Python library for 3D Scientific Data Visualization and Plotting.

http://code.enthought.com/projects/mayavi/

[12] - Gropp, William; Lusk, Ewing; Skjellum, Anthony (1994). “Using MPI: portable parallel

programming with the message-passing interface”. MIT Press In Scientific And Engineering

Computation Series, Cambridge, MA, USA. 307 pp. ISBN 0-262-57104-8

[13] - Fernando Perez, Brian E. Granger, "IPython: A System for Interactive Scientific

Computing," Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,

doi:10.1109/MCSE.2007.53.

[14] - PyQt are Python bindings for Nokia's Qt application framework. It runs Windows,
MacOS/X, Linux. http://www.riverbankcomputing.co.uk/software/pyqt/intro

[15] – HDF5 is a set of file formats and libraries designed to store and organize large amounts

of numerical data. Originally developed at the National Center for Supercomputing Applications,

and currently supported by HDF Group. http://www.hdfgroup.org

 [16] - John Hughes. “Why Functional Programming Matters”, in D. Turner, editor, Research
Topics in Functional Programming. Addison Wesley, 1990.

[17] - M. P. Atkinson,Peter Buneman,Ronald Morrison, “Data types and persistence”, par 4.2.1

[18] - David M. Beazley - "Using SWIG to Control, Prototype, and Debug C Programs with

Python". 4th International Python Conference, Livermore, California, June, 1996.

[19] – Bill Spotz, Sandia National Laboratories, “numpy.i: a SWIG Interface File for NumPy”,

Decmber 2007, document available in the Numpy distribution.

[20] – PyTables is a package for managing hierarchical datasets designed to efficiently cope
with extremely large amounts of data. http://www.pytables.org

[21] - Boost.Python, a C++ library which enables seamless interoperability between C++ and

Python. http://www.boost.org/doc/libs/1_43_0/libs/python/doc/index.html

[22] - Fimmwave by Photon Desgin : http://www.photond.com/products/fimmwave.htm

[23] - Python-meep project page: https://launchpad.net/python-meep

